SYSMAC
 C200H-PID0 \square
 PID Control Unit

OPERATION MANUAL

C200H-PIDO \square PID Control Unit Operation Manual

Revised August 2003

Notice:

OMRON products are manufactured for use according to proper procedures by a qualified operator and only for the purposes described in this manual.
The following conventions are used to indicate and classify precautions in this manual. Always heed the information provided with them. Failure to heed precautions can result in injury to people or damage to property.

DANGER

Indicates an imminently hazardous situation which, if not avoided, will result in death or serious injury.

WARNING

Indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury.

Caution
Indicates a potentially hazardous situation which, if not avoided, may result in minor or moderate injury, or property damage.

OMRON Product References

All OMRON products are capitalized in this manual. The word "Unit" is also capitalized when it refers to an OMRON product, regardless of whether or not it appears in the proper name of the product.
The abbreviation "Ch," which appears in some displays and on some OMRON products, often means "word" and is abbreviated "Wd" in documentation in this sense.
The abbreviation "PC" means Programmable Controller and is not used as an abbreviation for anything else.

Visual Aids

The following headings appear in the left column of the manual to help you locate different types of information.

Note Indicates information of particular interest for efficient and convenient operation of the product.

1,2,3... 1. Indicates lists of one sort or another, such as procedures, checklists, etc.

© OMRON, 1993

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, mechanical, electronic, photocopying, recording, or otherwise, without the prior written permission of OMRON.

No patent liability is assumed with respect to the use of the information contained herein. Moreover, because OMRON is constantly striving to improve its high-quality products, the information contained in this manual is subject to change without notice. Every precaution has been taken in the preparation of this manual. Nevertheless, OMRON assumes no responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use of the information contained in this publication.

TABLE OF CONTENTS

PRECAUTIONS xi
1 Intended Audience xii
2 General Precautions xii
3 Safety Precautions xii
4 Operating Environment Precautions xiii
5 Application Precautions xiii
SECTION 1
System Configuration and Features 1
1-1 Features 2
1-2 Basic System Configuration 3
SECTION 2
Connections and Settings 7
2-1 Nomenclature 8
2-2 Switch Settings 8
2-3 Wiring 12
SECTION 3
Data Setting Console Operation 19
3-1 Operating Procedure 20
3-2 Data Flow 21
3-3 Nomenclature and Features 22
3-4 Parameter Displays and Settings 24
SECTION 4
PC Memory Allocation and Programming. 33
4-1 Memory Allocation 34
4-2 Data Flow 42
4-3 Programming 42
SECTION 5
Troubleshooting 51
Error Detection 52
Appendices
A Specifications 55
B Dimensions 57
C Parameters and Key Operations 59
Index 61
Revision History 63

TABLE OF CONTENTS

About this Manual:

This manual describes the installation and operation of the C200H-PID0 \square PID Control Unit and includes the sections described below. Also briefly described is the basic operation and installation of the C200H-DSC01 Data Setting Console.
Please read this manual carefully and be sure you understand the information provided before attempting to install and operate the C200H-PID0 \square PID Control Unit and Data Setting Console.
Section 1 provides PID Control Unit features and describes its basic system configuration.
Section 2 provides information on the connections and settings of the PID Control Unit.
Section 3 provides the basic operating procedures of the Data Setting Console including parameter settings and displays.
Section 4 provides the C200H PC's memory allocation for the PID Control Unit. Basic programming procedures and examples are also provided.
Section 5 describes possible errors and provides measures for dealing with them.
The three Appendices provide references dealing with specifications, dimensions, and key operations.

WARNING Failure to read and understand the information provided in this manual may result in personal injury or death, damage to the product, or product failure. Please read each section in its entirety and be sure you understand the information provided in the section and related sections before attempting any of the procedures or operations given.

PRECAUTIONS

This section provides general precautions for using the C200H-PID0 \square PID Control Unit and related devices.
The information contained in this section is important for the safe and reliable application of the C200H-PID0 PID Control Unit. You must read this section and understand the information contained before attempting to set up or operate the C200H-PID0 \square PID Control Unit.
1 Intended Audience xii
2 General Precautions xii
3 Safety Precautions xii
4 Operating Environment Precautions xiii
5 Application Precautions xiii

1 Intended Audience

This manual is intended for the following personnel, who must also have knowledge of electrical systems (an electrical engineer or the equivalent).

- Personnel in charge of installing FA systems.
- Personnel in charge of designing FA systems.
- Personnel in charge of managing FA systems and facilities.

2 General Precautions

The user must operate the product according to the performance specifications described in the relevant manuals.
Before using the product under conditions which are not described in the manual or applying the product to nuclear control systems, railroad systems, aviation systems, vehicles, combustion systems, medical equipment, amusement machines, safety equipment, and other systems, machines, and equipment that may have a serious influence on lives and property if used improperly, consult your OMRON representative.
Make sure that the ratings and performance characteristics of the product are sufficient for the systems, machines, and equipment, and be sure to provide the systems, machines, and equipment with double safety mechanisms.
This manual provides information for programming and operating the Unit. Be sure to read this manual before attempting to use the Unit and keep this manual close at hand for reference during operation.

WARNING It is extremely important that a PC and all PC Units be used for the specified purpose and under the specified conditions, especially in applications that can directly or indirectly affect human life. You must consult with your OMRON representative before applying a PC system to the above-mentioned applications.

3 Safety Precautions

WARNING Do not attempt to take any Unit apart while the power is being supplied. Doing so may result in electric shock.

WARNING Do not touch any of the terminals or terminal blocks while the power is being supplied. Doing so may result in electric shock.

WARNING Do not attempt to disassemble, repair, or modify any Units. Any attempt to do so may result in malfunction, fire, or electric shock.

WARNING Provide safety measures in external circuits (i.e., not in the Programmable Controller), including the following items, in order to ensure safety in the system if an abnormality occurs due to malfunction of the PC or another external factor affecting the PC operation. Not doing so may result in serious accidents.

[^0]As a countermeasure for such errors, external safety measures must be provided to ensure safety in the system.

- The PC outputs may remain ON or OFF due to deposition or burning of the output relays or destruction of the output transistors. As a countermeasure for such problems, external safety measures must be provided to ensure safety in the system.
- When the 24-VDC output (service power supply to the PC) is overloaded or short-circuited, the voltage may drop and result in the outputs being turned OFF. As a countermeasure for such problems, external safety measures must be provided to ensure safety in the system.

WARNING Fail-safe measures must be taken by the customer to ensure safety in the event of incorrect, missing, or abnormal signals caused by broken signal lines, momentary power interruptions, or other causes.

4 Operating Environment Precautions

\triangle Caution Do not operate the control system in the following locations:

- Locations subject to direct sunlight.
- Locations subject to temperatures or humidity outside the range specified in the specifications.
- Locations subject to condensation as the result of severe changes in temperature.
- Locations subject to corrosive or flammable gases.
- Locations subject to dust (especially iron dust) or salts.
- Locations subject to exposure to water, oil, or chemicals.
- Locations subject to shock or vibration.
\. Caution Take appropriate and sufficient countermeasures when installing systems in the following locations:
- Locations subject to static electricity or other forms of noise.
- Locations subject to strong electromagnetic fields.
- Locations subject to possible exposure to radioactivity.
- Locations close to power supplies.

1. Caution The operating environment of the PC system can have a large effect on the longevity and reliability of the system. Improper operating environments can lead to malfunction, failure, and other unforeseeable problems with the PC system. Be sure that the operating environment is within the specified conditions at installation and remains within the specified conditions during the life of the system.

5 Application Precautions

Observe the following precautions when using the PC system.
WARNING Always heed these precautions. Failure to abide by the following precautions could lead to serious or possibly fatal injury.

- Always ground the system to 100Ω or less when installing the Units. Not connecting to a ground of 100Ω or less may result in electric shock.
- Always turn OFF the power supply to the PC before attempting any of the following. Not turning OFF the power supply may result in malfunction or electric shock.
- Mounting or dismounting Power Supply Units, I/O Units, CPU Units, Memory Units, or any other Units.
- Assembling the Units.
- Setting DIP switches or rotary switches.
- Connecting cables or wiring the system.
- Connecting or disconnecting the connectors.

Caution Failure to abide by the following precautions could lead to faulty operation of the PC or the system, or could damage the PC or PC Units. Always heed these precautions.

- Fail-safe measures must be taken by the customer to ensure safety in the event of incorrect, missing, or abnormal signals caused by broken signal lines, momentary power interruptions, or other causes.
- Always use the power supply voltages specified in this manual. An incorrect voltage may result in malfunction or burning.
- Take appropriate measures to ensure that the specified power with the rated voltage and frequency is supplied. Be particularly careful in places where the power supply is unstable. An incorrect power supply may result in malfunction.
- Install external breakers and take other safety measures against short-circuiting in external wiring. Insufficient safety measures against short-circuiting may result in burning.
- Do not apply voltages to the Input Units in excess of the rated input voltage. Excess voltages may result in burning.
- Do not apply voltages or connect loads to the Output Units in excess of the maximum switching capacity. Excess voltage or loads may result in burning.
- Disconnect the functional ground terminal when performing withstand voltage tests. Not disconnecting the functional ground terminal may result in burning.
- Be sure that all the mounting screws, terminal screws, and cable connector screws are tightened to the torque specified in this manual. Incorrect tightening torque may result in malfunction.
- Leave the label attached to the Unit when wiring. Removing the label may result in malfunction if foreign matter enters the Unit.
- Remove the label after the completion of wiring to ensure proper heat dissipation. Leaving the label attached may result in malfunction.
- Double-check all wiring and switch settings before turning ON the power supply. Incorrect wiring may result in burning.
- Wire correctly. Incorrect wiring may result in burning.
- Mount Units only after checking terminal blocks and connectors completely.
- Be sure that the terminal blocks, Memory Units, expansion cables, and other items with locking devices are properly locked into place. Improper locking may result in malfunction.
- Check the user program for proper execution before actually running it on the Unit. Not checking the program may result in an unexpected operation.
- Confirm that no adverse effect will occur in the system before attempting any of the following. Not doing so may result in an unexpected operation.
- Changing the operating mode of the PC.
- Force-setting/force-resetting any bit in memory.
- Changing the present value of any word or any set value in memory.
- Resume operation only after transferring to the new CPU Unit the contents of the DM Area, HR Area, and other data required for resuming operation. Not doing so may result in an unexpected operation.
- Do not pull on the cables or bend the cables beyond their natural limit. Doing either of these may break the cables.
- Do not place objects on top of the cables or other wiring lines. Doing so may break the cables.
- Use crimp terminals for wiring. Do not connect bare stranded wires directly to terminals. Connection of bare stranded wires may result in burning.
- When replacing parts, be sure to confirm that the rating of a new part is correct. Not doing so may result in malfunction or burning.
- Before touching a Unit, be sure to first touch a grounded metallic object in order to discharge any static built-up. Not doing so may result in malfunction or damage.

