Harsh environment long distance photoelectric Sensor in metal housing

E3NT

- 4 Diffuse reflective E3NT-L application optimized models:
 - Extra long distance type for setting distances up to 3 m
 - Window heating type for low temperature environments
 - Analog output type for distance information
 - Fast response type for high speed detection and counting
- Retro reflective E3NT-R models with sensing distance up to 16 m
- Two programmable outputs for 'window teaching'
- Double triangulation for stable detection of reflective objects
- IP67 and IP69k for highest resistance in wet environments

CE

Application

Condensation in often cleaned environments or due to rapid temperature changes is prevented by the completely sealed housing of the E3NT and the optional window heating.

With the optic link, the sensor can be remotely set and checked while it is operating in an area where access is restricted.

This robust sensor is ideal for operation in harshest environments.

Ordering Information

Sensors

Sensing method	Туре	Appearance	Connection method	Sensing / Setting distance	Model
Distance setting (BGS/FGS)	Long distance		M12 Connector (5-pole)	0.2 m 3.0 m (90% remission) 0.2 m 2.7 m (6% remission) 200 mm 3,000 mm	E3NT-L17-20 E3NT-L37-20
	Window heating		-	0.2 m 2.0 m 200 mm 2,000 mm	E3NT-LH17
			-		E3NT-LH37
	Fast response		-		E3NT-L17
			-		E3NT-L37
	Analog and digital output		-		E3NT-L27
			-		E3NT-L47
Retro reflective (with MSR-polarisa- tion)	Long distance			0.2 m 16.0 m (with E39-R8)	E3NT-R17
					E3NT-R37

Accessories (order separately)

Optical data link

Communication method to sensor	Appearance	Communication method to PC	Model
IR data interface		RS232	E3NT-AL232 2M

Laser alignment aid

Max. distance for visible spot	Appearance	Operation time	Model
50 m		min. 5 hours with new battery	E3NT-AP1

E3NT

Mounting brackets

Appearance	Model	Qty.	Remarks
	E39-EL1	1	Universal mounting bracket
	E39-EL2	1	Adapter bracket (for use of the universal mounting bracket for not matching holes)
	E39-EL3	1	Adapter bracket replacing E3N with E3NT

Reflectors E39-R8

Sensor I/O connectors

Size	Cable type	Shape	Cable length	Model
M12	Standard 5-pole	Straight	2m	XS2F-D521-DG0-A
			5m	XS2F-D521-GG0-A
		L-shape	2m	XS2F-D522-DG0-A
			5m	XS2F-D522-GG0-A
	Standard 4-pole (Pin 5 not connect-	Straight	2m	934 401 101 (PVC)
	ed)			934 401 201 (PUR)
			5m	934 401 100 (PVC)
				934 401 200 (PUR)
		L-shape	2m	934 402 102 (PVC)
				934 402 201 (PUR)
			5m	934 402 100 (PVC)
				934 402 200 (PUR)

