PRT1-COM \& GT1 Series

PROFIBUS-DP
MULTIPLE I/O TERMINAL

OPERATION MANUAL

PRT1-COM
GT1 Series
PROFIBUS-DP
MULTIPLE I/O TERMINAL
Operation Manual
Produced December 1999

Notice:

OMRON products are manufactured for use according to proper procedures by a qualified operator and only for the purposes described in this manual.
The following conventions are used to indicate and classify precautions in this manual. Always heed the information provided with them. Failure to heed precautions can result in injury to people or damage to property.

Indicates an imminently hazardous situation which, if not avoided, will result in death or serious injury.

WARNING
Indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury. Indicates a potentially hazardous situation which, if not avoided, may result in minor or moderate injury, or property damage.

OMRON Product References

All OMRON products are capitalized in this manual. The word "Unit" is also capitalized when it refers to an OMRON product, regardless of whether or not it appears in the proper name of the product.
The abbreviation "Ch," which appears in some displays and on some OMRON products, often means "word" and is abbreviated "Wd" in documentation in this sense.
The abbreviation "PC" means Programmable Controller and is not used as an abbreviation for anything else.

Visual Aids

The following headings appear in the left column of the manual to help you locate different types of information.

Note Indicates information of particular interest for efficient and convenient operation of the product.

1, 2, 3... 1. Indicates lists of one sort or another, such as procedures, checklists, etc.

Trademarks and Copyrights

Motorola is a registered trademark of Motorola, Inc.
Intel is a registered trademark of Intel, Inc.

OMRON, 1999

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, mechanical, electronic, photocopying, recording, or otherwise, without the prior written permission of OMRON.
No patent liability is assumed with respect to the use of the information contained herein. Moreover, because OMRON is constantly striving to improve its high-quality products, the information contained in this manual is subject to change without notice. Every precaution has been taken in the preparation of this manual. Nevertheless, OMRON assumes no responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use of the information contained in this publication.

TABLE OF CONTENTS

PRECAUTIONS xi
1 Intended Audience xii
2 General Precautions xii
3 Safety Precautions xii
4 Operating Environment Precautions xii
5 Application Precautions xiii
6 EC Directives xv
SECTION 1 PROFIBUS-DP 1
1-1 Introduction 2
1-2 Protocol architecture 3
1-3 Device types 4
1-4 PROFIBUS-DP characteristics 5
1-5 Device Data Base files 8
1-6 Profiles 9
SECTION 2
Installation of PROFIBUS-DP Network 11
2-1 PROFIBUS-DP MULTIPLE I/O TERMINAL 12
2-2 Communication Unit PRT1-COM 13
2-3 Setting up a PROFIBUS-DP network 18
SECTION 3
MULTIPLE I/O TERMINAL 23
3-1 MULTIPLE I/O TERMINAL 24
3-2 Functions 29
SECTION 4
Hardware Setup and Operational Check 37
4-1 Basic Procedure 38
4-2 Specific Example 39
SECTION 5
Sample Programs 43
5-1 Examples of Counter Unit Operation 44
SECTION 6
Basic I/O Unit Specifications 51
6-1 Common Specifications for Basic I/O Units 52
6-2 Transistor Input Units 54
6-3 Transistor Output Units 74
6-4 Relay Output Units 97
SECTION 7
Special I/O Unit Specifications 103
7-1 Analog Input Units 104
7-2 Analog Output Units 120
7-3 Counter Units 134

TABLE OF CONTENTS

SECTION 8 Communications Timing 151
8-1 Remote I/O Communications Characteristics 152
SECTION 9
Troubleshooting and Maintenance 157
9-1 Normal Indication 158
9-2 Troubleshooting 159
9-3 Maintenance 164
Appendices
A GSD file for PRT1-COM 167
B Connectible Devices 171
Index 175
Revision History 177

About this Manual:

This manual describes the installation and operation of the PROFIBUS-DP MULTIPLE I/O TERMINAL. A modular system of I/O units (GT1 Series) connected by a communication unit (PRT1-COM) to PROFIBUS-DP. The manual includes the sections described below.
Please read this manual carefully and be sure you understand the information provided before attempt-ing to install and operate the PROFIBUS-DP Communication Unit and Multiple I/O units. Be sure to read the precautions provided in the following section.

Section 1 gives a brief description of PROFIBUS-DP.
Section 2 describes the specification and installation of the PRT1-COM in a PROFIBUS-DP Network.
Section 3 provides an overview of the MULTIPLE I/O TERMINAL, including its features and functions.
Section 4 provides the basic procedure for operation and includes an actual example.
Section 5 provides some examples of programs used with the Counter Unit.
Section 6 provides the specifications for the basic I/O Units, the transistor Input and Output Units, and Relay Output Units.
Section 7 provides the specifications for Special I/O Units, including the Analog Input and Output Unit, and the Counter Unit.
Section 8 provides characteristics for communications by the PROFIBUS-DP Communication unit and describes how to calculate the times required for communication between the various I/O units.
Section 9 describes the troubleshooting procedures and maintenance operations.
Appendix A provides a listing of the PRT1-COM GSD file.
Appendix B provides an overview of connectable devices.
! WARNING
Failure to read and understand the information provided in this manual may result in personal injury or death, damage to the product, or product failure. Please read each section in its entirety and be sure you understand the information provided in the section and related sections before attempting any of the procedures or operations given.

PRECAUTIONS

This section provides general precautions for using the Programmable Controller (PC) Systems and related devices.
The information contained in this section is important for the safe and reliable application of PC Systems. You must read this section and understand the information contained before attempting to set up or operate a PC System.
1 Intended Audience xii
2 General Precautions xii
3 Safety Precautions xii
4 Operating Environment Precautions xii
5 Application Precautions xiii
6 EC Directives XV

1 Intended Audience

This manual is intended for the following personnel, who must also have knowledge of electrical systems (an electrical engineer or the equivalent):

- Personnel in charge of installing FA systems.
- Personnel in charge of designing FA systems.
- Personnel in charge of managing FA systems and facilities.

2 General Precautions

This manual provides information for programming and operating OMRON PC Systems. Be sure to read this manual before attempting to use the software and keep this manual close at hand for reference during operation.
The user must operate the product according to the performance specifications described in the operation manuals.
Before using the product under conditions which are not described in the manual or applying the product to nuclear control systems, railroad systems, aviation systems, vehicles, combustion systems, medical equipment, amusement machines, safety equipment, and other systems, machines, and equipment that may have a serious influence on lives and property if used improperly, consult your OMRON representative.
Make sure that the ratings and performance characteristics of the product are sufficient for the systems, machines, and equipment, and be sure to provide the systems, machines, and equipment with double safety mechanisms.

WARNING It is extremely important that a PC System and all PC Units be used for the specified purpose and under the specified conditions, especially in applications that can directly or indirectly affect human life. You must consult with your OMRON representative before applying a PC System to the above mentioned applications.

3 Safety Precautions

WARNING Never attempt to disassemble any Units while power is being supplied. Doing so may result in serious electrical shock or electrocution.

WARNING Never touch any of the terminals while power is being supplied. Doing so may result in serious electrical shock or electrocution.

4 Operating Environment Precautions

Do not operate the control system in the following places:

- Locations subject to direct sunlight.
- Locations subject to temperatures or humidity outside the range specified in the specifications.
- Locations subject to condensation as the result of severe changes in temperature.
- Locations subject to corrosive or flammable gases.
- Locations subject to dust (especially iron dust) or salts.
- Locations subject to shock or vibration.
- Locations subject to exposure to water, oil, or chemicals.
- Take appropriate and sufficient countermeasures when installing systems in the following locations:
- Locations subject to static electricity or other forms of electrical interference.
- Locations subject to strong electromagnetic fields.
- Locations subject to possible exposure to radioactivity.
- Locations close to power supplies.

Caution
The operating environment of the PC System can have a large effect on the longevity and reliability of the system. Improper operating environments can lead to malfunction, failure, and other unforeseeable problems with the PC System. Be sure that the operating environment is within the specified conditions at installation and remains within the specified conditions during the life of the system.

5 Application Precautions

Observe the following precautions when using the MULTIPLE I/O TERMINAL.
4 WARNING Failure to abide by the following precautions could lead to serious or possibly fatal injury. Always heed these precautions.

- Always ground the system to 100Ω or less when installing the system to protect against electrical shock.
- Always turn OFF the power supply to the system before attempting any of the following. Performing any of the following with the power supply turned ON may lead to electrical shock:
- Mounting or removing any Units (e.g., I/O Units, CPU Unit, etc.) or memory cassettes.
- Assembling any devices or racks.
- Connecting or disconnecting any cables, connectors, or wiring.

Failure to abide by the following precautions could lead to faulty operation of or damage to the MULTIPLE I/O TERMINAL. Always heed these precautions.

- Use the Units only with the power supplies and voltages specified in the operation manuals. Other power supplies and voltages may damage the Units.
- Take measures to stabilize the power supply to conform to the rated supply if it is not stable.
- Provide circuit breakers and other safety measures to provide protection against shorts in external wiring.
- Do not apply voltages exceeding the rated input voltage to Input Units. The Input Units may be destroyed.
- Do not apply voltages exceeding the maximum switching capacity to Output Units. The Output Units may be destroyed.
- Install all Units according to instructions in the operation manuals. Improper installation may cause faulty operation.
- Be sure to tighten Backplane screws, terminal screws, and cable connector screws securely.
- Do not attempt to take any Units apart, to repair any Units, or to modify any Units in any way.
- Do not use communications cables or I/O cables in parallel to or close to high-tension, high-rate current carrying lines. Doing so may cause faulty operation
- Be sure to install the MULTIPLE I/O TERMINAL in the proper direction. Not doing so may cause faulty operation.
- When attaching Units to the DIN rail, be sure to attach them securely. Not doing so may cause the Units to be damaged.
- Use this product within the specified ranges for communications distances and connection distances. Not doing so may lead to faulty operation.
- Use the specified cables when making communications connections. Not doing so may cause faulty operation.
- Be sure to wire the communications paths, the communications power supplies, the internal power supplies, and the I/O power supplies correctly. Use voltages for the power supplies that are within the specified ranges. Not doing so may cause malfunction.
- Do not, under any circumstances, use this product with loads exceeding the contact rating values. Doing so may cause deterioration of insulation and damage.
- The life-expectancy of the relays depends greatly on the switching conditions. Before practical use of the product, perform a trial operation of the product in the actual conditions in which it will be used. Use the product at a switching frequency that will allow efficient operation. Continued use of the product in conditions causing reduced efficiency will cause deterioration of insulation and damage.
- Connection Cables
- Before switching ON power supplies, check that the connectors are mounted securely.
- Check that the connectors for the I/O Unit interfaces are securely locked.
- Tightening Torques

Check that all the screws for the Units are tightened to the correct torque. Not doing so may cause faulty operation.

- Internal power supplies, I/O power supplies, terminal screws:
0.3 to $0.5 \mathrm{~N} \cdot \mathrm{~m}$
- Communications cable, communications connector screws: 0.25 to $0.35 \mathrm{~N} \cdot \mathrm{~m}$
- High-density I/O Unit connector screws: 0.25 to $0.35 \mathrm{~N} \cdot \mathrm{~m}$
- Cleaning
- Do not used thinner-based products for cleaning. Doing so may dissolve attachment areas or cause discoloration.
- Power Supply
- Use separate power supplies for communications power supplies, internal power supplies, I/O power supplies, load power supplies, and encoder power supplies. Not doing so may lead to faulty operation.
\triangle Caution The following precautions are necessary to ensure the general safety of the system. Always heed these precautions.
- Provide double safety mechanisms to handle incorrect signals that can be generated by broken signal lines or momentary power interruptions.
- Provide external interlock circuits, limit circuits, and other safety circuits in addition to any provided within the PC System to ensure safety.

6 EC Directives

The MULTIPLE I/O TERMINAL conforms to EMC and Low Voltage Directives as follows:

EMC Directives

OMRON devices that comply with EC Directives also conform to the related EMC standards so that they can be more easily built into other devices or the overall machine. The actual products have been checked for conformity to EMC standards (see the following note). Whether the products conform to the standards in the system used by the customer, however, must be checked by the customer.
EMC-related performance of the OMRON devices that comply with EC Directives will vary depending on the configuration, wiring, and other conditions of the equipment or control panel on which the OMRON devices are installed. The customer must, therefore, perform the final check to confirm that devices and the overall machine conform to EMC standards.

Low Voltage Directive

Always ensure that devices (Relay Units) operating at voltages of 50 to 1,000 VAC and 75 to 1,500 VDC meet the required safety standards (IEC255).
The MULTIPLE I/O TERMINALS that comply with EC Directives must be installed as follows:

1, 2, 3... 1. MULTIPLE I/O TERMINALS are designed for installation inside control panels. All MULTIPLE I/O TERMINALS must be installed within control panels.
2. Used reinforced insulation or double insulation for the DC power supplies used for the communications power supply, internal circuit power supply, and the I/O power supplies.
3. MULTIPLE I/O TERMINAL products that meet EC Directives also meet the Common Emission Standard (EN50081-2). However, radiated emission (at 10 m) will vary with the overall configuration of the control panel, other devices connected to the control panel, and other conditions. You must therefore confirm that EC Directives are satisfied for the overall machine or device.

SECTION 1 PROFIBUS-DP

This section gives a brief description of PROFIBUS-DP.
1-1 Introduction 2
1-2 Protocol architecture 3
1-3 Device types 4
1-4 PROFIBUS-DP characteristics 5
1-4-1 Bus Access Protocol 5
1-4-2 Data throughput 6
1-4-3 Diagnostics functions 6
1-4-4 Protection mechanisms 7
1-4-5 Network states 7
1-5 Device Data Base files 8
1-6 Profiles 9

1-1 Introduction

Standard EN50170-2

High speed

Process Automation

Higher level

Uniform bus access protocol

PROFIBUS (Process FieldBus) is a vendor-independent, open fieldbus standard for a wide range of applications in manufacturing, process and building automation. Vendor independence and openness are guaranteed by the PROFIBUS standard EN50170-2. With PROFIBUS, devices of different manufacturers can communicate without special interface adjustments.
The PROFIBUS family consists of three compatible versions:

PROFIBUS-DP

DP stands for Decentralised Periphery. It is optimised for high speed and low-cost interfacing, especially designed for communication between automation control systems and distributed I/O at the device level.

PROFIBUS-PA

PA stands for Process Automation. It permits sensors and actuators to be connected on one common bus line even in intrinsically-safe areas. It permits data communication and power supply over the bus using 2-wire technology according to the international standard IEC 1158-2.

PROFIBUS-FMS

FMS stands for Fieldbus Message Specification. This version is the general-purpose solution for communication tasks at a higher level. Powerful services open up a wide range of applications and provide great flexibility. It can also be used for extensive and complex communications tasks.
PROFIBUS-DP and PROFIBUS-FMS use the same transmission technology and a uniform bus access protocol. Thus, both versions can be operated simultaneously on the same cable. However, FMS field devices cannot be controlled by DP masters or vice versa.

Caution
It is not possible to exchange one of these family members by another family member. This will cause faulty operation.

The remainder of this Operation Manual only describes PROFIBUS-DP.

1-2 Protocol architecture

OSI

Layer 1, 2 and user interface

Transmission medium

Easy installation

Cable length

The PROFIBUS-DP protocol architecture is oriented on the Open System Interconnection (OSI) reference model in accordance with the international standard ISO 7498.

User Interface Layer	DP-Profiles
	DP-Extensions
	DP Basic Functions
(7) Application Layer	
(6) Presentation Layer	
(5) Session Layer	NOT DEFINED
(4) Transport Layer	
(3) Network Layer	
(2) Data Link Layer	Fieldbus Data Link (FDL)
(1) Physical Layer	RS-485 / Fibre Optics

OSI layer model of PROFIBUS-DP

PROFIBUS-DP uses layers 1 and 2, and the user interface. Layers 3 to 7 are not defined.
Layer 1 (physical layer) defines the physical transmission characteristics.
Layer 2 (data link layer) defines the bus access protocol.
This streamlined architecture ensures fast and efficient data transmission. The application functions which are available to the user, as well as the system and device behaviour of the various PROFIBUS-DP device types, are specified in the user interface.
RS-485 transmission technology or fibre optics are defined as transmission medium. RS-485 transmission is the most frequently used transmission technology. Its application area includes all areas in which high transmission speed and simple inexpensive installation are required. Twisted pair shielded copper cable with one conductor pair is used.
The RS-485 transmission technology is very easy to handle. Installation of the twisted pair cable does not require expert knowledge. The bus structure permits addition and removal of stations or step-by-step commissioning of the system without influencing the other stations. Later expansions have no effect on stations which are already in operation.
Various transmission speeds between $9.6 \mathrm{kbit} / \mathrm{s}$ and $12 \mathrm{Mbit} / \mathrm{s}$ can be selected. One unique transmission speed is selected for all devices on the bus when the system is commissioned.
The maximum cable length depends on the transmission speed (see section $2-3-1$). The length can be increased by the use of repeaters. The use of more than 3 repeaters in series is not recommended.

1-3 Device types

PROFIBUS-DP distinguishes between master devices and slave devices.

Master devices

DPM1, DPM2

Slave devices

Master devices control the data communication on the bus. PROFIBUS-DP allows more then one master in the network. A master can send messages without an external request, as long as it holds the bus access right (the token). Masters are also called active stations in the PROFIBUS-DP standard.

There are two types of master devices: DP master class 1 (DPM1) and DP master class 2 (DPM2).
A DPM1 is a central controller, which exchanges information with the decentralised stations (i.e. DP slaves) within a specified message cycle.
DPM2 devices are programmers, configuration devices or operator panels. They are used during commissioning for configuration of the DP system or for operation and monitoring purposes.

Slave devices are peripheral devices. Typical slave devices include input/output devices, valves, drives and measuring transmitters. They do not have bus access rights and they can only acknowledge received messages or send messages to the master when requested to do so. Slaves are also called passive stations.
The PRT1-COM is a modular slave device.

1-4 PROFIBUS-DP characteristics

1-4-1 Bus Access Protocol

Layer 2

Medium Access Control

Token passing

Polling procedure

The bus access protocol is defined by layer 2. This protocol also includes data security and the handling of the transmission protocols and messages.

The Medium Access Control (MAC) specifies the procedures, which determine when a station is permitted to transmit data. A token passing procedure is used to handle the bus access between master devices, and a polling procedure is used to handle the communication between a master device and its assigned slave device(s).

The token passing procedure guarantees that the bus access right (the token) is assigned to each master within a precisely defined time frame. The token message, a special message for passing access rights from one master to the next master, must be passed around the logical token ring - once to each master - within a specified target rotation time.

The polling or master-slave procedure permits the master, which currently owns the token, to access its assigned slaves. The picture below shows a possible configuration.

Token Passing

Token passing and Slave polling mechanisms

The configuration shows three active stations (masters) and six passive stations (slaves).
The three masters form a logical token ring. When an active station receives the token message, it can perform its master role for a certain period of time. During this time it can communicate with all assigned slave stations in a master-slave communication relationship. In addition a DPM2 master can take the initiative to communicate with DPM1 master stations in a master-master communication relationship.

In addition to logical peer-to-peer data transmission, PROFIBUS-DP provides multi-peer communication (broadcast and multicast).
Broadcast communication: an active station sends an unacknowledged message to all other stations (master and slaves).
Multicast communication:
an active station sends an unacknowledged message to a predetermined group of stations (master and slaves).

1-4-2 Data throughput

Transmission time

At $12 \mathrm{Mbit} / \mathrm{s}$, PROFIBUS-DP requires approximately 1 ms for the transmission of 512 bits of input data and 512 bits of output data distributed over 32 stations.
The figure below shows the typical PROFIBUS-DP transmission time depending on the number of stations and the transmission speed. The data throughput will decrease when more than one master is used.

Bus cycle time vs number of slaves

Conditions: Each slave has 2 bytes of input data and 2 bytes of output data.

1-4-3 Diagnostics functions

Extensive diagnostics

Device related diagnostics

Module related diagnostics

Channel related diagnostics

The extensive diagnostic functions of PROFIBUS-DP enable fast location of faults. The diagnostic messages are transmitted over the bus and collected at the master. These messages are divided into three levels:

- Device related diagnostics

This diagnostic level concerns the general operational status of the whole device (e.g. overtemperature or low voltage).

- Module related diagnostics

This diagnostic level indicates that a fault is present in a specific I/O range (e.g. an 8-bit output module) of a station.

- Channel related diagnostics

This diagnostic level indicates an error at an individual input or output (e.g. short circuit on output 5).

1-4-4 Protection mechanisms

Time monitoring

At the master

At the slave

PROFIBUS-DP provides effective protection functions against parameterisation errors or failure of the transmission equipment. Time monitoring is provided at the DP master and at the DP slaves. The monitoring interval is specified during the configuration.

- Protection mechanism at the master.

The DPM1 master monitors data transmission of its active slaves with the Data_Control_Timer. A separate control timer is used for each slave. This timer expires, when correct data transmission does not occur within the monitoring interval.
If the master's Auto_Clear Mode has been enabled, the DPM1 will exit its Operate state, switches the outputs of all assigned slaves to fail-safe status and changes to its Clear status (see also section 1-4-5).

- Protection mechanisms at the slave.

The slave uses the watchdog control to detect failures of the master or the transmission line. If no data communication with the master occurs within the watchdog control interval, the slave automatically switches its outputs to the fail-safe status. This mechanism can be enabled or disabled for each individual slave.
Also, access protection is available for the inputs and outputs of the DP slaves operating in multi-master systems. This ensures that direct access can only be performed by the authorised master. For all other masters, the slaves offer an image of their inputs and outputs, which can be read from any master, even without access rights.

1-4-5 Network states

PROFIBUS-DP distinguishes four different network states.

Off-line

Stop

Clear

Operate

Auto_clear

- Off-line

Communication between all PROFIBUS-DP devices on a network is stopped.

- Stop

Communication between DPM1 and DP slaves is stopped. Only communication between DPM1 and DPM2 is possible.

- Clear

DPM1 master attempts to set parameters, check the configuration, and subsequently perform data exchange with its associated DP-slaves. The data exchange comprises reading the inputs of the DP-slaves and writing zeros to the outputs of the DP-slaves.

- Operate

DPM1 master exchanges data with its assigned slaves, inputs are read and outputs are written. Beside this, the DPM1 cyclically sends its local status to all assigned DP slaves (using a multicast message) at a configurable time interval.

When an error occurs during the data exchange phase of the DPM1, the 'Auto_clear' configuration parameter determines the subsequent actions. If this parameter is set to false, the DPM1 remains in the Operate state. If set to true, the DPM1 switches the outputs of all assigned DP slaves to the fail-safe state and the network state changes to the Clear state.

1-5 Device Data Base files

Plug-and-play
DDB-file, GSD-file

General section

DP-master section

DP-slave section

Configurator

To achieve simple plug-and-play configuration of the PROFIBUS-DP network, the characteristic features of a device are specified in a file. This file is called a DDB-file (Device Data Base file) or a GSD-file (Gerätestammdaten file). The GSD files are prepared individually by the vendor for each type of device, according a fixed format. Some parameters are mandatory, some have a default value and some are optional.
The device data base file is divided into three parts:

- General specifications

This section contains vendor and device names, hardware and software release versions, station type and identification number, protocol specification and the baud rates supported.

- DP master-related specifications

This section contains all parameters, which only apply to DP master devices (e.g. maximum memory size for master parameter set, maximum number of entries in the list of active stations or the maximum number of slaves the master can handle).

- DP slave-related specifications

This section contains all specifications related to slaves (e.g. minimum time between two slave poll cycles, specification of the inputs and outputs and consistency of the I/O data).
The device data base file of each device is loaded in the configurator and downloaded to the master device.