Caution The cycle time of the CPU Unit must be a minimum of 20 ms . If the cycle time is too short, the PID Control Unit will not operate properly.

- For C200H, C200HS, C200HX(-ZE), C200HG(-ZE), C200HE(-ZE) PCs, if the program processing time is short, it is recommended that the fixed cycle time instruction (SCAN18) be used.
- For CS-series PCs, set the minimum cycle time in the Programming Console address +208 , bits 00 to 15 of the PC Setup.
- When IORF(97) is executed for the PID Control Unit, there must be an interval of at least 20 ms between prior and subsequent end refreshes.

1 Caution The PID Control Unit's built-in EEPROM can be written to 100,000 times (service life). If more than 100,000 EEPROM write operations are performed, the memory will become corrupted. Do not use a Unit that has processed more than 100,000 EEPROM write operations.

SECTION 1 System Configuration and Features

This section provides PID Control Unit features and the basic system configuration.

1-1 Features . 2
1-2 Basic System Configuration . 3

1-1 Features

The PID Control Unit scales inputs from connected sensors and then carries out PID control according to preset parameters.

Advanced PID Control

Stable PID control is achieved using advanced PID control and an auto-tuning feature. ON/OFF control can also be selected.

Two PID Control Loops with a Single Unit

Two PID control loops are possible with one Unit.

High-speed Sampling Period of $\mathbf{1 0 0} \mathbf{~ m s}$

A sampling period of 100 ms is achieved with two loops, enabling high-speed PID control.

Input Noise Reduction with Digital Filter

Mitigation of sudden input fluctuations makes the PID Control Unit effective in quick-response systems.

Comprehensive Output Specifications

Three types of output specification versions are available: C200H-PID01 for transistor output, C200H-PID02 for voltage output, and C200H-PID03 for current output.

Eight Banks of Data Settings

Eight data values such as set point (SP) and alarm set values can be preset in eight data banks for easy selection.

Data Input and Display
The C200H-DSC01 Data Setting Console (sold separately) is used to input data and display present values (PV) and set values (SV). The easy-to-read display can be panel-mounted.

User Programs Allows Reading and Writing of Data

Data can be set and retrieved by means of C 200 H user programs.

1-2 Basic System Configuration

PID Control Unit Models

Output type	Transistor output	Voltage output	Current output
Model	C200H-PID01	C200H-PID02	C200H-PID03

Number of Units

The PID Control Unit belongs to the C200H Special I/O Unit group. A maximum of ten Special I/O Units (including PC Link Units) can be mounted on the CPU Rack, Expansion I/O Rack, and Slave Rack.
Note Configure the Units such that the maximum current supplied for each Rack is greater than or equal to the total current consumption for the Units.
Refer to the C200H PC Operation Manuals for details on configuring systems.

Number of Units Mountable on Slave Rack

The number of Special I/O Units used with a Slave Rack is limited by data transmission considerations, as shown in the table below. The numbers in the table indicate the maximum number of Units of groups A, B, C, or D which can be used with a single Slave Rack.

A	B	C	C
High-speed Counter Units	High-density and Mixed I/O	Temperature Sensor Units	Position Control Unit (NC211) Position Control Units (NC111/112)
ASCII Unit	Temperature Control Units	Voice Unit	
Analog I/O Units	Heat/Cool Temperature Control Units		
ID Sensor Units	PID Control Units		
Fuzzy Logic Unit	Cam Positioner Unit		2 units max.
4 units max.	8 units max.	6 units max.	

Note

1. When a combination of Units from groups A, B, C, and D is used, the number from each group must satisfy both the following equations:
$3 A+B+2 C+6 D \leq 12$
$A+B+C+D \leq 8$
2. Other Units can be added until the total number of units reaches ten. If PC Link Units are used, the number of Units including the PC Link Units must not exceed ten.

Precautions

The IR area of the C 200 H Special I/O Unit is allocated according to the setting of the unit number switch on the front panel, not the address of the slot where the unit is mounted. Refer to 4-1 Memory Allocation for the allocation of the memory area.
With the C 200 H , leave the two slots next to the CPU free. It is not possible to use devices connected to the CPU (such as the Programming Console) if these slots are occupied.
If the C200H Slave Rack is connected to another SYSMAC model Remote I/O Master Unit, such as the C120, C500, C1000H, or C2000H, it is not possible to use a Special I/O Unit with the C 200 H Slave Rack.

WARNING Always turn the C 200 H power off before connecting or disconnecting a Unit, terminal block, or output connector.

Caution Connect thermocouples with the appropriate compensating conductor. Wire I/O leads in separate ducts from power leads to prevent noise problems.

Additional Function
The function described below has been added to products with the following lot number and later ones.

$\underline{07}$ Z 40	
	- 1994 (last digit of the year)
	December (X: October, Y: November, Z: December) 07 (7th day of the month)

Description of Function

RAM Write Commands

- Previous commands allowed reading and writing to the EEPROM only. These new commands allow writing to the RAM.

Caution The PID Control Unit's built-in EEPROM can be written to 100,000 times (service life). If more than 100,000 EEPROM write operations are performed, the memory will become corrupted. Do not use a Unit that has processed more than 100,000 EEPROM write operations.

- When various settings require frequent rewriting, write to the RAM and, after confirming the setting values, save the data by writing it to the EEPROM. The data written to the RAM is deleted when the power is turned off.
- List of RAM Write Commands

Parameter	Command		Write	Read
Set point	4	0	Yes	No
Execution bank number	4	2	Yes	No
Alarm SV 1	4	3	Yes	No
Alarm SV 2	4	4	Yes	No
Input shift value	4	5	Yes	No
Proportional band	4	6	Yes	No
Integral (reset) time	4	7	Yes	No
Derivative (rate) time	4	8	Yes	No
Decimal point position	5	2	Yes	No
Scaling lower limit	5	3	Yes	No
Scaling upper limit	5	4	Yes	No
Control period	5	7	Yes	No
Hysteresis	5	8	Yes	No
Alarm hysteresis	5	9	Yes	No
Digital filter	5	E	Yes	No
Alarm 1 mode	6	4	Yes	No
Alarm 2 mode	6	5	Yes	No

SECTION 2
 Connections and Settings

This section provides information on the connections and settings of the PID Control Unit.
2-1 Nomenclature 8
2-2 Switch Settings 8
2-3 Wiring 12
2-3-1 Input Wiring 12
2-3-2 Output Wiring 13
2-3-3 Data Setting Console Cables 17

2-1 Nomenclature

C200H-PIDO \square

Indicators

RUN	Lit when the PID Control Unit is operating normally.

2-2 Switch Settings

The function and setting of switches are identical for all models, except for SW202.

Unit Number

The addresses are allocated as shown in the following table according to the Unit number setting.

Unit no. setting	Allocated address
0	Wd 100 to 109
1	Wd 110 to 119
2	Wd 120 to 129
3	Wd 130 to 139
4	Wd 140 to 149
5	Wd 150 to 159
6	Wd 160 to 169
7	Wd 170 to 179
8	Wd 180 to 189
9	Wd 190 to 199

The switch is factory-set to 0 .
Note If the Unit number is set to an existing Unit number, an alarm occurs and the C 200 H does not operate.
Turn the C 200 H power off before setting the Unit number. If the setting is changed with the power on, the new setting is not valid until the power is turned off and back on again.

Switching Memory Contents and Setting Direction

Remove the cover and set the switch with the tip of a ballpoint pen or similar object.

Switch no.	Pin 1	Pin 2
Function	Switching memory contents	Setting direction
ON	Normal	C200H PC
OFF	Fixed	Data Setting Console

The new setting is valid immediately after the switch setting is changed.

Removing and Attaching the Cover

Removing the Cover

Insert a small flat-blade screwdriver between the case and the cover at the top of the Unit and lever off the cover.

Attaching the Cover

Place the right edge of the cover against the case and press into position.

Switching Memory Contents

Setting Direction

The contents of the allocated memory differ according to the Unit number setting.

Normal	Parameters can be designated as required using com- mands (Refer to 4-1 Memory Allocation).
Fixed	Parameters are allocated in advance.

Refer to 4-1 Memory Allocation for details of the memory contents.
Selects whether the data settings are made from the Data Setting Console or from the C200H PC, using a user program or Programming Console.

Executed Bank Number

The setting of the executed bank number is made from the C 200 H PC , regardless of the ON/OFF setting of this switch.

SW202	Input type setting

Switch number	Loop 1	Loop 2
0	4 to 20 mA	4 to 20 mA
1	1 to 5 V	1 to 5 V
2	0 to 5 V	0 to 5 V
3	0 to 10 V	0 to 10 V
4	4 to 20 mA	1 to 5 V
5	4 to 20 mA	0 to 5 V
6	4 to 20 mA	0 to 10 V
7	1 to 5 V	0 to 5 V
8	1 to 5 V	0 to 10 V
9	0 to 5 V	0 to 10 V

The switch is factory-set to 0 .
The selected position is shown by the arrow. Turn the switch with a small flatblade screwdriver.
The permissible setting range for measurement is -999 to 9999 (EU).