Rating/performance

Sensors

	Item	1		Model		
		E3NT-L17 E3NT-L37	E3NT-L27 E3NT-L47	E3NT-LH17 E3NT-LH37	E3NT-L□7-20	E3NT-R
Sensor ty	уре	Diffuse reflective foreground suppl	sensor with backo ression	jround suppressio	n respectively	Retroreflective sensor
Signal ev	aluation	Double triangulat				Polarization
Configura		-	n the sensor or with	n a PC connected v	/ia the optical data	link E3NT-AL232
Operating	g modes	2m Background supp	pression, foregrou ression (2-point wi	nd suppression, ba	-	
Light sou	irce	Infrared LED 850		,		Red LED 660 nm
Rated se	ensing distance	2 m			3 m	16 m
	listance Sr	Distance – settin	g possible betwee	'n		
5		0.2 2.0 m (90 ° 0.21.7 m (6 %	% remission)	0.2 2.0 m (90 % remission) 0.21.4 m (6 % remission)	0.2 3.0 m (90 % remission) 0.22.7 m (6% remission)	0.2 16.0 m
Standard	l measured object	Kodak gray card	90% (white), size:	200 x 200 mm		
Blind zor	ne	< 0.1 m				< 0.15 m
Black/wh	ite error (6%/90%)	< 15 % of setting	distance Sr			
Hysteres	is (typical)	< 5 % of setting distance Sr or 4 cm (for white 90 %) < 10 % of setting distance Sr or 6 cm (for black 6 %) distance Sr or 10 cm (for white) < 15 % of setting distance Sr or 10 cm (for black 6 %) Idistance Sr or 10 cm (for white) < 15 % of setting distance Sr or 10 cm (for black)				
Repetitio	distance Sr) c			< 5 % (of setting distance Sr) or 10 cm		
Light spo	ot diameter	< 40 mm in the case of Sr = 2 m				app. 100 mm ^{*1} at 10 m
Minimum	n object size	> 40 mm				
Ambient EN 6094	light immunity to 7-5-2:		100-120 Hz > 10,0 os (30 kHz) > 5,00 mps > 2,000 lux			
Utilization	n category to EN 60947-5-2	DC 12				
Rated op	perating voltage	+ 24 V DC, polar	ized			
Operating	g voltage range	+ 10 + 30 V DC			+ 11 + 30 V DC	+ 10 + 30 V DC
Current consumption		< 90 mA (display off) < 110 mA (display on)	< 100 mA (display off) < 120 mA (display on)	< 220 mA with front pane heat- ing	< 110 mA (display off) < 130 mA (display on)	< 80 mA (display off) < 110 mA (display on)
Power-or	n delay	< 300 ms				
Input – / Output – pins		Pin 2 = Input (In 2) or output (Out 2), depending on configuration Pin 4 = Output (Out 1)				
		Pin 5 = Input (In 1)	Pin 5 = Analog output	Pin 5 = Input (In		
Digital O	-		ns (e.g. switching o			· · ···
	Output circuit	User set PNP (open collector), NPN (open collector) or complementary (push-pull)				
	Output current	max. 100 mA				
	Voltage drop	< 2.0 V				
	Residual current	< 100 µA				
		Circuit protection Reversed power supply, overload, short-circuit (pulse				

