
Cat. No. I203-E2-02 Note: Specifications subject to change without notice.

OPERATION MANUAL

Motion Control Option
Board

R88A-MCW151-E
R88A-MCW151-DRT-E

Cat. No. I203-E2-02

Authorised Distributor:

Printed in Europe

MCW151 Series
Motion Control Option Board
Models: R88A-MCW151-E

R88A-MCW151-DRT-E

Operation Manual
Produced March 2003

v

Notice:
OMRON products are manufactured for use according to proper procedures by a qualified operator
and only for the purposes described in this manual.
The following conventions are used to indicate and classify precautions in this manual. Always heed
the information provided with them. Failure to heed precautions can result in injury to people or dam-
age to property.

!DANGER Indicates an imminently hazardous situation which, if not avoided, will result in death or
serious injury.

!WARNING Indicates a potentially hazardous situation which, if not avoided, could result in death or
serious injury.

!Caution Indicates a potentially hazardous situation which, if not avoided, may result in minor or
moderate injury, or property damage.

OMRON Product References
All OMRON products are capitalized in this manual. The word “Unit” is also capitalized when it refers to
an OMRON product, regardless of whether or not it appears in the proper name of the product.
The abbreviation “Ch”, which appears in some displays and on some OMRON products, often means
“word” and is abbreviated “Wd” in documentation in this sense.
The abbreviation “PC” means Programmable Controller and is not used as an abbreviation for any-
thing else.

Visual Aids
The following headings appear in the left column of the manual to help you locate different types of
information.

Note Indicates information of particular interest for efficient and convenient opera-
tion of the product.

1,2,3... Indicates lists of one sort or another, such as procedures, checklists, etc.

Trademarks and Copyrights
DeviceNet is a registered trademark of the Open DeviceNet Vendor Association, Inc.

 OMRON, 2003
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form, or by any means, mechanical, electronic, photocopying, recording, or otherwise, without the prior
written permission of OMRON.
No patent liability is assumed with respect to the use of the information contained herein. Moreover, because
OMRON is constantly striving to improve its high-quality products, the information contained in this manual is
subject to change without notice. Every precaution has been taken in the preparation of this manual. Neverthe-
less, OMRON assumes no responsibility for errors or omissions. Neither is any liability assumed for damages
resulting from the use of the information contained in this publication.

vi

vii

About this Manual:
This manual describes the installation and operation of the R88A-MCW151-E and R88A-MCW151-
DRT-E Motion Control Option Boards (MC Units) and includes the sections described below.
Please read this manual and the related manuals listed in the following table carefully and be sure you
understand the information provided before attempting to install or operate the MC Unit. Be sure to
read the precautions provided in the following section.

Precautions provides general precautions for using the MC Unit and related devices.
Section 1 describes the features and system configuration of the R88A-MCW151-E and R88A-
MCW151-DRT-E Motion Control Units and concepts related to their operation.
Section 2 describes the MC Unit components and provides the information for installing the MC Unit.
Section 3 describes the different Motion Control features of the MCW151. Also the functionality of the
Servo Driver related commands are explained.
Section 4 describes the communication components of the MCW151-E and MCW151-DRT-E. The
functionality of the serial communication protocols and the DeviceNet interface are explained.
Section 5 provides an overview of the fundamentals of multitasking BASIC programs and the methods
by which programs are managed in the MC Unit.
Section 6 describes all commands, functions and parameters required for programing the motion con-
trol application using the MC Unit.
Section 7 describes the operation of the Motion Perfect programming software package. Motion Per-
fect provides the user a tool to program, monitor and debug motion based applications for the MC Unit.
Section 8 describes error processing and troubleshooting procedures needed to keep the system
operating properly.
Section 9 explains the maintenance and inspection procedures that must be followed to keep the MC
Unit operating in optimum condition. It also includes proper procedures when replacing an MC Unit.
The Appendices provide the required parameter settings for the Servo Driver, the DeviceNet protocol
specification and some general programming examples.

Name Cat. No. Contents

MCW151 Series
R88A-MCW151-E
R88A-MCW151-DRT-E
Operation Manual

I203 Describes the installation and operation of the R88A-MCW151-E
and MCW151-DRT-E Motion Control Units.
(This manual)

OMNUC W-series
R88M-W❏ (AC Servomotors)

R88D-W❏ (AC Servo Drivers)
User’s manual

I531 Describes the installation and operation of the W-series Servo Driver
and Servomotor.

DeviceNet Operation Manual W267 Describes the configuration and construction of a DeviceNet net-
work, including installation procedures and specifications for cables,
connectors, and other connection devices, as well as information on
the communications power supply.

DeviceNet Configurator Oper-
ation Manual

W328 Describes the operation of the DeviceNet Configurator to allocate
remote I/O areas according to application needs, as well as proce-
dures to set up a DeviceNet network with more than one master.

!WARNING Failure to read and understand the information provided in this manual may result in per-
sonal injury or death, damage to the product, or product failure. Please read each section
in its entirety and be sure you understand the information provided in the section and
related sections before attempting any of the procedures or operations given.

ix

TABLE OF CONTENTS
PRECAUTIONS . xi

1 Intended Audience . xii

2 General Precautions . xii

3 General Warnings and Safety Precautions . xii

4 Storage and Transportation Precautions . xiv

5 Installation and Wiring Precautions . xiv

6 Operation and Adjustment Precautions. xv

7 Maintenance and Inspection Precautions . xv

8 Conformance to EC Directives . xv

SECTION 1
Features and System Configuration 1

1-1 Features . 2

1-2 System Configuration . 5

1-3 Motion Control Concepts . 7

1-4 Control System Configuration . 14

1-5 Specifications . 19

1-6 Comparison between Firmware Versions . 21

SECTION 2
Installation . 23

2-1 Components and Unit Settings . 24

2-2 Installation. 28

2-3 Wiring . 30

2-4 Servo System Precautions . 39

2-5 Wiring Precautions . 40

SECTION 3
Motion Control Functions . 43

3-1 Overview . 44

3-2 System Set-up . 46

3-3 System Functions . 47

SECTION 4
Communication Interfaces . 59

4-1 Serial Communications . 60

4-2 DeviceNet (MCW151-DRT-E only) . 68

x

TABLE OF CONTENTS
SECTION 5
Multitasking BASIC Programming. 85

5-1 Overview . 86

5-2 BASIC Programming. 86

5-3 Motion Execution . 89

5-4 Command Line Interface . 90

5-5 BASIC Programs . 90

5-6 Task Operation Sequence . 93

5-7 Error Processing. 94

SECTION 6
BASIC Motion Control Programming Language 97

6-1 Overview . 102

6-2 Command Reference List . 103

6-3 Command, function and parameter description. 111

SECTION 7
Motion Perfect Software Package 197

7-1 Features and Requirements . 198

7-2 Connecting to the MC Unit . 198

7-3 Motion Perfect Projects . 199

7-4 Desktop Appearance . 201

7-5 Motion Perfect Tools . 204

7-6 Suggestions and Precautions . 217

SECTION 8
Troubleshooting. 219

8-1 Error Indicators . 220

8-2 Error Handling . 221

8-3 Problems and Countermeasures. 227

SECTION 9
Maintenance and Inspection. 233

9-1 Routine Inspections . 234

9-2 Replacing a MC Unit . 235

Appendices
Appendix A Servo Driver Parameter List . 237

Appendix B Device Protocol (MCW151-DRT-E only). 239

Appendix C Programming Examples. 245

Index . 255

Revision History . 261

xi

PRECAUTIONS

This section provides general precautions for using the Motion Control Unit and related devices.

The information contained in this section is important for the safe and reliable application of the Motion Control
Unit. You must read this section and understand the information contained before attempting to set up or operate
a Motion Control Unit and Servo Driver.

1 Intended Audience . xii
2 General Precautions . xii
3 General Warnings and Safety Precautions . xii
4 Storage and Transportation Precautions . xiv
5 Installation and Wiring Precautions . xiv
6 Operation and Adjustment Precautions. xv
7 Maintenance and Inspection Precautions . xv
8 Conformance to EC Directives . xv

8-1 Concepts . xvi
8-1-1 Conformance to EC Directives . xvi

xii

Intended Audience 1

1 Intended Audience
This manual is intended for the following personnel, who must also have knowledge of electri-
cal systems (an electrical engineer or the equivalent).

• Personnel in charge of installing FA systems.
• Personnel in charge of designing FA systems.
• Personnel in charge of managing FA systems and facilities.

2 General Precautions
The user must operate the product according to the performance specifications described in
the operation manuals. You should assume that anything not described in this manual is not
possible.
Before using the product under the following conditions, consult your OMRON representative,
make sure the ratings and performance characteristics of the products are good enough for
the systems, machines, or equipment, and be sure to provide the systems, machines, or
equipment with double safety mechanisms.
1. Conditions not described in the manual.
2. The application of the product to nuclear control systems, railroad systems, aviation sys-

tems, vehicles, combustion systems, medical equipment, amusement machines, or safety
equipment.

3. The application of the product to systems, machines, or equipment that may have a serious
influence on human life and property if they are used improperly.

!WARNING It is extremely important that Motion Control Units and related devices be used for the
specified purpose and under the specified conditions, especially in applications that can
directly or indirectly affect human life. You must consult with your OMRON representative
before applying Motion Control Units and related devices to the above mentioned appli-
cations.

3 General Warnings and Safety Precautions
Observe the following warnings when using the MC Unit and all pheripheral devices.
Consult your OMRON representative when using the product after a long period of storage.

!WARNING Always connect the frame ground terminals of the Servo Driver and the Servomotor to a
class-3 ground (to 100 Ω or less). Not connecting to a class-3 ground may result in elec-
tric shock.

!WARNING The product contains dangerous high voltage inside. Turn OFF the power and wait for at
least five minutes to allow power to discharge before handling or working with the prod-
uct.

!WARNING Do not touch the inside of the Servo Driver. Doing so may result in electric shock.

!WARNING Do not remove the front cover, terminal covers, cables, Parameter Units, or optional
items while the power is being supplied. Doing so may result in electric shock.

!WARNING Installation, operation, maintenance, or inspection must be performed by authorized per-
sonnel. Not doing so may result in electric shock or injury.

!WARNING Wiring or inspection must not be performed for at least five minutes after turning OFF the
power supply. Doing so may result in electric shock.

!WARNING Do not damage, press, or put excessive stress or heavy objects on the cables. Doing so
may result in electric shock, stopping operation of the product, or burning.

xiii

General Warnings and Safety Precautions 3

!WARNING Do not touch the rotating parts of the Servomotor in operation. Doing so may result in
injury.

!WARNING Do not modify the product. Doing so may result in injury or damage to the product.

!WARNING Provide safety measures in external control circuits (i.e., not in the MC Unit) to ensure
safety in the system if an abnormality occurs due to malfunction of the MC Unit, incorrect
or unintended configuration and programming of the MC Unit or external factors affecting
the operation of the MC Unit. Not providing sufficient safety measures may result in seri-
ous accidents, or property damage.

• The MC Unit outputs may remain ON or OFF due to deposits on or burning of the out-
put relays, or destruction of the output transistors. As a counter-measure for such prob-
lems, external safety measures must be provided to ensure safety in the system.

• Provide an external emergency stopping device that allows an instantaneous stop of
operation and power interruption. Not doing so may result in injury.

• Emergency stop circuits, interlock circuits, limit circuits, and similar safety measures
must be provided in external control circuits.

• When the 24-VDC output (service power supply to the Unit) is overloaded or short-cir-
cuited, the voltage may drop and result in the outputs being turned OFF. As a counter-
measure for such problems, external safety measures must be provided to ensure
safety in the system.

!WARNING It is the nature of high speed motion control and motion control language programming
and multi-tasking systems, that it is not always possible for the system to validate the
inputs to the functions or to validate the combination of functions.

!WARNING It is the responsibility of the programmer to ensure that the various BASIC statements are
invoked correctly with the correct number of parameters and inputs, that the values are
correctly validated prior to the actual calling of the functions, and that the BASIC pro-
gram(s) provide the desired functionality for the application. Failure to do so may result in
unexpected behaviour, loss or damage to the machinery.

!Caution When the SERVO_PERIOD parameter has been set to change the servo cycle period of
the MC Unit, a power down or software reset (using DRV_RESET) must be performed for
the complete system. Not doing so may result in undefined behaviour.

!Caution Use the Servomotors and Servo Drivers in a specified combination. Using them incor-
rectly may result in fire or damage to the product.

!Caution Do not operate the control system in the following locations:

• Locations subject to direct sunlight.
• Locations subject to temperatures or humidity outside the range specified in the speci-

fications.
• Locations subject to condensation due to radical temperature changes.
• Locations subject to corrosive or inflammable gases.
• Locations subject to dust (especially iron dust) or salts.
• Locations subject to vibration or shock.
• Locations subject to exposure to water, oil or chemicals.

!Caution Do not touch the Servo Driver radiator, Regeneration Resistor, or Servomotor while the
power is being supplied or soon after power is turned OFF. Doing so may result in a skin
burn due to the hot surface.

xiv

Storage and Transportation Precautions 4

4 Storage and Transportation Precautions
!Caution Do not hold the product by the cables or motor shaft while transporting it. Doing so may

result in injury or malfunction.

!Caution Do not place any load exceeding the figure indicated on the product. Doing so may result
in injury or malfunction.

!Caution Use the motor eye-bolts only for transporting the Motor. Using them for transporting the
machinery may result in injury or malfunction.

5 Installation and Wiring Precautions
!Caution Do not step or place a heavy object on the product. Doing so may result in injury.

!Caution Do not cover the inlet or outlet ports and prevent any foreign objects from entering the
product. Doing so may result in fire.

!Caution Be sure to install the product in the right direction. Not doing so may result in malfunction.

!Caution Provide the specified clearance between the Servo Driver and the control panel or with
other devices. Not doing so may result in fire or malfunction.

!Caution Do not apply any strong impact. Doing so may result in malfunction.

!Caution Be sure to wire correctly and securely. Not doing so may result in motor runaway, injury,
or malfunction.

!Caution Be sure that all mounting screws, terminal screws, and cable connector screws are tight-
ened securely. Incorrect tightening may result in malfunction.

!Caution Use crimp terminals for wiring. Do not connect bare stranded wires directly to terminals.
Connection of bare stranded wires may result in fire.

!Caution Always use the power supply voltages specified in the manual. An incorrect voltage may
result in malfunction or burning.

!Caution Take appropriate measures to ensure that the specified power with the rated voltage and
frequency is supplied. Be particularly careful in places where the power supply is unsta-
ble. An incorrect power supply may result in malfunction.

!Caution Install external breakers and take other safety measures against short-circuiting in exter-
nal wiring. Insufficient safety measures against short-circuiting may result in burning.

!Caution Take appropriate and sufficient countermeasures when installing systems in the following
locations. Not doing so may result in damage to the product.

• Locations subject to static electricity or other sources of noise.
• Locations subject to strong electromagnetic fields.
• Locations subject to possible exposure to radiation.
• Locations near power supply lines.

!Caution Do not reverse the polarity of the battery when connecting it. Reversing the polarity may
damage the battery or cause it to explode.

!Caution Before touching a Unit, be sure to first touch a grounded metallic object in order to dis-
charge any static build-up. Not doing so may result in malfunction or damage.

xv

Operation and Adjustment Precautions 6

6 Operation and Adjustment Precautions
!Caution Confirm that no adverse effects will occur in the system before performing the test opera-

tion. Not doing so may result in damage to the product.

!Caution Check the modified user programs, newly set parameters and switches for proper execu-
tion before actually running them. Not doing so may result in damage to the product.

!Caution Do not make any extreme adjustments or setting changes. Doing so may result in unsta-
ble operation and injury.

!Caution Separate the Servomotor from the machine, check for proper operation, and then con-
nect to the machine. Not doing so may cause injury.

!Caution When an alarm occurs, remove the cause, reset the alarm after confirming safety, and
then resume operation. Not doing so may result in injury.

!Caution Do not come close to the machine immediately after resetting momentary power interrup-
tion to avoid an unexpected restart. (Take appropriate measures to secure safety against
an unexpected restart.) Doing so may result in injury.

!Caution Confirm that no adverse effect will occur in the system before attempting any of the fol-
lowing. Not doing so may result in an unexpected operation or damage to the product.