Refer to the Operation Manual of the PROFIBUS-DP Master Unit (W349) for usage of the GSD file in the master's configuration software.

1-6 Profiles

Exchanging devices

To enable the exchange of devices from different vendors, the user data has to have the same format. The PROFIBUS-DP protocol does not define the format of user data, it is only responsible for the transmission of this data.

The format of user data may be defined in so called profiles. Profiles can reduce engineering costs since the meaning of application-related parameters is specified precisely. Profiles have been defined for specific areas like drive technology, encoders, and for sensors / actuators.

SECTION 2 Installation of PROFIBUS-DP Network

This section describes the installation of the PRT1-COM within the PROFIBUS-DP Network
2-1 PROFIBUS-DP MULTIPLE IO TERMINAL 12
2-2 Communication Unit PRT1-COM 13
2-2-1 Specification of PRT1-COM 13
2-2-2 PRT1-COM Components 14
2-3 Setting up a PROFIBUS-DP network 18
2-3-1 Fieldbus cabling 18
2-3-2 Configuring PROFIBUS-DP system 20

2-1 PROFIBUS-DP MULTIPLE I/O TERMINAL

The PROFIBUS-DP MULTIPLE I/O TERMINAL is a system with a communication Unit and various MULTIPLE I/O Units.
The communication Unit (PRT1-COM) connects the MULTIPLE I/O Units to the PROFIBUS-DP Network. A maximum of eight MULTIPLE I/O Units can be connected to one PRT1-COM.
The PRT1-COM Unit is described in this section, the total MULTIPLE I/O TERMINAL system is described in the next section.

2-2 Communication Unit PRT1-COM

2-2-1 Specification of PRT1-COM

Item		Specification
Model		PRT1-COM
Internal power supply	Voltage range	24VDC +10\% - 15\% (20.4 to 26.4 VDC)
	Unit current consumption	0.18 A max. (at 24 VDC)
	Maximum current	0.6 A (with maximum output to I/O Unit) the capacity required for the internal power supply of the Communication Unit can be obtained using the following formula: Communication Unit internal power supply current = Communication Unit internal current consumption + total current Consumption for the I/O Unit interfaces.
	Inrush current	30 A max.
I/O Unit interface	Number of Units connected	8 Units max.
	Total number of inputs / outputs	Total inputs (IN): 128 bytes max. Total outputs (OUT): 128 bytes max.
	Rated output Current	0.3 A max.
	Overcurrent Protection function.	105% of rated current or higher. When an over-current occurs, the power supply to the I/O Units will remain OFF until the PRT1-COM power supply is turned OFF and ON again.
Noise immunity		1,500 V p-p Pulse width: 0.1 to 1 ms , Pulse rise time: 1 ns (via noise simulator)
Vibration resistance		10 to $150 \mathrm{~Hz}, 1.0-\mathrm{mm}$ double amplitude or 70 $\mathrm{m} / \mathrm{s}^{2}$
Shock resistance		$200 \mathrm{~m} / \mathrm{s}^{2}$
Dielectric strength		500 VAC (between isolated circuits)
Ambient temperature		$-10{ }^{\circ} \mathrm{C}$ to $55{ }^{\circ} \mathrm{C}$
Ambient humidity		25\% to 85\% (with no condensation)
Operating atmosphere		No corrosive gases
Storage temperature		$-25^{\circ} \mathrm{C}$ to $65{ }^{\circ} \mathrm{C}$
EMC directives		EN50081-2, EN50082-2
Mounting		DIN 35-mm rail
Mounting strength		100 N
Terminal strength		100 N
I/O Unit interface connector lock strength		50 N
Weight		Approx. 165 g

Characteristics of

 PROFIBUS-DP| Applicable standard | EN 50170 vol. 2 |
| :---: | :---: |
| Type | PROFIBUS-DP SLAVE |
| Bus connector | 9-pin sub-D female |
| Bus termination | Not included |
| Baud rates (Auto-detect) | $9.6 \text { k, } 19.2 \text { k, } 45.45 \text { k, } 93.75 \text { k, } 187.5 \text { k, }$ $500 \mathrm{k}, 1.5 \mathrm{M}, 3 \mathrm{M}, 6 \mathrm{M}, 12 \mathrm{M}$ bits/s |
| PROFIBUS address range | 0 to 125 |
| Communication cable | Type A (EN 50170-2) |
| Minimum slave interval time | 1 ms |
| Input data | 4 status bytes + max. 128 data bytes |
| Output data | max. 128 data bytes |
| Supported PROFIBUS-DP functions | - Data_Exchange
 - Slave_Diag
 - Set_Prm
 - Chk_Cfg
 - Global Control (SYNC, FREEZE, CLEAR)
 - Get_Cfg
 - RD_Inp
 - RD_Outp |
| PROFIBUS-DP GSD file | OC_047D.GSD |

Note This product has been tested in the test laboratory of PNO (PROFIBUS Nutzerorganisation) and has been approved as conforming to the PROFIBUS-DP standard. (EN 50170-2)

2-2-2 PRT1-COM Components

The following overview shows the various components of PRT1-COM.

[^0] Connect to the power supply for operation and connect to the functional earth. Connects to the MULTIPLE I/O Unit communication cable.

Led Indicators

PRT1-COM has 3 LEDs to indicate the status of the Unit.

1. The Unit specific status is indicated with the US-LED
2. The BF-LED indicates the status of PROFIBUS-DP
3. The MULTIPLE I/O Bus status is indicated with the TS-LED

US LED	Colour	Description	
Unit Status	Bicolor Green / Red	OFF	PWR not OK
		Green ON	Unit OK
		Green BLINK	Initialising
		Red ON	Unit error

BF LED	Color	Description	
Bus Failure (Profibus-DP)	Red	OFF	No errors
		ON	• Response monitoring time has elapsed. The master did not address PRT1-COM within the configured watchdog time. - PRT1-cOM was not parameterised or not properly configured on start-up.

TS LED	Color		Description
Terminal Status (multiple I/O)	BicolorGreen / Red	OFF	Power overload
		Green ON	Communication OK
		Green BLINK	Special I/O Unit Error
		Red ON	- Bus error
			- Configuration error
			- End station error
			- Max. I/O Unit over
			- Basic I/O Unit Error

DIP Switch Settings

Switch	Name	Purpose
1 to 7	ADDRESS	PROFIBUS-DP station address All OFF = station address 0, (default, see Note) All ON = station address 127
8	SYNC	Data exchange method: Synchronous / Asynchronous OFF = Asynchronous, (default) ON = Synchronous
9	INTEL	Double byte transfer method: INTEL / Motorola OFF = Motorola, (default) ON = Intel
10	NC	Reserved for system use. Always off

PROFIBUS-DP address setting is default set to 0 .

Data exchange method

- This setting should always be changed to appropriate value.
- Station addresses 126 and 127 are invalid and should not be used.
- Do not use station address 0 in combination with the C200HW-PRM21 PROFIBUS-DP Master.

1. Asynchronous mode:

The MULTIPLE I/O Bus transmit/receive cycles are independent of the messages being transmitted/received at the PROFIBUS-DP interface.
2. Synchronous mode:

A MULTIPLE I/O Bus transmit/receive cycle will only be initiated if new data has been received at the PROFIBUS-DP interface.
More information can be found in: section 8-1-4.
Note Synchronous mode has no meaning when only input MULTIPLE I/O Units are attached. In this case the switch setting is ignored and asynchronous mode is used.

The INTEL switch is used for selection of the little-endian/big-endian mode, to define the transfer method for double-byte data transfer between PROFIBUS-DP and MULTIPLE I/O Bus.
This allows for adjustment of the data format if required by the PROFIBUS-DP master.

1. Big-endian mode (Often referred to as Motorola mode):

The first byte transmitted over PROFIBUS-DP is the most-significant byte whereas the second byte is the least-significant byte.

2. Little-endian mode (Often referred to as Intel mode):

The first byte transmitted over PROFIBUS-DP is the least-significant byte whereas the second byte is the most-significant byte.

Note Changing the transfer method to 'Little-endian' mode will also have impact on the transfer of the status bytes, see also section 3-2-4.
Mount the Unit on DIN $35-\mathrm{mm}$ rail using the DIN Track Mounting Hook.
The I/O Unit Bus connectors on the MULTIPLE I/O Units must be connected with the appropriate cables to provide I/O Unit interface and allow power to be supplied to the I/O Units.
An End connector cable must be connected to the right-side connector of the last I/O Unit (terminator).

One I/O Unit connecting cable (cable length 40 mm) is included with each I/O Unit. One End connector is supplied with the Communication Unit. An I/O Unit connecting cable with a cable length of 1 m (GCN1-100) is sold separately.

Connect the I/O Unit connecting cable to the right connector on the Communication Unit and to the left connector of the I/O Unit as shown in the following figure.

Be sure to connect the End connector to the right I/O Unit Bus connector of the last I/O Unit.

Wiring

Provide the internal power supply as shown in the following diagram.

$\stackrel{\wedge}{\boldsymbol{\circ}}$ is connected to the shield of the PROFIBUS-DP connector.

Dimensions

Side view

Front view

2-3 Setting up a PROFIBUS-DP network

2-3-1 Fieldbus cabling

Bus structure

Cable type

All PROFIBUS-DP devices are connected in a line structure. Each RS485 bus segment may contain up to 32 stations (masters, slaves, repeaters). When more than 32 stations are required, repeaters must be used to link the individual bus segments. The bus must be terminated at the beginning and at the end of each segment.

The standard EN50170-2 specifies the use of shielded twisted pair cables with the following parameters (PROFIBUS-DP line type A):
PROFIBUS-DP Cable parameters

Parameter	Value
Impedance	135 to $165 \Omega(3 \sim 20 \mathrm{MHz})$
Capacitance per unit length	$<30 \mathrm{pF} / \mathrm{m}$
Loop resistance	$<110 \Omega / \mathrm{km}$
Core diameter	$>0.64 \mathrm{~mm}$
Core cross section	$>0.34 \mathrm{~mm}^{2}(22 \mathrm{AWG})$

Cable

Maximum length

The PROFIBUS-DP User Group recommends the following colour coding for the data signal lines:
A-line - green
B-line - red
The maximum length of the cable depends on the transmission speed. The cable lengths specified in the table below are based on the above cable specifications.

Cable length vs. Baud rate

Baud rate (kbit/s)	length/segment (m)
$9.6,19.2,45.45,93.75$	1200
187.5	1000
500	400
1500	200
$3000,6000,12000$	100

Stub lines should be avoided for data transmission speeds of more than $500 \mathrm{kbit/s}$. Plug connectors available on the market permit the incoming data cable and the outgoing data cable to be connected directly in the plug connector. This means that stub lines do not have to be used, and the bus plug connector can be connected and disconnected at all times without interrupting data communication with the other stations.

The connector plug to connect to the PRT1-COM is a 9 -pin male sub-D connector, preferably with a metal case, conducting screws and a solder lip for connecting the shield of the cable. The cable should at least be connected to pin 3 (B -line) and pin 8 (A-line) of the connector.

At baud rates over 1.5 Mbit/s, always use special PROFIBUS-DP connectors with built-in series inductances, to ensure that cable reflections caused by the capacitive load of each unit are minimised.
Connectors with built-in inductors and termination resistors, as shown here, are available from various manufacturers.

PROFIBUS-DP Connector with built-in inductors and termination

PROFIBUS-DP Connector

RTS

VP, DGND

Shielding

The signal RTS (TTL signal relative to DGND) is meant for the direction control of repeaters in case repeaters without self control capability are used.

The signals VP and DGND are meant to power an externally mounted bus terminator (see figure). The powering of the 220Ω termination resistor ensures a defined idle state potential on the datalines. To ensure proper functioning up to the highest baud rate, the bus cable has to be terminated at both ends of the cable.

PROFIBUS-DP Termination

To ensure electro-magnetic compatibility (EMC), the shield of the cable should be connected to the metal case and to pin 1 of the connector.
If the Unit is installed within a control cabinet, the cable shield of the incoming bus cable should be electrically connected to a grounding rail as close as possible to the cable lead-through using a shield grounding clamp or similar. The cable shield should continue within the cabinet to the fieldbus device and be connected there in accordance with the manufacturers instructions.
Ensure that the PLC and the control cabinet in which the device is mounted have the same ground potential by providing a large-area metallic contact to ground (use e.g. galvanised steel to ensure a good connection). Grounding rails should not be attached to painted surfaces.

If the above measures are observed, electro-magnetic interference is diverted through the cable's shield.
You may find further information about

- Commissioning of PROFIBUS-DP equipment
- Testing the PROFIBUS-DP cable and bus connectors
- Determining the loop resistance
- Testing for correct bus termination
- Determining the segment length and cable route
- Other test methods
- Example of an equipment report
in the PROFIBUS-DP guideline "Installation Guideline for PROFIBUS-DP/FMS" (PNO Order No- 2.112), which is available at every regional PROFIBUS-DP User Organisation.
Repeaters
The maximum communication distance can be increased by the use of repeaters. The repeater must be included in the count of the number of stations per segment. Even though repeaters do not have a node address, they represent an electrical load on the bus segment like any master or slave station. If a repeater is located at the end of a bus segment, it should provide bus termination as well.
It is recommended to limit the number of repeaters in series between any two stations in the system to a maximum of three units, as shown in the following example (3 repeaters are encountered in communication between section 6 and sections 1, 2 and 4).

Example of a PROFIBUS system using repeaters

2-3-2 Configuring PROFIBUS-DP system

After making the physical connections of the network, the PROFIBUS-DP system needs to be configured. For each master and its assigned slaves, a configuration has to be defined using a dedicated configuration program.

Configurator

C200HW-PRM21

GSD file

Example

The configurator provides the master with information about:

- The slaves that are connected to the master.
- The assignment of slaves to groups for broadcast / multicast messages.
- The mapping of the slaves into the memory of the master.
- The bus parameters (e.g. baud rate, target rotation time etc.).

For more details about the configurator for the C200HW-PRM21 Master Unit, refer to OMRON Catalog No. W349-E1.

To configure a master Unit to communicate with the PRT1-COM together with the MULTIPLE I/O Units, the PRT1-COM device database file OC_047D.GSD is required. Based on the contents of this file, the configuration program for the master Unit will allow the user to select the MULTIPLE I/O Units.
The example below shows a configuration screen of the PRT1-COM. Here the PRT1-COM is configured as a slave with 5 MULTIPE I/O Units.
The terms input and output are to be interpreted as seen from the PROFIBUS-DP master unit.

PRT1-COM Configuration example

Note The System status module is mandatory. It is required for the PRT1-COM, and shall always be returned to the master, no matter how many I/O Units have been connected. It must be selected as the first "I/O Unit".
The list of selected I/O Units should exactly match the attached MULTIPLE I/O Units. The first I/O Unit (in the example specified in the second row: GT1-ID16-1) should be placed next to the PRT1-COM. The consecutive selected I/O Units should be physically placed in this order from left to right. The last I/O Unit (example: GT1-CT01) should be placed at the right end. This I/O Unit requires the End connector.

Check configuration
Upon startup of the PROFIBUS-DP communication, the master will send a Chk_Cfg message so that PRT1-COM can verify that the master's expected I/O configuration for the PRT1-COM is correct.
On power-up PRT1-COM determines an I/O table of the attached I/O Units. The I/O table is compared with the I/O configuration by:

- Amount of I/O bytes per I/O Unit
- Consistency per I/O Unit
- Order of I/O Units (physical position)

If it does not match completely, PRT1-COM will give a negative response to the PROFIBUS-DP master and will not exchange I/O data.
Re-use the configurator program again to match the selected I/O Units with the physically attached I/O Units in case the configuration is changed.

SECTION 3 MULTIPLE I/O TERMINAL

This section provides an overview of the MULTIPLE I/O TERMINAL, including its features and functions.
3-1 MULTIPLE I/O TERMINAL 24
3-1-1 Overview 24
3-1-2 System Configuration 24
3-1-3 Features 24
3-1-4 Communication Units and I/O Units 25
3-1-5 List of Models 26
3-2 Functions 29
3-2-1 I/O Unit Interface Specifications 29
3-2-2 Exchanging Data 31
3-2-3 Allocating I/O 32
3-2-4 I/O Unit Interface Status 33
3-2-5 I/O Configuration Changes 35

3-1 MULTIPLE I/O TERMINAL

3-1-1 Overview

A MULTIPLE I/O TERMINAL is a modular PROFIBUS-DP Slave that consists of a Communication Unit providing an interface to one or more I/O Units. The I/O Unit interface supports up to 8 I/O Units and a total of up to 128 byte input + 128 byte output. I/O Units are connected using simple connections via I/O Unit Connecting Cables. Allocation and address settings on the I/O Unit interface are not required, enabling simple, flexible distributed I/O control.

3-1-2 System Configuration

3-1-3 Features

Simple Connections

Status Notification

Many Types of I/O Unit

An I/O-intensive System Can be Built at Low Cost

The Communication Unit and the I/O Units are separate, and the Communication Unit and the I/O Units are connected through an I/O Unit interface. I/O can be expanded simply by connecting additional I/O Units to the I/O Unit interface.

Status information about the I/O Unit interface is transmitted as input data to the PROFIBUS-DP Master Unit (two words).

The following I/O Units are available.

- 16- or 32-point Transistor Input Units (terminal block, connector, 25-pin D-sub connector, or high-density connector)
- 16- or 32-point Transistor Output Units (terminal block, connector, 25-pin D-sub connector, or high-density connector)
- 8-point/16-point Relay Output Unit
- 4- or 8-point Analog Input Unit (terminal block or connector)
- 4-point Analog Output Unit (terminal block or connector)
- 1-point Pulse Input Unit (high-speed counter)

Compared with fixed I/O Terminals, a high cost-performance ratio can be achieved if I/O Units are used.

3-1-4 Communication Units and I/O Units

Communication Unit

I/O Units

The Communication Unit interfaces the I/O Units to the PROFIBUS-DP Network.

- It automatically recognizes the configuration of the I/O Units when the I/O Unit interface is initialised.
- It notifies the connection status (status information) of the I/O Units to the PROFIBUS-DP Master Unit.
- It provides a dip-switches to set the stations address of the MULTIPOINT I/O TERMINAL as a PROFIBUS-DP Slave.

There are various I/O Units that can be connected to the I/O Unit interface.

- I/O Units are connected to the Communication Unit using an I/O Unit Connecting Cable (included with the I/O Unit, a 1-m I/O Unit Connecting Cable (GCN1-100) is also available).
- No address or baud rate settings are required on the I/O Units.
- The connection order of I/O Units is flexible.

3-1-5 List of Models

Unit		I/O points	Words allocated in PC memory		I/O connections	Model number	Remarks	Unit power supply voltage	Installation	
		Input	Output							
Communication Unit			None	Status two words	$\begin{aligned} & 0 \\ & \text { words } \end{aligned}$	None	PRT1-COM	---	24 VDC (sup- plied from outside)	DIN track
Basic I/O Units	Transistor Input Units	16 inputs	1 word	0 words	M3 terminal block	GT1-ID16 GT1-ID16-1	NPN PNP			
		16 inputs	1 word	$\begin{aligned} & 0 \\ & \text { words } \end{aligned}$	Connectors (made by MOLEX)	$\begin{aligned} & \text { GT1-ID16MX } \\ & \text { GT1-ID16MX-1 } \end{aligned}$	$\begin{aligned} & \hline \text { NPN } \\ & \text { PNP } \end{aligned}$			
		16 inputs	1 word	$\begin{aligned} & 0 \\ & \text { words } \end{aligned}$	Connectors (made by FUJITSU)	GT1-ID16ML GT1-ID16ML-1	NPN PNP			
		16 inputs	1 word	0 words	Connectors (25-pin D-sub connectors)	$\begin{aligned} & \text { GT1-ID16DS } \\ & \text { GT1-ID16DS-1 } \end{aligned}$	$\begin{aligned} & \text { NPN } \\ & \text { PNP } \end{aligned}$			
		32 inputs	2 words	0 words	High-density connector (made by FUJITSU)	$\begin{aligned} & \text { GT1-ID32ML } \\ & \text { GT1-ID32ML-1 } \end{aligned}$	NPN PNP			
	Transistor Output Units	16 outputs	0 words	1 word	M3 terminal block	$\begin{aligned} & \text { GT1-OD16 } \\ & \text { GT1-OD16-1 } \end{aligned}$	$\begin{aligned} & \text { NPN } \\ & \text { PNP } \end{aligned}$			
		16 outputs	0 words	1 word	Connectors (made by MOLEX)	$\begin{aligned} & \text { GT1-OD16MX } \\ & \text { GT1-OD16MX-1 } \end{aligned}$	$\begin{aligned} & \hline \text { NPN } \\ & \text { PNP } \end{aligned}$			
		16 outputs	0 words	1 word	Connectors (made by FUJITSU)	GT1-OD16ML GT1-OD16ML-1	$\begin{aligned} & \hline \text { NPN } \\ & \text { PNP } \end{aligned}$			
		16 outputs	0 words	1 word	Connectors (25-pin D-sub connectors)	$\begin{aligned} & \text { GT1-OD16DS } \\ & \text { GT1-OD16DS-1 } \end{aligned}$	NPN PNP			
		32 outputs	0 words	2 words	High-density connector (made by FUJITSU)	GT1-OD32ML GT1-OD32ML-1	$\begin{aligned} & \hline \text { NPN } \\ & \text { PNP } \end{aligned}$			
	Relay Output Units	8 outputs	0 words	1 word	M3 terminal block	GT1-ROP08	---			
		16 outputs	0 words	1 word	M3 terminal block	GT1-ROS16	---			

Unit		$\begin{array}{\|c\|} \hline \text { I/O } \\ \text { points } \end{array}$	Words allocated in PC memory		I/O connections	Model number	Remarks	Unit power supply voltage	Installation	
		Input	Output							
Special I/O Units (See note.)	Analog Input Units		4 inputs	4 words	0 word	M3 terminal block	GT1-AD04	Inputs: 4 to 20 mA , 0 to 20 mA , 0 to 5 V , 1 to 5 V , 0 to 10 V , -10 to 10 V	$\begin{array}{\|l\|} \hline 24 \text { VDC } \\ \text { (sup- } \\ \text { plied } \\ \text { from } \\ \text { outside) } \end{array}$	DIN track
		8 inputs	8 words	0 word	Connectors (made by MOLEX)	GT1-AD08MX				
	Analog Output Units	4 outputs	0 words	4 words	M3 terminal block	GT1-DA04	Outputs: 4 to 20 mA , 0 to 5 V , 1 to 5 V , 0 to 10 V , -10 to 10 V			
		4 outputs	0 words	4 words	Connectors (made by MOLEX)	GT1-DA04MX	Outputs: 0 to 5 V , 1 to 5 V , 0 to 10 V , -10 to 10 V			
	Counter Units	1 input	3 words	3 words	M3 terminal block	GT1-CT01	1 external input 2 external outputs			

Note The front-panel indicators and other parts of Analog Input Units, Analog Output Units, and Counter Units differ from those of other I/O Units. These Units belong to a group called Special I/O Units.
An end connector is attached to the Communication Unit, and a $40-\mathrm{mm}$ I/O Unit Connecting Cable is included with each I/O Unit. Several I/O Unit Connecting Cables are also available.