Item	E3NT-L17 E3NT-L37 User set function Voltage input +10 min. 1 ms	Current output	Model E3NT-LH17 E3NT-LH37 gger, test,)	E3NT-L□7-20 Voltage input +11 V U _{supply}	E3NT-R Voltage input +10 V U _{supply}		
Input pulse duration	E3NT-L37 User set function Voltage input +10	E3NT-L47 s (e.g. teach-in, tri) V U _{supply} Current output			Voltage input		
Input pulse duration	Voltage input +10	Current output	gger, test,)				
Input pulse duration		Current output					
	min. 1 ms			eapp.j	+10 v U _{supply}		
					00pp.y		
		a a i b					
		321mA: • 3 mA corre- spond to distance < 0.2 m • 4 20 mA					
		correspond to distance 0.2 m 2.0 m • 21 mA corre- spond to distance > 2.0 m					
			⊴2.5 ms	l ≤20 ms	≤2.0 ms		
	1,0 kV AC, 50/60 Hz (1 min)						
• • •							
ns (length x width x depth)	85 x 27 x 65 mm						
		uminum, sea-wate	r resistant, 231 GI	D AlSi12 (Cu) (stan	dard version)		
	Glass						
olor	-						
	Screw fastening by way of four M5 threads and two M5 through holes or with universal mounting bracket (order separately)						
n							
emperature range	- 25 °C + 55 °C	55 °C	- 40 °C + 55 °C	- 25 °C + 55 °C	2		
emperature range							
le relative humidity							
ı class	II (50 V DC)						
resistance							
istance							
parameters	 Mode Output function Teach/set swont Output switch Function on contemport Switch-on and Type of switch Type of displation Keyboard loch Energy saving Display direct 	on itching points ing onnector pin 2 and d off delay h-off time function ay on the sensor k g mode ion					
	m emperature range le relative humidity rating class resistance istance parameters	resistance20 MΩ at 500 V Evoltage strength1,0 kV AC, 50/60trength (insulation)1,5 kVhs (length x width x depth)85 x 27 x 65 mmHousingPowder-coated alFront paneGlassKeyboardHTV siliconeSealsRTV siliconeolorGrey, RAL 7030Screw fastening mounting brackedmM12 connector, 5emperature range- 40 °C + 60 °Cle relative humidity35 % 95 %, noratingII (50 V DC)resistance± 1.5 mm, 1 h , 1istance300 m/s² (IEC 68parameters- ModeOutput switch- Type of switch- Type of switch- Type of displat- Switch-on and- Type of displat- Reset to factor	distance 0.2 m 2.0 m • 21 mA correspond to distance > 2.0 m (or no object)/off time (T_ON / T_OFF) $\leq 2.5 \text{ ms}$ resistance20 M\Omega at 500 V DC voltage strength1.0 kV AC, 50/60 Hz (1 min) trength (insulation)1,5 kVresistance20 MQ at 500 V DCvoltage strength1,0 kV AC, 50/60 Hz (1 min) trength (insulation)trength (insulation)1,5 kVrs (length x width x depth)85 x 27 x 65 mmHousingPowder-coated aluminum, sea-wate GlassFront paneGlassKeyboardHTV siliconeSealsRTV siliconeolorGrey, RAL 7030Screw fastening by way of four M5 mounting bracket (order separately mounting bracket (order separately) mounting bracket (order separately) emperature range- 25 °C + 55 °C-10 °C + 55 °C (analog output)emperature range-40 °C + 60 °Cle relative humidity35 % 95 %, no condensation ratingratingIP 67 (EN 60529), IP 69k (DIN 400 classrolassII (50 V DC)resistance± 1.5 mm, 1 h , 10 - 70 Hz (IEC 68- istanceoutput switching - Teach/set switching points - Output switching - Function on connector pin 2 and - Switch-on and off delay - Type of switch-off time function - Type of switch-off time function - Type of display on the sensor - Keyboard lock - Energy saving mode - Display direction - Reset to factory defaults				

^{*1.} see diagramm

Accessories

E3NT-AL 232 2 M

Item	
Dimensions (length x width x depth)	29.5 x 72.9 x 26.4 mm
Housing material	ABS and PMMA (IR transparent)
Housing colour	Black, RAL 9005
Assembly	Snap mounting on sensor
Connection	2 m connecting cable with 9-pole sub-D connector
Ambient temperature range	- 10 °C + 50 °C
Storage temperature range	- 40 °C + 60 °C
Permission relative humidity	35% 85%, no condensation
Degreee of protection to	IP 54
EN 60529 / IEC 529	
Emitted light	IR communication element 880 nm
Rated operating voltage	Via RS 232 interface from PC
Current consumption	6 mA

E3NT-AP1

Item			
Supply voltage	3 V DC		
Battery type	Button battery Ø 11.6 mm, thickness: 5.4 mm, 3 Vm, type: CR1/3N		
Ambient temperature range	+ 10 °C + 40 °C		
Storage temperature range	- 40 °C + 60 °C (with no icing or condensation)		
Ambient humidity	Operation and storage: 35% 85% (with no icing or condensation)		
Ambient environment	No corrosive gases		
Operation time period	min. 5 hours operation with 1 new battery		
Degree of protection	IP20 (EN 60529)		
Case material	Case: ABS/PC		
	Base plate: Aluminium		
Weight	Approx. 42 g		
Accessories:	1 Instruction sheet, 1 battery type CR1/3N		
Max. distance for a visible beam spot	about 50 m (depending on the ambient light and surface conditions)		
Laser beam power	< 1 mW		
Laser class	Laser Class II		

E3NT

Characteristic data (typical)