• Changing the present values or set values.
• Changing the parameters.
• Modifying (one of) the application programs.

!Caution Do not save data into the flash memory during memory operation or while the motor is
running. Otherwise, unexpected operation may be caused.

!Caution Do not turn OFF the power supply to the Unit while data is being written to flash memory.
Doing so may cause problems with the flash memory.

!Caution Do not turn OFF the power supply to the Unit while data is being transferred. Doing so
may result in malfunction or damage to the product.

!Caution Do not download any firmware to the MC Unit that has not been distributed by OMRON or
that has not been authorized and approved by OMRON for downloading into the
MCW151 series. Failure to do so may result in permanent or temporary malfunction of
the Unit or unexpected behaviour.

7 Maintenance and Inspection Precautions

!WARNING Do not attempt to disassemble, repair, or modify any Units. Any attempt to do so may
result in malfunction, fire, electric shock, or injury.

!Caution Resume operation only after transferring to the new Unit the contents of the data required
for operation. Not doing so may result in an unexpected operation or damage to the prod-
uct.

8 Conformance to EC Directives
Applicable Directives

• EMC Directives
• Low Voltage Directive

xvi

Conformance to EC Directives 8

8-1 Concepts
EMC Directives
OMRON devices that comply with EC Directives also conform to the related EMC standards
so that they can be more easily built into other devices or ma-chines. The actual products
have been checked for conformity to EMC standards (see the following note). Whether the
products conform to the standards in the system used by the customer, however, must be
checked by the customer. EMC-related performance of the OMRON devices that comply with
EC Directives will vary depending on the configuration, wiring, and other conditions of the
equipment or control panel in which the OMRON devices are installed. The customer must,
therefore, perform final checks to confirm that devices and the over-all machine conform to
EMC standards.

Note Applicable EMC (Electromagnetic Compatibility) standards are as follows:

EMS (Electromagnetic Susceptibility): EN61000-6-2, EN50082-2
EMI (Electromagnetic Interference): EN55011 Class A Group 1

Low Voltage Directive
Always ensure that devices operating at voltages of 50 to 1,000 VAC or 75 to 1,500 VDC meet
the required safety standards.

8-1-1 Conformance to EC Directives
The W-series Servo Driver complies with EC Directives. To ensure that the machine or device
in which a Servo Driver and MC Unit are used complies with EC directives, the Servo System
must be installed as follows (refer to OMNUC W-series User’s manual (I531)):

1,2,3... 1. The Servo Driver must be mounted in a metal case (control box). (It is not necessary to
mount the Servomotor in a metal box.)

2. Noise filters and surge absorbers must be inserted in power supply lines.
3. Shielded cable must be used for I/O signal cables and encoder cables. (Use soft steel wire.)
4. Cables leading out from the control box must be enclosed within metal ducts or conduits

with blades.
5. Ferrite cores must be installed for cables with braided shields, and the shield must be di-

rectly grounded to a ground plate.

1

SECTION 1
Features and System Configuration

This section describes the features and system configuration of the R88A-MCW151-E and R88A-MCW151-DRT-E
Motion Control Units and concepts related to their operation.

1-1 Features . 2
1-1-1 Overview. 2
1-1-2 Description of Features. 3

1-2 System Configuration . 5
1-3 Motion Control Concepts . 7

1-3-1 PTP-control. 8
1-3-2 CP-control. 10
1-3-3 EG-Control . 11
1-3-4 Other Operations. 13

1-4 Control System Configuration . 14
1-4-1 Servo System Principles . 14
1-4-2 Encoder Signals . 17

1-5 Specifications . 19
1-5-1 General Specifications . 19
1-5-2 Functional Specifications . 19
1-5-3 DeviceNet Specifications (MCW151-DRT-E only) 21

1-6 Comparison between Firmware Versions . 21

2

Features Section 1-1

1-1 Features

1-1-1 Overview
The R88A-MCW151 is a 1.5-axis Motion Control (MC) Unit which is con-
nected to the W-series Servo Driver. The MC Unit provides direct control of
the Servo Driver, enables both speed and torque control and has access to
detailed Servo Driver data. To support a multi-axis control application, the MC
Unit features both an encoder input and output connection.
There are two types of the MCW151 Motion Controllers, according to the
communication interface which is integrated into the Unit.

The multi-tasking BASIC motion control language provides an easy to use
tool for programming advanced motion control applications.
Three types of motion control are possible: point-to-point, continuous path
and electronic gearing.

Point-to-point Control Point-to-point (PTP) control enables positioning independently for each axis.
Axis specific parameters and commands are used to determine the paths for
the axes.

Continuous Path Control Continuous path (CP) control enables the user not only to control the start and
end positions, but also the path between those points. Possible multi-axis
paths are linear interpolation and circular interpolation. Also user defined
paths can be realized with the CAM control.

Electronic Gearing Electronic gearing (EG) enables controlling an axis as a direct link to another
axis. The MC Units supports electronic gear boxing, linked moves and CAM
movements and adding all movements of one axis to another.

PO
R

T
0

,1

RUN STS

I/O

+ 24V

0V

25

1

26

2

SD RD

MCW151

PO
R

T
2

PO
R

T
0

,1

MCW151-DRT

RUN

MS

STS

NS

I/O

+ 24V

0V

25

1

26

2

MCW151-E MCW151-DRT-E

Communication Interface Model

RS-422A/485 Serial Communication R88A-MCW151-E

DeviceNet R88A-MCW151-DRT-E

3

Features Section 1-1

1-1-2 Description of Features
The MC Unit provides the following features.

Motion Control The direct connection to the Servo Driver provides a high performance / high
precision control system. Operation will be processed in optimal synchroniza-
tion.

• Supports both speed and torque control modes of the Servo Driver.
• Supports switching between the modes during operation.
• Supports speed limit during torque control using the speed reference.
• Selectable MC Unit servo period cycle which can be set to either 0.5 ms

or 1.0 ms.

Servo Driver Access Apart from the motion control operation with the Servo Driver, the MC Unit
provides the following features:

• Monitor the detailed Servo Driver alarm status.
• Monitor various monitor signals (rotation speed, command torque).
• Monitor the Servo Driver digital inputs and analog input to include in the

application.
• Read and write of the Servo Driver Parameters.
• Execution of several Driver functions from the MC Unit. Examples are

Print Registration, Origin Search, Driver Alarm Reset and Driver Reset.

Easy Programming with
BASIC Motion Control
Language

The multi-task BASIC motion control language is used to program the MC
Unit. A total of 14 programs can be held in the Unit and up to 3 tasks can be
run simultaneously. The MC Unit is programmed using a Windows-based
application called 1Motion Perfect. Motion Perfect allows extremely flexible
programming and debugging.

Encoder Input and Output To achieve a solution for multi-axis applications, the MC Unit is provided with
an encoder axis. This axis provides either to have an encoder input for exter-
nal encoders or to have an encoder output to cascade position data to
another MC Unit.

DeviceNet Interface
(MCW151-DRT-E only)

The MCW151-DRT-E can be connected easily in an existing DeviceNet net-
work. The DeviceNet network has a maximum communication distance of
500 m, so an MC Unit in a remote location can be controlled from the Master.
The MC Unit supports both remote I/O and explicit message communications.

• Remote I/O communications
Remote I/O communications can exchange data (4 input words and 4 out-
put words max.) with the MC Unit at high speed and without program-
ming, just like regular I/O.

• Explicit message communications
Large data transfers to and from the MC Unit memory can be performed
by sending explicit messages from the Master when required.

Serial Communications The MC Unit has three (MCW151-E) or two (MCW151-DRT-E) serial ports for
communication to several external devices. Next to the connection to the Per-
sonal Computer for configuring, the MC Unit can be connected with PCs, Pro-
gramming Terminals (PTs) and other MC Units. The serial ports support the
Host Link Master and Slave protocols.

Absolute Encoder
Support

By using a Servomotor with absolute encoder, the motor position is updated
automatically in the MC Unit at start-up of the system. No origin search
sequence will be necessary in the system initiation phase.

1.Motion Perfect is a product of Trio Motion Technology Limited.

4

Features Section 1-1

Virtual Axes The MC Unit contains a total of 3 axes, of which two can be configured as vir-
tual axis. The virtual axes are internal axes and are used for computational
purposes. They act as perfect servo axes and are very useful for creating pro-
files. They can be linked directly to the servo axes.

Hardware-based
Registration Inputs

There is a high-speed registration input for the encoder input and output axis.
On the rising or falling edge of a registration input, the MC Unit will store the
current position in a register. The registered position can then be used by the
BASIC program as required. The registered positions are captured in hard-
ware.

General-purpose Input
and Output Signals

Starting, stopping, limit switching, origin searches and many other functions
can be controlled by the MC Unit. The general I/O can have specific functions
(such as the registration, limit switches), but also can be freely used.

Reduced Machine Wear The traditional trapezoidal speed profile is provided to generate smooth start-
ing and stopping. The trapezoidal corners can be rounded off to S-curves.

Trapezoidal Speed Profile with
Square Corners

Trapezoidal Speed Profile with
S-curve Corners

Time

SpeedSpeed

Time

5

System Configuration Section 1-2

1-2 System Configuration
Basic Configuration

Note 1. The RS-422A/485 Serial Port 2 is only available on the MCW151-E Unit.
2. The MC Unit has one encoder axis. Either the encoder input or the encoder

output can be used.

25

1

0V

+ 24 V

2 6

I/O

2

MCW151

SD

RUN

P
O

R
T2

PO
R

T
0

,1

RD

STS

Typical applicable Units for Serial Comm. Ports

Personal
Computer

PC

Relais

Lamp

Programmable
Terminal (PT)

General-purpose
device

Typical applicable Actuators for Digital Outputs

Print Registration

Proximity Sensor

Typical applicable Sensors for Digital Inputs

MCW151 Unit

Typical applicable Units for Encoder Output

Print Registration

Limit Switches

Typical applicable Sensors for Servo
Driver Digital Inputs

24 V Power supply

Power Supply connection

MCW151 Unit

Servo Driver

Typical applicable Pulse Generators for
Encoder Input

Personal Computer running Motion Perfect

1

2

W-series Servo Driver MCW151

6

System Configuration Section 1-2

The equipment and models which can be used in the system configuration
are shown in the following table.

Note The MC Unit must be used with a Servo Driver with software version 14 or
later. The MC Unit cannot be used with software version 8.

DeviceNet Configuration
(MCW151-DRT-E only)

A DeviceNet system can be constructed in two ways: fixed allocation or free
allocation.

Fixed Allocation
A DeviceNet system can be constructed easily without the Configurator. With
fixed allocation, predetermined words are allocated to each node for the
Slave’s I/O.
An OMRON Master must be used in order to perform fixed allocation. More-
over, with fixed allocation only one Master Unit can be used in a DeviceNet
network and only one Master Unit may be mounted to a PC.

Free Allocation
The Configurator can be used to freely allocate the words used by each
Slave. With free allocation, more than one Master Unit can be connected in a
DeviceNet network and each Master’s Slave I/O can be set independently.
More than one Master Unit may be mounted to each PC and those Masters
can be used independently. Furthermore, other companies’ Masters can be

Device Model

Motion Control Unit R88A-MCW151-E
R88A-MCW151-DRT-E

Servo Driver (see note) R88D-WT❏

Servomotor R88M-W❏

Control Devices (using
Host Link)

Programmable Terminals
CPU Units

Personal Computer (for
Motion Perfect)

IBM Personal Computer or 100% compatible

Motion Perfect Version 2.0 or later

CPU Unit

Master Unit

Remote I/O communications

Slave Slave MC Unit

7

Motion Control Concepts Section 1-3

used. For details, refer to the DeviceNet Configurator Operation Manual
(W328).

The following OMRON Master Units can be used.

Note Some CPUs can control 16 Master Units and other CPUs can control 10.

1-3 Motion Control Concepts
The MC Unit offers the following types positioning control operations.
1. Point-to-point control
2. Continuous Path control
3. Electronic Gearing
This section will introduce some of the commands and parameters as used in
the BASIC programming of the motion control application. Refer to
SECTION 6 BASIC Motion Control Programming Language for details.

Coordinate System Positioning operations performed by the MC Unit are based on an axis coordi-
nate system. The MC Unit converts the position data from either the con-
nected Servo Driver or the connected encoder into an internal absolute
coordinate system.
The engineering unit which specifies the distances of travelling can be freely
defined for each axis separately. The conversion is performed through the
use of the unit conversion factor, which is defined by the UNITS axis parame-
ter. The origin point of the coordinate system can be determined using the
DEFPOS command. This command re-defines the current position to zero or
any other value.
A move is defined in either absolute or relative terms. An absolute move takes
the axis to a specific predefined position with respect to the origin point. A rel-
ative move takes the axis from the current position to a position that is defined
relative to this current position. The following diagram shows gives an exam-

CPU Unit

Master Unit

Remote I/O communications

Slave

Slave

MC Unit

Master Unit Master Unit

Message
communications

Configurator

ISA Board

MC Unit

Applicable PC Master Unit model
number

Mounting position Max. number of Units

With
Configurator

Without
Configurator

CS1 Series CS1-DRM21 CPU Rack or Expansion I/O Rack
(Classified as Special I/O Units)

16 1

C200HZ/HX/HG/HE C200HW-DRM21-V1 CPU Rack or Expansion I/O Rack
(Classified as Special I/O Units)

10 or 16 (see
note)

1

8

Motion Control Concepts Section 1-3

ple of relative (command MOVE) and absolute (command MOVEABS) linear
moves.

1-3-1 PTP-control
In point-to-point positioning, each axis is moved independently of the other
axis. The MC Unit supports the following operations.

• Relative move
• Absolute move
• Continuous move forward
• Continuous move reverse

Relative and Absolute Moves
To move a single axis either the command MOVE for a relative move or the
command MOVEABS for an absolute move is used. Each axis has its own
move characteristics, which are defined by the axis parameters.
Suppose a control program is executed to move from the origin to an axis
no. 0 coordinate of 100 and axis no. 1 coordinate of 50. If the speed parame-
ter is set to be the same for both axes and the acceleration and deceleration
rate are set sufficiently high, the movements for axis 0 and axis 1 will be as
illustrated below.

At start, both the axis 0 and axis 1 will move to a coordinate of 50 over the
same duration of time. At this point, axis 1 will stop and the axis 0 will con-
tinue to move to a coordinate of 100.

Relevant Axis Parameters As mentioned before the move of a certain axis is determined by the axis
parameters. Some relevant parameters are given in the next table.

0 50 100

MOVE(30)

MOVE(50)

MOVEABS(50)

MOVE(60)

MOVEABS(30)

Axis position

0 50 100

50

Axis 0

Axis 1 MOVEABS(100) AXIS(0)
MOVEABS(50) AXIS(1)

Parameter Description

UNITS Unit conversion factor

ACCEL Acceleration rate of an axis in units/s2

DECEL Deceleration rate of an axis in units/s2

SPEED Demand speed of an axis in units/s

9

Motion Control Concepts Section 1-3

Defining moves The speed profile below shows a simple MOVE operation. The UNITS param-
eter for this axis has been defined for example as meters. The required maxi-
mum speed has been set to 10 m/s. In order to reach this speed in one
second and also to decelerate to zero speed again in one second, both the
acceleration as the deceleration rate have been set to 10 m/s2. The total dis-
tance travelled is the sum of distances travelled during the acceleration, con-
stant speed and deceleration segments. Suppose the distance moved by the
MOVE command is 40 m, the speed profile will be given by the following
graph.

The following two speed profiles show the same movement with an accelera-
tion time respectively a deceleration time of 2 seconds.

Move Calculations The following equations are used to calculate the total time for the motion of
the axes. Consider the moved distance for the MOVE command as , the
demand speed as , the acceleration rate and deceleration rate .

0

10

Time

Speed

1 2 3 4 5

ACCEL=10
DECEL=10
SPEED=10
MOVE(40)

6

0

10

Time

Speed

1 2 3 4 5

ACCEL=5
DECEL=10
SPEED=10
MOVE(40)

6

0

10

Time

Speed

1 2 3 4 5

ACCEL=10
DECEL=5
SPEED=10
MOVE(40)

6

D
V a d

10

Motion Control Concepts Section 1-3

Continuous Moves
The FORWARD and REVERSE commands can be used to start a continuous
movement with constant speed on a certain axis. The FORWARD command
will move the axis in positive direction and the REVERSE command in nega-
tive direction. For these commands also the axis parameters ACCEL and
SPEED apply to specify the acceleration rate and demand speed.
Both movements can be canceled by using either the CANCEL or RAPID-
STOP command. The CANCEL command will cancel the move for one axis
and RAPIDSTOP will cancel moves on all axes. The deceleration rate is set
by DECEL.