Number:	Length:
GCN1 -010	10 cm
GCN1 -030	30 cm
GCN1 -040	40 cm
GCN1 -060	60 cm
GCN1 -100 (see figure)	1 m

Applicable Connectors

Connector			Model number	Remarks
Connectors made by MOLEX	Pressurewelded	Housing	52109-0390	For AWG\#24
	Crimp	Housing	$\begin{aligned} & \hline 51030-0330 \\ & \text { (See note.) } \end{aligned}$	
		Reeled contacts	50083-8014	For AWG\#24 to 30
			50084-8014	For AWG\#22 to 24
		Loose contacts	$\begin{array}{\|l} \hline 50083-8114 \\ \text { (See note.) } \\ \hline \end{array}$	For AWG\#24 to 30
			50084-8114	For AWG\#22 to 24
		Crimping tool	57036-5000	For AWG\#22 to 26
			$\begin{aligned} & \text { 57037-5000 } \\ & \text { (See note.) } \end{aligned}$	For AWG\#24 to 30
Connectors made by FUJITSU corresponding to 16 -point connectors	Soldered		FCN361J024-AU	
	Pressure-welded		FCN367J024-AU/F	
	Crimp		FCN363J024-AU	
Recommended connectors corresponding to 25-pin D-sub connectors	Hood		XW2S-2513	OMRON
	Plug		XW2A-2501	OMRON
Connectors made by FUJITSU corresponding to highdensity connectors	Soldered		FCN361J040-AU	
	Pressure-welded		FCN367J040-AU/F	
	Crimp		FCN363J040-AU	

Note Refer to page 173, High-density Connector Cables for MULTIPLE I/O TERMINALs for details.

3-2 Functions

3-2-1 I/O Unit Interface Specifications

Item		Specification
Communications method		Special protocol
Number of I/O Units		8 Units max.
Maximum number of data bytes		Input data: 128 bytes Output data: 128 bytes
Communications distance	Total length	3 m max.
	Between Units	1 mmax . (Cable included with Unit is 40 mm .)
Communications power supply		Supplied from the Communication Unit to the I/O Unit (0.3 A max.)
Relationship to PROFIBUS-DP		After the I/O Unit interface is established, PROFI-BUS-DP communications continue normally, even if an error occurs on the I/O Unit interface.
Addresses		Automatically recognised when the power to the Communication Unit is turned ON.
I/O configuration		Automatically recognised when the power to the Communication Unit is turned ON. If the configuration is changed while the power supply is ON, a configuration error will occur.
Self-diagnostic functions	Configuration errors	The I/O Unit configuration is constantly checked while power is supplied. If a mismatch occurs while the power is turned $\mathrm{ON}, \mathrm{I} / \mathrm{O}$ refreshing for all I/O Units is stopped.
	Special I/O Unit errors	Errors are detected in the Special I/O Units (Analog Input, Analog Output Units, and Counter Units) on the I/O Unit interface.
	I/O Unit interface errors	Communications stop when there is no communications response from an I/O Unit. Communications stop when there is no specific response from the last I/O Unit (terminator). Communications stop when nine or more I/O Units are connected.
	Power supply overload to I/O Units	The power supply to the I/O Units and I/O refreshing for all I/O Units are stopped when the power supply to the I/O Units through the Communication Unit exceeds 0.3 A.
Error detection		Frame error check; CRC-CCITT check

I/O Interface Current Consumption

I/O Unit Interface Addresses

Checking the I/O Unit Interface Status

Make sure that the power supply from the Communication Unit to the I/O Units is less than the total rated output current (300 mA). The I/O interface current consumption for each I/O Unit is shown in the following table.

I/O Unit	I/O interface current consumption
GT1-ID16(-1)	35 mA max.
GT1-ID16MX(-1)	35 mA max.
GT1-ID16ML(-1)	35 mA max.
GT1-ID16DS(-1)	35 mA max.
GT1-ID32ML(-1)	55 mA max.
GT1-OD16(-1)	35 mA max.
GT1-OD16MX(-1)	35 mA max.
GT1-OD16ML(-1)	35 mA max.
GT1-OD16DS(-1)	35 mA max.
GT1-OD32ML(-1)	65 mA max.
GT1-ROP08	40 mA max.
GT1-ROS16	50 mA max.
GT1-AD04	50 mA max..
GT1-AD08MX	$50 \mathrm{~mA} \mathrm{max}$.
GT1-DA04	$50 \mathrm{~mA} \mathrm{max}$.
GT1-DA04MX	50 mA max.
GT1-CT01	$90 \mathrm{~mA} \mathrm{max}$.

Calculation Example

When three GT1-ID32ML Input Units and three GT1-OD16 Output Units are used, the total current consumption is calculated as follows:
(GT1-ID32ML current consumption) $\times 3$ Units

+ (GT1-OD16 current consumption) $\times 3$ Units
$=55 \mathrm{~mA} \times 3+35 \mathrm{~mA} \times 3=270 \mathrm{~mA} \leq 300 \mathrm{~mA}$
The addresses of the I/O Units on the I/O Unit interface are automatically set when the Communication Unit is started. The addresses are from 0 to 7 in ascending order from the I/O Units closest to the Communication Unit.

The following two methods are used to check the I/O Unit interface status:

- Checking the Communication Unit and I/O Unit indicators
- Checking the status of the Communication Unit

Indicators

Unit	Normal	Error	
Communication Unit	TS Indicator: green ON	TS indicator I/O Unit interface error: Special I/O Unit error: Maximum power supply overload to I/O Units:	red ON green BLINKING OFF
I/O Units	TS indicator: green ON U.ERR indicator: OFF PWR indicator: green ON	TS indicator I/O Unit interface error: U.ERR indicator Special I/O Unit error: PWR indicator No internal power supply:	red ON red ON OFF

For details, refer to page 161, Troubleshooting via Indicators.

Checking the I/O Unit Interface Status

The first two words of the CPU Unit allocation input area are always allocated to the status of the I/O Unit interface received via PROFIBUS-DP.

3-2-2 Exchanging Data

Initialization
When the Communication Unit is started, it automatically recognizes the configuration of the I/O Units and registers this status as the normal configuration (in RAM memory). At the same time, addresses 0 to 7 are allocated to the I/O Units in ascending order from the I/O Unit closest to the Communication Unit. This I/O table is compared with the PROFIBUS-DP Chk-cfg message. These processes are performed each time the power is turned ON.

Note 1. If the configuration of the I/O Units is to be changed, a number of precautions must be noted. For details, see 3-2-5 I/O Configuration Changes.
2. For details of data exchange timing, see 8-1-1 I/O Response Time.

Error Processing

Even if an error occurs in the I/O Unit interface after initialization is completed, PROFIBUS-DP communications will continue normally. Therefore, an error processing program section must be included in the CPU Unit to check the status of the Communication Unit for errors that have occurred and to identify the error type and location.

3-2-3 Allocating I/O

This section explains how words for a MULTIPLE I/O TERMINAL are allocated in the output area and input area of the Master. For details of remote I/O functions in the output area and input area of the Master such as word specification, fixed allocation, and user-set allocation, refer to the PROFIBUS-DP Master Unit Operation Manual (W349).

Output Area

The output area contains output bits in the same order as the I/O Units are connected on the I/O Unit interface.

Input Area

The input area contains the Communication Unit status (two words), and input bits in the same order as the I/O Units are connected on the I/O Unit interface.

The input and output bits for the I/O Unit interface are allocated in the PROFIBUS-DP input and output areas in 16-point (one word) increments.

Example: C200HW Series with PRM21 default I/O mapping

3-2-4 I/O Unit Interface Status

The following I/O Unit interface status is maintained in the CPU Unit.

- I/O Unit connection information (I/O Unit interface status)
- Registered I/O Unit addresses
- Error I/O Unit addresses

As shown in the following diagram, the status consists of two words. The first two words of the Communication Unit allocation input area in the CPU Unit are allocated for this status. Include a program section in the CPU Unit to check this status and perform error processing.

	5	7
0 wd	I/O Unit connection information	
+1 wd	Error I/O Unit addresses	Registered I/O Unit addresses

I/O Unit Connection Information

Bit	Flag name	Meaning	Content
15	Refreshing I/O	Refreshing I/O	1: Communications between the Communication Unit and I/O Units is normal. 0 : Communications error (no response is received from an I/O Unit)
14	Error	OR of bits 0 to 4	1: Any one of bits 0 to 4 is ON 0: Bits 0 to 4 are all OFF
4	Multipoint I/O Unit Error	A multipoint I/O Unit error was detected.	1: Unit error 0: Unit normal
3	I/O Unit Power Supply Overload	An overcurrent to an I/O Unit was detected.	1: Overcurrent detected 0: Normal
2	I/O Unit Interface Error	An I/O Unit interface error was detected. Data Transfer Error: In the I/O Unit interface, there was no response to a command after the fixed time has elapsed. Alternatively, the response expected to be returned from the end I/O Unit (terminator) was not received. Too many I/O Units: Nine or more I/O Units are connected.	1: I/O Unit interface error 0 : Normal
1	Configuration Error	The I/O configuration was changed after the Communication Unit was started.	1: I/O configuration change after startup 0: No I/O configuration change during startup
0	Special I/O Unit Error	An error occurred in a Special I/O Unit.	1: Special I/O Unit error 0: Special I/O Unit normal

Note The high and low bytes in this status word are swapped when the transfer mode is set to Little Endian (see section 2-2-2).

Abnormal I/O Unit Addresses and Registered I/O Unit Addresses

Note The high and low bytes in this status word are swapped when the transfer mode is set to Little Endian (see section 2-2-2).

3-2-5 I/O Configuration Changes

The I/O Unit interface automatically recognizes the I/O Unit configuration each time the Communication Unit is started up.
Note 1. If the I/O Unit configuration is changed while the Communication Unit is turned ON, a configuration error will occur. Do not change the I/O Unit configuration while power is being supplied to the Communication Unit.
2. If a configuration error occurs on the I/O Unit interface, I/O refreshing of all I/O Units will stop. Even if a configuration error occurs, communications with the PROFIBUS-DP Network will continue, using the initial I/O Unit configuration. An error processing program section must therefore be included in the CPU Unit to regularly check whether or not a configuration error has occurred (status bit 1) and to process abnormal I/O Unit addresses.
If the I/O configuration is changed, then the PROFIBUS-DP System should be reconfigured, see 2-3-2.

SECTION 4
 Hardware Setup and Operational Check

This section provides the basic procedure for operation and includes an actual example.
4-1 Basic Procedure 38
4-2 Specific Example 39

4-1 Basic Procedure

The basic operating procedure is shown below. For details about settings and connections, refer to PROFIBUS-DP Master Operation Manual (W349). For explanations about Slave Units, refer to Section 6 Basic I/O Unit Specifications and Section 7 Special I/O Unit Specifications.

4-2 Specific Example

1, 2, 3... 1. Determine the MULTIPLE I/O TERMINAL I/O specifications.
Each Communication Unit for the MULTIPLE I/O TERMINAL can be connected to a combined total of 128 input and output bytes (64 words) max. (This figure does not include the 2 words of the input area allocated to the I/O Unit interface status.)
In this example, the following configuration will be used:

- Inputs: 16 digital inputs (2 words)
- Outputs: 16 digital outputs (2 words)
- Analog Input: 8 inputs (8 words)
- Analog Output: 4 outputs(4 words)

2. Select the I/O Units.
-PRT1-COM Communication Unit: 1 Unit

- GT1-ID16 Transistor Input Unit, with terminal block: 1 Unit
- GT1-OD16MX Transistor Output Unit, with connector: 1 Unit
- GT1-AD08MX Analog Input Unit, 8 inputs: 1 Unit
- GT1-DA04MX Analog Output Unit: 4 outputs: 1 Unit

3. Check the specifications.

- Check that the total I/O Unit interface current consumption is less than 0.3 A . In this example, the total is calculated as follows:

Transistor Input Unit (35 mA) + Transistor Output Unit (35 mA) + Analog Input Unit (50 mA) + Analog Output Unit (50 mA) $=170 \mathrm{~mA}$
4. Mount and connect the Communication Unit and I/O Units.

- Connecting I/O Unit Connecting Cable

To connect each pair of Units, connect I/O Unit interface communications connector 2 on the Unit closer to the Communication Unit to I/O Unit interface communications connector 1 on the Unit closer to the end Unit.

Note The connecting cable for the I/O Unit is shown below.

Accessory Cable

GCN1-100

- Connecting Communication Unit and I/O Unit Power

Note Be sure to separate the communications power supply, the internal power supply for the Communication Unit and the CPU Bus Unit, and the power supplies for the I/O Units. If the same power supply is used, malfunction due to noise may occur.

The capacity required for the Communication Unit internal power supply, can be obtained using the following formula:
Communication Unit internal power supply current
= Communication Unit internal current consumption + Sum of I/O Unit Interface current consumption

Note The above formula applies when a voltage of 24 -VDC is supplied to the Communication Unit internal power supply terminals. If the supplied voltage becomes lower, the current consumption will increase. Select a device for the power supply that will allow a degree of variation.
When selecting a power supply, take inrush current into consideration.
The following OMRON products are recommended for the 24-VDC power supply:

S82K-05024:	100 to $120 / 200$ to 240 VAC, 50 W
S82K-10024:	100 to $120 / 200$ to 240 VAC, 100 W
S82J-5524:	100 to 120 VAC, 50 W
S82J-5024:	100 to 120 VAC, 100 W

For details of the I/O Unit interface current consumption for the Units, refer to page 30, I/O Interface Current Consumption.
Select power supplies for the I/O Units that are suitable for the load currents to be used and the Units' internal drive currents (refer to page 53).

- Connecting I/O Units to I/O

9. Check the operation. Check all indicators, TS and US should lit green, BF and U.ERR should not be lit.

- Checking the I/O Unit Interface Status

Example:

The following allocations will be used for status when the default allocations are used for C200HW PROFIBUS-DP Master Unit with one Communication unit connected.

- The first two words of the input area is automatically allocated for the I/O Unit interface status information. This allocation cannot be changed.
- Words are allocated for the input/output data for each I/O Unit in the order that the I/O Units are connected (I/O Unit interface addresses 0 to 3) in the input area (input) and the output area (output).

SECTION 5
 Sample Programs

This section provides some examples of programs used with the Counter Unit.
5-1 Examples of Counter Unit Operation 44
5-1-1 Counter Unit Word Allocation for Functions 44
5-1-2 Present Count Value Reading 47
5-1-3 Counter Setting and Execution 47
5-1-4 Count Restart Operation after Error Clearance 49

5-1 Examples of Counter Unit Operation

This section, using the system configuration shown below as an example, explains how to use the Counter Unit.

5-1-1 Counter Unit Word Allocation for Functions

Setting and control for the Counter Unit is executed by writing to the allocated area in the output area of the Master, and status check and monitoring is executed by reading the allocated area in the input area of the Master. The allocated area for the Counter Unit, with the system configuration shown above, is given below (this example is for fixed allocation). For details about area allocation for a Counter Unit in the area used by a MULTIPLE I/O TERMINAL, refer to 3-2-3 Allocating I/O.

Output Area

Input Area

5-1-2 Present Count Value Reading

If the following bits in the output area for the Counter Unit have been set to ON, the set values or the present count value (count value) will always be read to words m and $m+1$ in the input area.

To read set value 1: Output area word $n+2$, bit 04
To read set value 2: Output area word $n+2$, bit 05
To read count value: Output area word $n+2$, bit 06
The simplest example of a program to commence count operation and obtain the count value is given in the following. For details refer to 7-3 Counter Unit.

Note 1. To execute counting, it is necessary to set the count mode. If the count mode is changed during count operation, however, the count value will be cleared to 0 .
2. Setting and reading will not be executed if a bit with a higher priority is ON. As shown in the following example, therefore, it is recommended that word $\mathrm{n}+2$ be used with the MOV instruction.

When execution of count value reading is indicated (execution conditions are ON), set the following conditions: - Word 53

Bit 03: Data code BCD
Bit 06: Count value reading
Bits 10, 11: Count mode phase difference $\times 1$ The count value will subsequently be sent to words m and $m+1(353,354)$ of the Counter Unit automatically.

5-1-3 Counter Setting and Execution

When the program is executed, the necessary settings for the Counter Unit will be made, and count operation will start. During count operation, external outputs 1 and 2 of the Counter Unit will automatically switch ON or OFF, according to the count value.

Note It will be necessary to reset all the settings, including the set values, present value and count mode, every time the Counter Unit is turned ON.

5-1-4 Count Restart Operation after Error Clearance

If power supply from the I/O Unit interface to the Counter Unit is interrupted, the Counter Unit will stop count operation. It will be necessary to restart the count operation. When the Counter Unit is restarted, all settings, such as the setting values, the present value, and the count mode will be cleared. These settings must be reset. By adding the following program to the program described in the previous section, 5-1-3 Counter Setting and Execution, the settings will be reset automatically when the Counter Unit is restarted, and it will be possible to resume count operations. An example of the program used, along with an explanation of that program appears below. For details about the status area of the Master Unit, refer to PROFIBUS-DP Operation Manual (W349).

If any of the following occur after the Counter Unit setting and start-up have been completed (and 23204 is ON), the Step Advance Bit 23300 turns ON in order to reset the settings for the Counter Unit.

- The Communication Unit Bit (node number $01=$ 10601) for the Master Unit normal Slave information area is OFF (error).
- Bit 5 (10105) for the Master status area (1) is ON
- The Counter Unit Bit (\#0 = 35208) for the error I/O Unit address in the I/O Unit interface status area is ON (error).
When the Step Advance Flag 23300 turns ON for resetting, if all of the following conditions are satisfied, the Counter Unit will start up normally and communications will be possible. Therefore, the Step Advance Flag 23200 will turn ON. The previously described setting and execution program will be re-executed.
- Bit 15 (10115) of the Master status area is ON
- Bit 15 (35115) of I/O Unit connection information in the I/O Unit interface status area is ON (I/O refresh in progress)

SECTION 6
 Basic I/O Unit Specifications

This section provides the basic specifications for the I/O Units including Communication Units, Transistor Input and Output Units, and Relay Output Units.
6-1 Common Specifications for Basic I/O Units 52
6-1-1 TS Indicator 53
6-2 Transistor Input Units 54
6-2-1 GT1-ID16 Transistor Input Unit with Terminal Block (NPN) 54
6-2-2 GT1-ID16-1 Transistor Input Unit with Terminal Block (PNP) 56
6-2-3 GT1-ID16MX Transistor Input Unit with Connector (NPN) 58
6-2-4 GT1-ID16MX-1 Transistor Input Unit with Connector (PNP) 60
6-2-5 GT1-ID16ML Transistor Input Unit with Connector (NPN) 62
6-2-6 GT1-ID16ML-1 Transistor Input Unit with Connector (PNP) 64
6-2-7 GT1-ID16DS Transistor Input Unit with Connector (NPN) 66
6-2-8 GT1-ID16DS-1 Transistor Input Unit with Connector (PNP) 68
6-2-9 GT1-ID32ML Transistor Input Unit with High-density Connector (NPN) 70
6-2-10 GT1-ID32ML-1 Transistor Input Unit with High-density Connector (PNP) 72
6-3 Transistor Output Units 74
6-3-1 GT1-OD16 Transistor Output Unit with Terminal Block (NPN) 74
6-3-2 GT1-OD16-1 Transistor Output Unit with Terminal Block (PNP) 76
6-3-3 GT1-OD16MX Transistor Output Unit with Connector (NPN) 78
6-3-4 GT1-OD16MX-1 Transistor Output Unit with Connector (PNP) 81
6-3-5 GT1-OD16ML Transistor Output Unit with Connector (NPN) 83
6-3-6 GT1-OD16ML-1 Transistor Output Unit with Connector (PNP) 85
6-3-7 GT1-OD16DS Transistor Output Unit with Connector (NPN) 88
6-3-8 GT1-OD16DS-1 Transistor Output Unit with Connector (PNP) 90
6-3-9 GT1-OD32ML Transistor Output Unit with High-density Connector (NPN) 92
6-3-10 GT1-OD32ML-1 Transistor Output Unit with High-density Connector (PNP) 94
6-4 Relay Output Units 97
6-4-1 GT1-ROP08 Relay Output Unit with Power Relay 97
6-4-2 GT1-ROS16 Relay Output Unit with Miniature Relay 99

6-1 Common Specifications for Basic I/O Units

For details of the differences between Units, refer to the explanations for the relevant Units.
General Specifications

Item	Specification
I/O power supply	Voltage range
Noise immunity	$1,500 \mathrm{~V} \mathrm{p-p} \mathrm{Pulse} \mathrm{width} \mathrm{0.1} \mathrm{to} 1 \mathrm{\mu s}$ Pulse rise time: 1 ns (via noise simulator)
Vibration resistance	Relay output unit: 10 Others: $55 \mathrm{~Hz}, 1.0-\mathrm{mm}$ double amplitude or $70 \mathrm{~m} / \mathrm{s}^{2}$ 10 to $150 \mathrm{~Hz}, 1.0-\mathrm{mm}$ double amplitude or $70 \mathrm{~m} / \mathrm{s}^{2}$
Shock resistance	$200 \mathrm{~m} / \mathrm{s}^{2}$
Dielectric strength	500 VAC (between isolated circuits)
Ambient temperature	$-10^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$
Ambient humidity	25% to 85% (with no condensation)
Operating atmosphere	No corrosive gases
Storage temperature	$-25^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$
Safety standards	UL508, CSA22.2
EMC directives	EN50081-2, EN50082-2
Mounting	DIN $35-\mathrm{mm}$ track
Mounting strength	100 N
Terminal strength	100 N
I/O Unit interface connector lock strength	50 N

Input Specifications for Transistor Input Unit

Item	Specification
ON voltage	15 VDC min. (between each input terminal and V and each input terminal and G)
OFF voltage	5 VDC max. (between each input terminal and V and each input terminal and G)
OFF current	1 mA max.
Input current	6 mA max./point at 24 VDC (between each input terminal and V and each input terminal and G)
ON delay time	1.5 ms max.
OFF delay time	1.5 ms max.
Insulation resistance	$20 \mathrm{M} \Omega$ min. at 250 VDC (between isolated circuits)
Isolation method	Photocoupler

Output Specifications for Transistor Output Unit

Item	Specification
Rated output current	$0.5 \mathrm{~A} /$ point
Residual voltage	1.2 V max. at 0.5 A DC (between each output terminal and V and each output terminal and G)
Leakage current	0.1 mA max. at 24 VDC (between each output terminal and V and each output terminal and G)
ON delay time	0.5 ms max.
OFF delay time	1.5 ms max.
Insulation resistance	$20 \mathrm{M} \Omega$ min. at 250 VDC (between isolated circuits)
Isolation method	Photocoupler

Note For details about output specifications of Relay Output Units, refer to the explanations for the relevant Units.

Current Consumption and Weight

The following table shows the current consumption, the weight and the connector-lock strength for the I/O Units.

Model	I/O Unit interface power supply current	I/O power supply current	Weight	Connector-lock strength
GT1-ID16(-1)	35 mA max.	---	Approx. 330 g	---
GT1-ID16MX(-1)	35 mA max.	---	Approx. 175 g	50 N
GT1-ID16ML(-1)	35 mA max.	---	(see note)	100 N
GT1-ID16DS(-1)	35 mA max.	---	(see note)	100 N
GT1-ID32ML(-1)	55 mA max.	---	Approx. 195 g	100 N
GT1-OD16(-1)	35 mA max.	9 mA max.	Approx. 330 g	---
GT1-OD16MX(-1)	35 mA max.	9 mA max.	Approx. 150 g	50 N
GT1-OD16ML(-1)	35 mA max.	9 mA max.	(see note)	100 N
GT1-OD16DS(-1)	35 mA max.	9 mA max.	(see note)	100 N
GT1-OD32ML(-1)	65 mA max.	11 mA max.	Approx. 165 g	100 N
GT1-ROP08	40 mA max.	350 mA max. (inrush current 30 A max.)	Approx. 405 g	---
GT1-ROS16	50 mA max.	250 mA max. (inrush current 30 A max.)	Approx. 320 g	---
GT1-AD04	50 mA max.	100 mA max. (inrush current 30 A max.)	Approx. 200 g	---
GT1-AD08MX	50 mA max.	100 mA max. (inrush current 30 A max.)	Approx. 180 g	50 N
GT1-DA04	50 mA max.	100 mA max. (inrush current 30 A max.)	Approx. 200 g	---
GT1-DA04MX	50 mA max.	100 mA max. (inrush current 30 A max.)	Approx. 180 g	50 N
GT1-CT01	90 mA max.	9 mA max.	Approx. 250 g	---

Note Weight will be made available when the Unit is put out on sale.