E3NT-L17/L37 and E3NT-LH17/LH37

E3NT-L27/L47

Analog output current (90% remission)

E3NT-L17-20 and E3NT-L37-20

Parallel Operating range

Black/White - Error (6% - 90% remission, typical)

> 4% 3%

2%

1%

0%

-1%

-2%

-3%

-4%

ō

3000

E3NT-R

Spotsize

Circuit diagram

Output

Push-pull output circuit		Load connection	
(Out1 at pin 4 / Out2 at pin 2)	PNP	NPN	Analog
E3NT 1 + U _S 1 + U _S	+ U_B 1 Out1 4 Out2 2 U_L + U_L - U_L	$+ U_{B} 1 \circ \underbrace{L_{1}}_{L_{2}} + \underbrace{L_{2}}_{U_{2}} +$	+ U _B 1 ⁰ An Out 5 ⁰ I_0 I_0 $0 \lor 3^2$

When use is made of the PNP or NPN output circuit, the output circuit that is not selected is deactivated. When used as a complementary output, NPN or PNP outputs act in antiphase as the switch state changes.

Input

The sensor inputs are realised in positive logic and detect a positive voltage level of more than 1 ms duration as a valid signal if the voltage level is between 10 V and the power supply voltage.

Connectors

Class	Wire jacket color	Connector pin no.	Application
For DC	Brown	1	Power supply (+V)
	White	2	Output or Input Out2 / In2
	Blue	3	Power supply (0V)
	Black	4	Output Out1
	Grey	5*	Analog Output or Input In1

* Not connected for standard 4-pole connectors

Nomenclature

LED display	displayed by the 4-digit 7-s The display appears as re	The distance from the measured object and the names of the menu levels during set-up of the sensor are displayed by the 4-digit 7-segment LED display. The display appears as red digits or letters. If the sensor is set to a bar chart display, the distance from the measured object is displayed as a green LED bar chart.				
LED	The switching status and the stability of the two outputs are signalled as follows by two LEDs, visible the top and the front of the sensor:					
	Yellow LED (Output 1)	ON	Object stably detected			
		Blinking	Object not stable detected			
		OFF	No object within range			
	Red LED (Output 2)	ON	Object stably detected			
		Blinking	Object not stable detected			
		OFF	No object within range			
	Status LED	ON	Set-up menu selected			
		Blinking	Menu level with change of setting distance			
		OFF	RUN (normal) mode			

Operation

Setting the switching points

The switching points can either be user set (Teach-in mode) with a measured object positioned at the corresponding distance or can be set using the setting input, for remote setting. For each output of the sensor (up to two), up to two switching points can be user set.

Only one switching point is active in the foreground and background suppression modes.

For the 2-point window evaluation mode, two switching points must be set.

Teaching the switching points in the normal mode

The sensor is set at the factory for both outputs to **BGS**, light on.

- 1. Place the target object in front of the sensor at the desired position.
- 2. Teach the switching point for output 1:
- Beginning with the ⊕ key, press it simultaneously with the ENTER ⊙ key. Threshold level is obtained and the output/ LED is updated. Status LED is blinking.
- Using the ⊕/⊖ keys an adjustment of the switching point is possible. The output/LED is updated immediately.
- Pressing the ENTER ⊙ key for more than 2 seconds or after 2 minutes without any activation of the keys, the sensor returns to normal operation. The status LED is turned off.
- 3. Teach the switching point for Output 2:
- Beginning with the \ominus key, press it simultaneously with the ENTER \odot key.

When the ENTER \odot key is pressed for 2 seconds, the sensor switches from the normal mode to the TEACH menu path. The sensor switches to each next menu path when the EN-TER \odot key is repeatedly pressed for 2 seconds. In the menu paths, the required parameters can be selected by pressing \ominus and \oplus keys.

- $\mathring{\mathbb{I}}$ To skip a menu path, you can also press the ENTER key for 4 seconds.
- \mathbb{I} [ENTER] Press the ENTER \odot key < 1 second
- $\mathring{\mathbb{I}}$ [ENTER 2s] Press the ENTER \odot key > 2 seconds.