1-3-2 CP-control
Continuous Path control enables to control a specified path between the start
and end position of a movement for one or multiple axes. The MC Unit sup-
ports the following operations.

• Linear interpolation
• Circular interpolation
• CAM control

Linear Interpolation
In applications it can be required for a set of motors to perform a move opera-
tion from one position to another in a straight line. Linearly interpolated moves
can take place among several axes. The commands MOVE and MOVEABS
are also used for the linear interpolation. In this case the commands will have
multiple arguments to specify the relative or absolute move for each axis.
Consider the following three axis move in a 3-dimensional plane.

V
a
---=

V
2

2a
------=

V
d
---=

V
2

2d
------=

D= V
2

a d+()
2ad

-----------------------–

D
V
----= V a d+()

2ad
---------------------+

Acceleration time

Acceleration distance

Deceleration time

Deceleration distance

Constant speed distance

Total time

Axis 0

Axis 1

Axis 2 Speed

Time

MOVE(50,50,50)

11

Motion Control Concepts Section 1-3

The speed profile of the motion along the path is given in the diagram. The
three parameters SPEED, ACCEL and DECEL which determine the multi axis
movement are taken from the corresponding parameters of the base axis.
The MOVE command computes the various components of speed demand
per axis.

Circular Interpolation
It may be required that a tool travels from the starting point to the end point in
an arc of a circle. In this instance the motion of two axes is related via a circu-
lar interpolated move using the MOVECIRC command. Consider the following
diagram.

The centre point and desired end point of the trajectory relative to the start
point and the direction of movement are specified. The MOVECIRC command
computes the radius and the angle of rotation. Like the linearly interpolated
MOVE command, the ACCEL, DECEL and SPEED variables associated with
the base axis determine the speed profile along the circular move.

CAM Control
Additional to the standard move profiles the MC Unit also provides a way to
define a position profile for the axis to move. The CAM command will move an
axis according to position values stored in the MC Unit Table array. The
speed of travelling through the profile is determined by the axis parameters of
the axis.

1-3-3 EG-Control
Electronic Gearing control allows you to create a direct gearbox link or a
linked move between two axes. The MC Unit supports the following opera-
tions.
1. Electronic gearbox
2. Linked CAM
3. Linked move
4. Adding axes

0
Axis 0

Axis 1
MOVECIRC(-100,0,-50,0,0)

50

50

-50

Time

Position

CAM(0,99,100,20)

12

Motion Control Concepts Section 1-3

Electronic Gearbox
The MC Unit is able to have a gearbox link from one axis to another as if there
is a physical gearbox connecting them. This can be done using the CON-
NECT command in the program. In the command the ratio and the axis to link
to are specified.

Linked CAM control
Next to the standard CAM profiling tool the MC Unit also provides a tool to link
the CAM profile to another axis. The command to create the link is called
CAMBOX. The travelling speed through the profile is not determined by the
axis parameters of the axis but by the position of the linked axis. This is like
connecting two axes through a cam.

Linked Move
The MOVELINK command provides a way to link a specified move to a mas-
ter axis. The move is divided into an acceleration, deceleration and constant

Axes Ratio CONNECT command

0 1

1:1 CONNECT(1,0) AXIS(1)

2:1 CONNECT(2,0) AXIS(1)

1:2 CONNECT(0.5,0) AXIS(1)

1:1

1:2

2:1

Master Axis

CONNECT Axis

Master Axis (0) Position

CAMBOX Axis (1) Position

CAMBOX(0,99,100,20,0) AXIS(1)

13

Motion Control Concepts Section 1-3

speed part and they are specified in master link distances. This can be partic-
ularly useful for synchronizing two axes for a fixed period.

Adding Axes
It is very useful to be able to add all movements of one axis to another. One
possible application is for instance changing the offset between two axes
linked by an electronic gearbox. The MC Unit provides this possibility by using
the ADDAX command. The movements of the linked axis will consists of all
movements of the actual axis plus the additional movements of the master
axis.

1-3-4 Other Operations
Canceling Moves In normal operation or in case of emergency it can be necessary to cancel the

current movement from the buffers. When the CANCEL or RAPIDSTOP com-
mands are given, the selected axis respectively all axes will cancel their cur-
rent move.

Origin Search The encoder feedback for controlling the position of the motor is incremental.
This means that all movement must be defined with respect to an origin point.
The DATUM command is used to set up a procedure whereby the MC Unit
goes through a sequence and searches for the origin based on digital inputs
and/or Z-marker from the encoder signal.

Speed

Time

Master Axis (1)

MOVELINK Axis (0)

Synchronized

MOVELINK(50,60,10,10,1) AXIS(0)

BASE(0)
ADDAX(2)
FORWARD
MOVE(100) AXIS(2)
MOVE(-60) AXIS(2)

Speed axis 0*

Speed axis 2

Speed axis 0

Time

Time

Time

+

=

14

Control System Configuration Section 1-4

Print Registration The MC Unit can capture the position of an axis in a register when an event
occurs. The event is referred to as the print registration input. On the rising or
falling edge of an input signal, which is either the Z-marker or an input, the MC
Unit captures the position of an axis in hardware. This position can then be
used to correct possible error between the actual position and the desired
position. The print registration is set up by using the REGIST command.
The position is captured in hardware, and therefore there is no software over-
head and no interrupt service routines, eliminating the need to deal with the
associated timing issues.

Merging Moves If the MERGE axis parameter is set to 1, a movement will always be followed
by a subsequent movement without stopping. The following illustrations will
show the transitions of two moves with MERGE value 0 and value 1.

Jogging Jogging moves the axes at a constant speed forward or reverse by manual
operation of the digital inputs. Different speeds are also selectable by input.
Refer to the FWD_JOG, REV_JOG and FAST_JOG axis parameters.

1-4 Control System Configuration
1-4-1 Servo System Principles

The servo system used by and the internal operation of the MC Unit are
briefly described in this section. Refer to 2-4 Servo System Precautions for
precautions related to servo system operation.

Semi-closed Loop System The servo system of the MC Unit uses a semi-closed or inferred closed loop
system. This system detects actual machine movements by the rotation of the
motor in relation to a target value. It calculates the error between the target
value and actual movement, and reduces the error through feedback.

Speed

Time
Speed

Time

MERGE=0

MERGE=1

15

Control System Configuration Section 1-4

Internal Operation of the
MC Unit

Inferred closed loop systems occupy the mainstream in modern servo sys-
tems applied to positioning devices for industrial applications. The following
graph shows the basic principle of the Servo System as used in the MC Unit.

1,2,3... 1. The MC Unit performs actual position control. The main input of the con-
troller is the following error, which is the calculated difference between the
demand position and the actual measured position.

2. The Position Controller calculates the required speed reference output de-
termined by the following error and possibly the demanded position and
the measured position. The speed reference is provided to the Servo Driv-
er.

3. The Servo Driver controls the rotational speed of the Servomotor corre-
sponding to the speed reference. The rotational speed is proportional to
the speed reference.

4. The rotary encoder will generate the feedback pulses for both the speed
feedback within the Servo Driver speed loop and the position feedback
within the MC Unit position loop.

Motion Control Algorithm The servo system controls the motor by continuously adjusting the speed ref-
erence to the Servo Driver. The speed reference is calculated by the MC
Unit’s Motion Control algorithm, which is explained in this section.
The Motion Control algorithm uses the demand position, the measured posi-
tion and the following error to determine the speed reference. The following
error is the difference between the demanded and measured position. The
demand position, measured position and following error are represented by
axis parameters MPOS, DPOS and FE. Five gain values have been imple-
mented for the user to be able to configure the correct control operation for
each application.

Position
Control

Speed
Control Motor

Encoder

Measured
speed

Measured
position

Demand
position

Speed
reference1

2
3

4

MC Unit Servo System

+

-

16

Control System Configuration Section 1-4

The Motion Control algorithm of the MC Unit is shown in the diagram below.

Proportional Gain The proportional gain creates an output that is proportional to the
following error .

All practical systems use proportional gain. For many just using this gain
parameter alone is sufficient. The proportional gain axis parameter is called
P_GAIN.

Integral Gain The integral gain creates an output that is proportional to the sum of
the following errors that have occurred during the system operation.

Integral gain can cause overshoot and so is usually used only on systems
working at constant speed or with slow accelerations. The integral gain axis
parameter is called I_GAIN.

Derivative Gain The derivative gain produces an output that is proportional to the
change in the following error and speeds up the response to changes in
error while maintaining the same relative stability.

Derivative gain may create a smoother response. High values may lead to
oscillation. The derivative gain axis parameter is called D_GAIN.

Output Speed Gain The output speed gain produces an output that is proportional to
the change in the measured position and increases system damping.

The output speed gain can be useful for smoothing motions but will generate
high following errors. The output speed gain axis parameter is called
OV_GAIN.

Speed Feedforward Gain The speed feedforward gain produces an output that is propor-
tional to the change in demand position and minimizes the following error
at high speed.

The parameter can be set to minimise the following error at a constant
machine speed after other gains have been set. The speed feed forward gain
axis parameter is called VFF_GAIN.

Demand
position

Kp

Following
error

KiΣ

Kd∆

Kvff∆

Kov∆
Measured
position

+

-

+ +
Output
signal

Kp Op
E

Op Kp E⋅=

Ki Oi
E

Oi Ki E�⋅=

Kd Od
E

Od Kd E∆⋅=

Kov Oov
Pm

Oov Kov Pm∆⋅=

Kvff Ovff
Pd

Ovff Kvff Pd∆⋅=

17

Control System Configuration Section 1-4

Default Values The default settings are given below along with the resulting profiles. Frac-
tional values are allowed for gain settings.

1-4-2 Encoder Signals
Standard OMRON equipment is designed for an advanced phase-A for for-
ward rotation and an advanced phase-B for reverse rotation. For the encoder
input and output signals, the MC Unit is designed to comply with this phase
definition, allowing the MC Unit to be connected to other equipment without
problems.
With this arrangement, the direction of rotation can be easily detected by
monitoring the relative phase of both signals. If channel A leads channel B,
indicating clockwise (CW) movement, the counter will increment. Conversely,
if channel B leads channel A, indicating counterclockwise (CCW) movement,
the counter will decrement.
Typically, rotary encoders also provide an additional Z-marker as a reference
pulse within each revolution. By properly decoding and counting these
encoder signals, the direction of motion, speed, and relative position can be
determined.

Encoder input For the MC Unit encoder input, the pulse ratio is 4. Every encoder edge (pulse
edge for either A or B phase) is one internal count.

The signals A, B and Z appear physically as A+ and A-, B+ and B- and Z+ and
Z-. These appear as differential signals on twisted-pair wire inputs, ensuring
that common modes are rejected and that the noise level is kept to a mini-
mum.
When using encoders by other makers, check carefully the encoder specifica-
tion for phase advancement. If the definition differs from the ones given
above, reverse the B-phase wiring between the MC Unit and the Servo Driver.
In most case, this should resolve the problem.

Gain Default

Proportional Gain 0.1

Integral Gain 0.0

Derivative Gain 0.0

Output Speed Gain 0.0

Speed Feedforward Gain 0.0

Phase A

Phase B

Forward rotation (CW) Reverse rotation (CCW)

Counts (x4)
0 1 42 3 5 6 7 7 6 35 4 2 1 0

18

Control System Configuration Section 1-4

Encoder output For encoder output, the pulse ratio is 64. For every 16 internal counts one
encoder edge for one of the two phases will be produced.

The Z-phase signal has the following specification:
• The Z-marker has a period of 4096 generated edges.
• The pulse has a width of a quarter pulse period length (when both phase

A and B are low).
• The Z-phase signal is active after power-on.

The generated frequency is limited to the maximum allowable frequency. If
the internal speed would result in a frequency above this maximum, an axis
status flag will be set. See 8-2-1 MC Unit Error Handling for details.

Phase A

Phase B

Internal Counts
0 16 6432 48 80 96

Phase Z

19

Specifications Section 1-5

1-5 Specifications
1-5-1 General Specifications

The MC Unit provides the following general specifications.

Note The MC Unit cannot be used with software version 8.

1-5-2 Functional Specifications
The MC Unit provides the following functional specifications.

Item Contents

Applicable Servo Driver R88D-W Series (software version 14 or later, see note)

Servomotors Type R88M-W Series

Encoder Incremental / Absolute

Installation Method Mounted on the CN10 connector on the Servo Driver
side.

Basic Specifications Power Supply Method 5 VDC (supplied from the control power supply of the
Servo Driver)

24 VDC (supplied from external power supply)

Total Power Consumption 4.0 W

External Dimensions 20 x 142 x 128 mm (H x W x D)

Approx. Mass 200 g

Current Consumption 170 mA for 24 VDC

Output Power Supply 5 VDC, maximum 160 mA (to external encoder)

Environment Ambient Operating Tem-
perature

0 to 55°C

Ambient Operating
Humidity

90 % RH or less (non-condensing)

Ambient Atmosphere Free from corrosive gasses

Ambient Storage Temper-
ature

-20 to 75°C

Ambient Storage Humidity 90 % RH or less (non-condensing)

Vibration Resistance 4.9 m/s2

Impact Resistance Acceleration 19.6 m/s2 or less (when the impact is
applied three times in each X, Y, Z direction)

Item Contents

Type of Unit Optional board for W-series Servo Driver

Motion Control Speed Control Inferred closed loop with PID, output speed and speed
feed forward gains
Speed reference (open loop)
Possible torque limit operation

Torque Control Torque reference
Possible speed limit operation

Control Switch Speed / Torque control switching during operation

Configuration Maximum No. of axes 3

No. of controlled servo
axes

1

Maximum No. of encoder
in- or output axes

1

Maximum No. of virtual
axes

2

Servo Loop Cycle Selectable to 0.5 ms or 1.0 ms.

Measurement Units User definable

20

Specifications Section 1-5

Positioning operations Linear interpolation Linear interpolation for any number of axes

Circular interpolation Circular interpolation for any two axes

CAM profile CAM profile movement for any axis

Electronic gearbox Electronic gearbox link between any two axes

Linked CAM Linked CAM profile movement for any two axes

Linked move Linked move for any two axes

Adding axes Adding any two axes

Acceleration/deceleration curves Trapezoidal or S-curve

Servo Driver Access Motion Control Speed Control
Torque Control
Position Feed-back
Driver Enable
Driver Print Registration

Monitoring Driver Alarm and Warning Status
General Driver Status
Driver Digital Input
Driver Analogue Input
Driver Limit Switches

General Control Driver Alarm Reset
Driver Reset

Parameter Access Read and Write Pn-parameters
Read Un parameters

External connected devices Personal Computer with Motion Perfect Programming
Software

Serial Communications RS-232C Port 0:
Connection to PC (Motion Perfect Software)
Port 1:
Host Link Master protocol
Host Link Slave protocol
General-purpose

RS-422A/485 (MCW151-
E only)

Port 2:
Host Link Master protocol
Host Link Slave protocol
General-purpose

External
I/O

Encoder Input Line receiver input; maximum response frequency:
1500 kHz pulses (before multiplication)
Pulse multiplication:
x4

Encoder Output Line receive output; maximum frequency:
500 kHz pulses
Internal counts to output pulse ratio:
64 : 1

Digital Inputs Total of 8 digital inputs can be wired and used for
instance for limit switches, emergency stop and prox-
imity inputs. Two inputs can be used for registration of
the encoder input/output axis.

Digital Outputs Total of 6 digital outputs can be wired and used for
position dependent switching or other general pur-
poses.

Registration inputs Two registration inputs can be used (simultaneously) to
capture the position in hardware.

Switch setting DeviceNet settings (MCW151-DRT-E only)
General purpose (MCW151-E only)

Power supply for general and axis I/O Provided externally

Item Contents

21

Comparison between Firmware Versions Section 1-6

Note The service life for the flash memory is 100,000 writing operations.