Operation and Function Setting

SP Write Mode

Display Units

Control Action

Control Method

Input Approximation

Loop 2

Pin no.	Function	OFF	ON
6	Loop 2 Input approximation	Straight line	Square root approximation
5	Loop 1 Input approximation	Straight line	Square root approximation
4	Loop 2	Enabled	Disabled or not used
3	SP write mode	EEPROM and RAM	RAM
2	Control action	Reverse	Normal
1	Control method	PID control	ON/OFF control

The switch is factory-set to OFF.
Set each loop to either straight line (no approximation) or square root approximation.

Set to "enabled" to use input loop 2, or to "disabled" to use only input loop 1. It is not possible to use only input loop 2.
Note Always set this switch to the ON (disabled) position when input loop 2 is not used. A sensor error occurs if this switch is set to the OFF (enabled) position when no temperature sensor is connected to loop 2.
This setting selects the SP storage memory. Set it to ON or use RAM Write commands if the writing is to be frequently changed.
This mode applies for set point only.
Selects whether setting and SVs displayed on the Data Setting Console are in Celsius or Fahrenheit.

Reverse:
The output is increased when the measured temperature is below the SP (i.e., a negative temperature difference).
Normal:
The output is increased when the measured temperature is above the SP (i.e., a positive temperature difference).

Selects the method of control.

2-3 Wiring

2-3-1 Input Wiring

C200H-PIDO \square

Input Wiring Precautions

1,2,3... 1. The PID Control Unit will not operate correctly if the SW202 setting does not match the type of inputs that are connected. In addition, each loop can be connected to either voltage inputs or current inputs, but not to both. For example, if Loop 1 is set for voltage input, then current input will not work.
2. If no input lead is connected to Loop 2, turn SW203-4 on the rear of the Unit ON to disable Loop 2. A sensor error occurs if this switch is set to the OFF (enabled) position when no sensor is connected to Loop 2.
3. Be sure to wire the polarity correctly for each input.
4. Wire I/O leads in separate ducts from power leads to prevent noise problems.
5. A voltage of 24 VDC is used for the voltage output, current output and Data Setting Console power supply.

Terminal Block Connections
6. The terminal block is removable. Make sure that it is attached correctly after the input wiring connections are completed.

Use crimp terminals for wiring. Take care not to overtighten the terminal screws. Tighten the screws to a torque of $0.8 \mathrm{~N} \cdot \mathrm{~m}$.

Crimp Terminals

The screws on the terminal block are M3.5 self-rising terminal screws. Use the following types of M3.5 crimp terminals.

Soldered Lead

Strip insulation from 7 to 10 mm at the end of the wire and carefully solder the lead.

2-3-2 Output Wiring

Connection Diagrams

C200H-PID01 Transistor Output

NC: Not connected
The pairs of terminals B2 to A2 and B1 to A1 are shorted internally. Always supply power to the $24-\mathrm{VDC}$ terminal (B1) as this drives the internal circuits.

C200H-PID02/PID03 VoItage/Current Output

Circuit Diagrams

C200H-PID01 Transistor Output

C200H-PID02 Voltage Output

C200H-PID03 Current Output

Applicable Connectors The following connector set manufactured by Fujitsu is included with the Unit: FCN-361J032-AU (soldering connector)
FCN-360C032-B (cover)
Connector Wiring Precautions

Connection Precautions

Output Cable

After soldering the lead to each pin, insulate with heat-shrink tube to prevent shorting with the adjacent terminal.

Tighten the screws after inserting the connector into the Unit. Push the connector firmly into the Remote I/O Terminal or Connector Terminal Block Converter Unit until it fully locks.
The output cables in the table below are recommended.

Model	Cable length (L)
ES1000-CA021-051	50 cm
ES1000-CA021-102	1 m
ES1000-CA021-202	2 m

Wiring Diagrams

32-pin connector

20-pin connector

Pin no.	Wire no.	Pin no.	Wire no.
B16		A16	
B15		A15	
B14		A14	
B13		A13	
B12		A12	
B11		A11	
B10	$\# 1$	A10	$\# 11$
B9	$\# 2$	A9	$\# 12$
B8	$\# 3$	A8	$\# 13$
B7	$\# 4$	A7	$\# 14$
B6	$\# 5$	A6	$\# 15$
B5	$\# 6$	A5	$\# 16$
B4	$\# 7$	A4	$\# 17$
B3	$\# 8$	A3	$\# 18$
B2	$\# 9$	A2	$\# 19$
B1	$\# 10$	A1	$\# 20$

Pin no.	Wire no.	Pin no.	Wire no.
1	$\# 1$	11	$\# 11$
2	$\# 2$	12	$\# 12$
3	$\# 3$	13	$\# 13$
4	$\# 4$	14	$\# 14$
5	$\# 5$	15	$\# 15$
6	$\# 6$	16	$\# 16$
7	$\# 7$	17	$\# 17$
8	$\# 8$	18	$\# 18$
9	$\# 9$	19	$\# 19$
10	$\# 10$	20	$\# 20$

Note The pin numbers of the 20-pin connector are marked for convenience. Refer to them from the Δ mark.

Note Pins A11 through A16 and B11 through B16 are not connected.

Remote I/O Terminal

The Remote I/O Terminal in the table below is recommended for transistor output.

Model	Specification	Relays used
G7TC-OC08	Common (+)	$8 \times$ G7T-1112S (max. resistive load: 220 VAC, 2A)

Note One P7TF-OS08 I/O Terminal and two G7T-1112S Relays may be purchased separately and used.

Wiring Diagram

The Connector Terminal Block Converter Units in the table below are recommended for voltage output and current output type.

Model	Terminal screw size
XW2B-20G4	M 2.4
XW2B-20G5	M 3.5

External View

2-3-3 Data Setting Console Cables

Connecting Cable
Use the connecting cables in the table below (sold separately) to connect the Unit to the Data Setting Console.

Model	Cable length (L)
C200H-CN225	2 m
$\mathrm{C} 200 \mathrm{H}-\mathrm{CN} 425$	4 m

Connection Precautions

1,2,3... 1. Tighten the lock screws after inserting the connector into the Unit.
2. Push the connector firmly into the Data Setting Console until the clips fully lock.
3. The Data Setting Console uses power from input terminals A8 and A9 of the PID Control Unit, supplied through the connecting cable.
4. Install the supplied connector cover when the Data Setting Console is not used.

SECTION 3 Data Setting Console Operation

This section provides the basic operating procedures of the Data Setting Console including parameter settings and displays.
3-1 Operating Procedure 20
3-2 Data Flow 21
3-3 Nomenclature and Features 22
3-3-1 Nomenclature 22
3-3-2 Features. 23
3-4 Parameter Displays and Settings 24
3-4-1 Table of Parameters 24
3-4-2 How to Display and Set Parameter Data 25

3-1 Operating Procedure

After preparing the C 200 H PC , follow the procedure below to use the PID Control Unit.

1,2,3... 1. Set the switches on the front and rear panels according to the operating conditions. (Refer to 2-2 Switch Settings.)
Set SW2-2 under the display cover to the OFF position to enable data setting from the Data Setting Console.
2. Mount to Rack.

Turn off the C 200 H power supply before mounting or dismounting the C200H on the Rack.
3. Connect the input wiring. (Refer to 2-3 Wiring.)

The 24-VDC power supply must be connected. The Data Setting Console will not operate unless the 24-VDC power supply is connected. The sensors can be connected immediately before the system is tested.
4. Connect the Data Setting Console. (Refer to 2-3-3 Data Setting Console Cables.)
5. Turn on the $24-\mathrm{VDC}$ and the C 200 H power supplies.

Set the C200H to PROGRAM mode.
6. Use the Data Setting Console to make the settings for the parameters that need to be changed. (Refer to the rest of this section.)
7. Test operation and adjust data. (Refer to the rest of this section.)

Connect the output wiring and turn on the heater power. To start the test operation, turn ON the RUN bit of the loop that is to be controlled with a device such as the Programming Console. Monitor the control conditions and adjust the data until the required control is achieved. During operation, the "bank no." is switched to "executed bank no." and cannot be changed from the Data Setting Console. To change it, use a device such as the Programming Console, or else use the user program.
8. Create the user programs. (Refer to SECTION 4 PC Memory Allocation and Programming.)
Arrange the data for the test operation, and create the user programs for data setting, monitoring, switching the bank number, and so on. Set SW22 under the display cover to the ON position to enable data setting from the C 200 H PC.
9. Start operation.

3-2 Data Flow

The data flow in the PID Control Unit is shown in the diagram below.

The read operation and setting the executed bank number are possible from a
user program or from a device, such as the Programming Console, regardless
The read operation and setting the executed bank number are possible from a
user program or from a device, such as the Programming Console, regardless of the ON/OFF setting of SW2-2.
Data written from the Data Setting Console and data written with the EEPROM write commands when SW2-1 (switching memory contents) is set to Normal are written to the PID Control Unit EEPROM and are consequently retained when the power supply is turned OFF.

Data Settings from Data Setting Console

Caution The PID Control Unit's built-in EEPROM can be written to 100,000 times (service life). If more than 100,000 EEPROM write operations are performed, the memory will become corrupted. Do not use a Unit that has processed more than 100,000 EEPROM write operations.

Data written with RAM write commands when SW2-1 (switching memory contents) is set to Normal, the SP value set when SW2-1 is set to Fixed, and executed bank number settings made from the C 200 H PC are written directly to RAM and are not saved to EEPROM. This data is lost when the power supply is turned OFF.

Set SW2-2 under the display cover to the OFF position to enable data setting from the Data Setting Console.
The "bank no." can be set when operation is stopped (i.e., when the RUN bit is OFF). During operation it is switched to "executed bank no." and cannot be changed from the Data Setting Console. To change the executed bank number, use a user program or a device such as the Programming Console.
Operation begins when the RUN bit of the output relay turns ON. (For information on output relays, refer to SECTION 4 PC Memory Allocation and Programming.

3-3 Nomenclature and Features

3-3-1 Nomenclature

The bottom row of the operation keys have upper and lower labels. The upper labels apply to PID Control Unit operation. The lower labels are for the Cam Positioner Unit.
Two display sheets are supplied: one for the PID Control Unit and one for the Cam Positioner Unit. If the Data Setting Console is to be used with the PID Control Unit only, attach the display sheet for the PID Control Unit.
Note The Data Setting Console will not operate unless a 24 -VDC power supply is connected to the PID Control Unit input terminals.