E3NT

TEACH menu

1.) In the 2-point window evaluation mode, two switching points (A/B and C/D) can be set for each output. In the foreground and background suppression modes, only one switching point (A and C) can be set for each output. Then, only these switching points, A and C, can be set in the TEACH menu path. B and D switching points are not available.

2.) If connector pin 2 is set as an input, only the switching points for Output 1 can be set.

SET menu

- 1.) If connector pin 2 is set as an input, the switch-on/off delay function canonly be set for Output 1. A second switching output is not available.
- 2.) If the switch-on/off delay is off in the OPTIONS menu path, the switch-on/off delay parameters do not appear in the SET menu path.
- 3.) The outputs behave differently depending on the switch-off delay function that is set in the OPTIONS menu path.
- 4.) The key lock becomes active again when no keys have been pressed for approx. 5 minutes.
- The key lock can be temporarily cancelled by pressing the \oplus and \ominus keys for 4 seconds. 5.) The On-delay-setting E_{C-1} or E_{C-2} are only available if the switch-on/off de-lay in the OPTIONS menu path is set to another the set to a

OPTIONS menu

1.) If connector pin 2 is set as an input, the type of switch-on/off delay option can only be set for Output 1.

2.) If the ECO energy saving mode is on, the display is switched off if no keys are pressed for about 5 minutes. The display is switched on again when any key is pressed.

3.) Firmware 1.10 and higher

SET menu E3NT-R

OPTIONS menu E3NT-R

Dimensions

Sensors E3NT-L17 E3NT-L27

E3NT-L37

Accessoires (order separately)

Optical data link

E3NT-AL232 2m

Laser alignment aid E3NT-AP1

68,9

Universal mounting bracket E39-EL1

Adapter bracket E39-EL2

material: stainless steel 1.4305

Replacement bracket for E3N with E3NT E39-EL3

¢

14 ±0.3

material: stainless steel 1.4305

Precautions

Mounting Directions

Sensor assembly

Contrary to sensors with single triangulation, E3NT with double triangulation, allows the measured object's direction of motion to be in all three directions. Thus, the rotatory position of the sensor about its optical axis can be chosen freely.

If the light spot is not completely on the same plane as the target object (minimum object size) the distance is not determined and malfunction can occur. If necessary a trigger signal or timer function has to be applied.

The sensor must be fitted so that:

- It is correctly aligned before it is adjusted
- It is protected as far as possible against vibration and shock
- It is protected as far as possible against extraneous incident light
- It is protected as far as possible against damage and soiling
- Electrical connection is possible
- It is as accessible as far as possible for maintenance work
- Operation of the push buttons is possible
- The display is visible.

Sensor's assembly direction

As far as possible, the sensor's optical surface should be aligned parallel to the surface of the measured object.

If the measured object has a glossy, reflecting surface, the sensor's optical system should be tilted by $5 \dots 10^{\circ}$ in relation to the surface of the measured object.

If there is a reflecting surface in parallel with the sensor's optical axis, this might lead to unstable switching states.

Therefore, reflecting objects within the sensor's optical axis should be avoided.

If this should not be possible, the reflecting surface should not be parallel to the sensor's optical axis, but should be rotated by at least 10° .

Mirror-like objects can cause malfunction inside and outside the sensing range. Avoid mirror-like objects in or close to the optical axis.

Inspection and Maintenance

Cleaning

Do not use any scratching or abrasive cleaning materials. The protective pane of the optical system might get damaged.

The sensor requires no maintenance.

Remove dirt build up from the optical system and the display at regular intervals only with a soft, non abrasive fabric. Residual dirt may have influence on the switching point and display accuracy.

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.

To convert millimeters into inches, multiply by 0.03937. To convert grams into ounces, multiply by 0.03527.

Cat. No. E332-E2-02-X

2-02-X In the interest of product improvement, specifications are subject to change without notice.