1-5-3 DeviceNet Specifications (MCW151-DRT-E only)
The MC Unit provides the following DeviceNet specifications.

Note Terminating resistors are required at both ends of trunk line.

Refer to the DeviceNet Operation Manual (W267) for other communication
specifications, such as communication cycle times.

1-6 Comparison between Firmware Versions
The following table shows a comparison between the two current versions of
the R88A-MCW151-E and R88A-MCW151-DRT-E Motion Control Units. The
changes are only related to firmware (not hardware) and the firmware is com-
mon for both types. Verify the current version of the MC Unit using the VER-
SION parameter.

Task program manage-
ment

Programming language BASIC

Number of tasks Up to 3 tasks running simultaneously plus the Com-
mand Line task

Max. number of programs 14

Data storage capacity 251 (VR) + 8000 (Table) max.

Saving program data MC Unit Random Access Memory (RAM) and Flash memory
backup. (See note)

Personal Computer Motion Perfect software manages a backup on the
hard disk of the personal computer.

Self diagnostic functions Detection of memory corruption via checksum

Detection of error counter overrun

Item Contents

Item Contents

Communications protocol DeviceNet

Supported connections (communications) Master-Slave: Remote I/O and explicit messages

Both conform to DeviceNet specifications

Connection forms (see note) Combination of multi-drop and T-branch connections
(for trunk or drop lines)

Baud rate 500 kbps, 250 kbps, 125 kbps (switchable)

Communications media Special 5-wire cables (2 signal lines, 2 power lines, 1
shield line)

Communications dis-
tances

500 kbps Network length: 100 m max. (100 m max.)

Drop line length: 6 m max.

Total drop line length: 39 m max.

250 kbps Network length: 250 m max. (100 m max.)

Drop line length: 6 m max.

Total drop line length: 78 m max.

125 kbps Network length: 500 m max. (100 m max.)

Drop line length: 6 m max.

Total drop line length: 156 m max.

Parentheses indicate the length when Thin Cables are used.

Communications power supply 11 to 25 VDC (Supplied from the communications con-
nector)

22

Comparison between Firmware Versions Section 1-6

!Caution The R88A-MCW151-E FW 1.62 is fully backward compatible with the previ-
ous version FW 1.61. For the R88A-MCW151-DRT-E FW 1.62 many
DeviceNet implementation changes have been done. For both Units caution
must be taken when upgrading.

Item FW 1.61 FW 1.62

Commands and
instructions

ADD_DAC No. Yes.
Command to enable dual feed-
back control.

DeviceNet
(MCW151-DRT-E
only)

Software reset of
MC Unit

Possible by either bit in
Remote I/O Output word 1 or
Explicit Message command
RESET.

Possibly only by Explicit Mes-
sage command RESET.

Explicit messages
(read and write)

Different maximum transfer
amount for read and write.

Maximum amount of elements
to transfer (read/write) is 39
(three-word format) and 119
(one-word format).
See 4-2-2 Explicit DeviceNet
Messages.

Device objects - Update of Device objects.
See Appendix B Device Proto-
col (MCW151-DRT-E only).

23

SECTION 2
Installation

This section describes the MC Unit components and provides the information required for installing the MC Unit.

2-1 Components and Unit Settings . 24
2-2 Installation. 28

2-2-1 Installation Conditions . 28
2-2-2 Installation Method. 28
2-2-3 Dimensions . 29

2-3 Wiring . 30
2-3-1 Control Connections . 30
2-3-2 Serial Port Connections . 31
2-3-3 DeviceNet Connection . 36
2-3-4 I/O Specifications . 36
2-3-5 Connection examples . 38

2-4 Servo System Precautions . 39
2-5 Wiring Precautions . 40

24

Components and Unit Settings Section 2-1

2-1 Components and Unit Settings
The following diagram shows the main components of the MC Unit.

Indicators
The following table describes the indicators on the front of the MC Unit.

■ Motion Control

■ RS-422A/485 (MCW151-E only)

PO
R

T
0

,1

RUN STS

I/O

+ 24V

0V

25

1

2 6

2

SD RD

MCW151

P
O

R
T

2

PO
R

T
0

,1

MCW151-DRT

RUN

MS

STS

NS

I/O

+ 24V

0V

25

1

2 6

2

Indicators

I/O Connector

RS-232C Ports
Connector

RS-422A/485 Port
Connector

Power Connector

DeviceNet
Connector

Indicator Color Status Meaning

RUN Green ON The MC Unit is operating normally.

OFF The MC Unit did not start properly or is not pow-
ered on.

Flashing with
STS

An error occurred in the communication with the
Servo Driver.

STS Red ON The axis has been disabled. The Servo Enable
is not ON.

OFF The axis is enabled.

Flashing alone A motion error has occurred. The Servo Driver
has been disabled.

Flashing with
RUN

An error occurred in the communication with the
Servo Driver.

Indicator Color Status Meaning

SD Green ON Transmitting data.

OFF No communication.

RD Green ON Receiving data.

OFF No communication.

25

Components and Unit Settings Section 2-1

■ DeviceNet (MCW151-DRT-E only)

Switch Settings
The MCW151 Units are equipped with the following DIP-switches.

■ DeviceNet Switch Settings (MCW151-DRT-E only)
The external switch settings will set the Slaves’ node address setting and
baud rate setting.

Node address
The node address of the slave is set with pins 1 through 6 of the DIP switch.
Any node address within the setting range can be used as long as it is not
already set on another node.

Indi
ca-
tor

Color Status Definition Meaning

MS Green ON Device
Operational

Normal operating status.

Flashing Device in
Standby

Reading switch settings.

Red ON Unrecover-
able Fault

Unit hardware error: Watchdog timer error.

Flashing Minor Fault Switch settings incorrect.

--- OFF No Unit
Power

Unit power is not supplied, waiting for initial
processing to start, or the Unit is being reset.

NS Green ON Link OK.
Online, Con-
nected.

Network is operating normally (communica-
tions established).

Flashing Online, Not
connected

Network is operating normally, but communi-
cations have not yet been established.

Red ON Critical Link
Failure

A fatal communications error has occurred.
Network communications are not possible.

Flashing Connection
Timeout

Communications timeout.

--- OFF No Fieldbus
Power / Not
Online

Checking for node address duplication on the
Master, switch settings are incorrect, or field-
bus power is not supplied.

1
2

3
4

5
6

7
8

9
1

0

O
N1 NA0

NA12
NA23
NA34
NA45
NA56
MD07
NC8
DR09
DR110

ON

26

Components and Unit Settings Section 2-1

0: OFF, 1: ON

Baud rate
Pins 9 and 10 are used to set the baud rate as shown in the following table.

Note 1. Always turn OFF the MC Unit’s power supply (including the communica-
tions power supply) before changing the baud rate setting.

2. Set the same baud rate on all of the nodes (master and slaves) in the Net-
work.

Other settings
Pin 7 is used to select the I/O Slave Messaging mode. This determines the
allocation of the I/O Slave Messaging mode area.

Pin 8 is not used.

■ General Switch Settings (MCW151-E only)

For the MCW151-E the external DIP switch can be used for general purpose.
The value of the switch can be accessed using the SWITCH_STATUS param-
eter.

DIP switch setting Node address

Pin 6 Pin 5 Pin 4 Pin 3 Pin 2 Pin 1

0 0 0 0 0 0 0 (default)

0 0 0 0 0 1 1

0 0 0 0 1 0 2

... ...

1 1 1 1 0 1 61

1 1 1 1 1 0 62

1 1 1 1 1 1 63

Pin 10 Pin 9 Baud rate

OFF OFF 125 kbps (default)

OFF ON 250 kbps

ON OFF 500 kbps

ON ON Not allowed

Pin 7 I/O Slave Messaging Mode

OFF Mode I (default)

ON Mode II

11 SW1
SW22
SW33
SW44
SW55
SW66
SW77
SW88
SW99
SW1010

2
3

4
5

6
7

8
9

1
0

O
N

ON

27

Components and Unit Settings Section 2-1

0: OFF, 1: ON

■ Internal Switches

Switch SW2 (MCW151-E only)

Pin 1 and 2 select the serial communication for port 2.

Pin 3 selects the termination resistor between receive pins (RD+ / RD -) for
port 2.

Pin 4 is not used.

Switch SW3
Pin 1 through 3 enable the termination resistor for the encoder channel A, B
and Z.

Pin 4 is not used.

DIP switch setting Parameter
valuePin

10
Pin
9

Pin
8

Pin
7

Pin
6

Pin
5

Pin
4

Pin
3

Pin
2

Pin
1

0 0 0 0 0 0 0 0 0 0 0 (default)

0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 1 0 2

... ...

1 1 1 1 1 1 1 1 0 1 1021

1 1 1 1 1 1 1 1 1 0 1022

1 1 1 1 1 1 1 1 1 1 1023

12 3

ON

4

12 3

ON

4

SW2

SW3

123

ON

4

123

ON

4

SW2

SW3

Pin 2 Pin 1 Selection

OFF OFF RS-422A (default)

ON ON RS-485

Other not allowed

Pin 3 Selection

OFF Termination disabled (default)

ON Termination enabled

Pin 3
(channel Z)

Pin 2
(channel B)

Pin 1
(channel A)

Selection

OFF Termination disabled for channel
(default)

ON Termination enabled

28

Installation Section 2-2

2-2 Installation
2-2-1 Installation Conditions

Follow the procedure below to install multiple Servo Drivers side by side in a
control panel.

■ Servo Driver Orientation
Install the Servo Driver perpendicular to the wall so that the front panel (dis-
play and setting section) faces forward.

■ Cooling
As shown in the figure above, provide sufficient space around each Servo
Driver for cooling by cooling fans or natural convection.

■ Side-by-side Installation
When installing Servo Drivers side-by-side as shown in the figure above, pro-
vide at least 10 mm between and at least 50 mm above and below each
Servo Driver. Install cooling fans above the Servo Drivers to avoid excessive
temperature rise and to maintain even temperature inside the control panel.

■ Environmental Conditions
• Ambient operating temperature: 0 to 55°C
• Ambient operating humidity: 20% to 90% RH (no condensation)
• Vibration: 4.9 m/s2

2-2-2 Installation Method
When installing the MC Unit

1,2,3... 1. Insert the lower two extensions into the bottom mounting holes on the right
side of the Servo Driver.

2. Move the upper side of the MC Unit towards the Driver and verify the Servo
Driver connector will directly fit into the MC Unit connector. Click the higher
extension into the upper mounting hole.

25

1

0V

+ 2 4 V

2 6

I/O

2

MCW151

SD

RUN

P
O

R
T

2
PO

R
T

0
,1

RD

STS

25

1

0V

+ 2 4 V

2 6

I/O

2

MCW151

SD

RUN

P
O

R
T

2
PO

R
T

0
,1

RD

STS

25

1

0V

+ 2 4 V

2 6

I/O

2

MCW151

SD

RUN

P
O

R
T

2
PO

R
T

0
,1

RD

STS

2 5

1

0V

+ 2 4 V

2 6

I/O

2

MCW151

SD

RUN

P
O

R
T

2
PO

R
T

0
,1

RD

STS

Fan Fan

30 mm min. 10 mm min. 50 mm min.

50 mm min.

29

Installation Section 2-2

When removing the MC Unit, press down the top of the MC Unit case and
remove the upper extension from the Driver.

2-2-3 Dimensions
The basic dimensions of the MC Unit are shown below.

26

+ 24 V

0V

25

I/O

1

2

PO
R

T0
,1

PO
RT

2

RUN

SD
RD

MCW151
STS

+ 24V

0V

25

1

26

2

I/O

RUN

PO
R

T
2

PO
R

T
0,

1

MCW151

SD RD

STS
ON

O
N

4 SW4
3 SW3

SW10
SW9
SW8
SW7
SW6
SW5

8

10
9

6
7

5

8
1

0
9

7
6

5
4

SW2
SW11

2

1
3

2

30

Wiring Section 2-3

2-3 Wiring
2-3-1 Control Connections

I/O Connector
The I/O Connector is used for wiring to the digital I/O and the connection for
the encoder input or encoder output. Refer to 2-3-4 I/O Specifications for elec-
trical specifications.

Connector pin
arrangement

I/O Connector Pin
Functions

A+ 1 2 A-

B+ 3 4 B-

Z+ 5 6 Z-

0V_ENC 7 8 5V_ENC

I0 / R0 9 10 FG

I2 11 12 I1 / R1

I4 13 14 I3

I6 15 16 I5

0V_IN 17 18 I7

O8 19 20 O9

O10 21 22 O11

O12 23 24 O13

0V_OP 25 26 24V_OP

I/O

25

1

26

2

Pin Signal

Name Function

1 A+ Encoder phase A+ (Input / Output)

2 A- Encoder phase A- (Input / Output)

3 B+ Encoder phase B+ (Input / Output)

4 B- Encoder phase B- (Input / Output)

5 Z+ Encoder phase Z+ (Input / Output)

6 Z- Encoder phase Z- (Input / Output)

7 0V_ENC Encoder 0V common

8 5V_ENC Encoder 5V power supply output

9 I0 / R0 (Registration) Input 0

10 FG Frame Ground

11 I2 Input 2

12 I1 / R1 (Registration) Input 1

13 I4 Input 4

14 I3 Input 3

15 I6 Input 6

16 I5 Input 5

17 0V_IN Inputs 0V common

18 I7 Input 7

19 O8 Output 8

20 O9 Output 9

21 O10 Output 10

22 O11 Output 11

23 O12 Output 12

24 O13 Output 13

25 0V_OP Outputs 0V common

26 24V_OP Outputs 24V power supply input

31

Wiring Section 2-3

I/O Connector Type Weidmüller B2L 3.5/26 SN SW (included in package)

Wiring Instructions

Power Connector
The Power Connector is used to connect the 24V power supply to the MC
Unit.

Connector pin
arrangement

Power Connector Type Phoenix MSTB 2.5/3-ST-5.08 (included in package)

2-3-2 Serial Port Connections
RS-232C Connections

The MC Unit has two serial RS-232C ports for communication with external
devices.

RS-232C Interface Specifications

1

2

3

Pin Name Function

1 +24 V Power Supply 24V

2 0 V Power Supply 0V

3 FG Frame Ground

+ 24V

0V

Item Specifications

Electrical characteristics Conform to EIA RS-232C

Synchronization Start-stop synchronization (asynchronous)

Baud rate 1200 / 2400 / 4800 / 9600 / 19200 / 38400 bps

Transmission Format Databit Length 7 or 8 bit

Stop Bit 1 or 2 bit

Parity Bit Even/Odd/None

Transmission Mode Point-to-point (1:1)

Pin Symbol Name Port Direction

1 - Not used -

2 RS-1 Request to send 1 Output

3 SD-0 Send data 0 Output

4 SG-0 Signal ground 0 -

5 RD-0 Receive data 0 Input

6 SD-1 Send data 1 Output

7 SG-1 Signal ground 1 -

8 RD-1 Receive data 1 Input

PO
R

T
0

,1

1
36
47

8 5
2

32

Wiring Section 2-3

RS-422A/485 Connection (MCW151-E only)
The MCW151-E has one serial RS-422A/485 port for communication with
external devices.

RS-422A/485 Interface Specifications (MCW151-E only)

Transmission Protocol Port 0 Motion Perfect Protocol

Port 1 Host Link Protocol (Master / Slave)
General-purpose

Galvanic Isolation No

Connector type 8-pin miniDIN

Communication buffers 254 bytes (port 1)

Recommended Cables R88A-CCM002P4 Programming Port 0 Connection Cable to Personal
Computer

R88A-CCM001P5-E Splitter cable for serial ports 0 and 1

Cable length 15 m max.

Item Specifications

Item Specifications

Electrical characteristics Conform to EIA RS-422A/485

Synchronization Start-stop synchronization (asynchronous)

Baud rate 1200 / 2400 / 4800 / 9600 / 19200 / 38400 bps

Transmission Format Databit Length 7 or 8 bit

Stop Bit 1 or 2 bit

Parity Bit Even/Odd/None

Transmission Mode Point-to-multipoint (1:N)

Transmission Protocol RS-422A Host Link Protocol (Master / Slave)
General Purpose

RS-485 General Purpose

Galvanic Isolation Yes

Connector type Phoenix MSTB 2.5/5-ST-5.08 (included in package).