3-3-2 Features

Data Display

Name	Function
PV (Process Value)	Displays the PV or the parameter symbol selected with the Level or Display Key (Refer to next page).
SV (Set Value)	The display is as follows, according to the PV display contents. PV (process value): \quad SV (set value) is displayed. Parameter symbol: \quad Setting/monitor data is displayed.
BK (Bank Number)	Displays the bank number of the data presently being displayed. During operation, the executed bank number is displayed. (See note)

Note Operation begins when the RUN bit of the output relay turns ON.

Operation Indicators

| Name | Function |
| :--- | :--- | :--- |
| LOOP2 | Indicates whether the displayed settings relate to Loop 1 or Loop
 2. Press the Loop Key and hold down for approximately 2
 seconds to switch between Loop 1 and Loop 2.
 Indicator OFF: Loop 1
 Indicator ON: Loop 2 |
| OUT (Output) | Turns ON when the output is
 ON for transistor output or
 voltage output types. |
| AT (Auto-tuning) | These indicators relate to the
 currently displayed loop.
 Becond at approximately 1
 seate-tuning. |
| HB (Heats during
 Burnout) | Turns ON to indicate a heater
 burnout alarm. |
| ALM1 (Alarm) | Turns ON to indicate the
 temperature is in the alarm
 range set with Alarm SV 1
 (upper- and lower-limit alarm).
 Refer to the following page. |

Display Patterns

Operation Keys

Name	Function
Level Key	The parameter items are divided into three display groups（Refer to display levels 0 to 2 in the table below）．Press this key to switch from one group to another．The display levels automati－ cally cycle in the sequence $0 \rightarrow 1 \rightarrow 2 \rightarrow 0$ when the key is held down for approximately 2 seconds．
Display Key	Press this key to select the required parameter from the selected display level 0 to 2 （Refer to table below）． The parameters cycle automatically when the key is held down．
Loop Key \square	Press this key for approximately two seconds to switch between Loop 1 and Loop 2.
Up Key	Press this key to increment SV． The SV increment continuously while the key is held down．The SV display blinks when the value reaches its upper limit．
Down Key	Press this key to decrement an SV． The SV decreases continuously while the key is held down．The SV display blinks when the value reaches its lower limit．

3－4 Parameter Displays and Settings

3－4－1 Table of Parameters

Display level	Parameter	Display symbol	Write	Read	Loop no．	Bank no．	Data range	Default value	Page
0	PV monitor （see note 3 ）	－－－	No	Yes	Yes	No	Scaling lower limit -10% to scaling upper limit＋10\％	（Unit：EU）	26
	Manual output volume （see note 6）	$\bar{\square}$	Yes	Yes	Yes	No	－5 to 105\％	0\％	26
	Set point（see note 3）	－－－	Yes	Yes	Yes	Yes	Scaling lower limit to scaling upper limit	0 EU	26
	Bank number	ロット＇	See note 5	Yes	Yes	No	1 to 8	1	26
	Alarm SV 1 （see notes 3，4）	P71－i	Yes	Yes	Yes	Yes	Alarm mode $1,4,5:$	0 EU	27
	Alarm SV 2 （see notes 3，4）	FII－こ	Yes	Yes	Yes	Yes	0 to 9999 Other： －999 to 9999		
	Input shift value （see note 3）	－п－5	Yes	Yes	Yes	Yes	－999 to 9999	0 EU	27
	Proportional band （see note 1）	\square	Yes	Yes	Yes	Yes	0.0 to 999.9% FS	10．0\％FS	27
	Integral（reset） time（see note 1）	1	Yes	Yes	Yes	Yes	0 to 9999 s	240 s	
	Derivative（rate） time（see note 1）	\square	Yes	Yes	Yes	Yes	0 to 9999 s	40 s	

Display level	Parameter	Display symbol	Write	Read	Loop no．	Bank no．	Data range	Default value	Page
1	Decimal point position	\square^{17}	Yes	Yes	Yes	No	0 to 3	1	28
	Scaling lower limit	－ヵロ	Yes	Yes	Yes	No	－999 to（scaling upper limit－ 1 digit）	0	28
	Scaling upper limit	L－MH	Yes	Yes	Yes	No	（Scaling lower limit＋1）to 9999	1000	28
	Digital filter	dil	Yes	Yes	Yes	No	0 to 100 s	0 s	28
	Control period （see note 1）	［10	Yes	Yes	Yes	No	1 to 99 s	20 s	29
	Hysteresis（see note 2）	H゙ゴ	Yes	Yes	Yes	Yes	0.0 to 100．0\％FS	0．2\％FS	29
	Alarm hysteresis （see note 4）	ドい゙品	Yes	Yes	Yes	No	0.0 to 100．0\％FS	0．1\％FS	29
2	Control output variable monitor	$\bar{\square}$	No	Yes	Yes	No	0.0 to 100．0\％	0．0\％	30
	Auto－tuning start／ stop（see note 1）	FIL	Yes	Yes	Yes	No	－－－	－－－	30
	Copy bank	ローローリ	Yes	Yes	Yes	No	－－－	－－－	30
	Input－type monitor	－пー！	No	Yes	No	No	0 to 9	Setting for SW202	31
	Alarm 1 mode		Yes	Yes	Yes	No	0 to 9	2	31
	Alarm 2 mode	田上に							

Yes：Possible．
No：Not possible or not required．
Note 1．Only when advanced PID control is selected．（Switch 203－1＝OFF）
2．Only when ON／OFF control is selected．（Switch 203－1＝ON）
3．The decimal point position is set by the＂decimal point position＂parameter．
4．Does not apply when Alarm Mode $=0$ ．
5．Writing is not possible during operation（i．e．，when RUN is ON）．
6．Only when the output relay＂MAN＂bit $=1$ ．

3－4－2 How to Display and Set Parameter Data

Basic Operation

When not specifically explained，use the keys as described below．

Changing the Display Level

When the Level Key is pressed，the leading parameter for each level is dis－ played．

Changing Parameters

When the Display Key is pressed，the parameters are displayed in order． There may be skips depending on the model and DIP switch settings．

Changing the SV

Pressing the Up Key or the Down Key changes the SV．The SV is retrieved automatically．

Changing the Loop

The loop is changed each time the Loop Key is pressed．It can be confirmed by means of the LOOP 2 indicator．

Manual Output Volume (Display Level 0)

Settings

- This is used to manually manipulate the output volume. It is valid when the output relay "MAN" bit is ON.
- The "MAN" bit can be turned ON and OFF by means of a device such as the Programming Console, or by means of the user program. For details, refer to Section 4 PC Memory Allocation and Programming.

PV and SV (Display Level 0)

Valid SV Range

Set the set point in the range between the scaling lower limit and the scaling upper limit.

Error Display

When a sensor error occurs, one of the codes below and the detected temperature blink alternately in the PV display.

$5_{I-}!$	The analog input is out of the range: (input measurement range + 10% FS). That is, 10% FS below the lower limit or 10\%FS above the
upper limit. Includes broken or incorrect input wiring.	

Bank Number (Display Level 0)

Settings

- The bank number can be changed.
- The changed SV is reflected in the bank number display (BK).

Bank Number and Executed Bank Number

The executed bank number cannot be changed from the Data Setting Console. When changing these parameters from the Data Setting Console, stop operation. While operation is stopped, the bank number setting can be changed.

Alarm SV 1 (Display Level 0)

Alarm SV 2 (Display Level 0)

Input Shift Value (Display Level 0)

If the displayed value differs from the actual value due to the sensor position or some other conditions, set the input shift value such that the correct value is displayed.

Proportional Band (Display Level 0)

- This sets the proportional band. It is valid only when SW203-1 is set to OFF (i.e., PID control).
- This value is reflected even when auto-tuning (AT) is executed.
- If this value is set to " 0.0 ," ON/OFF control is executed with PID control selected.

Integral (Reset) Time (Display Level 0)

- This sets the integral time. It is valid only when SW203-1 is set to OFF (i.e., PID control).
- This value is reflected even when auto-tuning (AT) is executed.

Derivative (Rate) Time (Display Level 0)

- This sets the integral time. It is valid only when SW203-1 is set to OFF (i.e., PID control).
- This value is reflected even when auto-tuning (AT) is executed.

Decimal Point Position (Display Level 1)

The decimal point position setting applies to the following parameters: PV monitor, SV, alarm SV, and input shift value.

Scaling Lower Limit (Display Level 1)

This sets the scaling lower limit. The default value is 0%.

Scaling Upper Limit (Display Level 1)

This sets the scaling upper limit. The default value is 1000%.

Digital Filter (Display Level 1)

This delays the response to sudden input changes. The SV is designated by "T" in the illustration below.
Input

Control Period (Display Level 1)

- This sets the control period. It is valid when SW203-1 is OFF (PID control).
- The control period is the time required to complete one transistor output or voltage output ON/OFF cycle.

Hysteresis (Display Level 1)

- Hysteresis prevents control output chattering and eliminates noise influences.
- When switching from ON to OFF, operation proceeds at the set point. When switching from OFF to ON, operation proceeds at a lower point determined by the hysteresis SV , as shown in the illustration below.

Hysteresis is applied in the following situations.

- When ON/OFF control is selected (i.e., when SW203-1 is ON).
- When advanced PID control is selected (i.e., when SW203-1 is OFF) and P (proportional band) is 0 .

Alarm Hysteresis (Display Level 1)

- Alarm hysteresis prevents alarm output chattering and eliminates noise influences. It is invalid when both ALARM mode 1 and ALARM mode 2 are set to "0."
- When switching from OFF to ON, operation proceeds at the set point. When switching from ON to OFF, a hysteresis SV operating band is pro-
vided which may be either higher or lower than the set point, depending on the ALARM mode.

The alarm output is OFF if the present value lies within the hysteresis band when the Unit is turned on.