6-1-1 TS Indicator

The TS indicator is a 2-color LED. The color of the TS indicator, and whether it is lit or not, indicate the following:

Indicator	Color	State	Meaning
TS	Green	Lit	Normal communications
	Red	Lit	I/O Unit interface error
	---	Not lit	Under initialization, or no power supplied

Note The meanings of the TS indicator for Communication Units, differ from those for I/O Units. For details, refer to page 162.

6-2 Transistor Input Units

6-2-1 GT1-ID16 Transistor Input Unit with Terminal Block (NPN)

Input Specifications

Item	Specifications
Number of input points	16 points
Number of points that can be ON simultaneously	12 points max.

Components

I/O Unit Interface Communications Connector 2 (on the terminator side)

Cassette (Refer to page 166.)
Detach by pressing on the lower part and pulling outwards.

Terminal Block

Internal Circuits

Terminal Arrangement

Wiring

Wire colors in parentheses are the previous JIS colors for photoelectric and proximity sensors.

Note 1. V terminals and G terminals are respectively connected internally. When the I/O power is being supplied, the power can be supplied to the input devices from the V terminals and G terminals. Current supplied in this way, however, must be less than 1 A .
2. Make sure there are no more than 12 inputs turned ON at the same time.

Dimensions

Note The vertical center of the Unit is 4.9 mm lower than the center of the DIN track. The Unit therefore extends downward 41.4 mm (including the mounting hook) from the DIN track center.

6-2-2 GT1-ID16-1 Transistor Input Unit with Terminal Block (PNP)

Input Specifications

Item	Specifications
Number of input points	16 points
Number of points that can be ON simultaneously	12 points max.

Components

Internal Circuits

Terminal Arrangement

Row A
Row B
Row C

Wiring

Wire colors in parentheses are the previous JIS colors for photoelectric and proximity sensors.

Note 1. V terminals and G terminals are respectively connected internally. When the I/O power is being supplied, the power can be supplied to the input devices from the V terminals and G terminals. Current supplied in this way, however, must be less than 1 A .
2. Make sure there are no more than 12 inputs are turned ON at the same time

Dimensions

Note The vertical center of the Unit is 4.9 mm lower than the center of the DIN track. The Unit therefore extends downward 41.4 mm (including the mounting hook) from the DIN track center.

6-2-3 GT1-ID16MX Transistor Input Unit with Connector (NPN)

Input Specifications

Item	Specifications
Number of input points	16 points
Number of points that can be ON simultaneously	16 points max.

Components

Internal Circuits

Terminal Arrangement

Connector Pin Arrangement

The arrangement of the connectors is shown in the following diagram.

Wiring

Attach MOLEX connectors to the Transistor Input Unit and connect them to external devices.

Applicable Connectors

Manufac-	Connector		Model number	Remarks
MOLEX	Pressurewelded	Housing	521-09-0390	For AWG\#24
	Crimp	Housing	50-57-9403	
		Reeled contacts	16-02-0069	For AWG\#24 to 30
			16-02-0086	For AWG\#22 to 24
		Loose contacts	16-02-0096	For AWG\#24 to 30
			16-02-0102	For AWG\#22 to 24
		Crimping tool	570-36-5000	For AWG\#22 to 26
			11-01-0209	For AWG\#24 to 30

Wiring Example

Wire colors in parentheses are the previous JIS colors for photoelectric and proximity sensors.

Note V terminals and V connector pins, as well as G terminals and G connector pins, are internally connected. When the I/O power is being supplied from a terminal block, the power can be supplied to the input devices from the V and G connectors. Current supplied in this way, however, must be less than 1 A .

Dimensions

Note The vertical center of the Unit is 4.9 mm lower than the center of the DIN track. The Unit therefore extends downward 41.4 mm (including the mounting hook) from the DIN track center.

6-2-4 GT1-ID16MX-1 Transistor Input Unit with Connector (PNP)

Input Specifications

Item	Specifications
Number of input points	16 points
Number of points that can be ON simultaneously	16 points max.

Components

Internal Circuits

Terminal Arrangement

Connector Pin Arrangement

The arrangement of the connectors is shown in the following diagram.

Wiring

Attach MOLEX connectors to the Transistor Input Unit and connect them to external devices.

Applicable Connectors

Manufac- turer	Connector		Model number	Remarks
MOLEX	Pressure- welded	Housing	$521-09-0390$	For AWG\#24
	Crimp	Housing	$50-57-9403$	
		Reeled con- tacts	$16-02-0069$	For AWG\#24 to 30
		Loose con- tacts	$16-02-0086$	For AWG\#22 to 24
		Crimping tool	$570-02-0096$	For AWG\#24 to 30
			$11-01-0209$	For AWG\#22 to 24

Wiring Examples

Wire colors in parentheses are the previous JIS colors for photoelectric and proximity sensors.

Note V terminals and V connector pins, as well as G terminals and G connector pins, are internally connected. When the I/O power is being supplied from a terminal block, the power can be supplied to the input devices from the V and G connectors. Current supplied in this way, however, must be less than 1 A .

Dimensions

Note The vertical center of the Unit is 4.9 mm lower than the center of the DIN track. The Unit therefore extends downward 41.4 mm (including the mounting hook) from the DIN track center.

6-2-5 GT1-ID16ML Transistor Input Unit with Connector (NPN)

Input Specifications

Item	Specifications
Number of input points	16 points
Number of points that can be ON simultaneously	12 points max.

Components

Internal Circuits

Terminal Arrangement

Connector Pin Arrangement

Wiring

Attach a FUJITSU connector to the Transistor Input Unit and connect it to the external devices.

Applicable Connectors

Three types of connectors can be attached to the cable depending to the assembly method. When creating your own cables, use one of the following connectors.

Manufacturer	Model number	Remarks
FUJITSU	FCN361J024-AU	Soldered
	FCN363J024-AU	Crimp
	FCN367J024-AU/F	Pressure-welded

Cables with Connectors

When a Transistor Input Unit with a high-density connector is to be connected to an OMRON I/O Block or a Connector-Terminal Block Conversion Unit, use the cables listed in the following table (sold separately).

Manufacturer	Model number	Device
OMRON	XW2Z- $\square \square \square \mathrm{A}$	Connector-Terminal Block Conversion Unit XW2B-20G4 or XW2B-20G5
		I/O Block G7TC-I $\square 16$
	G79- $\square \square \square \mathrm{C}$	

Note Make sure there are no more than 12 points are turned ON at the same time.

Dimensions

(Unit: mm)

Note The vertical center of the Unit is 4.9 mm lower than the center of the DIN track. The Unit therefore extends downward 41.4 mm (including the mounting hook) from the DIN track center.

6-2-6 GT1-ID16ML-1 Transistor Input Unit with Connector (PNP)

Input Specifications

Item	Specifications
Number of input points	16 points
Number of points that can be ON simultaneously	12 points max.

Components

Internal Circuits

Terminal Arrangement

Connector Pin Arrangement

Wiring

Attach a FUJITSU connector to the Transistor Input Unit and connect it to the external devices.

Applicable Connectors

Three types of connectors can be attached to the cable depending to the assembly method. When creating your own cables, use one of the following connectors.

Manufacturer	Model number	Remarks
FUJITSU	FCN361J024-AU	Soldered
	FCN363J024-AU	Crimp
	FCN367J024-AU/F	Pressure-welded

Cables with Connectors

When a Transistor Input Unit with a high-density connector is to be connected to an OMRON I/O Block or a Connector-Terminal Block Conversion Unit, use the cables listed in the following table (sold separately).

Manufacturer	Model number	Device
OMRON	XW2Z- $\square \square \square \mathrm{A}$	Connector-Terminal Block Conversion Unit
	XW2B-20G4 or XW2B-20G5	

Note Make sure there are no more than 12 points are turned ON at the same time.

Dimensions

(Unit: mm)

Note The vertical center of the Unit is 4.9 mm lower than the center of the DIN track. The Unit therefore extends downward 41.4 mm (including the mounting hook) from the DIN track center.

6-2-7 GT1-ID16DS Transistor Input Unit with Connector (NPN)

Input Specifications

Item	Specifications
Number of input points	16 points
Number of points that can be ON simultaneously	12 points max.

Components

Internal Circuits

Terminal Arrangement

Connector Pin Arrangement

Wiring

Attach a 25-pin D-sub connector to the Transistor Input Unit and connect it to the external devices.
Applicable Connectors
When creating your own cables, use one of the following connectors.

Manufacturer	Model number	Remarks
OMRON	XW2S-2513	Hood
	XW2A-2501	Plug

Note Make sure there are no more than 12 points are turned ON at the same time.

Dimensions

Note The vertical center of the Unit is 4.9 mm lower than the center of the DIN track. The Unit therefore extends downward 41.4 mm (including the mounting hook) from the DIN track center.

6-2-8 GT1-ID16DS-1 Transistor Input Unit with Connector (PNP)

Input Specifications

Item	Specifications
Number of input points	16 points
Number of points that can be ON simultaneously	12 points max.

Components

Internal Circuits

Terminal Arrangement

Connector Pin Arrangement

Wiring

Attach a 25-pin D-sub connector to the Transistor Input Unit and connect it to the external devices.
Applicable Connectors
When creating your own cables, use one of the following connectors.

Manufacturer	Model number	Remarks
OMRON	XW2S-2513	Hood
	XW2A-2501	Plug

Note Make sure there are no more than 12 points are turned ON at the same time.

Dimensions

(Unit: mm)

Note The vertical center of the Unit is 4.9 mm lower than the center of the DIN track. The Unit therefore extends downward 41.4 mm (including the mounting hook) from the DIN track center.

6-2-9 GT1-ID32ML Transistor Input Unit with High-density Connector (NPN)

Input Specifications

Item	Specifications
Number of input points	32 points
Number of points that can be ON simultaneously	16 points max.

Components

Internal Circuits

Terminal Arrangement

Connector Pin Arrangement

Wiring

Attach a FUJITSU connector to the Transistor Input Unit and connect it to the external devices.

Applicable Connectors

Three types of connectors can be attached to the cable depending to the assembly method. When creating your own cables, use one of the following connectors.

Manufacturer	Model number	Remarks
FUJITSU	FCN361J040-AU	Soldered
	FCN363J040-AU	Crimp
	FCN367J040-AU/F	Pressure-welded

Cables with Connectors
When a Transistor Input Unit with a high-density connector is to be connected to an OMRON I/O Block or a Connector-Terminal Block Conversion Unit, use the cables listed in the following table (sold separately).

Manufacturer	Model number	Device
OMRON	XW2Z- $\square \square \square \mathrm{B}$	Connector-Terminal Block Conversion Unit XW2B-40G4 or XW2B-40G5
		I/O Block G7TC-I $\square 16$
	G79-I $\square \mathrm{C}-\square$	\square

Note Make sure there are no more than 16 points are turned ON at the same time.

Dimensions

(Unit: mm)
Note The vertical center of the Unit is 4.9 mm lower than the center of the DIN track. The Unit therefore extends downward 41.4 mm (including the mounting hook) from the DIN track center.

6-2-10 GT1-ID32ML-1 Transistor Input Unit with High-density Connector (PNP)

Input Specifications

Item	Specifications
Number of input points	32 points
Number of points that can be ON simultaneously	16 points max.

Components

Internal Circuits

Terminal Arrangement

Connector Pin Arrangement

Wiring

Attach a FUJITSU connector to the Transistor Input Unit and connect it to the external devices.

Applicable Connectors

Three types of connectors can be attached to the cable depending to the assembly method. When creating your own cables, use one of the following connectors.

Manufacturer	Model number	Remarks
FUJITSU	FCN361J040-AU	Soldered
	FCN363J040-AU	Crimp
	FCN367J040-AU/F	Pressure-welded

Cables with Connectors

When a Transistor Input Unit with a high-density connector is to be connected to an OMRON I/O Block or a Connector-Terminal Block Conversion Unit, use the cables listed in the following table (sold separately).

Manufacturer	Model number	Device
OMRON		```Connector-Terminal Block Conversion Unit XW2B-40G4 or XW2B-40G5```

Note Make sure there are no more than 16 points are turned ON at the same time.

Dimensions

Note The vertical center of the Unit is 4.9 mm lower than the center of the DIN track. The Unit therefore extends downward 41.4 mm (including the mounting hook) from the DIN track center.

6-3 Transistor Output Units

6-3-1 GT1-OD16 Transistor Output Unit with Terminal Block (NPN)

Output Specifications

Item	Specifications
Number of outputs	16 points
Current per common	4 A max.

Components

TS Indicator (Refer to page 162.)

Internal Circuits

Terminal Arrangement

Wiring

Note V terminals and G terminals are respectively connected internally. When the I/O power is being supplied, the power can be supplied to the output devices from the V terminals and G terminals. Current supplied in this way, however, must be less than 4 A .

Dimensions

Note The vertical center of the Unit is 4.9 mm lower than the center of the DIN track. The Unit therefore extends downward 41.4 mm (including the mounting hook) from the DIN track center.

6-3-2 GT1-OD16-1 Transistor Output Unit with Terminal Block (PNP)

Output Specifications

Item	Specifications
Number of outputs	16 points
Current per common	4 A max.

Components

Internal Circuits

Terminal Arrangement

Wiring

Solenoids,
valves, etc.
Solenoids, valves, etc.

Note V terminals and G terminals are internally connected. When the I/O power is being supplied, the power can be supplied to the output devices from the V terminals and G terminals. Current supplied in this way, however, must be less than 4 A .

Dimensions

Note The vertical center of the Unit is 4.9 mm lower than the center of the DIN track. The Unit therefore extends downward 41.4 mm (including the mounting hook) from the DIN track center.

6-3-3 GT1-OD16MX Transistor Output Unit with Connector (NPN)

Output Specifications

Item	Specifications
Number of outputs	16 points
Current per common	2 A max.

Components

Internal Circuits

Terminal Arrangement

Connector Pin Arrangement

Wiring

The following diagram shows the pin arrangement for the connector.

Attach MOLEX connectors to the Transistor Output Unit and connect them to external devices.

Applicable Connectors

Manufac- turer	Connector		Model number	Remarks
MOLEX	Pressure- welded	Housing	$521-09-0390$	For AWG\#24
	Crimp	Housing	$50-57-9403$	
	Reeled contacts	$16-02-0069$	For AWG\#24 to 30	
		$16-02-0086$	For AWG\#22 to 24	
		Loose contacts	$16-02-0096$	For AWG\#24 to 30
		$16-02-0102$	For AWG\#22 to 24	
		Crimping tool	$570-36-5000$	For AWG\#22 to 26
		$11-01-0209$	For AWG\#24 to 30	

Wiring Examples

Solenoids, valves, etc.

Note V terminals and V connector pins, as well as G terminals and G connector pins, are internally connected. When the I/O power is being supplied from a terminal block, the power can be supplied to the output devices from the V and G connectors. Current supplied in this way, however, must be less than 2 A .

Dimensions

Note The vertical center of the Unit is 4.9 mm lower than the center of the DIN track. The Unit therefore extends downward 41.4 mm (including the mounting hook) from the DIN track center.

6-3-4 GT1-OD16MX-1 Transistor Output Unit with Connector (PNP)

Output Specifications

Item	Specifications
Number of outputs	16 points
Current per common	2 A max.

Components

Internal Circuits

Terminal Arrangement

Connector Pin Arrangement

Wiring

The following diagram shows the pin arrangement for the connector.

Attach MOLEX connectors to the Transistor Output Unit and connect them to external devices.

Applicable Connectors

Manufac- turer	Connector		Model number	Remarks
MOLEX	Pressure- welded	Housing	$521-09-0390$	For AWG\#24
	Crimp	Housing	$50-57-9403$	
		Reeled contacts	$16-02-0069$	For AWG\#24 to 30
		$16-02-0086$	For AWG\#22 to 24	
		Loose contacts	$16-02-0096$	For AWG\#24 to 30
		$16-02-0102$	For AWG\#22 to 24	
		$570-36-5000$	For AWG\#22 to 26	
		$11-01-0209$	For AWG\#24 to 30	

Wiring Examples

Note V terminals and V connector pins, as well as G terminals and G connector pins, are internally connected. When the I/O power is being supplied from a terminal block, the power can be supplied to the output devices from the V and G connectors. Current supplied in this way, however, must be less than 2 A .

Dimensions

(Unit: mm)

Note The vertical center of the Unit is 4.9 mm lower than the center of the DIN track. The Unit therefore extends downward 41.4 mm (including the mounting hook) from the DIN track center.

6-3-5 GT1-OD16ML Transistor Output Unit with Connector (NPN)

Output Specifications

Item	Specifications
Number of outputs	16 points
Current per common	With connectors: With terminal block:

Components

Internal Circuits

Terminal Arrangement

Connector Pin Arrangement

Wiring

Attach a FUJITSU connector to the Transistor Output Unit and connect to external devices.

Applicable Connectors

Three types of connectors can be attached to the cable, depending to the assembly method. When creating your own cables, use one of the following connectors.

Manufacturer	Model number	Remarks
FUJITSU	FCN361J024-AU	Soldered
	FCN363J024-AU	Crimp
	FCN367J024-AU/F	Pressure-welded

Connector Cables

When a Transistor Output Unit (connector) is to be connected to an OMRON I/O Block or a Connector-Terminal Block Conversion Unit, use the cables (sold separately) listed in the following table.

Manufacturer	Model number	Corresponding device
OMRON	XW2Z-पดपA	Connector-Terminal Block Conversion Unit XW2B-20G4 XW2B-20G5
	G79-■पロC	I/O Block G7TC-OC16 G70D-SOC16 G70D-FOM16 G70A-ZOC16-3 M7F

Note V terminals and G terminals are respectively connected internally. When the I/O power is being supplied, the power can be supplied to the output devices from the V and G connectors. Current supplied in this way, however, must be less than 2 A . If, instead of using the V and G connectors, the power supply is wired to the terminal block as shown in the following diagram, the current supplied must be less than 2.5 A.

Dimensions

(Unit: mm)

Note The vertical center of the Unit is 4.9 mm lower than the center of the DIN track. The Unit therefore extends downward 41.4 mm (including the mounting hook) from the DIN track center.

6-3-6 GT1-OD16ML-1 Transistor Output Unit with Connector (PNP)

Output Specifications

| Item | Specifications |
| :--- | :--- | :--- |
| Number of outputs | 16 points |
| Current per common | With connectors: 2 A max.
 With terminal block: 2.5 A max. |

Components

Internal Circuits

Terminal Arrangement

Connector Pin Arrangement

Wiring

Attach a FUJITSU connector to the Transistor Output Unit and connect it to external devices.

Applicable Connectors

Three types of connectors can be attached to the cable, depending to the assembly method. When creating your own cables, use one of the following connectors.

Manufacturer	Model number	Remarks
FUJITSU	FCN361J024-AU	Soldered
	FCN363J024-AU	Crimp
	FCN367J024-AU/F	Pressure-welded

Connector Cables

When a Transistor Output Unit (connector) is to be connected to an OMRON I/O Block or a Connector-Terminal Block Conversion Unit, use the cables (sold separately) listed in the following table.

Manufacturer	Model number	Corresponding device
OMRON	XW2Z- $\square \square \square$ A	Connector-Terminal Block Conversion Unit
		XW2B-20G4
		XW2B-20G5
	G79- $\square \square \square \mathrm{C}$	I/O Block
		G7TC-OC16-1
		G70D-SOC16-1
		G70D-FOM16-1
		G70A-ZOC16-4
		M7F

Note V terminals and G terminals are internally connected. When the I/O power is being supplied, the power can be supplied to the output devices from the V and G connectors. Current supplied in this way, however, must be less than 2 A . If, instead of using the V and G connectors, the power supply is wired to the terminal block as shown in the following diagram, the current supplied must be less than 2.5 A.

Dimensions

Note The vertical center of the Unit is 4.9 mm lower than the center of the DIN track. The Unit therefore extends downward 41.4 mm (including the mounting hook) from the DIN track center.

6-3-7 GT1-OD16DS Transistor Output Unit with Connector (NPN)

Output Specifications

Item	Specifications
Number of outputs	16 points
Current per common	2.5 A max.

Components

Internal Circuits

Terminal Arrangement

Connector Pin Arrangement

Wiring

Attach a 25-pin D-sub connector to the Transistor Input Unit and connect it to the external devices.

Applicable Connectors

When creating your own cables, use one of the following connectors.

Manufacturer	Model number	Remarks
OMRON	XW2S-2513	Hood
	XW2A-2501	Plug

Note V terminals and G terminals are internally connected. When the I/O power is being supplied, the power can be supplied to the output devices from the V and G connectors. Current supplied in this way, however, must be less than 2.5 A.

Dimensions

Note The vertical center of the Unit is 4.9 mm lower than the center of the DIN track. The Unit therefore extends downward 41.4 mm (including the mounting hook) from the DIN track center.

6-3-8 GT1-OD16DS-1 Transistor Output Unit with Connector (PNP)

Output Specifications

Item	Specifications
Number of outputs	16 points
Current per common	2.5 A max.

Components

Internal Circuits

Terminal Arrangement

Connector Pin Arrangement

Wiring

Attach a 25 -pin D-sub connector to the Transistor Output Unit and connect it to external devices.

Applicable Connectors

When creating your own cables, use one of the following connectors.

Manufacturer	Model number	Remarks
OMRON	XW2S-2513	Hood
	XW2A-2501	Plug

Note V terminals and G terminals are internally connected. When the I/O power is being supplied, the power can be supplied to the output devices from the V and G connectors. Current supplied in this way, however, must be less than 2.5 A.

Dimensions

Note The vertical center of the Unit is 4.9 mm lower than the center of the DIN track. The Unit therefore extends downward 41.4 mm (including the mounting hook) from the DIN track center.

6-3-9 GT1-OD32ML Transistor Output Unit with High-density Connector (NPN)

Output Specifications

Item	Specifications
Number of outputs	32 points
Current per common	With connectors: 2 A max. With terminal board: 4 A max.

Components

Internal Circuits

Terminal Arrangement

Connector Pin Arrangement

Wiring

Attach a FUJITSU connector to the Transistor Output Unit and connect it to external devices.

Applicable Connectors

Three types of connectors can be attached to the cable, depending to the assembly method. When creating your own cables, use one of the following connectors.

Manufacturer	Model number	Remarks
FUJITSU	FCN361J040-AU	Soldered
	FCN363J040-AU	Crimp
	FCN367J040-AU/F	Pressure-welded

Connector Cables

When a Transistor Output Unit (high-density connector) is to be connected to an OMRON I/O Block or a Connector-Terminal Block Conversion Unit, use the cables (sold separately) listed in the following table.

Manufacturer	Model number	Corresponding device
OMRON	XW2Z- $\square \square \square \mathrm{B}$	Connector-Terminal Block Conversion Unit
		XW2B-40G4
		XW2B-40G5

Note V terminals and G terminals are internally connected. When the I/O power is being supplied, the power can be supplied to the output devices from the V and G connectors. Current supplied in this way, however, must be less than 2 A . If, instead of using the V and G connectors, the power supply is wired to the terminal block as shown in the following diagram, the current supplied must be less than 4 A .

Dimensions

Approx. 70

Note The vertical center of the Unit is 4.9 mm lower than the center of the DIN track. The Unit therefore extends downward 41.4 mm (including the mounting hook) from the DIN track center.