Communication buffers 254 bytes

Flow control None

Terminator Yes, internal 220 selectable by DIP-switch SW2

Cable length 500 m max.

Pin Symbol Name Port Direction

1 RD- Receive data (-) 2 Input

2 RD+ Receive data (+) 2 Input

3 FG Frame Ground 2 -

4 SD- Send data (-) 2 Output

5 SD+ Send data (+) 2 Output

PO
R

T
2

Ω

33

Wiring Section 2-3

Connection Examples

■ Direct Connections Using RS-232C Port 0

IBM PC/AT or Compatible Computers

■ Direct Connections Using RS-232C Port 1

Programming Terminal (PT)

Note MC Unit Communication Mode: Host Link Slave

PC

Note MC Unit Communication Mode: Host Link Master

Computer

RS-232C
Interface

Signal Pin

RD 2

SD 3

GND 5

RS 7

CS 8

FG Shell

MC Unit
Pin Signal

RS-232C
Interface

3 SD-0

4 SG-0

5 RD-0

Shell FG

D-sub 9-pin
connector (male)

mini-DIN 8-pin
connector (male)

MC Unit

RS-232C
Interface

Signal Pin

RS-1 2

SD-1 6

SG-1 7

RD-1 8

FG Shell

Programmable Terminal (PT)
Pin Signal

RS-232C
Interface

2 SD

3 RD

4 RS

5 CS

9 SG

D-sub 9-pin
connector (male)

mini-DIN 8-pin
connector (male)

MC Unit

RS-232C
Interface

Signal Pin

RS-1 2

SD-1 6

SG-1 7

RD-1 8

FG Shell

PC
Pin Signal

RS-232C
Interface

2 SD

3 RD

4 RS

5 CS

9 SG

Shell FG

D-sub 9-pin
connector (male)

mini-DIN 8-pin
connector (male)

34

Wiring Section 2-3

■ 1:N Connections Using RS-232C Port 1
Use the NT-AL001-E Converter Link Adapter

■ 1:1 Connections Using RS-422A/485 Port 2 (MCW151-E only)

Programming Terminal (PT)

Note MC Unit Communication Mode: Host Link Slave

PC (Serial Communication Board)

Note MC Unit Communication Mode: Host Link Master

MC Unit

RS-232C
Interface

Signal Pin

RS-1 2

SD-1 6

SG-1 7

RD-1 8

FG Shell

General Device
Signal

RS-422A
Interface

Frame ground

Signal ground

Receive data (+)

Receive data (-)

Send data (+)

Send data (-)

D-sub 9-pin
connector (male)

mini-DIN 8-pin
connector (male)

Pin Signal

RS-232C
Interface

2 SD

3 RD

4 RS

5 CS

6 +5V

9 SG

RS-422A
Interface

Signal Pin

FG 1

SG 2

SDB 3

SDA 4

RDB 5

RDA 6

CSB 7

CSA 8

NT-AL001

Terminal Block

MC Unit

Power
Supply
(5V)

Signal

+

-

MC Unit

RS-422A
Interface

Signal Pin

RD- 1

RD+ 2

FG 3

SD- 4

SD+ 5

Programmable Terminal (PT)
Signal

RS-422A
Interface

SDA

SDB

-

RDA

RDB

COMBICON
Plug

Terminal Block

MC Unit

RS-422A
Interface

Signal Pin

RD- 1

RD+ 2

FG 3

SD- 4

SD+ 5

PC
Pin Signal

RS-422A
Interface

1 SDA

2 SDB

Shell FG

6 RDA

8 RDB

D-sub 9-pin
connector (male)

COMBICON
Plug

35

Wiring Section 2-3

1:N, 4-wire Connections Using RS-422A/485 Port 2 (MCW151-E only)

Note MC Unit Communication Modes: Host Link Master and Slave

1:N, 2-wire Connections Using RS-422A/485 Port 2 (MCW151-E only)

Note 1. MC Unit Communication Mode: General-purpose
2. For the 2-wire system (Switch SW2: pin 1,2 =ON), the RD- and SD- resp.

the RD+ and SD+ are interconnected within the MC Unit.

MC Unit

RS-422A
Interface

Signal Pin

RD- 1

RD+ 2

FG 3

SD- 4

SD+ 5

MC Unit
Pin Signal

RS-422A
Interface

1 RD-

2 RD+

3 FG

4 SD-

5 SD+

MC Unit
Pin Signal

RS-422A
Interface

1 RD-

2 RD+

3 FG

4 SD-

5 SD+

COMBICON
Plug

COMBICON
Plug

COMBICON
Plug

DIP switch SW2
Pin 1 OFF
Pin 2 OFF
Pin 3 ON

DIP switch SW2
Pin 1 OFF
Pin 2 OFF
Pin 3 OFF

DIP switch SW2
Pin 1 OFF
Pin 2 OFF
Pin 3 ON

MC Unit

RS-485
Interface

Signal Pin

RD- 1

RD+ 2

FG 3

SD- 4

SD+ 5

MC Unit
Pin Signal

RS-485
Interface

1 RD-

2 RD+

3 FG

4 SD-

5 SD+

MC Unit
Pin Signal

RS-485
Interface

1 RD-

2 RD+

3 FG

4 SD-

5 SD+

COMBICON
Plug

COMBICON
Plug

COMBICON
Plug

DIP switch SW2
Pin 1 ON
Pin 2 ON
Pin 3 ON

DIP switch SW2
Pin 1 ON
Pin 2 ON
Pin 3 OFF

DIP switch SW2
Pin 1 ON
Pin 2 ON
Pin 3 ON

36

Wiring Section 2-3

2-3-3 DeviceNet Connection
This section explains the pin allocation of the DeviceNet connector for the
DeviceNet network. For further details on how to connect the DeviceNet net-
work, refer to DeviceNet Operation Manual (W267).

2-3-4 I/O Specifications
The following tables provide specifications and circuits for the I/O and
Encoder connections.

Digital Inputs

Input Response times
The response times given in the following table are the times between the
change in the input voltage and the corresponding change in the IN parame-
ter.
These times are depending on the MC Unit’s Servo Period and the priority of
the corresponding BASIC task and they include the physical delays in the
input circuit.

Print Registration delay time
The print registration is used to capture position data in hardware triggered by
either a digital input or the Z-marker encoder signal. For the encoder axis 1
the print registration delay times are given by

Pin Symbol Signal Color of Cable

1 V+ Power line, positive voltage Red

2 CAN-H Communications line, high White

3 Shield Shield -

4 CAN-L Communications line, low Blue

5 V- Power line, negative voltage Black

Digital inputs: I0 to I7

Item Specification Circuit Configuration

Type PNP

Maximum voltage 24 VDC + 10%

Input current 7.0 mA at 24 VDC

ON voltage 11 V min.

OFF voltage 1 V max.
0V common for input circuits

0V_IN 17

I0/R0 9

Motion Control Unit

External power
supply 24V 3.3Ω

3.3kΩ

Task Priority \ Servo Period 0.5 ms 1.0 ms

High Priority 1.8 ms (max.) 2.3 ms (max.)

Low Priority 2.8 ms (max.) 3.3 ms (max.)

37

Wiring Section 2-3

Digital Outputs

Output response times
The response times given in the following table are the times between a
change in the OP parameter and the corresponding change in the digital out-
put circuit.
These times are mainly depending on the MC Unit’s Servo Period and they
include the physical delays in the output circuit.

Encoder Input

Description Delay Time

Digital Input I0/R0 and I1/R1 (rising edge) 50 s

Digital Input I0/R0 and I1/R1 (falling edge) 150 s

Z-marker (rising edge) 2 s

Z-marker (falling edge) 2 s

µ
µ

µ
µ

Digital outputs: O8 to O13

Item Specification Circuit Configuration

Type PNP

Current capacity 100 mA each output
(600 mA total for
group of 6)

Maximum voltage 24 V + 10%

Protection Over current, over
temperature and 2 A
fuse on common To other output circuits

In
te

rn
al

 C
irc

ui
try

 (g
al

va
ni

ca
lly

is
ol

at
ed

 fr
om

 s
ys

te
m

)

Motion Control Unit

0V_OP

24V_OP

O8

2A Fuse

19

26

25

External power
supply 24V

LO
A

D

Equivalent
circuit

Servo Period Response time

0.5 ms 0.8 ms (max.)

1.0 ms 1.3 ms (max.)

Item Specification Circuit Configuration

Signal level EIA RS-422A Stan-
dards

Input impedance 48 k min.

Response frequency 1500 kp/s

Termination Yes, 220 select-
able by switch

Galvanic isolation No

Motion Control Unit

Phase A axis 1

Phase B axis 1

Phase Z axis 1

Line receiver

0V

+5V

0V

+5V

0V

+5V

A+

2
A-

1

4
B-

3
B+

6
Z-

5
Z+

Ω

Ω

38

Wiring Section 2-3

Encoder Output

2-3-5 Connection examples
Cascading encoder signal (MCW151 to MCW151)

Connecting master encoder input signal from W-series Servo Driver

Item Specification Circuit Configuration

Signal level EIA RS-422A Stan-
dards

Maximum frequency 500 kp/s

Galvanic isolation No

A+

2
A-

1

Motion Control Unit

Phase A axis 1

4
B-

3

Phase B axis 1

B+

6
Z-

5

Phase Z axis 1

Z+

Line transmitter

0V

+5V

0V

+5V

0V

+5V

MCW151 (output)

A+ 1

A- 2

B+ 3

B- 4

Z+ 5

Z- 6

0V_ENC 7

5V_ENC 8

FG 10

MCW151 (input)

1 A+

2 A-

3 B+

4 B-

5 Z+

6 Z-

7 0V_ENC

8 5V_ENC

10 FG

W-series Servo Driver

A+ 33

A- 34

B+ 36

B- 35

Z+ 19

Z- 20

FG Shell

MCW151 (input)

1 A+

2 A-

3 B+

4 B-

5 Z+

6 Z-

7 0V_ENC

8 5V_ENC

10 FG

39

Servo System Precautions Section 2-4

Connecting master external encoder signal

2-4 Servo System Precautions
The following precautions are directly related to the operation of the servo
system. Refer to 1-4-1 Servo System Principles for a description of servo sys-
tem operation.
The direct connection of the MC Unit to the Servo Driver provides a safe inter-
face without the risk of disconnected or faulty wiring. The interface provides
the MC Unit good monitoring operation to check the state of the Servo Driver
at any given time. The Servo Driver Alarms and Warnings can be quickly dis-
tinguished and appropriate action can be taken.
If the communications between the MC Unit and Servo Driver fail, this is
detected by either of the Units. The system will be halted into a fail-safe state.
For any details about the MC Unit and Servo Driver error handling and alarm
definitions, refer to SECTION 8 Troubleshooting.

Precautions for safe
operation

In a servo system employing a Servomotor, an unforeseen event may cause
the Servomotor to run out of control. Therefore, careful attention must be paid
to include sufficient safety measures into the system design.
To guarantee fail-safe operation for any circumstances or occurrences, the
following precautions must be taken.

Following Error Limit Setting
An important motion control safety precaution of the MC Unit is the following
error limit checking. When the Servomotor is controlled to follow a specific
demanded motion profile, this will always produce a following error between
the demanded and actual measured position.
The maximum allowable value for this following error can be set with the
FE_LIMIT axis parameter. When the following error at one moment exceeds
the limit, a Motion Error will occur. The Servo Driver will be disabled and all
motion will come to a halt. The user must be sure that this does not have an
adverse effect on the machine. Determine the value of following error limit
carefully according to the operating conditions of the application. See 6-3-74
FE_LIMIT for details.

External Limit Switches
The second safety precaution which is required is the use of limit switches.
Monitoring sensors are installed at the edges of the workpiece’s range of
movement to detect abnormal workpiece movement and stop operation if a
runaway occurs.
Although the limit switches can be connected either to the MC Unit as to the
Servo Driver, it is strongly recommended to connect the limit switches to the

MCW151 (input)

1 A+

2 A-

3 B+

4 B-

5 Z+

6 Z-

7 0V_ENC

8 5V_ENC

Encoder

Line Driver output
Example: E6B2-CWZ1X

Black: Phase A+

Black/red: Phase A-

White: Phase B+

White/red: Phase B-

Orange: Phase Z+

Orange/red: Phase Z-

Blue: 0V (COM)

Brown: 5V DC

40

Wiring Precautions Section 2-5

Servo Driver. This will achieve a fast response of both the Servo Driver and
MC Unit.
For the Servo Driver, the limit switches should be connected to pins CN1-42
(FWD) and CN1-43 (REV). When using the MC Unit, the switches can be con-
nected to any of the inputs. In both cases the axis parameters FWD_IN and
REV_IN for axis 0 are used to assign the limit switch inputs for the MC unit.
When the Servo Driver inputs are used, define FWD_IN=18 and REV_IN=19.
When the limits are connected to the Servo Driver and the correct settings are
set, the Driver will apply the dynamic brake to stop the Servomotor. Also the
appropriate bit of the AXISSTATUS axis parameter will be set.

2-5 Wiring Precautions
Electronically controlled equipment may malfunction because of noise gener-
ated by power supply lines or external loads. Such malfunctions are difficult to
reproduce, and determining the cause often requires a great deal of time. The
following precautions will aid in avoiding noise malfunctions and improving
system reliability.

• Use electrical wires and cables of the designated sizes as specified in the
operation manual for the Servo Driver. Use larger size cables for FG lines
of the Servo Driver and ground them over the shortest possible distances.

• Separate power cables (AC power supply lines and motor power supply
lines) from control cables (encoder lines and external input signal lines).
Do not group power cables and control cables together or place them in
the same conduit.

• Use shielded cables for control lines.
• Use the ready-made cables designed for MC Unit to reduce connectivity

problems.
• Connect a surge absorbing diode or surge absorber close to relays. Use a

surge-absorbing diode with a voltage tolerance of at least five times
greater than the circuit voltage.

• Noise may be generated on the power supply line if the same power sup-
ply line is used for an electric welder or electrical discharge unit. Connect

DC relay

RY
DC

+

-

Surge
absorbing
diode

AC relay

RY
AC Surge

absorber

Solenoid

Surge
absorberSOL

41

Wiring Precautions Section 2-5

an insulating transformer and a line filter in the power supply section to
remove such noise.

• Use twisted-pair cables for power supply lines. Use adequate grounds

(i.e., to 100 Ω or less) with wire cross sections of 1.25 mm2 or greater.
• Use twisted-pair shielded cables for control voltage output signals, input

signals and encoder signals.
• The maximum distance for the encoder signal from an encoder to the MC

Unit must not exceed 20 m.
• The input terminals that operate the 24 V system are isolated with optical

couplers to reduce external noise effects on the control system.

43

SECTION 3
Motion Control Functions

This section describes the different Motion Control functions of the MC Unit. Also the functionality of the Servo Driver
related commands are explained.

3-1 Overview . 44
3-2 System Set-up . 46
3-3 System Functions . 47

3-3-1 Servo Driver Control. 47
3-3-2 Digital I/O . 50
3-3-3 Monitoring Data . 52
3-3-4 Absolute Encoder . 54
3-3-5 Other Servo Driver Commands . 57

44

Overview Section 3-1

3-1 Overview
The MC Unit together with the Servo Driver combine into one complete Servo
System which is able to control the application. All Motion Control commands
and data transfers are directly communicated between the MC Unit and the
Servo Driver.

MC Axis Configuration The MC Unit has 3 axes in total, which can be used for different motion con-
trol purposes depending on the application. The following table lists the differ-
ent available axis types. The type of each axis is set by using the ATYPE axis
parameter.

■ Servo Axis
The servo axis for axis 0 controls the movement of the connected servo sys-
tem. The Servomotor can be controlled in both speed control as in torque con-
trol.
Speed control can be achieved in closed loop and in open loop. In closed
loop, the speed reference to the Servo Driver based on the calculated

MING

MCW151 Servo Driver

Servo
Control

RUN (Servo ON)

Speed Reference

Alarm Reset

Torque Reference

TVSEL

Position Data

Print Registration Data

Monitor Data

I/O Status Data

Control Status Data

Digital Inputs

Analog Input

Digital
I/O

Encoder
I/O

Axis 0: Servo

Axis 1: Enc In/ Out

Axis 2: Virtual

Axis
number

Axis type ATYPE
value

0 Servo 13

1 Virtual 0

Servo 2

Encoder input (default) 3

Encoder output 14

2 Virtual 0

45

Overview Section 3-1

(demanded) movement profile in the MC Unit and the actual (measured) posi-
tion feedback from the Servomotor according to the control gain settings. In
open loop, a set speed reference value is outputted to the Servo Driver.
The torque control is achieved by outputting a set torque reference value to
the Driver. The axis is capable of switching between torque and speed control
during operation.
The servo axis for axis 1 can provide a second servo control loop to enable
dual feed-back control. More details can be found at the ADD_DAC command
description.