Control Output Variable Monitor (Display Level 2)

The relationship between the control output variable and control period is defined by the formula below:

$$
\text { Control output variable }(\%)=\frac{\text { ON time }}{\text { Control period }} \times 100
$$

The control output variable during ON/OFF control (when SW203-1 on the rear panel is ON) is $\mathrm{ON}=100 \%$ and $\mathrm{OFF}=0 \%$.

Auto-tuning Start/Stop (Display Level 2)

- The auto-tuning operation begins when the Up Key is pressed. The PV and SV return to the respective present value and set point displays. While auto-tuning is in progress the AT indicator blinks.
- To interrupt, press the Level and Display Keys again to display 㕱. When肘 appears, press the Up Key. When the interrupt is executed, the AT display disappears and the process value is displayed.
- When auto-tuning is completed, the AT indicator stops blinking and the P , I , and D data is written to EEPROM.

Copy Bank (Display Level 2)

- When the Up Key is pressed, the data other than the set point is copied from bank number 1 to banks 2 through 8.
- Use this method to create data in banks 2 through 8 by slightly modifying the data in bank number 1 .

Input-type Monitor (Display Level 2)

Note Cannot be set.

Alarm 1 and Alarm 2 Modes (Display Level 2)

Select the desired alarm type from the following chart and set the number (X : set value)

ALARM mode	Alarm Type	Alarm Range 0 SP
0	No alarm	,
1	Upper- and lower-limit alarm	$1-\mathrm{L}$
2	Upper-limit alarm	- x
3	Lower-limit alarm	
4	Upper- and lower-limit range alarm	$\square \mathrm{x} \longrightarrow \mathrm{x} \longrightarrow$
5	Upper- and lower-limit alarm with standby sequence	$\leftarrow x \longrightarrow x$
6	Upper-limit alarm with standby sequence	-x
7	Lower-limit alarm with standby sequence	$-x \longrightarrow$
8	Absolute-value upper-limit alarm	x-
9	Absolute-value lower-limit alarm	${ }_{\text {, }} \times$

Standby Sequence
When the power is turned on, the value is below the set point, so alarm output status occurs with regard to the lower limit alarm. In this situation, if "lower limit alarm with standby sequence" is selected, the standby sequence recognizes that the value is out of the alarm range and then outputs an alarm when the value enters the alarm range once more.

Lower Limit Alarm with Standby Sequence

The standby sequence is restarted in the following situations.

- When the power is turned on.
- When the set point is changed.
- When the executed bank number is changed.
- When the ALARM mode is changed.
- When changing from stop to run.

PC Memory Allocation and Programming

This section provides the C200H PC's memory allocation for the PID Control Unit. Basic programming procedures and examples are also provided.
4-1 Memory Allocation 34
4-1-1 Memory Allocation Table 35
4-1-2 Memory Contents. 36
4-1-3 Table of Commands 40
4-2 Data Flow 42
4-3 Programming 42
4-3-1 Example with SW2-1 in the Fixed Position. 42
4-3-2 Example 1: Write with SW2-1 in the Normal Position 43
4-3-3 Example 2: Read with SW2-1 in the Normal Position 46
4-3-4 Operation Timing. 49

4-1 Memory Allocation

Memory Allocation

According to the Unit number switch setting on the front of the C200H PID Control Unit, 10 words are allocated for each Unit number in the Special I/O Unit IR area between IR100 to IR199, which is used as the I/O refresh data area. The IR area used by the C200H PID Control Unit is refreshed on each C200H PC I/O refresh scan.

IR area	
Unit\#0	IR100 to IR109
Unit\#1	IR110 to IR119
Unit\#2	IR120 to IR129
Unit\#3	IR130 to IR139
Unit\#4	IR140 to IR149
Unit\#5	IR150 to IR159
Unit\#6	IR160 to IR169
Unit\#7	IR170 to IR179
Unit\#8	IR180 to IR189
Unit\#9	IR190 to IR199

Note A Duplicate I/O Unit error occurs if the set Unit number corresponds to the number of an existing Special I/O Unit.
Selecting Allocated Data
The data allocated to each IR word due to the Unit number setting is determined by the setting of SW2-1 on the front of the Unit.

ON	Normal	All data can be set using commands.
OFF	Fixed	Parameters are fixed for the set point (SV).

This setting becomes valid immediately when the switch is set.

4-1-1 Memory Allocation Table

SW2-1 in Fixed Position

$$
\text { (} \mathrm{n}=100+10 \times \text { Unit number) }
$$

I/O	Word	Bit																			
		15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00				
Output	n	Loop 1 SP (see note)																			
		 0 to 9, F 0 to 9 0 to 9																			
	$\mathrm{n}+1$	Loop 2 SP (see note)																			
		0 to 9, F				0 to 9				0 to 9				0 to 9							
	$\mathrm{n}+2$	Loop 1 executed bank number				Loop 2 executed bank number				Loop 1		Loop 2		0							
						MAN	RUN	MAN	RUN												
Input	$\mathrm{n}+3$	Loop 1 PV (see note)																			
		0 to 9, F								0 to 9				0 to 9				0 to 9			
	$\mathrm{n}+4$	Loop 2 PV (see note)																			
		0 to 9, F				0 to 9				0 to 9				0 to 9							
	$\mathrm{n}+5$	Loop 1 SP (see note)																			
		0 to 9, F				0 to 9				0 to 9				0 to 9							
	$\mathrm{n}+6$	Loop 2 SP (see note)																			
		0 to 9, F				0 to 9				0 to 9				0 to 9							
	$\mathrm{n}+7$	Loop 1 executed bank number				Loop 2 executed bank number				0				0	0	SW 2					
						2	1														
	n+8	Loop 1 status data																			
		0	Sensor error	0	0					0		MAN	RUN	0	0	0	Control output	AT	0	AL1	AL2
	n+9	Loop 2 status data																			
		0	Sensor error	0	0	0		MAN	RUN	0	0	0	Control output	AT	0	AL1	AL2				

Note Four digits BCD and the decimal point position are designated by the "decimal point position" parameter. The most significant digit (F) = minus (-).

SW2-1 in Normal Position

($\mathrm{n}=100+10 \mathrm{x}$ Unit number)

I/O	Word	Bit																				
		15	14	13	12	11	10	09	08	07	06	05	04	03	02		01	00				
Output	n	Read/write instruction																				
		Read/write		Loop no.		Bank no.				Instruction												
	$\mathrm{n}+1$	Write data (see note)																				
		0 to 9, F				0 to 9				0 to 9				0 to 9								
	$\mathrm{n}+2$	Loop 1 executed bank number				Loop 2 executed bank number				Loop 1		Loop 2		0	0	0		Write request				
						MAN	RUN	MAN	RUN													
Input	$\mathrm{n}+3$	Loop 1 PV (see note)																				
		0 to 9, F								0 to 9				0 to 9				0 to 9				

I/O	Word	Bit																			
		15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00				
Input	$\mathrm{n}+4$	Loop 2 PV (see note)																			
		0 to 9, F				0 to 9				0 to 9				0 to 9							
	$\mathrm{n}+5$	Read data (see note)																			
		0 to 9, F				0 to 9				0 to 9				0 to 9							
	$\mathrm{n}+6$	0				Write error	0	0	Write complete	0				0	0	0	Read complete				
	$\mathrm{n}+7$	Loop 1 executed bank number				Loop 2 executed bank number				0				0	0	SW2					
						2	1														
	$\mathrm{n}+8$	Loop 1 status data																			
		0	Sensor error	0	0					0		MAN	RUN	0	0	0	Con- trol out- put	AT	0	AL1	AL2
	$\mathrm{n}+9$	Loop 2 status data																			
		0	Sensor error	0	0	0		MAN	RUN	0	0	0	Con- trol out- put	AT	0	AL1	AL2				

Note Four digits BCD and the decimal point position are designated by the "decimal point position" parameter. The most significant digit $(F)=$ minus $(-)$.

4-1-2 Memory Contents

SW2-1 in Fixed Position

$$
\text { (} \mathrm{n}=100+10 \times \text { Unit number) }
$$

I/O	Address		Data item	Data contents
	Word	Bit		
Output	n	15 to 00	Loop 1 SP	Sets the Loop 1 and Loop 2 SP (set point) as 4-digit BCD data. Set the most significant digit to F for minus (-).
	n+1	15 to 00	Loop 2 SP	Note These specified values apply to the bank number set with Wd ($\mathrm{n}+2$) and can are written directly to RAM. (Refer to 4-3 Programming.)
	$\mathrm{n}+2$	15 to 12	Loop 1 executed bank number	Sets the bank number executed for Loop 1 and Loop 2 as 1-digit BCD data. Set executed bank numbers from 1 to 8 . If the value is set out of this range, the bank number reverts to the previous value.
		11 to 08	Loop 2 executed bank number	
		07	Loop 1 MAN	This is the Loop 1 Manual Output Mode bit. When it is set to 1 , the Unit goes into Manual Output Mode.
		06	$\text { Loop } 1$ RUN	This is the Loop 1 Run/Stop bit. When it is set to 1, operation starts; when it is set to 0 , operation stops.
		05	Loop 2 MAN	This is the Loop 2 Manual Output Mode bit. When it is set to 1 , the Unit goes into Manual Output Mode.
		04	Loop 2 RUN	This is the Loop 2 Run/Stop bit. When it is set to 1, operation starts; when it is set to 0 , operation stops.
		03 to 00	---	Not used. Set to 0.