6-3-10 GT1-OD32ML-1 Transistor Output Unit with High-density Connector (PNP)

Output Specifications

Item	Specifications
Number of outputs	32 points
Current per common	With connectors: 2 A max. With terminal block: 4 A max.

Components

Internal Circuits

Terminal Arrangement

Connector Pin Arrangement

Wiring

Attach a FUJITSU connector to the Transistor Output Unit and connect it to external devices.

Applicable Connectors

Three types of connectors can be attached to the cable, depending to the assembly method. When creating your own cables, use one of the following connectors.

Manufacturer	Model number	Remarks
FUJITSU	FCN361J040-AU	Soldered
	FCN363J040-AU	Crimp
	FCN367J040-AU/F	Pressure-welded

Connector Cables

When a Transistor Output Unit (high-density connector) is to be connected to an OMRON I/O Block or a Connector-Terminal Block Conversion Unit, use the cables (sold separately) listed in the following table.

Manufacturer	Model number	Corresponding device
OMRON	XW2Z- $\square \square \square \mathrm{B}$	Connector-Terminal Block Conversion Unit
		XW2B-40G4
		XW2B-40G5
	G79-O $\square \mathrm{C}-\square$	I/O Block
		G7TC-OC16-1
		G70D-SOC16-1
		G70D-FOM16-1
		G70A-ZOC16-4
		M7F

Note V terminals and G terminals are internally connected. When the I/O power is being supplied, the power can be supplied to the output devices from the V and G connectors. Current supplied in this way, however, must be less than 2 A . If, instead of using the V and G connectors, the power supply is wired to the terminal block as shown in the following diagram, the current supplied must be less than 4 A .

Dimensions

Note The vertical center of the Unit is 4.9 mm lower than the center of the DIN track. The Unit therefore extends downward 41.4 mm (including the mounting hook) from the DIN track center.

6-4 Relay Output Units

6-4-1 GT1-ROP08 Relay Output Unit with Power Relay

Output Specifications

Item	Specifications
Number of outputs	8 points
Relay	Power Relay (G2R-1-SN)
Rated load (resistive load)	5 A at 250 VAC/5 A at 30 VDC
Rated thermal current	5 A
Maximum switching voltage	$250 \mathrm{VAC} / 125 \mathrm{VDC}$
Maximum switching current	5 A
Minimum permissible load	100 mA at 5 VDC (P level reference value)
Insulation resistance	$1,000 \mathrm{M} \Omega$

Reference Data

For details about the Relay characteristics, refer to G2R-1-SN in the PCB Relays Catalog (X033). The following table shows the life expectancy for the G2R-1-SN Relay.

Item	Number of operations	Notes
Mechanical life expectancy	$20,000,000$ operations min.	Switching frequency: 18,000 times/hour (At ambient temperature $23^{\circ} \mathrm{C}$ with rated load)
Electrical life expectancy	100,000 operations min.	Switching frequency: 1,800 times/hour (At ambient temperature $23^{\circ} \mathrm{C}$ with rated load)

Components

Power Relays (G2R-1-SN)

TS Indicator (Refer to page 162.)

Note For details on how to replace Relays, refer to page 165.

Internal Circuits

Terminal Arrangement

Wiring

Dimensions

Note The vertical center of the Unit is 4.9 mm lower than the center of the DIN track. The Unit therefore extends downward 41.4 mm (including the mounting hook) from the DIN track center.

6-4-2 GT1-ROS16 Relay Output Unit with Miniature Relay

Output Specifications

Item	Specifications
Number of outputs	16 points
Relay	Miniature Relay (G6D-1A 24 VDC)
Rated load (resistive load)	2 A at 250 VAC/2 A at 30 VDC
Rated thermal current	2 A
Maximum switching voltage	$250 \mathrm{VAC} / 30 \mathrm{VDC}$
Maximum switching current	2 A
Minimum permissible load	10 mA at 5 VDC (P level reference value)
Insulation resistance	$1,000 \mathrm{M} \Omega$

Reference Data

For details about the Relay characteristics, refer to G6D-1A in the PCB Relays Catalog (X033). The following table shows how the number of outputs that can be ON simultaneously varies with the ambient temperature.

The following table shows the life-expectancy for the G6D-1A Relay.

Item	Number of operations	Notes
Mechanical life expectancy	$20,000,000$ operations min.	Switching frequency: 18,000 times/hour (At ambient temperature $23^{\circ} \mathrm{C}$ with rated load)
Electrical life expectancy	100,000 operations min.	Switching frequency: 1,800 times/hour (At ambient temperature $23^{\circ} \mathrm{C}$ with rated load)

Components

Note For details on how to replace Relays, refer to page 165.

Internal Circuits

Terminal Arrangement

Wiring

Dimensions

Note The vertical center of the Unit is 4.9 mm lower than the center of the DIN track. The Unit therefore extends downward 41.4 mm (including the mounting hook) from the DIN track center.

SECTION 7 Special I/O Unit Specifications

This section provides the specifications for Special I/O Units, including the Analog Input and Output Unit, and the Counter Unit as well as setting with a Configurator.
7-1 Analog Input Units 104
7-1-1 Specifications 104
7-2 Analog Output Units 120
7-2-1 Specifications 120
7-3 Counter Units 133

7-1 Analog Input Units

7-1-1 Specifications

GT1-AD04

General Specifications

Item		Specification
I/O connections		Terminal block (M3)
Number of inputs		4 points (Master Unit uses 4 input words.)
Internal power supply	Voltage range	20.4 to 26.4 VDC (24 VDC ${ }^{+10 \%}{ }_{-15 \%}$)
	Current consumption in Unit (inrush current)	100 mA max. (inrush current 30 A max.)
Current consumption (I/O Unit interface)		50 mA max.
Noise immunity		1,500 V p-p Pulse width: 0.1 to $1 \mu \mathrm{~s}$ Startup pulse: 1 ns (via noise simulator)
Vibration resistance		10 to $150 \mathrm{~Hz}, 1.0-\mathrm{mm}$ double amplitude or $70 \mathrm{~m} / \mathrm{s}^{2}$
Shock resistance		$200 \mathrm{~m} / \mathrm{s}^{2}$
Dielectric strength		500 VAC (between isolated circuits)
Ambient temperature		$-10^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$
Ambient humidity		25\% to 85\% (with no condensation)
Operating atmosphere		No corrosive gases
Storage temperature		$-25^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$
Safety standards		UL508, CSA22.2
EMC directives		EN50081-2, EN50082-2
Mounting		DIN 35-mm track
Mounting strength		100 N
Terminal strength		100 N
Connector lock strength		I/O Unit interface connector: 50 N
Weight		Approx. 200 g

Characteristics

Item		Specification	
		Voltage inputs	Current inputs
Input signal range		0 to $5 \mathrm{~V}, 1$ to $5 \mathrm{~V}, 0$ to 10 V , or -10 to 10 V	0 to 20 mA or 4 to 20 mA
Max. signal input		$\pm 15 \mathrm{~V}$	$\pm 30 \mathrm{~mA}$
Input impedance		$1 \mathrm{M} \Omega \mathrm{min}$.	Approx. 250Ω
Resolution		1/6000 (FS)	
Accuracy	$25^{\circ} \mathrm{C}$	$\pm 0.3 \%$ FS	$\pm 0.4 \%$ FS
	$\begin{aligned} & -10^{\circ} \mathrm{C} \text { to } \\ & 55^{\circ} \mathrm{C} \end{aligned}$	$\pm 0.6 \%$ FS	$\pm 0.8 \%$ FS
Conversion time		With 4 inputs: $4 \mathrm{~ms} / 4$ points	
Converted output data (Binary)		Binary (4-digit hexadecimal) $-10-$ to $10-\mathrm{V}$ range: F448 to 0 to $0 \mathrm{BB8}$ full scale Other signal ranges: 0000 to 1770 full scale	
Averaging function		Settable (via DIP switch)	
Open circuit detection		Provided. (with a range of 1 to 5 V or 4 to 20 mA)	
Dielectric strength		500 VAC; detected current 1 mA (between communications section and analog input, and between internal power supply and analog input)	
Isolation method		Photocoupler insulation (between communications part and analog input) (no insulation between analog inputs)	

Components

TS Indicator (Refer to page 162.)
Shows the communications status of the I/O Unit interface. Normal communications: Lit green
I/O Unit interface error: Lit red During initialization, or with no power supply: Not lit

PWR Indicator

Internal power being supplied: Lit green
No internal power supply: Not lit
I/O Unit Interface Communications Connector 1 (on the Communication Unit side)

DIP Switch (Refer to page 106.)
On the left side of the Cassette.
Pin 1 to 6: Input range
Pin 7: Averaging
Pin 8, 9: Reserved for system use (OFF)
Pin 10: Software setting enable/disable
U.ERR Indicator (Refer to page 163.)

Unit error: Lit red Unit normal: Not lit I/O Unit Interface Communications Connector 2 (on the terminator side)

Cassette (Refer to page 166.)
Detach by pressing on the lower part and pulling outwards.

Terminal Block

DIN Track Mounting Hook

The DIP switch is on the left side of the Cassette of the Analog Input Unit (GT1-AD04). Detach the Cassette from the Unit in order to make DIP switch settings. The following diagram shows the functions of the DIP switch.

Input range Operation specifications

- Averaging
- Software setting enable/disable

The following table summarizes the DIP switch settings. (All pins are factory-set to OFF.)

Pin(s)	Function	Settings	Meaning
1 to 6	Input range	"Input Range Settings" (see below)	
7	Averaging (see page 110)	OFF	No averaging is performed. (factory-set)
	ON	Averaging is performed.	
8,9	Reserved for system use	OFF	Must be set to OFF. (factory-set)
10	Software setting enable/disable	OFF	Set the input range with pins 1 to 6. (factory-set)
		ON	Input range setting by software is enabled. (see note 1)

Note

1. The feature of setting the Input range by software can not be used with PRT1-COM.
2. Before detaching or attaching the Cassette or making DIP switch settings, ensure that the power supply to the I/O Unit (including power supply to I/O Unit interface) is OFF.

Input Range Settings

As shown in the following table, the DIP switch input range settings are for two inputs each.

Pin 1	Pin 2	Pin 3	Input range for inputs 0 and 1
Pin 4	Pin 5	Pin 6	Input range for inputs 2 and 3
OFF	OFF	OFF	0 to 5 V
ON	OFF	OFF	1 to 5 V
OFF	ON	OFF	0 to 10 V
ON	ON	OFF	-10 to 10 V
OFF	OFF	ON	4 to 20 mA
ON	OFF	ON	0 to 20 mA
Other than 2 above			

Internal Circuits

Terminal Arrangement

Wiring

Input Ranges and
Converted Data

The Analog Input Unit converts analog input data to digital values. The digital values depend on the input signal ranges, as shown in the following diagrams. When the input exceeds the specified range, the AD conversion data will be fixed at either the lower limit or upper limit.

-10 to 10 V

The -10 - to $10-\mathrm{V}$ range corresponds to the hexadecimal values F 448 to 0BB8 (-3000 to 3000). The entire data range is F31C to 0CE4 (-3300 to 3300). A negative voltage is expressed as a two's complement (16 bits). If the line is disconnected, the data will be the same as an input of $0 \mathrm{~V}(0000 \mathrm{Hex})$.

0 to 10 V

The 0- to 10-V range corresponds to the hexadecimal values 0000 to 1770 (0 to 6000). The entire data range is FED4 to $189 \mathrm{C}(-300$ to 6300$)$. A negative voltage is expressed as a two's complement (16 bits). If the line is disconnected, the data will be the same as an input of 0 V (0000 Hex).

0 to 5 V

The 0 - to $5-\mathrm{V}$ range corresponds to the hexadecimal values 0000 to 1770 (0 to 6000). The entire data range is FED4 to 189C (-300 to 6300). A negative voltage is expressed as a two's complement (16 bits). If the line is disconnected, the data will be the same as an input of 0 V (0000 Hex).

1 to 5 V

The 1- to 5-V range corresponds to the hexadecimal values 0000 to 1770 (0 to 6000). The entire data range is FED4 to 189C (-300 to 6300). If the input voltage falls below 0.8 V , the open-circuit detection function will activate and the converted data will be set to 7FFF.

0 to 20 mA

The 0- to 20-mA range corresponds to the hexadecimal values 0000 to 1770 (0 to 6000). The entire data range is FED4 to 189C (-300 to 6300). A negative voltage is expressed as a two's complement (16 bits). If the line is disconnected, the data will be the same as an input of $0 \mathrm{~mA}(0000 \mathrm{Hex})$.

4 to 20 mA

The 4- to 20-mA range corresponds to the hexadecimal values 0000 to 1770 (0 to 6000). The entire data range is FED4 to 189C (-300 to 6300). If the input current falls below 3.2 mA , the open-circuit detection function will activate and the converted data will be set to 7FFF.

Averaging Function Setting

Open-circuit Detection Function

Common Power Supply for Input Devices

The averaging function can be enabled for all inputs (0 through 3) by turning ON pin 7 of the DIP switch. The averaging function outputs the average (a moving average) of the last eight input values as the converted value. Use this function to smooth inputs that vary like the one in the following diagram.

Note The time required for refreshing converted data remains one $\mathrm{ms} /$ point when the averaging function is enabled. The first communications data after the power is turned ON will be output after averaging eight samples.

The open-circuit detection function is activated when the input range is set to 1 to 5 V and the voltage drops below 0.6 V , or when the input range is set to 4 to 20 mA and the current drops below 2.4 mA . When the open-circuit detection function is activated, the converted data will be set to 7FFF.
The open-circuit detection function is enabled or cleared when data is converted. If the input returns to the convertible range, the open-circuit detection is cleared automatically and the output returns to the normal range.
If an open-circuit occurs when more than one input device is using the same power supply, and voltage input is being supplied, the following situation will occur (this does not apply when current input is being supplied).

If an open-circuit occurs at A in the above diagram, a sneak circuit will be created in the direction of the arrow, and even though the circuit is open, a voltage will exist. This voltage will be approximately $1 / 3$ to $1 / 2$ of the output of the input devices in the part of the circuit that is not open. (The same will apply if an open circuit occurred at B.) With such a voltage present in the circuit, the open-circuit will not be detected. When voltage input is being supplied, either set up the input devices so that they are not using the same power supply, or use isolators for each input.

Converted Data

Conversion Time

If the conversion data is a negative number, it is expressed as a two's complement. To obtain an absolute value from this two's complement, the NEG instruction is useful.

Dimensions

Note The vertical center of the Unit is 4.9 mm lower than the center of the DIN track. The Unit therefore extends downward 41.4 mm (including the mounting hook) from the DIN track center.

GT1-AD08MX

General Specifications

Item		Specification	
I/O connections		Connectors (made by MOLEX)	
Number of inputs		Either 8 points or 4 points (set with the DIP switch) (Master Unit uses 8 input words or 4 input words.)	
Internal power supply	Voltage range	20.4 to 26.4 VDC (24 VDC ${ }^{+10 \%} /$-15\%)	
	Current consumption in Unit (inrush current)	100 mA max. (inrush current 30 A max.)	
Current consumption (I/O Unit interface)		50 mA max.	
Noise immunity		1,500 V p-p Pulse width: 0.1 to $1 \mu \mathrm{~s}$ Startup pulse: 1 ns (via noise simulator)	
Vibration resistance		10 to 150 Hz , 1.0-mm double amplitude or $70 \mathrm{~m} / \mathrm{s}^{2}$	
Shock resistance		$200 \mathrm{~m} / \mathrm{s}^{2}$	
Ambient temperature		$-10^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$	
Ambient humidity		25\% to 85\% (with no condensation)	
Operating atmosphere		No corrosive gases	
Storage temperature		$-25^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$	
Safety standards		UL508, CSA22.2	
EMC directives		EN50081-2, EN50082-2	
Mounting		DIN 35-mm track	
Mounting strength		100 N	
Terminal strength		100 N	
Connector lock strength		I/O Unit interface connector: 50 N Analog input connector: 50 N	
Weight		Approx. 180 g	

Characteristics

Item		Specification	
		Voltage inputs	Current inputs
Input signal range		0 to $5 \mathrm{~V}, 1$ to $5 \mathrm{~V}, 0$ to 10 V , or -10 to 10 V	0 to 20 mA or 4 to 20 mA
Max. signal input		$\pm 15 \mathrm{~V}$	$\pm 30 \mathrm{~mA}$
Input impedance		$1 \mathrm{M} \Omega$ min.	Approx. 250Ω
Resolution		1/6000 (FS)	
Accuracy	$25^{\circ} \mathrm{C}$	$\pm 0.3 \%$ FS	$\pm 0.4 \%$ FS
	$\begin{aligned} & -10^{\circ} \mathrm{C} \text { to } \\ & 55^{\circ} \mathrm{C} \end{aligned}$	$\pm 0.6 \%$ FS	$\pm 0.8 \%$ FS
Conversion time		With 8 inputs: $8 \mathrm{~ms} / 8$ points With 4 inputs: $4 \mathrm{~ms} / 4$ points (Select using the DIP switch.)	
Converted output data (Binary)		Binary (4-digit hexadecimal)	
Averaging function		Settable (via DIP switch)	
Open circuit detection		Provided. (with a range of 1 to 5 V or 4 to 20 mA)	
Dielectric strength		500 VAC; detected current 1 mA (between communications section and analog input, and between internal power supply and analog input)	
Isolation method		Photocoupler insulation (between communications part and analog input) (no insulation between analog inputs)	

Components

TS Indicator (refer to page 162.)
Shows the communications status of the I/O Unit interface.
Normal communications: Lit green
I/O Unit interface error: Lit red
During initialization, or with no power supply: Not lit

- Averaging
- Switching between 4 and 8 inputs.
- Software setting enable/disable

The following table summarizes the DIP switch settings. (All pins are factory-set to OFF.)

Pin(s)	Function	Settings	Meaning
1 to 12	Input range	"Input Range Settings" (see below)	
13	Averaging (see page 118)	OFF	No averaging is performed. (factory-set)
		ON	Averaging is performed.
14	8-point/4inputs switching (see page 117)	OFF	8 inputs (factory-set)
	ON	4 inputs (inputs 0, 2, 4, and 6 are enabled)	
15	Reserved for system use	OFF	Must be set to OFF. (factory-set)
16	Software setting enable/disable	OFF	Set the input range with pins 1 to 12. (factory-set)
		ON	Input range setting by software (see note) is enabled.

Note The feature of setting the Input range by software can not be used with PRT1-COM.

Make sure the I/O Unit power supply (including the I/O Unit interface power supply) is OFF when setting the DIP switch.

Input Range Settings

As shown in the following table, the DIP switch input range settings are for two inputs each.

Pin 1	Pin 2	Pin 3	Input range for inputs 0 and 1
Pin 4	Pin 5	Pin 6	Input range for inputs 2 and 3
Pin 7	Pin 8	Pin 9	Input range for inputs 4 and 5
Pin 10	Pin 11	Pin 12	Input range for inputs 6 and 7
OFF	OFF	OFF	0 to 5 V
ON	OFF	OFF	1 to 5 V
OFF	ON	OFF	0 to 10 V
ON	ON	OFF	-10 to 10 V
OFF	OFF	ON	4 to 20 mA
ON	OFF	ON	0 to 20 mA
Other than the above			

Internal Circuits

Terminal/Connector Pin Arrangement

The arrangements of the terminals, the connectors and the connector pins are shown in the following diagram.

Attach MOLEX connectors to the analog input connectors, and connect the inputs as shown in the following diagram, depending on whether voltage inputs or current inputs are being used.

Applicable Connectors

Input Ranges and Converted Data

The Analog Input Unit converts analog input data to digital values. The digital values depend on the input signal ranges, as shown in the following diagrams. When the input exceeds the specified range, the AD conversion data will be fixed at either the lower limit or upper limit.

-10 to 10 V

The -10 - to $10-\mathrm{V}$ range corresponds to the hexadecimal values F448 to OBB8 (-3000 to 3000). The entire data range is F31C to OCE4 (-3300 to 3300). A negative voltage is expressed as a two's complement (16 bits). If the line is disconnected, the data will be the same as an input of 0 V (0000 Hex).

0 to 10 V

The 0- to 10-V range corresponds to the hexadecimal values 0000 to 1770 (0 to 6000). The entire data range is FED4 to 189C (-300 to 6300). A negative voltage is expressed as a two's complement (16 bits). If the line is disconnected, the data will be the same as an input of 0 V (0000 Hex).

0 to 5 V

The 0 - to $5-\mathrm{V}$ range corresponds to the hexadecimal values 0000 to 1770 (0 to 6000). The entire data range is FED4 to 189C (-300 to 6300). A negative voltage is expressed as a two's complement (16 bits). If the line is disconnected, the data will be the same as an input of $0 \mathrm{~V}(0000 \mathrm{Hex})$.

1 to 5 V

The 1- to 5-V range corresponds to the hexadecimal values 0000 to 1770 (0 to 6000). The entire data range is FED4 to 189C (-300 to 6300). If the input voltage falls below 0.8 V , the open-circuit detection function will activate and the converted data will be set to 7FFF.

0 to 20 mA

The 0- to 20-mA range corresponds to the hexadecimal values 0000 to 1770 (0 to 6000). The entire data range is FED4 to 189C (-300 to 6300). A negative voltage is expressed as a two's complement (16 bits). If the line is disconnected, the data will be the same as an input of $0 \mathrm{~mA}(0000 \mathrm{Hex})$.

4 to 20 mA

The 4- to 20-mA range corresponds to the hexadecimal values 0000 to 1770 (0 to 6000). The entire data range is FED4 to 189C (-300 to 6300). If the input current falls below 3.2 mA , the open-circuit detection function will activate and the converted data will be set to 7FFF.

Number of Inputs
The number of inputs can be limited to four by turning ON pin 14 of the DIP switch. Changing the number of inputs from eight to four reduces the sampling time from 8 ms to 4 ms , providing faster conversion.
If four inputs are used, the number of words allocated to the Input Unit in the PC is also reduced to 4 words. When only four inputs are used, inputs $0,2,4$ and 6 are used (i.e., inputs 1, 3, 5 and 7 cannot be used.)

Averaging Function Setting

Open-circuit Detection Function

The averaging function can be enabled for all inputs (0 through 7) by turning ON pin 13 of the DIP switch. The averaging function outputs the average (a moving average) of the last eight input values as the converted value. Use this function to smooth inputs that vary like the one in the following diagram.

Note The time required for refreshing converted data remains $1 \mathrm{~ms} /$ point when the averaging function is enabled. The first communications data after the power is turned ON will be output after averaging eight samples.

The open-circuit detection function is activated when the input range is set to 1 to 5 V and the voltage drops below 0.6 V , or when the input range is set to 4 to 20 mA and the current drops below 2.4 mA . When the open-circuit detection function is activated, the converted data will be set to 7FFF.
The open-circuit detection function is enabled or cleared when data is converted. If the input returns to the convertible range, the open-circuit detection is cleared automatically and the output returns to the normal range.

If an open-circuit occurs when more than one input device is using the same power supply, and voltage input is being supplied, the following situation will occur (this does not apply when current input is being supplied).

Common Power Supply for Input Devices

If an open-circuit occurs at A in the above diagram, a sneak circuit will be created in the direction of the arrow, and even though the circuit is open, a voltage will exist. This voltage will be approximately $1 / 3$ to $1 / 2$ of the output of the input devices in the part of the circuit that is not open. (The same will apply if an open circuit occurred at B.) With such a voltage present in the circuit, the open-circuit will not be detected. When voltage input is being supplied, either set up the input devices so that they are not using the same power supply, or use isolators for each input.

Converted Data

For 4 Inputs
Bit

Conversion Time

Dimensions

Note The vertical center of the Unit is 4.9 mm lower than the center of the DIN track. The Unit therefore extends downward 41.4 mm (including the mounting hook) from the DIN track center.