■ Encoder Input Axis
The encoder input axis provides an axis which counts the position data from a
connected pulse generator such as a Servo Driver or an external encoder.
The encoder input axis can be used for for measurement, registration and/or
synchronisation functions.

■ Encoder Output Axis
The encoder output axis provides a way of generating an encoder signal
which is cascaded to another device. The encoder signal is controlled by the
internal position of this axis.
All move commands and axis parameters available for the servo axis are
available.

■ Virtual Axis
A virtual axis is used for computational purposes to create a move profile with-
out physical movement on any actual Servo Driver.
The virtual axis behaves like a perfect servo axis (measured position is equal
to the demand position). All move commands and axis parameters available
for the servo axis are available.

Using the Parameter Unit
or Front Panel

Apart from the MC Unit there are three ways of accessing the Servo Driver:
• Using the Front Panel on the Servo Driver.
• Using the Hand-held Parameter Unit of the Servo Driver.
• Using Servo Driver Monitoring Software on the personal computer.

These three methods enables the user to perform parameter settings, speed
and current monitoring, I/O monitoring, autotuning, jogging and other opera-
tions.

■ Limitations on using Parameter Unit together with the MC Unit
If the MC Unit is mounted to the Servo Driver, it is not allowed to have the
Parameter Unit or the Servo Driver Software connected to the Servo Driver
when performing the following operations:

• During start-up of the system (either by power-up or software reset).
• During reading or writing Servo Driver parameters using commands

DRV_READ and DRV_WRITE.
• During execution of any Driver Command in the MC Unit such as

DRV_RESET and DRV_CLEAR.

■ Front Panel Display Area
The Front Panel Display Area of the Servo Driver will not be lit in the following
circumstances.

Item Specification

Input pulse multiplication x4

Item Specification

Output pulse ratio 64 : 1 (internal counts : output encoder pulses)

Z-marker period 4096 generated encoder edges

46

System Set-up Section 3-2

• The Display will not be lit for some seconds during start-up (either by
power-up or software reset).

• The Display will not be lit for some time when the following commands are
executed in the MC Unit:

• Reading and writing Servo Driver parameters.
• Clearing the alarm status of the Servo Driver.

3-2 System Set-up
Servo Driver Settings

The Servo Driver is required to have the following settings. Refer to the
OMNUC W-series User’s manual (I531) for details.

Servo Cycle Period
Setting

The MC Unit SERVO_PERIOD system parameter can be used to set the MC
Unit Servo Cycle and the Servo Driver communication access time. The fol-
lowing values are valid:

SERVO_PERIOD = 500 s (default)

SERVO_PERIOD = 1000 s

Param-
eter No.

Parameter Name Required
Setting

Explanation Remark

Pn000.1 Control Mode
Selection

0 Speed Control

9 Torque / Speed Control

Pn002.0 Torque command
input (during
speed control)

0 Not used

1 Use TREF as analog torque
limit input

Pn002.1 Speed command
input (during
torque control)

0 Not used

1 Use (S)REF as analog speed
limit input

Pn003.0 Monitor 1 2 Torque Reference Monitor

Pn003.1 Monitor 2 0 Motor Speed Monitor

Pn50A.0 Input Signal Allo-
cation Mode

1 User-defined

Pn50A.1 RUN Signal Input
Allocation

8 Always disabled Switch is controlled by the MC
Unit.

Pn50A.2 MING Signal Input
Allocation

8 Always disabled Switch is controlled by the MC
Unit.

Pn50A.3 POT Signal Input
Allocation

2 Assigned to CN1, pin 42 (valid
for low input)

8 Always disabled

Pn50B.0 NOT Signal Input
Allocation

3 Assigned to CN1, pin 43 (valid
for low input)

8 Always disabled

Pn50B.1 RESET Signal
Input Allocation

8 Always disabled Switch is controlled by the MC
Unit.

Pn50C.3 TVSEL Signal
Input Allocation

8 Always disabled Switch is controlled by the MC
Unit.

Pn511.0 - 8 Always disabled

Pn511.1 - 8 Always disabled

Pn511.2 - 8 Always disabled

Pn511.3 /EXT3 (Print Reg-
istration) Signal
Input Allocation

6 Assigned to CN1, pin 46 (valid
for low input)

Print registration on rising
edge.

F Assigned to CN1, pin 46 (valid
for high input)

Print registration on falling
edge.

µ

µ

47

System Functions Section 3-3

!Caution When the parameter has been set, a power down or software reset (using
DRV_RESET) must be performed for the complete system. Not doing so may
result in undefined behaviour.

3-3 System Functions
This section explains all different functions of the MC Unit. The BASIC com-
mands, functions and parameters can also be found in SECTION 6 BASIC
Motion Control Programming Language.

3-3-1 Servo Driver Control
Speed Control The Speed Control mode is the main operation of the motion controller. The

speed control mode enables all different speed profiles determined by the
motion commands and possibly input encoder data. For an overview of the
available motion control commands which can be used, refer to 6-2-1 Motion
Control Commands.
For setting up a Motion Application with Speed Control, use one of the follow-
ing settings in the Servo Driver.

The following BASIC parameters need to be considered to set up the applica-
tion in the MC Unit.

Param-
eter No.

Parameter Name Required
Setting

Explanation

Pn000.1 Control Mode
Selection

0 Speed Control

9 Torque / Speed Control

Parameter Description

WDOG The WDOG parameter is the software switch used to control the
Driver’s Servo ON input, which enables the driver.

SERVO The SERVO parameter determines whether the base axis runs
under position control (ON) or open loop (OFF). When in open
loop the output speed reference voltage is determined by the
S_REF parameter.

S_REF The S_REF parameter contains the speed reference value which
is applied to the Servo Driver when the base axis is in open loop.

P_GAIN The P_GAIN parameter contains the proportional gain for the
axis.

I_GAIN The I_GAIN parameter contains the integral gain for the axis.

D_GAIN The D_GAIN parameter contains the derivative gain for the axis.

VFF_GAIN The VFF_GAIN parameter contains the speed feed forward gain
for the axis.

OV_GAIN The OV_GAIN parameter contains the output speed gain for the
axis.

48

System Functions Section 3-3

■ Speed Reference
The Servomotor rotational speed is proportional to the speed reference value
resulting from either servo control or open loop (S_REF parameter). The
speed reference characteristics are given in the following graph.

The speed characteristics are Servomotor dependent. The S_RATE axis
parameter specifies the speed reference rate of the attached motor. This rate
is defined as the amount of Rotational speed (in RPM) per unit of speed refer-
ence.

■ Programming Example
In the following example a simple motion application including initiation for a
single axis is shown.
init:

BASE(0)
P_GAIN=.5: I_GAIN=0: D_GAIN=0
VFF_GAIN=0: OV_GAIN=0
ACCEL=1000
DECEL=1000
SPEED=500
WDOG=ON
SERVO=ON

loop:
MOVE(500)
WAIT IDLE
WA(250)
MOVE(-500)
WAIT IDLE
WA(250)
GOTO loop

■ Torque Limit Settings
During speed control, it is possible to limit the torque applied by the Servo
Driver by using the torque reference. The required Servo Driver setting is
Pn002.0=1 and refer to the Torque control section below for details on the
torque reference.

Speed
reference

Rotational
Speed [RPM]

15000
-15000

1

S_RATE

Overspeed (+)

Overspeed (-)

Rated speed (+)

Rated speed (-)

Rotational Speed [RPM] Speed Reference S_RATE⋅=

49

System Functions Section 3-3

Torque Control The Torque Control mode is used to apply a fixed torque, independent of the
travelling speed. This mode can be used for specific applications which
require a constant pressure.
To set up a Motion Application with Torque Control, the following setting in the
Servo Driver is required.

The output no. 16 is used to control the switch between speed and torque
control during operation. Speed control will be applied when OP(16)=OFF,
and torque control will be enabled when OP(16)=ON. The torque control ref-
erence value is set by the T_REF axis parameter.

■ Torque Reference
The torque applied to the Servomotor is proportional to the torque reference
value defined by the T_REF axis parameter. The torque reference character-
istics are given in the following graph.

The torque characteristics are Servomotor dependent. The actual applied
torque of the Servomotor as percentage of the rated torque can be deter-
mined by using the T_RATE axis parameter.

Param-
eter No.

Parameter Name Required
Setting

Explanation

Pn000.1 Control Mode
Selection

9 Torque / Speed Control

Speed
Control

Speed
Control

Torque
Control

Time

OP(16) ONOFF OFF

Torque
reference

Applied Torque
[% of rated torque]

15000
-15000

1

T_RATE

Max. torque (+)

Max. torque (-)

Rated torque
(+ 100%)

Rated torque
(- 100%)

Applied Torque [% of rated torque] T_REF T_RATE⋅=

50

System Functions Section 3-3

■ Speed Limit Settings
During torque control, it is advisable to limit the Servomotor speed by using
the speed reference. The required Servo Driver setting is Pn002.1=1 and
please refer to the Speed Control section above for details on the speed refer-
ence in open loop.

3-3-2 Digital I/O
The MC Unit has two different types of digital I/O. These are the digital I/O on
the MC Unit and the mapping of the Servo Driver digital I/O. The inputs and
outputs are accessible by using the IN and OP commands in BASIC.

Input Mapping

■ MC Unit Digital Inputs
The MC Unit inputs are freely allocable to different functions. Some of the
functions are origin search, limit switches, jog inputs and so on. The MC Unit
uses axis parameters to allocate a certain function to an input. The following
table introduces the related axis parameters.

■ Servo Driver Digital Inputs
The digital inputs of the Servo Driver (CN1-40 to CN1-46) can be directly
accessed from the MC Unit. The mapping of the inputs is specified in the fol-
lowing table.

■ Servo Driver Output Signals
The relevant Servo Driver output signals can be monitored in the MC Unit.
The mapping of the output signals is specified in the following table.

Type Description Range (amount)

Input mapping MC Unit Digital Inputs 0 - 7 (8)

Servo Driver Digital Inputs 16 - 22 (7)

Servo Driver Output Signals 24 - 31 (8)

Output mapping MC Unit Digital Outputs 8 - 13 (6)

Servo Driver Control Signals 16 - 17 (2)

Parameters Description

DATUM_IN Selection origin switch input

FAST_JOG Selection of fast jog input

FHOLD_IN Selection of feedhold input

FWD_IN Selection of forward limit input

FWD_JOG Selection of forward jog input

REV_IN Selection of reverse limit input

REV_JOG Selection of reverse jog input

Input
nr.

Servo Driver
Input

Description (according to required Servo Driver
settings)

16 CN1-40 General purpose 1

17 CN1-41 General purpose 2

18 CN1-42 Forward drive prohibit (POT) / General purpose 3

19 CN1-43 Reverse drive prohibit (NOT) / General purpose 4

20 CN1-44 General purpose 5

21 CN1-45 General purpose 6

22 CN1-46 Registration input / General purpose 7

Input
nr.

Servo Driver
Signal

Description

24 ALM Alarm output

25 WARN Overload or regenerative overload warning output

51

System Functions Section 3-3

Print Registration For both the Servo Driver axis 0 as the encoder input / output axis 1 the REG-
IST command can be used to perform print registration on the axis. Print reg-
istration captures an axis position as soon as a registration event occurs. The
registration event can be defined to be the moment when a registration input
or the Z-marker has been detected. Check the description of the REGIST
command for further details on print registration.

■ Print registration axis 0
Print registration on axis 0 is done by using the mechanism of the Servo
Driver. The registration can be triggered by either the Servomotor encoder Z-
marker or by the CN1-46 input of the Servo Driver. When the input is used,
one of the following settings is required.

■ Print registration axis 1
Print registration on axis 1 is done by using the MC Unit registration mecha-
nism. The registration can be triggered by either the input I0/R0, input I1/R1 or
the encoder input Z-marker of the MC Unit.
Two registration registers are provided for the axis. This allows for two simul-
taneous registration events for which the difference in positions can be deter-
mined.

Driver Limit Switches The limit switches should be connected to the Servo Driver. In this case both
the Servo Driver and the MC Unit are able to put the system into a safe state.
In order to use the Driver POT and NOT signals also in the MC Unit, the fol-
lowing settings are required:

If one of the limits is reached, appropriate countermeasures will be performed.
See SECTION 8 Troubleshooting for details.

Output Mapping

■ MC Unit Digital Outputs
The physical outputs are freely allocable to any user defined functions. An
output can be set and reset depending on the current axis position by using
the command PSWITCH.

26 VCMP Speed conformity output

27 TGON Servomotor rotation detection output

28 READY Servo ready output

29 CLIMT Current limit detection output

30 VLIMT Speed limit detection output

31 SVON Servo ON complete

Input
nr.

Servo Driver
Signal

Description

Param-
eter No.

Parameter Name Required
Setting

Explanation Remark

Pn511.3 /EXT3 (Print Reg-
istration) Signal
Input Allocation

6 Assigned to CN1, pin 46 (valid
for low input)

Print registration on rising
edge.

F Assigned to CN1, pin 46 (valid
for low input)

Print registration on falling
edge.

FWD_IN=18 and REV_IN=19

52

System Functions Section 3-3

■ Servo Driver Control Signals
Two output signals are implemented as Servo Driver control signals. The con-
trol signals are the TVSEL and MING signals and they are specified as fol-
lows:

3-3-3 Monitoring Data
The Servo Driver speed command (REF) analog input of the Servo Driver
provides the system an analog input which can be used for general purpose.
Furthermore, detailed Servo Driver speed and torque signals can be moni-
tored in the MC Unit.

■ AIN0: Analog Input
The analog input is connected to CN1-5 and 6 and uses the Servo Driver
input circuit.

Output
nr.

Signal
Name

Description States

16 TVSEL Control Mode Switch OFF: Speed control

ON: Torque control

17 MING Gain reduction Input OFF: Speed control by PI control

ON: Speed control by P control

Item Specification

Input Voltage Range: (-12 V, 12 V)

Resolution 16-bit over (- 15 V, 15 V)

5

6

ADC

Servo
Driver MCW151

12 V
-12 V

26213

-26214

53

System Functions Section 3-3

■ AIN1: Torque Command Value

Analog input 1 contains the torque command data from the Servo Driver.

■ AIN2: Servomotor Rotation Speed
Analog input 2 contains the actual Servomotor Rotation Speed data from the
Servo Driver.

Item Specification

Output Range (-15000, 15000)

Resolution Given by T_RATE axis parameter.

Max. torque
-Max. torque

15000

-15000

Torque command [% of rated torque] = AIN1*T_RATE

Item Specification

Output Range (-15000, 15000)

Resolution Given by S_RATE axis parameter.

Overspeed
-Overspeed

15000

-15000

Rotation Speed [RPM] = AIN2*S_RATE

54

System Functions Section 3-3

■ AIN3: Torque Monitor Value

Analog input 3 contains the Torque Monitor Value from the Servo Driver.

3-3-4 Absolute Encoder
If the Servo Driver uses a Servomotor with an absolute encoder, the MC Unit
will obtain the absolute encoder position each start-up.
As a result, operation can be performed immediately without any origin search
operation at start-up. Use one of the following Servomotors with absolute
encoder.

A backup battery is required when using an absolute encoder. Install the bat-
tery into the Servo Driver’s battery holder.

■ Setting up the encoder

Set-up the use of the absolute encoder by performing the following setting.

■ Multi-turn limit setting
If an absolute encoder is used, the counter counts the number of rotations
from the setup position and output the number of rotations from the Servo
Driver to the MC Unit. For some applications it is convenient to reset the multi-
turn data back to 0 after a certain amount of turns.

Item Specification

Output Range (-15000, 15000)

Resolution Given by T_RATE axis parameter.