I/O	Address		Data item	Data contents	
	Word	Bit			
Input	$\mathrm{n}+3$	15 to 00	Loop 1 PV	Outputs the Loop 1 and Loop 2 PV (process value) as 4-digit BCD data. The most significant digit is F for minus (-).	
	n+4	15 to 00	Loop 2 PV		
	n+5	15 to 00	Loop 1 SP	Outputs the Loop 1 and Loop 2 SP (set point) as 4-digit BCD data. The most significant digit is F for minus (-).	
	n+6	15 to 00	Loop 2 SP		
	$\mathrm{n}+7$	15 to 12	Loop 1 executed bank number	Outputs the bank number currently executed for Loop 1 and Loop 2 as 1-digit BCD data.	
		11 to 08	Loop 2 executed bank number		
		07 to 02	---	Not used. Each bit is set to 0 .	
		01	SW2-2	Outputs the ON/OFF status of SW2-2 (setting direction). 0 : Data Setting Console 1: C200H PC	
		00	SW2-1	Outputs the ON/OFF status of SW2-1 (switching memory contents). 0 : Fixed 1: Normal	
	n+8 Loop 1	15	---	Not used. Set to 0.	Loop 1/2 status data
	n+9 Loop 2	14	Sensor error	Bit set to 1 if the sensor is not connected, a sensor wire is broken, or the input data exceeds the operational temperature range.	
		13 to 10	---	Not used. Each bit is set to 0 .	
		09	MAN	ON (set to 1) for Manual Output Mode.	
		08	RUN	ON (set to 1) during operation.	
		07 to 05	---	Not used. Each bit is set to 0 .	
		04	Control output	Bit set to 1 when the control output (transistor or voltage output) is ON.	
		03	AT	Bit set to 1 during auto-tuning (AT).	
		02	---	Not used. Set to 0.	
		01	AL1	Bit set to 1 when the value enters the set alarm range. (Refer to page 23.)	
		00	AL2		

SW2-1 in Normal Position

($\mathrm{n}=100+10 \mathrm{x}$ Unit number)

I/O	Address		Data item	Data contents	
	Word	Bit			
Output	n	15 and 14	Read/Write	The data bit sets operation to read or write. Write $=01$ Read $=00$	Read/Write command
		13 and 12	Loop no.	The data bit sets the Loop Number to which the read or write operation applies. Loop 1 = 01, Loop $2=10$	
		11 to 08	Bank no.	Sets the bank number to which the read or write operation applies as 1 -digit BCD data. Set executed bank numbers from 1 to 8 .	
		07 to 00	Command	Sets the command code (Refer to page 40) for the read or write operation as 2-digit BCD data.	

I/O	Address		Data item	Data contents
	Word	Bit		
Output	$\mathrm{n}+1$	15 to 00	Write data	Set the SP for a write operation as 4-digit BCD data. The least significant digit of the actual data matches the least significant digit of the set value. Set the most significant digit to F for minus (-) values. The write operation commences when the write request flag (Wd ($\mathrm{n}+2$), bit 00) turns ON.
	$\mathrm{n}+2$	15 to 12	Loop 1 executed bank number	Set the bank number currently executed for Loop 1 and Loop 2 as 1-digit BCD data. Executed bank numbers are from 1 to 8 . If the value is set out of this range, the bank number reverts to the previous value.
		11 to 08	Loop 2 executed bank number	
		07	Loop 1 MAN	This is the Loop 1 Manual Output Mode bit. When it is set to 1 , the Unit goes into Manual Output Mode.
		06	Loop 1 RUN	This the Loop 1 Run/Stop bit. When it is set to 1, operation starts; when it is set to 0 , operation stops.
		05	Loop 2 MAN	This is the Loop 2 Manual Output Mode bit. When it is set to 1 , the Unit goes into Manual Output Mode.
		04	Loop 2 RUN	This the Loop 2 Run/Stop bit. When it is set to 1, operation starts; when it is set to 0 , operation stops.
		03 to 01	---	Not used. Set to 0.
		00	Write request	Turn this bit ON to write the data in $\mathrm{Wd}(\mathrm{n}+1)$, by means of this command. Turn this bit OFF after the Write Complete Flag (Wd ($\mathrm{n}+6$), bit 08) turns ON.
Input	$\mathrm{n}+3$	15 to 00	Loop 1 PV	Outputs the Loop 1 and Loop 2 PV (process value) as 4-digit BCD data. The decimal point position is designated by the "decimal point position" parameter. Set the most significant digit to F for minus (-) values.
	$\mathrm{n}+4$	15 to 00	Loop 2 PV	
	$\mathrm{n}+5$	15 to 00	Read data	Outputs the data read with the commands set with Wd (n). The decimal point position is designated by the "decimal point position" parameter. Set the most significant digit to F for minus (-) values.
	n+6	15 to 12	---	Not used. Each bit is set to 0 .
		11	Write error	Bit set to 1 when the write data exceeds the set permissible range. The bit is automatically set to 0 when the Write Request Flag (Wd ($\mathrm{n}+2$), bit 00) turns OFF.
		10 and 09	---	Not used. Each bit is set to 0 .
		08	Write complete	Bit set to 1 when the write operation executed by means of the command set with $\mathrm{Wd}(\mathrm{n})$ ends normally. The bit is automatically set to 0 when the Write Request Flag (Wd ($\mathrm{n}+2$), bit 00) turns OFF.
		07 to 01	---	Not used. Each bit is set to 0 .
		00	Read complete	Bit set to 1 when the read operation executed by means of the command set with $\mathrm{Wd}(\mathrm{n})$ ends normally. The bit is automatically set to 0 when the next command is set.

I/O	Address		Data item	Data contents	
	Word	Bit			
Input	$\mathrm{n}+7$	15 to 12	Loop 1 executed bank number	Outputs the bank number currently executed for Loop 1 and Loop 2 as 1-digit BCD data.	
		11 to 08	Loop 2 executed bank number		
		07 to 02	---	Not used. Each bit is set to 0 .	
		01	SW2-2	Outputs the ON/OFF status of SW2-2 (setting direction). 0: Data Setting Console 1: C200H PC	
		00	SW2-1	Outputs the ON/OFF status of SW2-1 (switching memory contents). 0 : Fixed 1: Normal	
	n+8 Loop 1	15	---	Not used. Set to 0.	Loop 1/2 status data
	n+9 Loop 2	14	Sensor error	Bit set to 1 if an input is not connected, an input wire is broken, or the input data exceeds the operational range.	
		13 to 10	---	Not used. Each bit is set to 0 .	
		09	MAN	ON (set to 1) for Manual Output Mode.	
		08	RUN	ON (set to 1) during operation.	
		07 to 05	---	Not used. Each bit is set to 0 .	
		04	Control output	Bit set to 1 when the control output (transistor or voltage output) is ON.	
		03	AT	Bit set to 1 during auto-tuning (AT).	
		02	---	Not used. Set to 0.	
		01	AL1	Bit set to 1 when the value enters the set alarm range (Refer to page 23).	
		00	AL2		

4-1-3 Table of Commands

The command codes shown below are set in bits (Wd n) 07 to 00 when the SW2-1 (switching memory contents) on the front panel is set in the Normal position.
EEPROM Write/Read Commands

Parameter	Command		Write	Read	Loop no.	Bank no.	Actual data range	SV data range	Default value
Set point (see note 3)	0	0	Yes	Yes	Yes	Yes	Scaling lower lim upper limit	mit to scaling	0 EU
Manual output volume (see note 6)	0	1	Yes	Yes	Yes	No	-5 to 105\%	$\begin{aligned} & \text { F005 to } \\ & 0105 \end{aligned}$	0\%
Execution bank number	0	2	Yes	Yes	Yes	No	1 to 8	$\begin{aligned} & 0001 \text { to } \\ & 0008 \end{aligned}$	1
Alarm SV 1 (see notes 3, 4)	0	3	Yes	Yes	Yes	Yes	Alarm mode $1,4,5:$	0000 to	0 EU
Alarm SV 2 (see notes 3, 4)	0	4	Yes	Yes	Yes	Yes	0 to 9999 Other: -999 to 9999	9999 F999 to 9999	0 EU
Input shift value (see note 3)	0	5	Yes	Yes	Yes	Yes	-999 to 9999	$\begin{array}{\|l} \text { F999 to } \\ 9999 \end{array}$	0 EU
Proportional band (see note 1)	0	6	Yes	Yes	Yes	Yes	0.0 to 999.9	$\begin{aligned} & \hline 0000 \text { to } \\ & 9999 \end{aligned}$	10.0\%FS
Integral (reset) time (see note 1)	0	7	Yes	Yes	Yes	Yes	0 to 9999 s		240 s
Derivative (rate) time (see note 1)	0	8	Yes	Yes	Yes	Yes	0 to 9999 s		40 s
Decimal point position	1	2	Yes	Yes	Yes	No	0 to 3	$\begin{aligned} & 0000 \text { to } \\ & 0003 \end{aligned}$	1
Scaling lower limit	1	3	Yes	Yes	Yes	No	-999 to (scaling $\text { value - } 1 \text { digit) }$	upper limit	0
Scaling upper limit	1	4	Yes	Yes	Yes	No	(Scaling lower limi to 9999	mit + 1 digit)	100.0
Control period (see note 1)	1	7	Yes	Yes	Yes	No	1 to 99 s	$\begin{aligned} & 0001 \text { to } \\ & 0099 \end{aligned}$	20 s
Hysteresis (see note 2)	1	8	Yes	Yes	Yes	Yes	0.0 to 100.0	$\begin{aligned} & 0000 \text { to } \\ & 1000 \end{aligned}$	0.2\%FS
Alarm hysteresis (see note 4)	1	9	Yes	Yes	Yes	No	0.0 to 100.0	$\begin{aligned} & 0000 \text { to } \\ & 1000 \end{aligned}$	0.1\%FS
Digital filter	1	E	Yes	Yes	Yes	No	0 to 100	$\begin{array}{\|l} \hline 0000 \text { to } \\ 0100 \end{array}$	0 s
Control output variable monitor	2	0	No	Yes	Yes	No	-5.0 to 105.0\%	$\begin{array}{\|l} \text { F050 to } \\ 1050 \end{array}$	0.0\%
Auto-tuning start/stop (see note 1)	2	1	Yes	No	Yes	No	---	$\begin{aligned} & \text { AT start = } \\ & 0001 \\ & \text { AT stop = } \\ & 0000 \end{aligned}$	---
Copy bank	2	2	Yes	No	Yes	No	---		---
Input-type monitor	2	3	No	Yes	No	No	0 to 9	$\begin{aligned} & 0000 \text { to } \\ & 0009 \end{aligned}$	Setting for SW202
Alarm 1 mode	2	4	Yes	Yes	Yes	No	0 to 9	0000 to	2
Alarm 2 mode	2	5						00	

Yes: Possible.
No: Not possible or not required.
Note 1. Only when advanced PID control is selected. (Switch 203-1 = OFF)
2. Only when ON/OFF control is selected. (Switch 203-1 = ON)
3. The decimal point position is designated by the "decimal point position" parameter.
4. Does not apply when Alarm Mode $=0$.
5. Writing is not possible during operation (i.e., when RUN is ON).
6. Only when the output relay "MAN" bit is 1.
7. When writing to the EEPROM with the set point command " 00 ", set the SW203-3 to OFF.