7-2 Analog Output Units

7-2-1 Specifications

GT1-DA04 (Available Soon)

General Specifications

Item		Specification
I/O connections		Terminal block (M3)
Number of outputs		4 outputs (allocated four words in the Master Unit)
Internal power supply	Voltage range	20.4 to 26.4 VDC (24 VDC ${ }^{+10 \%}$ /-15\% $^{\text {) }}$
	Current consumption in Unit (inrush current)	100 mA max. (inrush current 30 A max.)
Current consumption (I/O Unit interface)		50 mA max.
Noise immunity		$1,500 \mathrm{~V}$ p-p Pulse width: 0.1 to $1 \mu \mathrm{~s}$ Startup pulse: 1 ns (via noise simulator)
Vibration resistance		10 to $150 \mathrm{~Hz}, 1.0-\mathrm{mm}$ double amplitude or $70 \mathrm{~m} / \mathrm{s}^{2}$
Shock resistance		$200 \mathrm{~m} / \mathrm{s}^{2}$
Ambient temperature		$-10^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$
Ambient humidity		25\% to 85\% (with no condensation)
Operating atmosphere		No corrosive gases
Storage temperature		$-25^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$
Safety standards		UL508, CSA22.2
EMC directives		EN50081-2, EN50082-2
Mounting		DIN 35-mm track
Mounting strength		100 N
Terminal strength		100 N
Connector lock strength		I/O Unit interface connector: 50 N
Weight		Approx. 200 g

Characteristics

Item		Specification	
		Voltage outputs	Current outputs
Output signal range		0 to 5 V , 1 to $5 \mathrm{~V}, 0$ to 10 V , or -10 to 10 V	4 to 20 mA
Allowable external output load resistance		$5 \mathrm{~K} \Omega \mathrm{~min}$.	$600 \Omega \mathrm{~min}$.
External output impedance		0.5Ω max.	---
Resolution		1/6000 (full scale)	
Accuracy	$25^{\circ} \mathrm{C}$	$\pm 0.4 \%$ FS	
	$\begin{aligned} & -10^{\circ} \mathrm{C} \text { to } \\ & 55^{\circ} \mathrm{C} \end{aligned}$	$\pm 0.8 \%$ FS	
Conversion time		$4 \mathrm{~ms} / 4$ points	
Converted output data (Binary)		Binary $-10-$ to 10-V range: F448 to 0 to 0BB8 full scale Other signal ranges: 0000 to 1770 full scale	
Dielectric strength		500 VAC; detected current 1 mA (between communications section and analog output, and between internal power supply and analog output)	
Isolation method		Photocoupler insulation (between communications part and analog output) (no insulation between analog outputs)	

Components

TS Indicator (Refer to page 162.)
Shows the communications status of the I/O Unit interface.
Normal communications: Lit green
I/O Unit interface error: Lit red
During initialization, or with no power supply: Not lit

PWR Indicator

Internal power being supplied: Lit green No internal power supply: Not lit

I/O Unit Interface Communications Connector 1
(on the Communication Unit side)

Unit error: Lit red Unit normal: Not lit

I/O Unit Interface

 Communications Connector 2 (on the terminator side)Cassette (Refer to page 166.)
Detach by pressing on the lower part and pulling outwards.
On the left side of the Casette.
Pin 1 to 6:Output range
Pin 7: Reserved for system use (OFF)
Pin 8, 9: Clear at minimum/maximum output
Pin 10: Software setting enable/disable
Terminal Block

DIN Track Mounting Hook
The following diagram shows the functions of the DIP switch.

Output Operating specifications
range - Clear at minimum/maximum outputs

- Software setting enable/disable

The following table summarizes the DIP switch settings. (All pins are factory-set to OFF.)

Pin(s)	Function	Settings	Meaning
1 through 6	Output range	Output range settings (See below.)	
7	Reserved for system use	OFF	Must be set to OFF.
8, 9	Clear at minimum or clear at maximum output setting (See below.)	8 9 Output OFF OFF Clear at minimum (see below) OFF ON Clear at maximum (see below) ON OFFF Clear at O V (for -10 to 10 V) Clear at minimum (other than the above) ON ON Hold	
10	Reserved for system use	OFF	Set the output range, and clear at minimum/maximum outputs with pins 1 to 9. (factory-set)
		ON	Output range setting (see note) by software.

Note 1. The feature of setting the Input range by software can not be used with PRT1-COM.
2. Make sure the I/O Unit power supplies (including the I/O Unit interface power supply) are OFF when setting the DIP switch.
3. With an Analog Output Unit, output for communications errors is enabled using the switch on the Analog Output Unit. It does not depend on the Communication Unit "hold/clear communications error" setting.

Output Range Settings

As shown in the following table, the DIP switch output range settings are for two outputs each.

Pin 1	Pin 2	Pin 3	Output range settings for outputs 0 and 1
Pin 4	Pin 5	Pin 6	Output range settings for outputs 2 and 3
OFF	OFF	OFF	0 to 5 V (factory-set)
ON	OFF	OFF	1 to 5 V
OFF	ON	OFF	0 to 10 V
ON	ON	OFF	-10 to 10 V
OFF	OFF	ON	4 to 20 mA
Other than the above			Cannot be set

Clear at Minimum and Clear at Maximum Outputs

When clear at minimum or clear at maximum is set using DIP switch pins 8 and 9 , a communications error will be output according to the output range, as shown in the following table.

Output signal range	Clear at minimum	Clear at maximum	Clear at 0 V
0 to 5 V	-0.25 V	5.25 V	-0.25 V
1 to 5 V	0.8 V	5.2 V	0.8 V
0 to 10 V	-0.5 V	10.5 V	-0.5 V
-10 to 10 V	-11 V	11 V	0 V
4 to 20 mA	3.2 mA	20.8 mA	3.2 mA

Internal Circuits

Terminal Arrangement

Wiring

Output Ranges and Converted Data

The Analog Output Unit converts the digital output data to analog values. The analog values depend on the output signal ranges, as shown in the following diagrams.

1 to 5 V

The hexadecimal values 0000 to 1770 (0 to 6000) correspond to an analog voltage range of 1 to 5 V . The entire output range is 0.8 to 5.2 V .

0 to 5 V
The hexadecimal values 0000 to 1770 (0 to 6000) correspond to an analog voltage range of 0 to 5 V . The entire output range is -0.25 to 5.25 V .

0 to 10 V

The hexadecimal values 0000 to 1770 (0 to 6000) correspond to an analog voltage range of 0 to 10 V . The entire output range is -0.5 to 10.5 V .

-10 to 10 V
The hexadecimal values F448 to OBB8 (-3000 to 3000) correspond to an analog voltage range of -10 to 10 V . The entire output range is -11 to 11 V . Specify a negative voltage as a two's complement (16 bits).

4 to 20 mA

The hexadecimal values 0000 to 1770 (0 to 6000) correspond to an analog current range of 4 to 20 mA . The entire output range is 3.2 to 20.8 mA .

Output Status after Communications Error

The Configurator or pins 8 and 9 of the DIP switch can be used to determine the status of the outputs after a communications error occurs in CompoBus/D or I/O Unit interface communications. The following settings are possible:

- Hold (maintain previous output status)
- Clear at minimum (clear at the lower limit of the output signal range)
- Clear at maximum (clear at the upper limit of the output signal range)
- Clear at 0 V (for -10 to 10 V only)

When the clear at minimum, clear at maximum, or clear at 0 V setting is used, the output data will be as shown in the following table.

Output signal range	Clear at minimum	Clear at maximum	Clear at 0 V
0 to 5 V	-0.25 V	5.25 V	-0.25 V
1 to 5 V	0.8 V	5.2 V	0.8 V
0 to 10 V	-0.5 V	10.5 V	-0.5 V
-10 to 10 V	-11 V	11 V	0 V
4 to 20 mA	3.2 mA	20.8 mA	3.2 mA

Output the converted data to the Master as shown in the following diagram.

When a negative voltage is to be output, specify the conversion data as the two's complement. To obtain a two's complement from an absolute value, the NEG instruction is useful.

The conversion data is refreshed every 4 ms for all 4 points.

Dimensions

Note The vertical center of the Unit is 4.9 mm lower than the center of the DIN track. The Unit therefore extends downward 41.4 mm (including the mounting hook) from the DIN track center.

GT1-DA04MX

General Specifications

Item		Specification	
I/O connections		Connectors (made by MOLEX)	
Number of outputs		4 outputs (allocated four words in the Master Unit)	
Internal power supply	Voltage range	20.4 to 26.4 VDC (24 VDC ${ }^{+10 \%} /-15 \%$)	
	Current consumption in Unit (inrush current)	100 mA max. (inrush current 30 A max.)	
Current consumption (I/O Unit interface)		50 mA max.	
Noise immunity			
Vibration resistance		10 to 150 Hz , 1.0-mm double amplitude or $70 \mathrm{~m} / \mathrm{s}^{2}$	
Shock resistance		$200 \mathrm{~m} / \mathrm{s}^{2}$	
Ambient temperature		$-10^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$	
Ambient humidity		25\% to 85\% (with no condensation)	
Operating atmosphere		No corrosive gases	
Storage temperature		$-25^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$	
Safety standards		UL508, CSA22.2	
EMC directives		EN50081-2, EN50082-2	
Mounting		DIN 35-mm track	
Mounting strength		100 N	
Terminal strength		100 N	
Connector lock strength		I/O Unit interface connector: 50 N Analog input connector: 50 N	
Weight		Approx. 180 g	

Characteristics

Item	Specification
Output signal range	0 to $5 \mathrm{~V}, 1$ to $5 \mathrm{~V}, 0$ to 10 V , or -10 to 10 V (Current output not possible)
Allowable external out- put load resistance	$5 \mathrm{~K} \Omega$ min.
External output imped- ance	0.5Ω max.
Resolution	$1 / 6000$ (full scale)
Accuracy	$25^{\circ} \mathrm{C}$
$-10^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$	$\pm 0.4 \%$ FS
$0.8 \% \mathrm{FS}$	
Conversion time	4 ms/4 points
Converted output data (Binary)	Binary $-10-$ to 10-V range: \quad F448 to 0 to 0BB8 full scale Other signal ranges: 0000 to 1770 full scale
Dielectric strength	500 VAC; detected current 1 mA (between communica- tions section and analog output, and between internal power supply and analog output)
Isolation method	Photocoupler insulation (between communications part and analog output) (no insulation between analog outputs)

Components

TS Indicator (Refer to page 162.)
Shows the communications status of the I/O Unit interface.
Normal communications: Lit green
I/O Unit interface error: Lit red
During initialization, or with no power supply: Not lit

PWR Indicator

Internal power being supplied: Lit green
No internal power supply: Not lit
I/O Unit Interface Communications Connector 1 (on the Communication Unit side)
U.ERR Indicator (Refer to page 163.)

Unit error: Lit red Unit normal: Not lit

I/O Unit Interface Communications Connector 2 (on the terminator side)

Analog Output Connectors (made by MOLEX)
Connect to an analog output devices.

DIN Track Mounting Hook

Pin 1 to 6:Output range
Pin 7: Reserved for system use (OFF)
Pin 8, 9: Clear at minimum/maximum output
Pin 10: Software setting enable/disable

The following table summarizes the DIP switch settings. (All pins are factory-set to OFF.)

Pin(s)	Function	Settings	Meaning
1 through 6	Output range	Output range settings (See below.)	
7	Reserved for system use	OFF	Must be set to OFF.
8, 9	Clear at minimum or clear at maximum output setting (See below.)	8 9 Output OFF OFF Clear at minimum (see below) Clear at maximum OFF ON (see below) ON OFF Clear at 0 V (for -10 to 10 V) ON Clear at minimum (other than the above) Hold	
10	Reserved for system use	OFF	Set the output range, and clear at minimum/maximum outputs with pins 1 to 9 . (factory-set)
		ON	Output range setting (see note) by software.

Note 1. The feature of setting the Input range by software can not be used with PRT1-COM.
2. Make sure the I/O Unit power supplies (including the I/O Unit interface power supply) are OFF when setting the DIP switch.
3. With an Analog Output Unit, outputs for communications errors is enabled using the switch on the Analog Output Unit. It does not depend on the Communication Unit "hold/clear communications error" setting.

Output Range Settings

As shown in the following table, the DIP switch output range settings are for two outputs each.

Pin 1	Pin 2	Pin 3	Output range settings for outputs 0 and 1
Pin 4	Pin 5	Pin 6	Output range settings for outputs 2 and 3
OFF	OFF	OFF	0 to 5 V (factory-set)
ON	OFF	OFF	1 to 5 V
OFF	ON	OFF	0 to 10 V
ON	ON	OFF	-10 to 10 V
Other than the above		Cannot be set	

Clear at Minimum and Clear at Maximum Outputs

When clear at minimum or clear at maximum is set using DIP switch pins 8 and 9 , a communications error will be output according to the output range, as shown in the following table.

Output signal range	Clear at minimum	Clear at maximum	Clear at 0 V
0 to 5 V	-0.25 V	5.25 V	-0.25 V
1 to 5 V	0.8 V	5.2 V	0.8 V
0 to 10 V	-0.5 V	10.5 V	-0.5 V
-10 to 10 V	-11 V	11 V	0 V

Internal Circuits

Terminal/Connector Pin Arrangement

The arrangements of the terminals, the connectors and the connector pins are shown in the following diagram.

Wiring

Attach MOLEX connectors to the analog output connectors, and connect the outputs as shown in the following diagram.

Applicable Connectors

Manufac- turer	Connector		Model number	Remarks
MOLEX	Pressure- welded	Housing	$521-09-0390$	For AWG\#24
	Crimp	Housing	$50-57-9403$	
	Reeled contacts	$16-02-0069$	For AWG\#24 to 30	
		$16-02-0086$	For AWG\#22 to 24	
		Loose contacts	$16-02-0096$	For AWG\#24 to 30
		$16-02-0102$	For AWG\#22 to 24	
		Crimping tool	$570-36-5000$	For AWG\#22 to 26
		$11-01-0209$	For AWG\#24 to 30	

Output Ranges and Converted Data

The Analog Output Unit converts the digital output data to analog values. The analog values depend on the output signal ranges, as shown in the following diagrams.

1 to 5 V

The hexadecimal values 0000 to 1770 (0 to 6000) correspond to an analog voltage range of 1 to 5 V . The entire output range is 0.8 to 5.2 V .

0 to 5 V
The hexadecimal values 0000 to 1770 (0 to 6000) correspond to an analog voltage range of 0 to 5 V . The entire output range is -0.25 to 5.25 V .

0 to 10 V

The hexadecimal values 0000 to 1770 (0 to 6000) correspond to an analog voltage range of 0 to 10 V . The entire output range is -0.5 to 10.5 V .

-10 to 10 V
The hexadecimal values F448 to OBB8 (-3000 to 3000) correspond to an analog voltage range of -10 to 10 V . The entire output range is -11 to 11 V . Specify a negative voltage as a two's complement (16 bits).

Output Status after

 Communications ErrorPins 8 and 9 of the DIP switch determine the status of the outputs after a communications error occurs in CompoBus/D or I/O Unit interface communications.

Settings		Output status after communications error	
Pin 8	Pin 9		
OFF	OFF	Clear at minimum (Clear at the lower limit of the output signal range.)	
OFF	ON	Clear at maximum (Clear at the upper limit of the output signal range.)	
ON	OFF	Clear at 0 V (for -10 to 10 V only) Clear at minimum (other than the above)	
ON	ON	Hold (Maintain previous output status.)	

When the clear at minimum, clear at maximum, or clear at 0 V setting is used, the output data is as shown in the following table.

Output signal range	Clear at minimum	Clear at maximum	Clear at 0 V
0 to 5 V	-0.25 V	5.25 V	-0.25 V
1 to 5 V	0.8 V	5.2 V	0.8 V
0 to 10 V	-0.5 V	10.5 V	-0.5 V
-10 to 10 V	-11 V	11 V	0 V

Output the converted data to the Master as shown in the following diagram.

When a negative voltage is to be output, specify the conversion data as the two's complement. To obtain a two's complement from an absolute value, the NEG instruction is useful.

The conversion data is refreshed every 4 ms for all 4 points.

Conversion Time

Dimensions

(Unit: mm)

Note The vertical center of the Unit is 4.9 mm lower than the center of the DIN track. The Unit therefore extends downward 41.4 mm (including the mounting hook) from the DIN track center.

7-3 Counter Units

GT1-CT01

General Specifications

Item		Specification
I/O connections		Terminal block (M3)
Number of I/O		Encoder input: 1 point (A, B, Z) External input: 1 point (IN) External output: 2 points (OUT 1, OUT 2) (Allocated 3 input words and 3 output words on the Master)
Internal power supply	Voltage range	20.4 to 26.4 VDC (24 VDC ${ }^{+10 \% /-15 \%)}$
	Current consumption in Unit (inrush current)	Encoder input: 0 External input: 0 External output: 9 mA max.
Current consumption (I/O Unit interface)		90 mA max.
Noise immunity		$1,500 \vee \mathrm{p}-\mathrm{p}$ Pulse width: 0.1 to $1 \mu \mathrm{~s}$ Startup pulse: 1 ns (via noise simulator)
Vibration resistance		10 to $150 \mathrm{~Hz}, 1.0-\mathrm{mm}$ double amplitude or $70 \mathrm{~m} / \mathrm{s}^{2}$
Shock resistance		$200 \mathrm{~m} / \mathrm{s}^{2}$
Dielectric strength		500 VAC (between isolated circuits)
Ambient temperature		$-10^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$
Ambient humidity		25\% to 85\% (with no condensation)
Operating atmosphere		No corrosive gases
Storage temperature		$-25^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$
Safety standards		UL508, CSA22.2
EMC directives		EN50081-2, EN50082-2
Mounting		DIN 35-mm track
Mounting strength		100 N
Terminal strength		100 N
Connector lock strength		I/O Unit interface connector: 50 N
Weight		Approx. 250 g

Characteristics

Item		Specification
Number of counters	1	
Operating modes	Linear counter	
	Input sig- nals	Encoder input (A, B, Z)
	Signal lev- els	24 VDC
	Types of inputs	Differential phase pulse inputs Pulse and direction inputs
	Counting rate	50 kHz (kcps)
	Counting range	$-8,388,608$ to 8,388,607 (24 bit binary)
	Others	The multiple function $(\times 1, \times 4)$ can be selected for differ- ential phase pulse input
External inputs	Input sig- nals	External input (IN)
	Signal lev- els	24 VDC
External outputs	Outputs	External outputs (OUT1, OUT 2)
	Switching capacity	0.5 A/point at 24 VDC

Note When connecting an encoder, use an incremental encoder that has a power supply voltage of 24 VDC and open-collector output. The following OMRON Encoders are recommended:

E6B2-CWZ6C

E6H-CWZ6C
Input Specifications (Encoder Input: A, B, Z, External Input: IN)

Item	Specification	
	Encoder input (A, B, Z)	External input (IN)
ON voltage	19.2 VDC min. (between each input terminal and V)	15 VDC min. (between each input terminal and V)
OFF voltage	4 VDC max. (between each input terminal and V)	5 VDC max. (between each input terminal and V)
OFF current	1.0 mA max.	1.0 mA max.
Input current	18 mA max./point at 24 VDC (between each input terminal and V)	6 mA max./point at 24 VDC (between each input terminal and V)
ON response time	---	1.0 ms max.
OFF response time	---	1.0 ms max.
Insulation resistance	$20 \mathrm{M} \Omega$ min. at 250 VDC (between isolated circuits)	
Isolation method	Photocoupler	

Item	Specification	
	Encoder input (A, B, Z)	External input (IN)
Number of circuits	1 count input point	1 point
Minimum response pulse	Encoder Inputs A and B Waveform Input rising time/falling time: $3 \mu \mathrm{~s}$ max. at 50 kHz with pulses with a duty factor of 50% Relationship between A and B phases with offset phase input Encoder Input Z	

Output Specifications (External Output: OUT1, OUT2)

Item	Specification
Rated output current	$0.5 \mathrm{~A} /$ point
Residual voltage	1.2 V max. at 0.5 A DC (between each output terminal and V and each output terminal and G)
Leakage current	0.1 mA max. at 24 VDC (between each output terminal and V and each output terminal and G)
ON response time	0.5 ms max.
OFF response time	$1.5 \mathrm{~ms} \mathrm{max}$.
Insulation resistance	$20 \mathrm{M} \Omega$ min. at 250 VDC (between isolated circuits)
Isolation method	Photocoupler
Number of circuits	2 points

Components

TS Indicator (Refer to page 162.)
Shows the communications status of the I/O Unit interface. Normal communications: Lit green
I/O Unit interface error: Lit red
During initialization, or with no power supply: Not lit

Note Setting for the Counter Unit is carried out in a PC word (output area allocated to the Counter Unit).

Internal Circuits

Terminal Arrangement

Wiring

Note Do not use the same power supply for the encoder as that used for other I/O Units or communications.

Count Mode

The following count modes can be used with the Counter Unit.
Note If the count mode is changed during count operations, the present value will be cleared to 0 .

Differential Phase Pulse Inputs

When the A phase is 90° in advance of the B phase, the input is read as forward rotation and the count is incremented. When the A phase is 90° behind the B phase, the input is read as reverse rotation and the count is decremented. When input is made with differential phase pulse input, the multiple function ($\times 1, \times 4$) can be used. The following table shows how the multiple function will operate according to the phases of A and B.

Multiple function	A phase $\mathbf{9 0}^{\circ}$ ahead	A phase $\mathbf{9 0}^{\circ}$ behind
$\times 1$	Count is incremented at rising edge of A-phase input	Count is decremented at falling edge of A-phase input
$\times 4$	Count is incremented at rising edge and falling edge of A-phase input and B-phase input	Count is decremented at rising edge and falling edge of A-phase input and B-phase input

Note Switching B phase (direction input) ON and OFF, must be carried out with A phase (pulse input) switched OFF.

Count Value and External Outputs

Counting Range and Underflow/Overflow

The Counter Unit performs counting in the range $-8,388,608$ to $+8,388,607$. If the count value goes outside this range, underflow or overflow will be registered, and counting will stop.
Note 1. When counting is stopped because of underflow or overflow, it can be restarted using count value set or reset. For details about count value set or reset, refer to page 141, Setting and Reading the Count Value and Set Values.
2. When underflow/overflow occurs, bit 12 in word $m+2$ of the input area will come ON. For details, refer to page 144, Word Functions.
3. The Counter Unit will not perform counting until the count mode has been set. When the Counter Unit is switched ON, however, if the count mode is already set in word $\mathrm{n}+2$ of the output area, counting will start in the specified mode.

Set Values 1, 2 and External Outputs

The Counter Unit can set the 2 values, set value 1 and set value 2 , and output the comparison result, obtained by comparing these values with the count value, to external outputs 1 and 2. (The comparison result for set value 1 is output to external output 1 and the comparison result for set value 2 is output to external output 2.) Output conditions and external output enable/disable can be set separately for the set values.
Output Conditions:
The following output conditions can be set separately for each of the set values. Present value \leq Set value: When the count value is less than or equal to the set value, the external output will be ON.
Present value \geq Set value: When the count value is greater than of equal to the set value, the external output will be ON.
External Output Enable/Disable:
Actual external output will only be made when the External Output Enable Bits (bits 08 and 09 in word $\mathrm{n}+2$ of the output area) are ON. If the External Output Enable Bits are OFF, external output will remain OFF, even if the output conditions are satisfied.
Bit 08 in word $\mathrm{n}+2$: External Output 1 Enable Bit (ON: enable, OFF: disable)
Bit 09 in word $\mathrm{n}+2$: External Output 2 Enable Bit (ON: enable, OFF: disable)
Note 1. Set values 1 and 2, and the output conditions are set in words $n, n+1$ of the output area. For details about how to make the settings, refer to the following Setting and Reading the Count Value and Set Values.
2. The count values and set values can be set in BCD or hexadecimal.