Max. torque
-Max. torque

15000

-15000

Torque Monitor [% of rated torque] = AIN3*T_RATE

Servo Driver Servomotor Model Encoder Resolution

Single-phase 100 V AC R88M-W❏❏ S-❏ 16-bit

Single-phase 200 V AC R88M-W❏❏ T-❏ 16-bit

Three-phase 400 V AC R88M-W❏❏ C-❏ 17-bit

Item Specification

R88A-BAT01W Absolute Encoder Backup Battery Unit
Battery: Toshiba ER3V, 3.6 V, 1000 mA

Param-
eter No.

Parameter Name Required
Setting

Explanation

Pn002.2 Operation switch
when using abso-
lute encoder

0 Use as absolute encoder

55

System Functions Section 3-3

The multi-turn limit settings will set this amount of multi-turn rotations

With the default setting (Pn205=65535), the Servomotor multi-turn data will be
as follows:

With any other setting than 65535, the Servomotor multi-turn data will be as
follows:

When the value is other than the default setting, the maximum value sup-
ported by the MC Unit is 32767.

Absolute Encoder Data The absolute encoder position will be determined at start-up by retrieving the
following information

Param-
eter No.

Parameter Name Setting
Range

Unit Default
Setting

Restart
Power?

Pn205 Absolute encoder
multi-turn limit setting

0 - 65535 Rotation 65535 Yes

Multi-turn data

Servomotor rotations

+32767

-32768

0

Multi-turn data

Servomotor rotations

Pn205

0

Variable Description

Number of rotations

Resolution of the encoder

Incremental position within one rotation

Current position read by the encoder and
updated in MC Unit at start-up

Incremental position within one rotation read at
setup (to be determined by user)

Current position required for system

M

R

Pi

Pe

Ps

Pm

Position0 +1 +3 +4+2-1

PiM R⋅

Pe

M=0 M=1 M=2 M=3M=-1

Ps

Pm

56

System Functions Section 3-3

At start-up the internal measured position of the MC Unit will be determined
by using the following formula.

As the relevant position for the application is the current position read by the
encoder relative to the origin point determined at setup, the following opera-
tion needs to be applied.

Absolute Encoder Setup
Procedure

Perform the setup operation for the absolute encoder in the following cases:
• When using the machine for the first time.
• When the backup alarm (A.81) is generated.
• When the Servo Driver’s power is turned OFF and the encoder cable is

removed.
The operation can be done by using the Parameter Unit, the front panel on
the Servo Driver, or using the personal computer monitoring software. Be
sure to follow the procedure carefully. Any mistakes in performing the proce-
dure may lead to faulty operation.

■ Absolute Encoder Setup
At the setup of the application the incremental position of the origin needs
to be determined. Perform the following actions:

• Set the correct Servo Driver settings. When the Servo Driver is set up for
absolute encoder, the MC Unit position will be automatically updated.

• Put the Servomotor into the origin position for the system.
• Execute the Servo Driver absolute encoder setup function (Fn008) to

reset the multi-turn data. Note that performing this operation will stop
communication between Servo Driver and MC Unit.

• Power down the system and put the power back on. The MC Unit mea-
sured position of axis 0 has now been set and is equal to the . The
measured position is represented by the MPOS axis parameter. The
value can be used in the start-up routine of the application.

Determining absolute
position

At every startup the measured position will be updated to the actual position
of the Servomotor. This position is the position as read by the encoder and
will need to be compensated for the origin point position . The application
initiation routine should contain the following steps.

• Define the current position relative to the origin point position. This possi-
ble by using the OFFPOS axis parameter or the DEFPOS command.

• During the parameter setting the UNITS axis parameter is used determin-
ing the unit conversion factor. The absolute position is modified accord-
ingly.

Note The coordinate system of the MC Unit is not synchronized to the coordinate
system of the Servo Driver. The user must verify that the range of the Servo-
motor position falls into the MC Unit range. If not, the position will be adjusted
within range and the position data is invalid.

Pe M R Pi+⋅=

Pm Pe Ps–=

Ps

Ps

Pe
Ps

57

System Functions Section 3-3

3-3-5 Other Servo Driver Commands
Access Servo Driver
Parameters

For applications which require online Servo Driver parameter changes or to
set-up a new Servo Driver, the MC Unit provides the BASIC commands
DRV_READ and DRV_WRITE. Using these commands it is possible to read
from and write to all Servo Driver parameters directly from the MC Unit user
program.

Reset Servo Driver and
MC Unit

The DRV_RESET command will software reset both the Servo Driver and the
MC Unit. This may be necessary for instance after a Servo Driver parameter
write using DRV_WRITE or for clearing a Servo Driver Alarm.

59

SECTION 4
Communication Interfaces

This section describes the communication components of the MCW151-E and MCW151-DRT-E. The functionality of the
serial communication protocols (including Host Link Master and Slave) and the DeviceNet interface are explained.

4-1 Serial Communications . 60
4-1-1 Host Link Master . 60
4-1-2 Host Link Slave . 65
4-1-3 General-purpose . 67

4-2 DeviceNet (MCW151-DRT-E only) . 68
4-2-1 Remote I/O Communications . 68
4-2-2 Explicit DeviceNet Messages . 72

60

Serial Communications Section 4-1

4-1 Serial Communications
Both the MCW151-E as the MCW151-DRT-E provide serial ports for commu-
nication with host-computers, PCs, Programmable Terminals (PTs) and other
general-purpose devices. The MC Units are provided with the following proto-
cols.

• Motion Perfect protocol:
For connection to personal computer

• Host Link:
For connection to PCs, Programmable Terminals, other MC Units

• General-purpose:
For connection to general-purpose external devices

Note 1. The programming port 0 (RS-232C) can only be used for connection to a
personal computer with the Motion Perfect configuration software.

2. A 4-wire RS-422A connection must be used when using Host Link Com-
munication.

3. For connection to a PC (Host Link Slave), configure the MC Unit as a Host
Link Master. For connection to a Programmable Terminal (Host Link Mas-
ter), configure the MC Unit as a Host Link Slave. When using the Host Link
protocol to communicate between two (or more) MCW151, configure one
MC Unit as Host Link Master and the others as Host Link Slave.

4-1-1 Host Link Master
In Host Link Master mode, Host Link commands can be sent from the MC Unit
to a Host Link Slave such as a PC by using BASIC commands. The BASIC
task execution will be paused until the response has been received from the
other device. The following BASIC commands can be used:

MC Unit Serial Ports Motion Perfect
Protocol

Host Link Master
(note 3)

Host Link Slave
(note 3)

General Purpose

MCW151-E Port 0: RS-232C (See
note 1)

Yes No No No

Port 1: RS-232C No Yes Yes Yes

Port 2: RS-422A/485
(See note 2)

No Yes Yes Yes

MCW151-
DRT-E

Port 0: RS-232C (See
note 1)

Yes No No No

Port 1: RS-232C No Yes Yes Yes

Devices to connect Personal Com-
puter

PCs, MCW151s Programmable
Terminals,
MCW151s

General-purpose
external devices

BASIC Command Description

SETCOM SETCOM configures the serial communication port,
including enabling the Host Link protocols.

HLM_READ HLM_READ reads data from the Host Link Slave to
either VR or Table memory.

HLM_WRITE HLM_WRITE writes data to the Host Link Slave
from either VR or Table memory.

HLM_COMMAND HLM_COMMAND executes a specific Host Link
command to the Slave.

HLM_STATUS HLM_STATUS represents the status of the last
Host Link Master command.

HLM_TIMEOUT HLM_TIMEOUT defines the Host Link Master time-
out time.

61

Serial Communications Section 4-1

Refer to SECTION 6 BASIC Motion Control Programming Language for fur-
ther details on the commands.

Host Link Master
Commands

The following Host Link commands are supported for Host Link Master. A full
description of the Host Link protocol can be found in SYSMAC CS/CJ Series
Communications Commands Reference Manual (W342).

The Host Link Master protocol supports the commands only in single frame
and can be used with the BASIC commands as shown in the next table. The
table also shows for which operating mode of a CPU Unit (Slave) the com-
mand is valid.

Type Header
Code

Name Function

I/O memory reading RR CIO AREA READ Reads the specified number of words beginning with
the designated CIO/IR word.

RL LR AREA READ Reads the specified number of words beginning with
the designated LR word.

RH HR AREA READ Reads the specified number of words beginning with
the designated HR word.

RD DM AREA READ Reads the specified number of words beginning with
the designated DM word.

RJ AR AREA READ Reads the specified number of words beginning with
the designated AR word.

RE EM AREA READ Reads the specified number of words beginning with
the designated EM word.

I/O memory writing WR CIO AREA WRITE Writes the specified data in word units beginning with
the designated CIO/IR word.

WL LR AREA WRITE Writes the specified data in word units beginning with
the designated LR word.

WH HR AREA WRITE Writes the specified data in word units beginning with
the designated HR word.

WD DM AREA WRITE Writes the specified data in word units beginning with
the designated DM word.

WJ AR AREA WRITE Writes the specified data in word units beginning with
the designated AR word.

WE EM AREA WRITE Writes the specified data in word units beginning with
the designated EM word.

CPU Unit status SC STATUS WRITE Changes the CPU Unit’s operating mode.

Testing TS TEST Returns, unaltered, a single block that was sent from
the Master

PC model code
reading

MM PC MODEL READ Reads the model code of the CPU Unit

Host Link communi-
cations processing

XZ ABORT (command only) Aborts the operation being performed by a Host Link
command, and returns to the initial status.

** INITIALIZE (command only) Initializes the transfer control procedures for all Host
Link Units.

IC Undefined command
(response only)

This is the response when the command header code
is invalid.

Header
Code

Name BASIC Command
required

CPU Unit Operating Mode

RUN MON PRG

RR CIO AREA READ HLM_READ Valid Valid Valid

RL LR AREA READ HLM_READ Valid Valid Valid

RH HR AREA READ HLM_READ Valid Valid Valid

RD DM AREA READ HLM_READ Valid Valid Valid

RJ AR AREA READ HLM_READ Valid Valid Valid

RE EM AREA READ HLM_READ Valid Valid Valid

62

Serial Communications Section 4-1

End Code Summary These are the end codes as they can be defined in the HLM_STATUS param-
eter.

Set-up Host Link Master The SETCOM is required to set-up the serial communication port for the Host
Link Master protocol. After setting the following command:

SETCOM(baudrate,data_bits,stop_bits,parity,port,6)

the HLM_READ, HLM_WRITE and HLM_COMMAND commands can be
used to read and write data using Host Link.

WR CIO AREA WRITE HLM_WRITE Not
Valid

Valid Valid

WL LR AREA WRITE HLM_WRITE Not
Valid

Valid Valid

WH HR AREA WRITE HLM_WRITE Not
Valid

Valid Valid

WD DM AREA WRITE HLM_WRITE Not
Valid

Valid Valid

WJ AR AREA WRITE HLM_WRITE Not
Valid

Valid Valid

WE EM AREA WRITE HLM_WRITE Not
Valid

Valid Valid

SC STATUS CHANGE HLM_COMMAND Valid Valid Valid

TS TEST HLM_COMMAND Valid Valid Valid

MM PC MODEL READ HLM_COMMAND Valid Valid Valid

XZ ABORT (command
only)

HLM_COMMAND Valid Valid Valid

** INITIALIZE (com-
mand only)

HLM_COMMAND Valid Valid Valid

IC Undefined com-
mand (response
only)

- Valid Valid Valid

Header
Code

Name BASIC Command
required

CPU Unit Operating Mode

RUN MON PRG

End
code

Contents Probably cause Corrective measures

00 Normal completion No problem exists ---

01 Not executable in RUN mode The command that was sent cannot
be executed when the PC is in RUN
mode.

Check the relation between the com-
mand and the PC mode.

13 FCS error The FCS is wrong Most likely influence from noise,
transfer the command again.

14 Format error The command format is wrong, or a
command that cannot be divided has
been divided, or the frame length is
smaller than the minimum length for
the applicable command.

Check the format and transfer the
command again.

15 Entry number data error The data is outside the specified
range or too long.

Correct the command arguments
and transfer the command again.

18 Frame length error The maximum frame length of 131
bytes was exceeded.

Check the command and transfer
the command again.

19 Not executable Access right was not obtained. Obtain access rights.

21 Not executable due to CPU Unit
CPU error

The command cannot be executed
because a CPU error has occurred
in the CPU Unit.

Cycle the CPU Unit’s power supply.

63

Serial Communications Section 4-1

Host Link Master Timeout The timeout mechanism is implemented to avoid the BASIC task is paused for
a long time due to bad or no communication. The timeout time is specified by
the HLM_TIMEOUT parameter and is defined as the maximum amount of
time the program task will be paused to send the command and receive the
response.

In case the total timeout time has elapsed, the correct status will be defined
using HLM_STATUS and the BASIC task will continue. The HLM_TIMEOUT
parameter specifies the timeout time for all commands and for all ports.

Host Link Master Status In the process of sending a Host Link command and receiving a response
several problems may occur:
1. The Slave detects an error within the command and will send a corre-

sponding end code indication.
2. The Slave cannot decode the command header code and sends a IC re-

sponse.
3. The Master detects an error within the response. The corresponding end

code will be defined in the status.
4. The timeout time has elapsed for the Master.
The HLM_STATUS BASIC parameter represents the Host Link Master status
on the specific port.

If no error did occur the HLM_STATUS will have value 0. In case of a non-
zero value, any appropriate action such as a re-try or emergency stop needs
to be programmed in the user BASIC program.

Programming
Precautions:

Consider the following precautions when programming the Host Link commu-
nications.
1. The Host Link Master commands are required to be executed from one

program task only to avoid any multi-task timing problems.
2. The Host Link Master commands provide the tools to exchange data with

the Host Link Slave. The user program should contain proper error han-
dling routines to deal with communication failure and perform retries if nec-
essary.

Command Response

Characters @ *↵ @ *↵

Timeout

HLM_STATUS status bits

9 8 7 0

End code (case 1 or case 3)

Timeout error (case 4)

Command not recognized (case 2)

64

Serial Communications Section 4-1

Examples: Consider the following operations for a MC Unit connected to a PC using
port 2 (RS-422A). The Slave PC has node address 13.

■ Reading data from PC using HLM_READ
BASIC program:
 ‘ Set up Host Link Master for port 2
SETCOM(9600,7,2,2,2,6)

 ‘ Source address: CIO/IR 002
 ‘ Amount of data: 2 words
 ‘ Destination address: VR(0)
HLM_READ(2,13,PLC_IR,2,2,MC_VR,0)

Host Link Communication:
HLM -> HLS: @13RR0002000242*
HLS -> HLM: @13RR000101010241*

Result:

■ Writing data to PC using HLM_WRITE
BASIC program:
 ‘ Source address: Table(18)
 ‘ Amount of data: 2 words
 ‘ Destination address: LR 014
TABLE(18,$0701,$0702)
HLM_WRITE(2,13,PLC_LR,14,2,MC_TABLE,18)

Host Link Communication:
HLM -> HLS: @13WL0014070107025F*
HLS -> HLM: @13WL0059*

Result:

■ Send TS (test) command to PC using HLM_COMMAND
BASIC program:
HLM_COMMAND(HLM_TEST,2,13)

Host Link Communication:
HLM -> HLS: @13TSMCW151 TEST STRING2A*
HLS -> HLM: @13TSMCW151 TEST STRING2A*

Result:
HLM_STATUS PORT(2) = 0, which implies correct communication.

■ Set PC in MONITOR mode using HLM_COMMAND
BASIC program:
HLM_COMMAND(HLM_STWR,2,13,2)

Host Link Communication:

VR address value

0 257.0000

1 258.0000

LR address value

0 701 (Hex)

1 702 (Hex)

65

Serial Communications Section 4-1

HLM -> HLS: @13SC0250*
HLS -> HLM: @13SC0052*

Result:
The PC is running in MON mode. Note that this is necessary for writing data
to the PC using HLM_WRITE.

■ Reading PC model code using HLM_COMMAND (timeout)
BASIC program:
HLM_TIMEOUT=500
 ‘ Destination address: VR(100)
HLM_COMMAND(HLM_MREAD,2,13,MC_VR,100)

Host Link Communication:
HLM -> HLS: @13MM42*
HLS -> HLM: no response

Result:
As no response has been received from the PC, after 500 servo cycles the
HLM_STATUS PORT(2) will have value 256 (bit 8 is set).