Caution The PID Control Unit's built-in EEPROM can be written to 100,000 times (service life). If more than 100,000 EEPROM write operations are performed, the memory will become corrupted. Do not use a Unit that has processed more than 100,000 EEPROM write operations.

RAM Write Commands

Parameter	Command		Write	Read	Loop no.	Bank no.	Actual data range	SV data range	Default value
Set point (see note 3)	4	0	Yes	No	Yes	Yes	Scaling lower lim upper limit	mit to scaling	0 EU
Execution bank number	4	2	Yes	No	Yes	No	1 to 8	$\begin{aligned} & 0001 \text { to } \\ & 0008 \end{aligned}$	1
Alarm SV 1 (see notes 3, 4)	4	3	Yes	No	Yes	Yes	Alarm mode 1, 4, 5:	$0000 \text { to }$	0 EU
Alarm SV 2 (see notes 3, 4)	4	4	Yes	No	Yes	Yes	0 to 9999 Other: -999 to 9999	9999 F999 to 9999	0 EU
Input shift value (see note 3)	4	5	Yes	No	Yes	Yes	-999 to 9999	$\begin{array}{\|l\|} \hline \text { F999 to } \\ 9999 \end{array}$	0 EU
Proportional band (see note 1)	4	6	Yes	No	Yes	Yes	0.0 to 999.9	$0000 \text { to }$ 9999	10.0\%FS
Integral (reset) time (see note 1)	4	7	Yes	No	Yes	Yes	0 to 9999 s		240 s
Derivative (rate) time (see note 1)	4	8	Yes	No	Yes	Yes	0 to 9999 s		40 s
Decimal point position	5	2	Yes	No	Yes	No	0 to 3	$\begin{array}{\|l} 0000 \text { to } \\ 0003 \end{array}$	1
Scaling lower limit	5	3	Yes	No	Yes	No	$\begin{array}{\|l\|} \hline-999 \text { to (scalins } \\ \text { value - } 1 \text { digit) } \end{array}$	upper limit	0
Scaling upper limit	5	4	Yes	No	Yes	No	(Scaling lower to 9999	$\text { mit + } 1 \text { digit) }$	100.0
Control period (see note 1)	5	7	Yes	No	Yes	No	1 to 99 s	$\begin{array}{\|l} 0001 \text { to } \\ 0099 \end{array}$	20 s
Hysteresis (see note 2)	5	8	Yes	No	Yes	Yes	0.0 to 100.0	$\begin{aligned} & 0000 \text { to } \\ & 1000 \end{aligned}$	0.2\%FS
Alarm hysteresis (see note 4)	5	9	Yes	No	Yes	No	0.0 to 100.0	$\begin{aligned} & 0000 \text { to } \\ & 1000 \end{aligned}$	0.1\%FS
Digital filter	5	E	Yes	No	Yes	No	0 to 100	$\begin{array}{\|l} \hline 0000 \text { to } \\ 0100 \end{array}$	0 s
Alarm 1 mode	6	4	Yes	No	Yes	No	0 to 9	0000 to	2
Alarm 2 mode	6	5						0009	

Yes: Possible.
No: Not possible or not required.
Note 1. Only when advanced PID control is selected. (Switch 203-1 = OFF)
2. Only when ON/OFF control is selected. (Switch 203-1 = ON)
3. The decimal point position is designated by the "decimal point position" parameter.
4. Does not apply when Alarm Mode $=0$.
5. RAM write commands write data only to the RAM regardless of the setting of the Switch 203-3 (SP write mode).
6. Any data written using RAM write commands is deleted when the power is turned OFF.
7. RAM write commands cannot be used to read data.

4-2 Data Flow

Data Settings

Refer to 3-2 Data Flow for the data flow in the PID Control Unit.
Before setting data with a user program or the Programming Console, turn ON SW2-2 of the Unit to enable data setting from the C200H PC. However, the executed bank number can be set with a user program or from the Programming Console regardless of the ON/OFF setting of SW2-2.
SW2-1 (switching memory contents) may be set in either the OFF (Fixed) or ON (Normal) position, but care is required as the setting of this switch changes the stored data contents.

4-3 Programming

4-3-1 Example with SW2-1 in the Fixed Position

Description and Conditions

Example:	The user program makes the following settings:
	Loop $1 \mathrm{SP}=80.0$
	Loop 2 SP $=90.0$
	Loop 1 executed bank number $=1$
	Coop 2 executed bank number $=3$

Be sure to set the correct values for the Loop 1 and Loop 2 SP.
The SV value is \#0000 (0\%) if no data is set. If the executed bank number is set to a value out of the range from 1 to 8 the bank number reverts to the previous value (default value $=1$).
Reading Monitored Data Read monitored data into the program using $W d(n+3)$ to $(n+9)$.

4-3-2 Example 1: Write with SW2-1 in the Normal Position

Description and Conditions

Example	Before running the program, make the following parameter settings:
	Loop $1 \mathrm{SP}=20.0$ (Bank no. =1)
	Loop $2 \mathrm{SP}=8.05$ (Bank no. = 2)
	Loop 1 executed bank number = 1; decimal point position = 1
	Loop 2 executed bank number = 2; decimal point position = 2
	This is an example of a program that writes data to the EEPROM.
	When writing to the RAM, add 4 to the leftmost digit of the command.
Conditions	C200H-PID01
	Unit number set to 0 (allocated memory: IR100 to IR109).
	SW2-1 set ON (Normal) and SW2-2 set ON (C200H PC).

Caution The PID Control Unit's built-in EEPROM can be written to 100,000 times (service life). If more than 100,000 EEPROM write operations are performed, the memory will become corrupted. Do not use a Unit that has processed more than 100,000 EEPROM write operations.

Sample Program

Timing Chart

In addition to the timing above, 23201 turns ON for one cycle on the ON rising edge of SW2-2 (10701) and a write request (10200) turns ON at a timing one cycle behind 23208.

4-3-3 Example 2: Read with SW2-1 in the Normal Position

Description and Conditions

Example:	After writing is completed, the following data is read to the DM area: Loop 1 PV: Loop 1 control outpoot variable: \rightarrow DM0001
Conditions:C200H-PIDE1 Unit number set to 0 (allocated memory: IR100 to IR109. SW2-1 set ON (Normal) and SW2-2 set ON (C200H PC).	

Sample Program

Insert the program below before the END instruction in the program on page 45.

Change the above program as shown below if only reading is to be carried out.
Replace part (A) of the program with the following program.

Add an END instruction (01) at position (B) of the program.

Timing Chart

Note It takes more than 140 ms for the Read Complete Flag (10600) to turn ON again after it is turned OFF.

4-3-4 Operation Timing

Write Operation Timing

> Command $(W d n)$ Write data $(W d n+1)$

1,2,3... 1. The data is written to the PID Control Unit EEPROM when the Write Request Flag turns ON.
! Caution The PID Control Unit's built-in EEPROM can be written to 100,000 times (service life). If more than 100,000 EEPROM write operations are performed, the memory will become corrupted. Do not use a Unit that has processed more than 100,000 EEPROM write operations.
2. The Write Complete Flag turns ON when the data writing operation is completed. It takes approximately 140 ms to write the data.
3. The Write Complete Flag automatically turns OFF when the Write Request Flag turns OFF.
Check to be sure that the Write Complete Flag has turned ON before turning OFF the Write Request Flag. If the Write Request Flag is set to OFF before the Write Complete Flag turns ON, the write operation will not be successful.
Temporarily turn the Write Request Flag OFF before executing the second and subsequent write operations. Writing is enabled on the ON rising edge of the Write Request Flag.
The Loop 1 and 2 executed bank number (Wd $n+2$) sets data directly. The data is written to the PID Control Unit RAM. If the value is set out of this range, the bank number reverts to the previous value (default value $=1$).

Timing for a Read Operation

1,2,3... 1. The read data is output to $\mathrm{Wd}(\mathrm{n}+5)$ approximately 140 ms after the Read command is executed.
2. The read data is updated every 100 ms .
3. When the Read command is modified, turn OFF the Read Complete Flag to execute the next read operation.

PID control will not be executed properly unless there are at least 20 ms between I/O refresh operations. When creating the program, be sure that all of the conditions descried below are satisfied.

- The cycle time must be a minimum of 20 ms . If the program processing time is short, it is recommended that the fixed cycle time instruction (SCAN18) be used.
- When IORF(97) is executed for the PID Control Unit, there must be an interval of at least 20 ms between prior and subsequent end refreshes.
- The time interval for executing IORF(97) must be a minimum of 20 ms .

SECTION 5 Troubleshooting

This section describes possible errors and provides measures for dealing with them.
Error Detection 52

Error Detection

When an error occurs in an input or in the Unit, details of the error are output to the Data Setting Console and input relays (words $n+8$ and $n+9$).

Sensor Input Errors

The following table shows the Data Setting Console display and error contents.

Display	Error name	Output status after error	Cause	Remedy
5Er i	Loop 1 sensor error	Control output: The transistor output or voltage output turns OFF or the current output falls below 2 mA . Alarm output:	Reading is $\pm 10 \%$ FS out of sensor measurement range (i.e., 10% FS below the lower limit or 10% FS above the upper limit). Broken or incorrect input	Check the sensor wiring. Replace the sensor. Replace the Unit. Correctly set switch SW203-4.
5E-2	Loop 2 sensor error	The alarm is output assuming the input is $\pm 10 \%$ FS.	wiring Defective input sensor Defective Unit SW203-4 is OFF (Loop 2 enabled) but no sensor connected to Loop 2.	