Setting and Reading the Count Value and Set Values

Count value setting refers to the procedure required to change the present value of the count as required, whereas count value reset refers to the process required to reset the present count value to 0 .

Count Value Reset

The count value can be reset using combinations of the following 3 inputs.
Encoder input Z
External input
The internal Reset Bit (bit 07 in word $\mathrm{n}+2$ of the output area)

The possible combinations (reset modes) are shown in the following table.

Reset mode	Input	Counter reset condition and timing	
1	Encoder input Z	Encoder input Z Reset	
2	External input	External input Reset 	
3	Encoder input Z + external input		
4	Internal Reset Bit	Internal Reset Bit Reset	
5	Encoder input Z + internal Reset Bit	Encoder input Z Internal Reset Bit Reset	
6	External output + internal Reset Bit	External output Internal Reset Bit Reset	
7	Encoder input Z + external input + internal Reset Bit	Encoder input Z External input Internal Reset Bit Reset	

Note 1. Setting of the reset mode is performed in bits 12 to 14 in word $n+2$ of the output area.
2. The Counter Unit will execute reset with the first count following the fulfillment of the reset conditions.
3. Encoder input Z is only effective for the rising edge. When using the encoder input Z under AND conditions with other inputs, ensure that encoder input Z will turn ON last.
4. When repeating reset for the count value, allow an interval of at least 0.1 ms before switching $O N$ the encoder input Z and at least 1 ms before switching ON the external inputs.
5. It is not possible to execute ON/OFF timing for the internal Reset Bit with perfect accuracy, due to the communications time required for remote I/O communications.

Count Value Setting

The count value (the present value) for the Counter Unit can be set as required, to any value in range $-8,388,608$ to $+8,388,607$. Count value setting can be performed in BCD or hexadecimal.

Note 1. Count value setting is performed by setting a value in words $n, n+1$ of the output area as shown below, and switching ON the Count Value Setting Bit (word n+2, bit 02).
2. Specify whether the setting will be made in $B C D$ or in hexadecimal in the Data Code Switching Bit (word n+2, bit 03).
3. Count value setting can be performed regardless of whether or not count operation is being carried out. Due to the communications time required for remote I/O communications, however, timing for setting cannot be performed with perfect accuracy during count operation.

BCD (Data Code Switching Bit OFF)

Hexadecimal (Data Code Switching Bit ON)

Reading the Count Value

By switching ON the Count Value Reading Bit (word n+2, bit 06), the count value can be read and stored in words $m, m+1$ of the input area. The format of the stored value will be the same as that at setting.
Note 1. The value will be stored in either BCD or hexadecimal, according to the setting of the Data Code Switching Bit (word $n+2$, bit 03).
2. Reading of the count value can be performed regardless of whether or not count operation is being carried out. Due to the communications time required for remote I/O communications, however, timing for reading cannot be performed with perfect accuracy during count operation.

Setting of Set Values 1 and 2

Set values 1 and 2 can be set separately, to values in range $-8,388,608$ to $+8,388,607$. When this is performed, the output conditions will also be set. Setting of the set values can be performed in either BCD or hexadecimal.

Note 1. To make the set value settings, set the values in words n and $n+1$ of the output area, as shown below, and switch the Set Value 1 Setting Bit (word $\mathrm{n}+2$, bit 00) or the Set Value 2 Setting Bit (word $\mathrm{n}+2$, bit 01) ON.
2. Specify whether the setting will be made in BCD or in hexadecimal in the Data Code Switching Bit (word n+2, bit 03).
3. Setting of the set values can be performed regardless of whether or not count operation is being carried out. Due to the communications time required for remote I/O communications, however, timing for setting cannot be made with perfect accuracy during count operation.

BCD (Data Code Switching Bit OFF)
Word $n+1$
Word n

Set the output conditions with 3 bits.
000: \quad Present value \geq Set value \rightarrow Output ON
Not 000: Present value \leq Set value \rightarrow Output ON
(Whether output is actually made depends on the settings
of the External Output Enable Bits, word n+2 bits 08, 09)
Set the sign with 1 bit.
0 : Positive
1: Negative

Hexadecimal (Data Code Switching Bit ON)

000: \quad Present value \geq Set value \rightarrow Output ON
Not 000: Present value \leq Set value \rightarrow Output ON
(Whether output is actually made depends on the settings of
the External Output Enable Bits, word $\mathrm{n}+2$ bits 08, 09)

Reading Set Values 1 and 2

By switching ON the Set Value 1 Reading Bit (word n+2, bit 04) or the Set Value 2 Reading Bit (word $\mathrm{n}+2$, bit 05), the set values can be read and stored in words m , $\mathrm{m}+1$ of the input area. When this is performed, the set output conditions will also be read. The format of the stored value will be the same as that at setting.

Note The values will be stored in either BCD or hexadecimal, according to the setting of the Data Code Switching Bit (word n+2, bit 03).

Word Functions

The Counter Unit is allocated output word 3 and input word 3 in the allocated area of the Master. Readings of the settings and status of the Counter Unit are made from the Master via this area.

This section describes the functions of the words that the Counter Unit uses.
In the following explanation, word n refers to the first word in the output area, and m word refers to the first word in the input area.

Note 1. For details about allocation in the allocation area in the Master, refer to the PROFIBUS-DP Master Operation Manual (W349).
2. If the power supply from the I/O unit interface to the Counter Unit stops, the Counter Unit will stop count operations. If this happens, it will be necessary to start up the Counter Unit again. Furthermore, when this is carried out, the present value, the set values, and the count modes will all be cleared and so these settings will also have to be made again.

Output Word Functions

Word	Bit	Name	Function
Wd n+2	00	Set Value 1 Setting Bit	At the rising edge of this bit, the Counter Unit reads the value from words n and $n+1$, and sets it as set value 1. Before turning this bit OFF, check that bit 00 in word $m+2$ (Set Value 1 Setting Completion Flag) is ON.
	01	Set Value 2 Setting Bit	At the rising edge of this bit, the Counter Unit reads the value from words n and $n+1$, and sets it as set value 2. Before turning this bit OFF, check that bit 01 in word $m+2$ (Set Value 2 Setting Completion Flag) is ON.
	02	Count Value Setting Bit	At the rising edge of this bit, the Counter Unit reads the value from words n and $n+1$, and changes the count value (present value). Before turning this bit OFF, check that bit 02 in word $\mathrm{m}+2$ (Count Value Setting Completion Flag) is ON.
	03	Data Code Switching Bit	This bit determines whether the setting and reading of the count value or the set values is performed in BCD or hexadecimal. OFF: BCD ON: Hexadecimal
	04	Set Value 1 Reading Bit	While this bit is ON, the Counter Unit reads the normal value of set value 1 and the output conditions and stores them in words m and $\mathrm{m}+1$.
	05	Set Value 2 Reading Bit	While this bit is ON, the Counter Unit reads the normal value of set value 2 and the output conditions and stores them in words m and $m+1$.
	06	Count Value Reading Bit	While this bit is ON, the Counter Unit reads the normal value of the count value and stores it in words m and $\mathrm{m}+1$.
	07	Internal Resetting Bit	When used for count value resetting, the rising edge of this bit becomes the condition for resetting (only enabled for rising edge).
	08	External Output 1 Enable Bit	This bit determines whether external output 1 comes ON when the output conditions for the count value and set value 1 are fulfilled. OFF: No output (regardless of comparison result, external output 1 will always be OFF) ON: Output (when the output conditions are fulfilled, external output 1 will turn ON)
	09	External Output 2 Enable Bit	This bit determines whether external output 2 comes ON when the output conditions for the count value and set value 2 are fulfilled. OFF: No output (regardless of comparison result, external output 2 will always be OFF) ON: Output (when the output conditions are fulfilled, external output 2 will turn ON)
	10 11	Count Mode Selection Bits	
	12	Reset Mode	The reset mode is set in the following way.
		Setting Bits	$\frac{\text { Bit } 14}{\text { OFF }} \quad \frac{\text { Bit } 13}{\text { OFF }} \quad \frac{\text { Bit } 12}{\text { OFF }} \quad \frac{\text { Reset mode }}{\text { No mode change }}$
	13		OFF OFF ON Encoder input Z
	13		OFF ON OFF External input
			OFF ON ON Encoder input Z and external input
			ON OFF OFF Internal reset bit
	14		ON OFF ON Encoder input Z and internal reset bit ON ON OFF External input and internal reset bit
			ON ON ON Encoder input Z, external input, and internal reset bit
	15	I/O Unit Interface Error Setting Bit	Counter Unit operations in the event of I/O Unit interface error (see note) are set in the following way. OFF: Count operations will be stopped, and the present value and set values 1 and 2 will be cleared to 0 . External outputs 1 and 2 will be turned OFF. ON: Count operations will continue. Note: In the event of I/O Unit interface error, the Communication Unit and all the I/O Units must be restarted.

Note A priority exists for setting and reading commands. If a bit with a higher priority always comes first, other settings and readings will not be made, even if they have been specified. In order of decreasing priority:

1. Count value setting $\rightarrow 2$. Set value 2 setting $\rightarrow 3$. Set value 1 setting \rightarrow 4. Count value reading $\rightarrow 5$. Set value 2 reading $\rightarrow 6$. Set value 1 reading

Input Word Functions

Word	Bit	Name	Function
Wd m+2	00	Set Value 1 Setting Completion Flag	When setting for set value 1 has been completed, even if an error has occurred, this flag will turn ON. This flag will turn OFF if bit 00 in word $n+2$ (Set Value 1 Setting Bit) turns OFF, or if a command is executed for a bit with a higher priority. Use bit 13 in word $m+2$, to check whether the setting was completed under normal or error status.
	01	Set Value 2 Setting Completion Flag	When setting for set value 2 has been completed, even if an error has occurred, this flag will turn ON. This flag will turn OFF if bit 01 in word $n+2$ (Set Value 2 Setting Bit) turns OFF, or if a command is executed for a bit with a higher priority. Use bit 13 in word $m+2$, to check whether the setting was completed under normal or error status.
	02	Count Value Setting Completion Flag	When setting for the count value has been completed, even if an error has occurred, this flag will turn ON. This flag will turn OFF if bit 02 in word $\mathrm{n}+2$ (Count Value Setting Bit) turns OFF. Use bit 13 in word $m+2$, to check whether the setting was completed under normal or error status.
	03	Data Code Status Flag	This flag shows whether the data stored in words m and $m+1$ is displayed in BCD or hexadecimal. OFF: BCD ON: Hexadecimal
	04	Set Value 1 Stored Flag	This flag will turn ON if the data stored in words m and $m+1$ is set value 1. This flag will turn OFF if bit 04 in word $n+2$ (Set Value 1 Reading Bit) turns OFF, or if a command is executed for a bit with a higher priority.
	05	Set Value 2 Stored Flag	This flag will turn ON if the data stored in words m and $m+1$ is set value 2. This flag will turn OFF if bit 05 in word $n+2$ (Set Value 2 Reading Bit) turns OFF, or if a command is executed for a bit with a higher priority.
	06	Count Value Stored Flag	This flag will turn ON if the data stored in words m and $m+1$ is the count value. This flag will turn OFF if bit 06 in word $n+2$ (Count Value Reading Bit) turns OFF, or if a command is executed for a bit with a higher priority.
	07	Count Operating Flag	This flag shows the status of count operation. OFF: Stopped ON: In operation
	08	External Output 1 Status Flag	This flag shows the status of external output 1. OFF: Low (OFF) ON: \quad High (ON) This flag will always be OFF, when the External Output 1 Enable Bit (word n+2, bit 08) is OFF.
	09	External Output 2 Status Flag	This flag shows the status of external output 2. OFF: Low (OFF) ON: \quad High (ON) This flag will always be OFF, when the External Output 2 Enable Bit (word n+2, bit 09) is OFF.
	10	Encoder Input Z Status Flag	This flag shows the status of encoder input Z. OFF: Low (OFF) ON: High (ON)
	11	External Input Status Flag	This flag shows the status of external input. OFF: Low (OFF) ON: \quad High (ON)
	12	Underflow/ Overflow Flag	This flag will turn ON if the count value registers underflow or overflow. Count operation will stop with the count value at either the lower or upper limit. To restart count operation, execute counter value setting or resetting. This flag will turn OFF when counting restarts.
	13	Setting Error Flag	This flag will turn ON if setting for the count value or set values is completed under error status. This may occur if a value is outside the specified range, or there is an irregularity in the value format. This flag will turn OFF when the set values or the count value are set correctly.
	14	Reserved for	(Do not set)
	15	system	

Procedure Example

This section provides a procedure example starting from the settings of the Counter Unit up to the outputting of comparison results.

This example only provides the basic procedure. For details about actual setting and programming, refer to page 144, Word Functions or 5-1 Examples of Counter Unit Operation.

Dimensions

Note The vertical center of the Unit is 4.9 mm lower than the center of the DIN track. The Unit therefore extends downward 41.4 mm (including the mounting hook) from the DIN track center.

SECTION 8 Communications Timing

This section provides characteristics for communications in the PROFIBUS-DP Unit and describes how to calculate the times required for communications between Units.
8-1 Remote I/O Communications Characteristics 152
8-1-1 I/O Response Time 152
8-1-2 Communications Cycle Time and Refresh Time 153
8-1-3 I/O Unit Interface Cycle Time 153
8-1-4 Asynchronus / synchronous mode 154

8-1 Remote I/O Communications Characteristics

This section describes the characteristics of PROFIBUS-DP communications when OMRON Master and Slave Units are being used. Use this section for reference when planning operations that require precise I/O timing.
The equations provided here are valid under the following conditions:
1, 2, 3... 1. The Master Unit is configured properly.
2. All of the required Slaves are participating in communications.
3. No errors are being indicated at the Master Unit
4. Messages are not being produced in the Network.

Note 1. The values provided by these equations may not be accurate if another company's Master or Slave is being used in the Network.
2. This manual only refers to parts related to the MULTIPLE I/O TERMINAL.

8-1-1 I/O Response Time

The I/O response time is the time it takes from the reception of an input signal at an Input Slave (MULTIPLE I/O TERMINAL Input I/O Unit) to the output of the corresponding output signal at an Output Slave (MULTIPLE I/O TERMINAL Output I/O Unit).

Minimum I/O Response Time

The minimum I/O response times are the I/O response times shown in the following diagram.

T_{IN} : Input I/O Unit ON (OFF) delay time
TOUT: Output I/O Unit ON (OFF) delay time
$T_{\text {RT-IF: }} \quad$ I/O Unit interface communications time (1.5 ms)
$T_{\text {RTIIN: }}$ Communications time for 1 Input Slave
$\mathrm{T}_{\text {RT-OUT: }}$ Communications time for 1 Output Slave
(With the MULTIPLE I/O TERMINAL, $\mathrm{T}_{\text {RTIN }}$ and $\mathrm{T}_{\text {RT-OUT }}$ will be the communications time per Slave.)
The minimum I/O response time ($\mathrm{T}_{\text {MIN }}$) is the total of the following terms:

$$
T_{\text {MIN }}=T_{I N}+T_{R T-I F}+(\text { PROFIBUS-DP I/O response time })+T_{\text {RT-IF }}+T_{\text {OUT }}
$$

Note For details on the Input I/O Unit input delay time and the Output I/O Unit output delay time, see information on the I/O Units in 6-1 Common Specifications for Basic I/O Units.

Note Refer to the PC's Operation Manual for details on the PC's cycle time.

Maximum I/O Response Time

The maximum I/O response time occurs with the I/O timing shown in the following diagram.

T_{IN} : Input I/O Unit ON (OFF) delay time
Tout: Output I/O Unit ON (OFF) delay time
$\mathrm{T}_{\mathrm{CYCIF}}$ I/O Unit interface cycle time (see 8-1-3 I/O Unit Interface Cycle Time)
T_{RM} : PROFIBUS-DP cycle time for the whole network
The maximum I/O response time ($\mathrm{T}_{\mathrm{MAX}}$) is the total of the following terms:
$\mathrm{T}_{\mathrm{MAX}}=\mathrm{T}_{\text {IN }}+\mathrm{T}_{\text {CYCIF }}+($ PROFIBUS-DP I/O response time $)+\mathrm{T}_{\text {CYCIF }}+\mathrm{T}_{\text {OUT }}$
Note For details on the Input I/O Unit input delay time and the Output I/O Unit output delay time, refer to information on the I/O Units in 6-1 Common Specifications for Basic I/O Units.

Note Refer to the PC's Operation Manual for details on the PC's cycle time.

8-1-2 PROFIBUS-DP Cycle Time

PROFIBUS-DP Cycle Time

The PROFIBUS-DP cycle time is the time from the completion of a Slave's remote I/O communications processing until remote I/O communications with the same Slave are processed again. The PROFIBUS-DP cycle time is used to calculate the maximum I/O response time.
The PROFIBUS-DP cycle time depends on the number of masters and total number of slaves in the network. For calculating the PROFIBUS-DP cycle time refer to PROFIBUS-DP Master Unit Operation Manual (W349).
The time required to exchange data between the master unit and the PLC CPU can also be found in this manual.

8-1-3 I/O Unit Interface Cycle Time

The I/O Unit interface cycle time is the time interval between the I/O processing of I/O Units in a MULTIPLE I/O TERMINAL and the next I/O processing for those I/O Units.

Without a Special I/O Unit

With a Special I/O Unit

If there is not a Special I/O Unit, the I/O Unit interface cycle time is:
$T_{\text {RT-IF }}=1.5[\mathrm{~ms}]$
More frames are required with a Special I/O Unit. There will be one additional special I/O data frame per Special I/O Unit and one additional frame for checking the status of all the Special I/O Units. Therefore, the I/O Unit interface cycle time with a Special I/O Unit can be calculated using the following formula:
$\mathrm{T}_{\mathrm{CYCIF}}=1.5 \times(\mathrm{MOD}+\mathrm{N}+1)[\mathrm{ms}]$
MOD: Number of I/O data frames
If there is no basic I/O Unit: \quad MOD $=0$
If there are basic I/O Units: $\quad M O D=1$
$\mathrm{N}: \quad$ Number of Special I/O Units (1 to 8)

8-1-4 Asynchronous / synchronous mode

The communication unit (PRT1-COM) can be programmed in either asynchronous or synchronous mode.

For optimal performance use asynchronous mode. Use synchronous mode only when:
$1 / 2$ * PROFIBUS-DP Cycle time \leq MULTIPLE I/O Bus cycle time \leq PROFIBUS-DP Cycle time

Both modes are explained with a timing diagram.
The following timing diagram shows an asynchronous transfer.

In this example, input data-3, rather than input data-2 is send with the next PROFIBUS-DP data exchange cycle.
The following timing diagram shows a synchronous transfer.

For calculating MULTIPLE I/O Unit cycle time, see section 8-1-3.

The actual transfer of data between PROFIBUS-DP, the PRT1-COM buffers and the MULTIPLE I/O Units is shown here.

SECTION 9
 Troubleshooting and Maintenance

This section provides procedures for dealing with errors as well as basic maintenance procedures.
9-1 Normal Indication 158
9-2 Troubleshooting 159
9-3 Maintenance 164
9-3-1 Cleaning 164
9-3-2 Inspection 164
9-3-3 Replacing Units 165

9-1 Normal Indication

When a MULTIPLE I/O TERMINAL is operating normally, the status will be as follows:

During normal operation, the status of the I/O Unit interface is set in the first two words of the MULTIPLE I/O TERMINAL input area as shown in the following diagram.

Bits corresponding to the addresses of I / O
Units that are actually connected will be turned ON (1). Bits 0 to 7 correspond to addresses 0 to 7 .

Unit Indicators

During normal operation, the front-panel indicators of each Unit will be as shown in the following diagram.

9-2 Troubleshooting

This section explains the causes of errors, how to determine their locations, and the actions to be taken when errors occur in a MULTIPLE I/O TERMINAL.

Check Flowchart

Status Area Error Processing

When an error occurs in a MULTIPLE I/O TERMINAL, use the following flowchart to find the cause of the error, determine its location, and take the appropriate action. The numbers correspond to the numbers in the tables beginning on page 160.

A MULTIPLE I/O TERMINAL status area is available in the first two words of the MULTIPLE I/O TERMINAL input area in the Master. The contents and causes of errors can be found by checking this area.

Status Area Configuration

The status area is configured as shown in the following diagram.

0 wd +1 wd	87	
	I/O Unit connection information	
	Error I/O Unit addresses	Registered I/O Unit addresses

I/O Unit Connection Information

Error and Registered I/O Unit Addresses

Probable Causes of Errors and Countermeasures

Use the status area to determine the error content and the I/O Unit address where the error occurred, and then take action according to the following table.

No.	Error content	Probable cause	Countermeasure
1	I/O Unit error (high-density connector type) (TS led = red on)	A hardware error has occurred in an I/O Unit.	Replace the I/O Unit in which the hardware error has occurred.
2	Communications power supply overcurrent to an I/O Unit (TS led = off)	The power supply to the I/O Unit interface has shorted. The current consumption of the I/O Unit interface exceeds 0.3 A.	Check that the I/O Units and their communication cables have not shorted. Check that the total current consumption of the communications power supply for the I/O Units does not exceed 0.3 A. After taking the above measures, restart the Communication Unit. If the problem persists, replace the Communication Unit.
3	I/O Unit interface error (TS led = red on)	The end connector is not connected. The I/O Unit Connecting Cable is broken. There is a lot of noise. Too many I/O Units are connected. (US led = flashing green)	After turning OFF the power supply to the Communication Unit and all I/O Units, attach the end connector to the I/O Unit interface connector 2 on the terminal I/O Unit. Replace the broken cable. Remove the source of the noise. Connect no more than 8 I/O Units for each Communication Unit. After taking the above measures, restart the Communication Unit. If the problem persists, replace the Communication Unit.
4	Configuration error (TS led = red on)	The I/O Unit configuration was changed while the Communication Unit was turned ON.	After turning OFF the power supply to the Communication Unit and all I/O Units, return to the correct I/O Unit configuration, and restart the Communication Unit. If the problem persists, replace the Communication Unit.
5	Special I/O Unit error (TS led = flashing green)	A specific error, such as no operating power supply, has occurred in a Special I/O Unit.	Check the operating power supply, and provide the correct power supply. If the problem persists, replace the Special I/O Unit in which the error occurred.

Troubleshooting via Indicators

There are indicators that display the Unit status of each MULTIPLE I/O TERMINAL Unit. The contents and causes of errors can be found by checking these indicators.

Indicator Meanings

Unit	Indicator name	Meaning
Communication	BF	Displays the BUS communications status.
	US	Displays the Communication Unit status.
	TS	Displays the I/O Unit interface status.
Basic I/O Unit	TS	Displays the I/O Unit interface status.
Special I/O Unit	TS	Displays the I/O Unit interface status.
	U.ERR	Displays the Special I/O Unit status.
	PWR	Displays the operating power supply status.

In addition to the above indicators, some Units also have indicators that display the I/O status.

Causes and Remedies for Communication Unit US Indicator Errors

First use the Communication Unit US indicator to check the status of the Communication Unit, and then take action according to the following table.

No.	Communication Unit US indicator status	Cause	Remedy
6	OFF US	The power is not being supplied.	Check the operating power supply, and provide the correct power supply. If the problem persists, replace the Communication Unit.
7	Flashing (green) - US	Initialisation failure of Communication Unit.	Check other led indicators for failure cause.
8	ON (red) ンUS,	A hardware error has occurred in the Communication Unit.	Restart the Communication Unit. If the problem persists, replace the Communication Unit.
9	Flashing (red) - US	Special I/O Units have been parameterized.	Restart the Communication Unit. If the problem persists, replace the Communication Unit.
10	ON (green) ンus,	No error	Proceed to the next item, Causes and Remedies for Communication Unit BF indicator Errors.