Data Setting Console

When a sensor error occurs, one of the codes above and the detected value are displayed alternately.
If a Loop 1 sensor error $5 E r$; and a Loop 2 sensor error $5 E r$? occur simultaneously, $5 E r$ I is displayed preferentially. Even if a sensor error is detected in one Loop, the other Loop continues to operate normally. Control operation restarts automatically five seconds after the cause of the error is corrected.
The following bits are set when a sensor input error occurs.

Loop 1 sensor error	Wd. $n+8$, bit $14=1$
Loop 2 sensor error	Wd. $n+9$, bit $14=1$

Alarm

Display	Error name	Cause	Remedy
ALM1 indicator lit	Alarm 1	The value is in the alarm range set with Alarm SV 1.	Check the object being controlled.
ALM2 indicator lit	Alarm 2	The value is in the alarm range set with Alarm SV 2.	

Error displayed when an abnormality occurs in the loop currently being displayed. No indicator is provided to show an ALM2 alarm.
The bits shown in the table below are set to 1 when an alarm occurs.

Wd (n+8)	Bit $01=1$	Alarm 1	Loop 1
	Bit $00=1$	Alarm 2	
Wd (n+9)	Bit $01=1$	Alarm 1	Loop 2
	Bit $00=1$	Alarm 2	

EEPROM Error

Display	Error name	Output status after error	Cause	Remedy
Eili	EEPROM error	Control output: The transistor output or voltage output is OFF or the current output is less than 2 mA.	Defective EEPROM Alarm output is OFF.	Replace the Unit

Duplicate I/O Unit

Special I/O Unit Error

RUN Indicator Unlit

No Data Setting Console Display

The RUN indicator turns off when an EEPROM error occurs.
The Unit number duplicates the number of another Special I/O Unit. The SR bit 25415 turns ON when an Duplicate I/O Unit error occurs. Refer to AR0000 to AR0011 for the duplicated Unit number. The C200H PC will not operate during a duplicate I/O error.
Set the Unit number to a separate number.
I/O refresh not operating correctly between the CPU Unit and PID Unit. The PID Control Unit is operating based on the contents of the previous refresh. Refer to AR0000 to AR0015 for the Unit number where the error occurred. After correcting the cause of the error, set the Special I/O Unit Restart Flag (AR0100 to AR0109) to restart operation.

The C 200 H power supply is turned on but the RUN indicator is not lit. None of the errors described previously are detected. Replace the Unit.

- No 24-VDC power supply is connected to the PID Control Unit input terminals A8 and A9.
- The connecting cable is disconnected.
- The connecting cable is broken.
- A circuit in the Data Setting Console is defective.
- A circuit in the PID Control Unit is defective.

After determining the cause of the error, correct the problem or replace the Unit.

Appendix A

Specifications

General Specifications

Conforms to the C200H PC specifications.

Item	C200H-PID0 \square Specifications
Input signal refresh	4 to $20 \mathrm{~mA}, 1$ to $5 \mathrm{~V}, 0$ to $5 \mathrm{~V}, 0$ to 10 V
No. of input points (loops)	Two points (two loops, each of which consists of a voltage and a current)
Control mode	PID, ON/OFF (selectable with a switch on the rear panel) (advanced PID control with auto-tuning)
Setting/designation accuracy	$\pm 0.5 \%$ FS ± 1 digit max. The SV and displayed value match. There is no relative error.
Hysteresis	0.0 to 100.0% FS (in units of $0.1 \% \mathrm{FS}$)
Alarm hysteresis	0.0 to 100.0\% FS (in units of 0.1\%FS)
Proportional band	0.0 to 999.9 (in units of 0.1)
Integral (reset) time	0 to 9999 s (in units of 1 s)
Derivative (rate) time	0 to 9999 s (in units of 1 s)
Control period	1 to 99 s (in units of 1 s)
Sampling period	100 ms
Output refresh period	100 ms
Display refresh period	100 ms
Input shift range	-999 to 9999 (see note 1)
Scaling setting range	-999 to 9999 (see note1)
Digital filter setting range	0 to 100 s (in units of 1 s)
Alarm output setting range	-999 to 9,999
Manual output setting range	-5 to 105\%
No. of banks	8 banks
Internal current consumption	$5 \mathrm{VDC}, 0.33$ A max.
External supply voltage	$24 \mathrm{VDC}^{+10 \%} /-15 \%, 0.2 \mathrm{~A} \mathrm{~min}$.
Dimensions (see note 2)	$34.5 \mathrm{~mm}(\mathrm{~W}) \times 130 \mathrm{~mm}(\mathrm{H}) \times 120.5 \mathrm{~mm}$ (D)
Weight	360 g

Note 1. The decimal point position is designated by a parameter setting.
2. Refer to Appendix B Dimensions.

Output Characteristics

Transistor Output (Pulse) C200H-PID01

External supply voltage	$24 \mathrm{VDC}^{+10 \%} /-15 \%$
Max. load voltage	24 VDC (collector supplied voltage) max.
Max. load current	100 mA max.
Residual voltage when ON	3 V max.
Leakage current when OFF	0.3 mA max.

Voltage Output (Pulse) C200H-PID02

Output voltage	12 VDC
Max. Ioad current	40 mA (with short-protective circuit)

Current Output (Linear) C200H-PID03

Output current	4 to 20 mA
Permissible load impedance	$600 \Omega \mathrm{max}$.
Current value accuracy	4 ± 0.3 to $20 \pm 1 \mathrm{~mA}$

Appendix B
 Dimensions

PID Control Unit

Weight: 360 g
Unit Dimensions

Mounting Dimensions

Data Setting Console

Weight: 120 g
Unit Dimensions

Mounting Dimensions

Allow a clearance of at least 150 mm behind the Data Setting Console when it is installed in the panel to allow cable connectors to be inserted. A clearance of 50 mm is sufficient if the rear panel can be opened.

Appendix C

Parameters and Key Operations

The Data Setting Console key operations and their relation to parameters are shown in the following table.

A-B

advanced PID control, 2
alarm indicators, 52
allocating memory, 34
applications
precautions, xiii
auto-tuning start/stop setting, 30
bank number setting, 26

C

command codes
settings, 40
Connector Terminal Block Converter Unit, 16
control output variable monitor setting, 30
control period setting, 29
cover
removal and replacement, 9

D

data flow, 21
data setting, 21
operating procedure, 20
Data Setting Console
connecting cable and precautions, 17
features, 23
mounting, 58
parameter and setting tables, 24
physical features, 22
data settings, 42
decimal point position, 28
derivative time setting, 27
detecting errors, 52
Duplicate I/O Unit, 53
EEPROM error alarm, 52

E-F

error display, 26
errors
data setting, 52
features, 2
indicators, 8
input shift value setting, 27
input wiring
precautions, 12
installation
precautions, xiii
integral time setting, 27
memory contents, 36

M-O

operating environment
precautions, xiii
Operation and Function Setting, 10
operation timing, 49
output wiring, 13
circuit diagrams, 14
connectors and cable, 15
diagrams, 15
precautions, 15

P-R

precautions, 4
applications, xiii
general, xii
operating environment, xiii
safety, xii
programming
examples, 42, 46
proportional band setting, 27
read operation timing, 49
Remote I/O Terminal, 16

S

safety precautions
See also precautions
selecting allocated memory, 34
sensors
setting type, 10
sensor-type setting, 30
setting and displaying parameters method, 25
settings
source, 10

Slave Rack

number of mountable Units, 4
Special I/O Unit error, 53
specifications
general, table, 55
switch settings, 8,9
switching memory contents, 10
switching memory contents and setting direction, 9
system configuration, 3

T-U

troubleshooting
alarm, 52
data setting errors, 52
duplicate I/O unit, 53
EEPROM error, 52
power supply, 53
RUN Indicator Unlit, 53
Special I/O Unit error, 53
Unit
models, 3
Unit components
dimensions, 57

Revision History

A manual revision code appears as a suffix to the catalog number on the front cover of the manual.

Cat. No. W241-E1-03

The following table outlines the changes made to the manual during each revision. Page numbers refer to the previous version.

Revision code	Date	Revised content
1	November 1993	Original production
1A	March 1995	Page 38: Auto-tuning start/stop in the table corrected. Page 44: Sample program corrected.
2	March 2000	Added PRECAUTIONS section. Page 4: Added descriptions about RAM write commands. Page 9: Added the use of RAM write commands in the SP write mode. Page 11: Changed descriptions about the terminal block connections. Page 19: Changed descriptions about the data flow to include information about EEPROM write commands and RAM write commands. Page 39: Added the RAM write commands table. Page 39: Changed some values in the sample program. Page 4: Added comments about EEPROM write commands and RAM write commands in the sections on descriptions and conditions. Page 42: Changed the sample program. Page 43: Changed the information at the end of timing chart. Page 44: Changed the sample program. Page 45: Changed the timing chart.
03	August 2003	Page xiii: Added precautions on cycle time and writing to EEPROM, and changed application precaution on mounting units to include Power Supply Units. Page 4: Added caution on writing to EEPROM. Page 11: Added information regarding SP Write Mode. Pages 21, 41, and 42: Added caution on writing to EEPROM. Page 46: Added information to the diagram on the Read command. Page 48: Added caution on writing to EEPROM.

OMRON CORPORATION

FA Systems Division H.Q.
66 Matsumoto
Mishima-city, Shizuoka 411-8511
Japan
Tel: (81)55-977-9181/Fax: (81)55-977-9045

Regional Headquarters

OMRON EUROPE B.V.

Wegalaan 67-69, NL-2132 JD Hoofddorp
The Netherlands
Tel: (31)2356-81-300/Fax: (31)2356-81-388
OMRON ELECTRONICS LLC
1 East Commerce Drive, Schaumburg, IL 60173
U.S.A.

Tel: (1)847-843-7900/Fax: (1)847-843-8568
OMRON ASIA PACIFIC PTE. LTD.
83 Clemenceau Avenue,
\#11-01, UE Square,
Singapore 239920
Tel: (65)6835-3011/Fax: (65)6835-2711

Authorized Distributor:

[^0]: - Emergency stop circuits, interlock circuits, limit circuits, and similar safety measures must be provided in external control circuits.
 - The PC will turn OFF all outputs when its self-diagnosis function detects any error or when a severe failure alarm (FALS) instruction is executed.