Causes and Remedies for Communication Unit BF indicator Errors
Next use the BF indicator to check the status of the Communication Unit, and then take action in according to the following table.

No.	Communication Unit BF indicator status	Cause	Remedy
11	ON (red) RF	The Unit is in Bus Off status. A Slave already exits with the same node number as the Communication Unit. Communication Unit not properly configured.	Check the connection status of the PROFIBUS-DP communications cable or the noise status. Reset the node number so that it is not duplicated.
Re-configure the PROFIBUS-DP Unit.			
After taking the above measures, restart the			
Communication Unit. If the problem persists, replace			
the Communication Unit.			

Causes and Remedies for Communication Unit and I/O Unit TS Indicator Errors

If there is no error after the US indicator and BF indicator have been checked, use the TS indicator of each Unit to check the status of the Communication Unit and each I/O Unit, and then take action in according to the following table.

No.	TS indicator status		Cause	Remedy
	Communication Unit	I/O Units		
13	$\begin{aligned} & \text { Ts } \\ & \text { OFF } \end{aligned}$	TS TS TS TS TS All I/O Unit TS indicators are not lit.	The power supply to the I/O Unit interface has shorted or disconnected. The current consumption of the I/O Unit interface exceeds 0.3 A.	Check that the I/O Unit communications cable has not shorted. Check that the total current consumption of the communications power supply for the I/O Unit does not exceed 0.3 A . After taking the above measures, restart the Communication Unit.
14	\sim ON (red) (I/O Unit interface error)	The TS indicators on the Units closer to the Communication Unit are flashing green and the indicators on the rest of the Units are lit red. All I/O Unit TS indicators are lit red.	The cable is broken at the Unit where the TS indicator display changes. (The upline is broken.) The cable between the Communication Unit and the first I/O Unit is broken. (Upline)	After turning OFF the power supply to the Communication Unit and all I/O Units, replace the broken cable.
		All I/O Unit TS indicators are lit red.	There is a lot of noise.	Remove the source of the noise.
		All I/O Unit TS indicators are lit green.	The end connector is not connected.	After turning OFF the power supply to the Communication Unit and all I/O Units, attach the end connector to the I/O Unit interface connector 2 of the terminal I/O Unit.
			The cable connected to the Remote Terminal Unit I/O interface connector 1 is broken.	After turning OFF the power supply to the Communication Unit and all I/O Units, perform a continuity test on the cable, and replace the broken cable.
		The TS indicators on the Units closer to the Communication Unit are flashing green and the indicators on the rest of the Units are not lit.	The I/O Unit configuration changed after the Unit where the TS indicator display changed.	After turning OFF the power supply to the Communication Unit and all I/O Units, return to the correct I/O Unit configuration, and restart the Communication Unit.
			At the last Unit where the green light is flashing, one of the cables is broken. (The downline is broken.)	After turning OFF the power supply to the Communication Unit and all I/O Units, check the connection status of the cable. If the problem persists, replace the cable after turning OFF the power supply to the Communication Unit and all I/O Units.
			I/O Unit interface connector 2 are connected at the Unit where the TS indicator display changed.	After turning OFF the power supply to the Communication Unit and all I/O Units, correctly reconnect the cable.

No.	TS indicator status		Cause	Remedy
	Communication Unit	1/O Units		
15	'Is $^{\text {Ti }}$ Flashing (green) (Special I/O Unit error)	There is a Special I/O Unit with the TS and U.ERR indicators lit red.	A specific error, such as no operating power supply, has occurred in a Special I/O Unit.	Check the operating power supply, and provide the correct power supply. If the problem persists, replace the Special I/O Unit in which the error occurred.

9-3 Maintenance

This section describes the routine cleaning and inspection recommended as regular maintenance.

9-3-1 Cleaning

Clean the PROFIBUS-DP Units regularly as described below in order to keep it in its optimal operating condition.

- Wipe the Unit with a dry, soft cloth for regular cleaning.
- When a spot can't be removed with a dry cloth, dampen the cloth with a neutral cleanser, wring out the cloth, and wipe the Unit.
- A smudge may remain on the Unit from gum, vinyl, or tape that was left on for a long time. Remove the smudge when cleaning.

Never use volatile solvents such as paint thinner or benzene or chemical wipes. These substances could damage the surface of the Unit.

9-3-2 Inspection

Inspection Equipment

Inspection Procedure
Be sure to inspect the system periodically to keep it in its optimal operating condition. In general, inspect the system once every 6 to 12 months, but inspect more frequently if the system is used with high temperature or humidity or under dirty/dusty conditions.

Prepare the following equipment before inspecting the system.

Required Equipment

Have a standard and phillips-head screwdriver, multimeter, alcohol, and a clean cloth.

Equipment that could be needed

Depending on the system conditions, a synchroscope, oscilloscope, thermometer, or hygrometer (to measure humidity) might be needed.

Check the items in the following table and correct any items that are below standard.

Item		Standard	Equipment
Environmental conditions	Ambient and cabinet temperature	See below.	Thermometer
	Ambient and cabinet humidity	See below.	Hygrometer
	Dust/dirt accumulation	None	---
	Are the Units installed securely?	No looseness	---
	Are the communications connectors fully inserted?	No looseness	---
	Are the external wiring screws tight?	No looseness	---
	Are the connecting cables undamaged?	No damage	---

The following table shows the acceptable temperature and humidity ranges for PROFIBUS-DP Units.

Unit	Acceptable temperature	Acceptable humidity*
Master Unit	$0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$	10% to 90%
MUTIPLE I/O TERMINAL (Communication Unit, 1/O Units)	$-10^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$	25% to 85%

9-3-3 Replacing Units

The PROFIBUS-DP Master Unit and Slave Units make up the network. The entire network is affected when a Unit is faulty, so a faulty Unit must be repaired or replaced quickly. We recommend having spare Units available to restore network operation as quickly as possible.

Precautions

Observe the following precautions when replacing a faulty Unit.

- After replacement make sure that there are no errors with the new Unit.
- When a Unit is being returned for repair, attach a sheet of paper detailing the problem and return the Unit to your OMRON dealer.
- If there is a faulty contact, try wiping the contact with a clean, lint-free cloth dampened with alcohol.

Note To prevent electric shock when replacing a Unit, be sure to turn OFF the power supplies to all of the nodes (Master and Slaves) before removing the faulty Unit.

Resetting after Replacing Units

Replacing Relays for the Relay Output Unit

After replacing a Unit, set the new Unit's switches to the same settings that were on the old Unit.

With the Relay Output Unit (GT1-ROP08, GT1-ROS16), malfunctioning Relays can be replaced.
The following Relays can be replaced:
GT1-ROP08: G2R-1-SN Power Relay
GT1-ROS16: G6D-1A Miniature Relay
Use the following procedure to replace Relays. Here, the GT1-ROS16 is used as an example. The same general procedure applies to the GT1-ROP08.

Note Check that the internal power supply for the Relay Output Unit, and the power supplies for the I/O and I/O Interface Units are all OFF before performing Relay replacement.

1, 2, 3... 1. Push the lever for the Relay to be replaced and remove the Relay. The Relays are arranged in order, with the corresponding contact numbers increasing from left to right. Push the lever gently so that the detached Relay does not spring out suddenly.

2. Insert the new Relay, pushing it into the slot as far as possible. Check the positioning of the pin in the Relay with respect to the Relay Output Unit, and be careful to replace the Relay with the correct orientation. When replacing the Relay, try to keep it as parallel as possible to the plane of the Unit. When inserting the Relay, push it gently and check whether the Relay is inside the slot. If the Relay does not enter the slot properly when pushed gently, it means that the pin is not aligned properly. In this case, remove the Relay
and start again. If the pin appears to have entered the slot properly, push the Relay into the slot as far as it will go.

3. When the Relay has been pushed inside as far as it will go, raise the lever so that it is covering the top of the Relay.

Replacing the Cassette
With the following Units, a malfunctioning Cassette can be replaced.
Transistor Input Units (with terminal block): GT1-ID16, GT1-ID16-1 Transistor Output Units (with terminal block): GT1-OD16, GT1-OD16-1 Analog Input Unit (with terminal block): GT1-AD04 Analog Output Unit (with terminal block): GT1-DA04
Note 1. Check that the internal power supply for the I/O Unit and the power supplies for the I/O and I/O Interface Units are all OFF before performing Cassette replacement.
2. Other I/O Units are not designed to house a Cassette. In order to avoid trying to attach a Cassette to an incompatible Unit, check the I/O Unit first.
Use the following procedure to replace the Cassette. The GT1-AD04 is used as an example. The same general procedure applies to other Units.
1, 2, 3... 1. For the Analog Input and Output Units, with the top part of the Cassette pressed down, pull the Cassette outwards (see diagram below). For the Transistor Input and Output Units, with the bottom part of the Cassette pressed up, pull the Cassette outwards.

2. Insert the new Cassette as far as possible into the space, taking care about its orientation. After doing so, try to gently pull the Cassette outwards to check whether it is secure.

Appendix A
 GSD file for PRT1-COM

; General information $* / ~$

Max_Data_Len $=260$; Maximum \# of data bytes.
Max_Diag_Data_Len = 6	; Maximum diagnostic length.
	;
	;
; User parameter message definition *********	*****************************/
	; Preset parameterization
User_Prm_Data_Len = 3	; message length and default
	; message.
User_Prm_Data $=0 \times 40,1$; Mandatory additional user
0x00, 1	; parameters.
0×00	;
	;
	;
; Module definition list *********************	*****************************/
	; MANDATORY first selection:
Module $=$ "System status (MANDATORY)" 0x93	; System status bytes (4)
Preset = 1	; Pre-select this module
EndModule	; (Siemens Configurators).
	; Digital Inputs:
Module = "GT1-ID16: 16 Digital Inputs" 0x91	; 16 Digital Inputs.
EndModule	
Module = "GT1-ID32: 32 Digital Inputs" 0x93	; 32 Digital Inputs.
EndModule	
	; Digital Outputs:
Module $=$ "GT1-OD16: 16 Digital Outputs" 0xA1	; 16 Digital Outputs.
EndModule	
Module = "GT1-OD32: 32 Digital Outputs" 0xA3	; 32 Digital Outputs.
EndModule	;
	; Relay Outputs:
Module $=$ "GT1-ROP08: 8 Relay Outputs" 0xA0	; 8 Relay Outputs.
EndModule	;
Module = "GT1-ROS16: 16 Relay Outputs" 0xA1	; 16 Relay Outputs.
EndModule	;
	; Temperature sensor I/O:
Module $=$ "GT1-TS04: 4 Temperature Inputs" 0x97	; 4 Temperature Inputs.
EndModule	;
	; Analog Inputs:
Module = "GT1-ADO4: 4 Analog Inputs" 0x97	; 4 Analog Inputs.
EndModule	;
Module $=$ "GT1-ADO8: 8 Analog Inputs" 0x9F	; 8 Analog Inputs.
EndModule	;
	; Analog Outputs:
Module = "GT1-DA04: 4 Analog Outputs" 0xA7	; 4 Analog Outputs.
EndModule	;
	; Counters:
Module $=$ "GT1-CT01: High Speed Counter" 0xB5	; High speed counter.
EndModule	
	;
	,
; End of GSD file *********************************	****************************/

Appendix B Connectible Devices

Devices

MULTIPLE I/O TERMINAL Units

Model	Specifications	Manufacturer
PRT1-COM	Communication Unit Two input words (status)	OMRON
GT1-ID16	Transistor Input Unit (terminal block) 16 transistor inputs (for NPN outputs)	OMRON
GT1-ID16-1	Transistor Input Unit (terminal block) 16 transistor inputs (for PNP outputs)	OMRON
GT1-ID16MX	Transistor Input Unit (Molex connector) 16 transistor inputs (for NPN outputs)	OMRON
GT1-ID16MX-1	Transistor Input Unit (Molex connector) 16 transistor inputs (for PNP outputs)	OMRON
GT1-ID16ML	Transistor Input Unit (Fujitsu connector) 16 transistor inputs (for NPN outputs)	OMRON
GT1-ID16ML-1	Transistor Input Unit (Fujitsu connector) 16 transistor inputs (for PNP outputs)	OMRON
GT1-ID16DS	Transistor Input Unit (25-pin D-sub connector) 16 transistor inputs (for NPN outputs)	OMRON
GT1-ID16DS-1	Transistor Input Unit (25-pin D-sub connector) 16 transistor inputs (for PNP outputs)	OMRON
GT1-ID32ML	Transistor Input Unit (Fujitsu high-density connector) 32 transistor inputs (for NPN outputs)	OMRON
GT1-ID32ML-1	Transistor Input Unit (Fujitsu high-density connector) 32 transistor inputs (for PNP outputs)	OMRON
GT1-OD16	Transistor Output Unit (terminal block) 16 transistor outputs (for NPN outputs)	OMRON
GT1-OD16-1	Transistor Output Unit (terminal block) 16 transistor outputs (for PNP outputs)	OMRON
GT1-OD16MX	Transistor Output Unit (Molex connector) 16 transistor outputs (for NPN outputs)	OMRON
GT1-OD16MX-1	Transistor Output Unit (Molex connector) 16 transistor outputs (for PNP outputs)	OMRON
GT1-OD16ML	Transistor Output Unit (Fujitsu connector) 16 transistor outputs (for NPN outputs)	OMRON
GT1-OD16ML-1	Transistor Output Unit (Fujitsu connector) 16 transistor outputs (for PNP outputs)	OMRON
GT1-OD16DS	Transistor Output Unit (25-pin D-sub connector) 16 transistor outputs (for NPN outputs)	OMRON
GT1-OD16DS-1	Transistor Output Unit (25-pin D-sub connector) 16 transistor outputs (for PNP outputs)	OMRON
GT1-OD32ML	Transistor Output Unit (Fujitsu high-density connector) 32 transistor outputs (for NPN outputs)	OMRON
GT1-OD32ML-1	Transistor Output Unit (high-density connector) 32 transistor outputs (for PNP outputs)	OMRON
GT1-ROP08	Relay Output Unit (power relays) 8 relay outputs (allocated 1 word)	OMRON

Model	Specifications	Manufacturer
GT1-ROS16	Relay Output Unit (miniature relays) 16 relay outputs	OMRON
GT1-AD04	Analog Input Unit (terminal block) 4 inputs (allocated 4 words)	OMRON
GT1-AD08MX	Analog Input Unit (Molex connector) 8 inputs (allocated 8 words) or 4 inputs (allocated 4 words) (Select using the DIP switch.)	OMRON
GT1-DA04	Analog Output Unit (terminal block) 8 outputs (allocated 4 words)	OMRON
GT1-DA04MX	Analog Output Unit (Molex connector) 4 outputs (allocated 4 words)	OMRON
GT1-CT01	Counter Unit (terminal block) 1 encoder input (Encoder A, B, Z) 1 external input, 2 external outputs (input 3 words/output 3 words allocated)	OMRON

I/O Unit Connecting Cables for MULTIPLE I/O TERMINAL Units

Model	Specifications	Manufacturer
(Provided with I/O Units)	Cable length: 40 mm	OMRON
(Provided with Communication Unit)	End connector	
GCN1-100	Cable length: 1 m	

Applicable Connectors for MULTIPLE I/O TERMINAL Units

Model number	Type			Remarks
521-09-390	Connector made by MOLEX	Pressurewelded	Housing	For AWG\#24
50-57-9403		Crimp	Housing	
16-02-0069			Reeled contacts	For AWG\#24 to 30
16-02-0086				For AWG\#22 to 24
16-02-0096			Loose contacts	For AWG\#24 to 30
16-02-0102				For AWG\#22 to 24
570-36-5000			Crimping tool	For AWG\#22 to 26
11-01-0209				For AWG\#24 to 30
XW2S-2513	Recommended 25-pin D-sub connector made by OMRON	Hood		
XW2A-2501		Plug		

High-density Connector Cables for MULTIPLE I/O TERMINAL Units

Model	Unit connected	Manufacturer
G79- $\square \square \square \mathrm{C}$	$\begin{aligned} & \text { GT1-ID16ML } \\ & \imath \\ & \text { I/O Block (G7TC-I } \square 16) \end{aligned}$	OMRON
	```GT1-OD16ML \imath I/O Block (G7TC-OC16, G70D-SOC16, G70D-FOM16, G70A-ZOC16-3, M7F)```	
	```GT1-OD16ML-1 \imath I/O Block (G7TC-OC16-1, G70D-SOC16-1, G70D-FOM16-1, G70A-ZOC16-4, M7F)```	
G79-I $\square \mathrm{C}-\square$		
G79-O $\square \mathrm{C}-\square$	```GT1-OD32ML \imath I/O Block (G7TC-OC16, G7TC-OC08 G70D-SOC16, G70A-ZOC16-3, G7A-FOM16, M7F)```	
	```GT1-OD32ML-1 \imath I/O Block (G7TC-OC16-1, G70D-SOC16-1, G70D-FOM16-1, G70A-ZOC16-4)```	
XW2Z-■ $\square \square \mathrm{A}$	GT1-ID16ML(-1), GT1-OD16ML(-1) $\uparrow$   Connector-Terminal Block Conversion Unit (XW2B-20G4, XW2B-20G5)	
XW2Z-■口ロB	```GT1-ID32ML(-1), GT1-OD32ML(-1) \imath Connector-Terminal Block Conversion Unit (XW2B-40G4, XW2B-40G5)```	

## Recommended Power Supplies for MULTIPLE I/O TERMINAL Units

Model	Specification	Manufacturer
S82K-05024	100 to $120 / 200$ to $240 \mathrm{~V}, 50 \mathrm{~W}$	OMRON
S82K-10024	100 to $120 / 200$ to $240 \mathrm{~V}, 100 \mathrm{~W}$	
S82J-5524	100 to $120 \mathrm{~V}, 50 \mathrm{~W}$	
S82J-5024	100 to $120 \mathrm{~V}, 100 \mathrm{~W}$	

## MULTIPLE I/O TERMINAL Units

Model	I/O Unit interface current consumption	Internal power supply and I/O power supply
GT1-ID16(-1)	35 mA max.	---
GT1-ID16MX(-1)	35 mA max.	---
GT1-ID16ML(-1)	35 mA max.	---
GT1-ID16DS(-1)	35 mA max.	---
GT1-ID32ML(-1)	55 mA max.	---
GT1-OD16(-1)	35 mA max.	9 mA max.
GT1-OD16MX(-1)	35 mA max.	9 mA max.
GT1-OD16MIL-1)	35 mA max.	9 mA max.
GT1-OD16DS(-1)	35 mA max.	9 mA max.
GT1-OD32ML(-1)	65 mA max.	11 mA max.
GT1-ROS16	35 mA max.	250 mA max. (inrush current: 30 A max.)
GT1-ROP08	40 mA max.	350 mA max. (inrush current: 30 A max.)
GT1-AD04	50 mA max.	Internal power supply: 100 mA (inrush current: 30 A max.)
GT1-AD08MX	50 mA max.	Internal power supply: 100 mA (inrush current: 30 A max.)
GT1-DA04	50 mA max.	Internal power supply: 100 mA (inrush current: 30 A max.)
GT1-DA04MX	50 mA max.	Internal power supply: 100 mA (inrush current: 30 A max.)
GT1-CT01	90 mA max.	9 mA max.

## Index

## A

Analog Input Units, 24
averaging function, 110, 118
conversion time, 111, 119
input range, 107, 116
open-circuit detection function, 110, 118
power supply, 110, 118
specifications, 104-119
GT1-AD04, 104-150
GT1-AD08MX, 112-150
Analog Output Units, 24
conversion time, 132
output range, $122,123,128,130$
specifications, 120-133
GT1-DA04, 120-150
GT1-DA04MX, 126-150
Asynchronous, 15
Averaging function, 110, 118
C

Cleaning, 164
Communication Units, 25
Connecting cable, 39, 96
Connectors, 28
Transistor Input Units, 59, 61, 63, 65, 67, 69, 71, 73
Transistor Output Units, 82, 84, 86, 89, 91, 93, 95

## Counter Unit

count value reset, 141
counting range, 140
differential phase pulse inputs, 139
input word functions, 148
operation examples, 44-49
pulse and direction inputs, 139
reading the count value, 143
specifications, 134-150

## D

Dimensions, 17
DIP switch settings
Analog Input Units, 106, 114, 117
Analog Output Units, 121, 128
PRT1-COM, 15

I/O allocation, 32-33
I/O configuration, 35
I/O response times, 152-153
maximum, 153
I/O Units, 25
connecting cable, 40
connecting to I/O, 41
current consumption, 53
interface cycle time, 153-154
interface specifications, 29-31
interface status, 33-35
replacing the cassette, 166
specifications, 51-101
weight, 53
Initialization, 31
Inspection, 164

Maintenance, 164-166
Models, list of, 26-29
Mounting, on DIN rail, 39
MULTIPLE I/O TERMINAL, overview, 24


Open-circuit detection function, 110, 118
Operating environment, precautions, xii

## $P$

Power supply, 40, 110, 118
Precautions
application, xiii
general, xi, xii operating environment, xii safety, xii

Present count value, reading, 47
Pulse Input Units, 24

## R

Relay Output Units, 24
Relay characteristics, 99
replacing relays, 165
specifications, 97-101
GT1-ROP08, 97-98

GT1-ROS16, 99-101

## S

Specifications
Analog Input Units, 104
I/O Units, 51-101
PRT1-COM, 13
Relay Output Units, 97-101
Transistor Input Units, 54-73
Transistor Output Units, 74-96
Synchrounous, 15

## T

Torques, xiv
Transistor Input Units, 24
input specifications, 52
specifications, 54-73
GT1-ID16, 54-55
GT1-ID16-1, 56-57
GT1-ID16DS, 66-67
GT1-ID16DS-1, 68-69

GT1-ID16ML, 62-64
GT1-ID16ML-1, 64-65
GT1-ID16MX, 58-59
GT1-ID16MX-1, 60-61
GT1-ID32ML, 70-71
GT1-ID32ML-1, 72-74
Transistor Output Units, 24
output specifications, 52
specifications, 74-96
GT1-OD16, 74-76
GT1-OD16-1, 76-78
GT1-OD16DS, 88-89
GT1-OD16DS-1, 90-91
GT1-OD16ML, 83-85
GT1-OD16ML-1, 85-87
GT1-OD16MX, 78-80
GT1-OD16MX-1, 81-83
GT1-OD32ML, 92-94
GT1-OD32ML-1, 94-97
Troubleshooting, 159-163
TS indicator, 53
W
Wiring, 17

## Revision History

A manual revision code appears as a suffix to the catalog number on the front cover of the manual.

Cat. No. W900-E2-1

> Revision code

The following table outlines the changes made to the manual during each revision. Page numbers refer to the previous version.

| Revision code | Date | Revised content |
| :---: | :---: | :--- | :--- |
| 1 | December 1999 | Original production |

## OMRON Corporation

Systems Components Division
66 Matsumoto
Mishima-city, Shizuoka 411-8511
Japan
Tel: (81)559-77-9633/Fax: (81)559-77-9097

## Regional Headquarters

OMRON EUROPE B.V.
Wegalaan 67-69, NL-2132 JD Hoofddorp
The Netherlands
Tel: (31)2356-81-300/Fax: (31)2356-81-388
OMRON ELECTRONICS, INC.
1 East Commerce Drive, Schaumburg, IL 60173
U.S.A.

Tel: (1)847-843-7900/Fax: (1)847-843-8568
OMRON ASIA PACIFIC PTE. LTD.
83 Clemenceau Avenue,
\#11-01, UE Square,
Singapore 239920
Tel: (65)835-3011/Fax: (65)835-2711

## omron

## Authorized Distributor:


[^0]:    Power Terminals
    MULTIPLE I/O Unit interface