4-1-2 Host Link Slave
In Host Link Slave mode, a Host Link Master such as a Programmable Termi-
nal can read data from and write data to the MC Unit. The MC Unit will have
the following mapping for the Host Link Slave.

The following BASIC commands are used:

Refer to SECTION 6 BASIC Motion Control Programming Language for fur-
ther details on the commands.

Host Link Slave
Commands

The list of Host Link commands that are supported for the Host Link Slave are
listed here below. The protocol supports both single frame and multiple frame
transfer. A full description of the Host Link protocol can be found in SYSMAC
CS/CJ Series Communications Commands Reference Manual (W342).

MCW151 Memory Host Link Mapping Address Range

VR CIO 0 to 250

Table DM 0 to 7999

BASIC Command Description

SETCOM SETCOM configures the serial communication port,
including enabling the Host Link protocols.

HLS_NODE HLS_NODE defines the Slave unit number for the
Host Link Slave protocol.

HLS_MODEL HLS_MODEL defines the MC Unit model code for
the Host Link Slave protocol.

Type Header
Code

Name Function

I/O memory reading RR CIO AREA READ Reads the specified number of words from VR mem-
ory beginning with the designated word.

RD DM AREA READ Reads the specified number of words from Table
memory beginning with the designated word.

I/O memory writing WR CIO AREA WRITE Writes the specified data in word units to VR memory
beginning with the designated word.

WD DM AREA WRITE Writes the specified data in word units to Table mem-
ory beginning with the designated word.

66

Serial Communications Section 4-1

End Code Summary These are the response end codes that can be returned in the response
frame.

Set-up Host Link Slave The SETCOM is required to set-up the serial communication port for the Host
Link Slave protocol. After setting the following command:

SETCOM(baudrate,data_bits,stop_bits,parity,port,5)

the MC Unit will respond to any Host Link command from the master with the
specified node number as set with the HLS_NODE parameter.

Testing TS TEST Returns, unaltered, a single block that was sent from
the Master.

PC model code
reading

MM PC MODEL READ Reads the model code of the MC Unit as specified by
the HLS_MODEL parameter.

I/O memory area
registration and
reading

QQMR REGISTER I/O MEMORY Registers the I/O table with the contents of the actual
I/O configuration

QQIR READ I/O MEMORY Reads the registered I/O memory words/bits all at
once.

Host Link communi-
cations processing

XZ ABORT (command only) Aborts the operation being performed by a Host Link
command, and returns to the initial status.

** INITIALIZE (command only) Initializes the transfer control procedures for all Host
Link Units.

IC Undefined command
(response only)

This is the response when the command header code
is invalid.

Type Header
Code

Name Function

End
code

Contents Probably cause Corrective measures

00 Normal completion No problem exists ---

13 FCS error The FCS is wrong Check the FCS calculation method.
If there was influence from noise,
transfer the command again.

14 Format error The command format is wrong, or a
command that cannot be divided has
been divided, or the frame length is
smaller than the minimum length for
the applicable command.

Check the format and transfer the
command again.

15 Entry number data error The data is outside the specified
range or too long.

Correct the command arguments
and transfer the command again.

18 Frame length error The maximum frame length of 131
bytes was exceeded.

Check the data and transfer the
command again.

19 Not executable An I/O memory batch was executed
when items to read were not regis-
tered.

Register items to read before
attempting batch read.

A3 Aborted due to FCS error in trans-
mission data

An FCS error occurred in the second
or later frame.

Correct the command data and
transfer the command again.

A4 Aborted due to format error in trans-
mission data

The command format did not match
the number of bytes in the second or
later frame.

A5 Aborted due to entry number data
error in transmission data

There was an entry number data
error in the second or later frame or
a data length error.

A8 Aborted due to frame length error in
transmission data

The length of the second or later
frames exceeded the maximum of
128 bytes.

67

Serial Communications Section 4-1

Example: Consider a MCW151-E connected to the NT11S Programmable Terminal
using port 2 (RS-422A). The Host Link Slave can be configured by using the
following program:
 ‘ Define Host Link Slave node
HLS_NODE = 15
 ‘ Define Host Link Slave model code
HLS_MODEL = $FA
 ‘ Set up Host Link Slave for port 2
SETCOM(9600,7,2,2,2,5)
The MC Unit is now set up to communicate with the Programmable Terminal.

4-1-3 General-purpose
The MCW151 provide a set of commands to implement any user-defined pro-
tocol. The list of commands is provided here.

Refer to SECTION 6 BASIC Motion Control Programming Language for fur-
ther details on the commands.

Example: Consider a MCW151-E connected to a general-purpose device using port 2
(RS-422A). The following problem will receive a series of data elements and
write it to VR variables:
 ‘ Set up General-purpose protocol for port 2
SETCOM(9600,7,2,2,2,0)
 ‘ Receive input
FOR i=0 to 99
 INPUT#2, VR(i)
NEXT i

BASIC Command Description

SETCOM SETCOM configures the serial communication port,
including enabling the Host Link protocols.

GET GET assigns the ASCII code of a received charac-
ter to a variable.

INPUT INPUT will assign numerical input string values to
the specified variables.

KEY KEY returns TRUE or FALSE depending on if a
character has been received.

LINPUT LINPUT assigns the ASCII code of the characters to
an array of variables.

PRINT PRINT outputs a series of characters to a serial
port.

68

DeviceNet (MCW151-DRT-E only) Section 4-2

4-2 DeviceNet (MCW151-DRT-E only)
The MCW151-DRT-E is connected to the DeviceNet network as a DeviceNet
Slave. This allows data from any area in the MC Unit to be read or written
from the Master. Through the DeviceNet, the MC Unit memory can be
accessed using one of the following two methods.

Accessing MC Unit
memory through remote
I/O areas

Remote I/O communication enables automatic exchange of I/O data between
the MC Unit and a PC with DeviceNet Master Unit without special program-
ming in the PC. For the MC Unit, the input and output areas can each contain
up to 4 words.
Once the MC Unit’s memory input and output areas have been set, the MC
Unit memory can be read and written. The input area is regularly read by the
Master and the output is regularly written from the Master. This process main-
tains consistency between the Slave’s input and output areas and the input
and output areas allocated to the Master.
The data is transferred automatically at high speed so it is useful to use this
for data which requires regular data transfers with the Master.

Accessing MC Unit
memory with Explicit
Message Communications

When larger amount of data needs to be exchanged with the MC Unit, explicit
message communications can be used.
Transferring data with explicit message communications takes more time than
transferring data with the input and output areas, but all of the MC Unit mem-
ory can be accessed.
Use this feature for large data transfers which can be performed when
required, such as transferring position profile data.

Refer to Appendix B Device Protocol (MCW151-DRT-E only) for the Device
Protocol definition.

4-2-1 Remote I/O Communications
The Master and Slaves can communicate as described below with DeviceNet
remote I/O communications.

• Input Area:
Inputs at the Slave are read automatically and mirrored in the Master’s
input area.

• Output Area:
Data written in the output area allocated in the Master’s memory are auto-
matically output to the corresponding Slave.

CPU Unit

Master Unit

DeviceNet Network

MC Unit

Input Area

Output Area

VR memory

Table memory

Remote I/O
communications

Explicit message com-
munications (Transfers
data in any area)

69

DeviceNet (MCW151-DRT-E only) Section 4-2

Note The names of the input and output areas indicate the direction of I/O from the
perspective of the Master.

Allocating Input and
Output Areas to the
Master

The MC Unit’s input and output areas are allocated to the Unit as a DeviceNet
Slave in the Master’s I/O memory.

■ Fixed Allocation
With fixed allocation, words in the CPU Unit are allocated in the order of node
numbers starting from node 00. The words are divided into an output area and
an input area. The specific words that are allocated depend on the model of
PC being used.
Each node address is allocated one input and one output word. If a Slave
requires more than one input or one output word, then it is assigned more
than one node address. If a Slave requires less than one word, it simply uses
the rightmost bits in the word allocated to it.
The MC Unit will occupy the number of words (number of node numbers) set
for the input and output areas using the external DIP switch pin 7.

For example when the MC Unit has been selected to Mode II and the node
number is set to 5, the input area will occupy the words for nodes 5 through 8
and the output area will also occupy the words for nodes 5 through 8.

■ Free Allocation
A Configurator can be used to allocate a total of 4 blocks, blocks 1 and 2 in
the output area and input blocks 1 and 2 in the input area in any order.
Slaves and blocks can be allocated in any order. The number of words (num-
ber of bytes) that are used depends upon the addresses. The minimum is one
byte and the maximum is 64 bytes (32 words).

Pin 7 Mode Description

OFF Mode I (default) Input: 2 words
Output: 2 words

ON Mode II Input: 4 words
Output: 4 words

70

DeviceNet (MCW151-DRT-E only) Section 4-2

Area Allocation

■ DeviceNet Input
The table below specifies the input data allocation of the status of the MC
Unit.

Note The input words no. 3 and 4 will only be transferred when I/O Slave messag-
ing mode II is selected.

Input
word

Bit Name Function

1 00 Unit Operating Flag 1: MC Unit is operating.

0: MC Unit is not operating.

01 Servo Driver Enable Flag 1: Servo Driver enabled.

0: Servo Driver disabled.

02 Axis 0 Servo ON 1: Servo is ON for Servo Driver axis 0. The axis is in closed loop.

0: Servo is OFF for Servo Driver axis 0. The axis is in open loop.

03 MC Unit Motion Error
Flag

1: Motion error has occurred for one of the axes.

0: No motion error.

04 MC Unit Motion Warning
Flag

1: Motion warning has occurred for Servo Driver axis 0. The following
error warning limit is exceeded.

0: No motion warning.

05 Servo Driver Alarm Flag 1: Servo Driver alarm (ALM) has occurred.

0: No Servo Driver alarm.

06 Servo Driver Warning
Flag

1: Servo Driver warning (WARN) has occurred.

0: No Servo Driver warning.

07 Servo Driver Communi-
cation Error

1: Communication error between MC Unit and Servo Driver has
occurred.

0: No communication error.

08 Axis 0 Forward Limit Flag 1: Forward limit is set for Servo Driver axis 0.

0: No forward limit.

09 Axis 0 Reverse Limit Flag 1: Reverse limit is set for Servo Driver axis 0.

0: No reverse limit.

10 Axis 0 Datuming Flag 1: Datuming (origin search) in progress for Servo Driver axis 0.

0: No datuming.

11 Axis 0 Feedhold Flag 1: Feedhold input is set for Servo Driver axis 0.

0: No feedhold.

12 Axis 0 Following Error
Limit Flag

1: Following error limit is reached for Servo Driver axis 0.

0: No following error limit.

13 Task 1 Flag 1: Program is running on task no. 1.

0: No program is running on task.

14 Task 2 Flag 1: Program is running on task no. 2.

0: No program is running on task.

15 Task 3 Flag 1: Program is running on task no. 3.

0: No program is running on task.

2 00 to
15

User defined Contents is allocated by using the FB_SET parameter.

3 (see
note)

00 to
15

User defined Contents is set by VR(2).

4 (see
note)

00 to
15

User defined Contents is set by VR(3).

71

DeviceNet (MCW151-DRT-E only) Section 4-2

Input word 2
The allocation of input word 2 is determined by the FB_SET parameter. The
following settings are supported.

FB_SET
value

Bit Name Function

0 00 to
15

User defined Contents is set by VR(0)

1 MC Unit I/O Mapping

00 (Registration) Input 0 1: Input is ON 0: Input is OFF

01 (Registration) Input 1 1: Input is ON 0: Input is OFF

02 Input 2 1: Input is ON 0: Input is OFF

03 Input 3 1: Input is ON 0: Input is OFF

04 Input 4 1: Input is ON 0: Input is OFF

05 Input 5 1: Input is ON 0: Input is OFF

06 Input 6 1: Input is ON 0: Input is OFF

07 Input 7 1: Input is ON 0: Input is OFF

08 Output 8 1: Output is ON 0: Output is OFF

09 Output 9 1: Output is ON 0: Output is OFF

10 Output 10 1: Output is ON 0: Output is OFF

11 Output 11 1: Output is ON 0: Output is OFF

12 Output 12 1: Output is ON 0: Output is OFF

13 Output 13 1: Output is ON 0: Output is OFF

14 to
15

Reserved

2 Servo Driver I/O Mapping

00 Input CN1-40 1: Input is ON 0: Input is OFF

01 Input CN1-41 1: Input is ON 0: Input is OFF

02 Input CN1-42 1: Input is ON 0: Input is OFF

03 Input CN1-43 1: Input is ON 0: Input is OFF

04 Input CN1-44 1: Input is ON 0: Input is OFF

05 Input CN1-45 1: Input is ON 0: Input is OFF

06 Input CN1-46 1: Input is ON 0: Input is OFF

07 Reserved

08 ALM 1: Servo Driver alarm occurred

0: No Servo Driver alarm

09 WARN 1: Servo Driver warning occurred

0: No Servo Driver warning

10 VCMP 1: Speed match

0: No speed match

11 TGON 1: Servomotor rotating

0: Servomotor not rotating

12 READY 1: Servo ready

0: Servo not ready

13 CLIMT 1: Torque limit

0: No torque limit

14 VLIMT 1: Speed limit

0: No speed limit

15 SVON 1: Servo ON complete

0: Servo ON not complete

72

DeviceNet (MCW151-DRT-E only) Section 4-2

■ DeviceNet Output
The table below specifies the output data allocation of the status of the MC
Unit.

Note The output words no. 3 and 4 will only be transferred when I/O Slave messag-
ing mode II is selected.

4-2-2 Explicit DeviceNet Messages
Explicit DeviceNet messages (commands) can be sent from the Master to
write and read data to and from both the VR and Table memory of the MC
Unit.
This section presents the explicit messages supported by the MC Unit, and
provides usage examples. For further details on using explicit messages on
the Master Unit, refer to the Master Unit’s Operation Manual.

■ MC Unit Explicit Message List

■ Data Formats
The MC Unit explicit messaging supports two data format types.

One-word format The data is transferred word by word from each PC memory location to each
variable in the MC unit and vice versa. The value in the MC Unit is always the
integer equivalent of the hexadecimal value in the PC (no 2's complement).
From the floating-point data in the MC unit only the integer part will be trans-
ferred. The valid range is [0,65535].

Output
word

Bit Name Function

1 00 to
15

User defined Contents is set at VR(1).

2 00 to
15

User defined Contents is set at VR(4).

3 (see
note)

00 to
15

User defined Contents is set at VR(5).

4 (see
note)

00 to
15

User defined Contents is set at VR(6).

Explicit message Function Page

TABLE DATA READ
(THREE-WORD FOR-
MAT)

Reads the specified MC Unit’s Table data. The data
is converted into three-word format.

75

VR DATA READ
(THREE-WORD FOR-
MAT)

Reads the specified MC Unit’s VR data. The data is
converted into three-word format.

76

VR DATA READ
(ONE-WORD FOR-
MAT)

Reads the specified MC Unit’s VR data in words. 76

TABLE DATA WRITE
(THREE-WORD FOR-
MAT)

Writes the specified MC Unit’s Table data. The data
is three-word format and will be converted into float-
ing point.

77

VR DATA WRITE
(THREE-WORD FOR-
MAT)

Writes the specified MC Unit’s VR data. The data is
three-word format and will be converted into float-
ing point.

78

VR DATA WRITE
(ONE-WORD FOR-
MAT)

Writes the specified MC Unit’s VR data in words. 79

RESET Will perform a software reset of both the MC Unit
and the Servo Driver.

80

73

DeviceNet (MCW151-DRT-E only) Section 4-2

Three-word format The data in the PC is represented by three memory elements, in total three
words. The following is the configuration of a BCD position data item.

Example 1: The three-word format of value 56143 is given by

Example 2: The three-word format of value -48.89 is given by

One data item uses three words. Therefore the total words for data transfers
should be the amount of data transferred multiplied by three.

4-2-2-1 Message Communications
When sending explicit messages from an OMRON Master Unit, use the
CMND or IOWR instruction to send the message data as an EXPLICIT MES-
SAGE SEND (28 01) FINS command.

Command Block

Response Block Normal Response

Note For a normal response, the leftmost bit of the service code specified in the
command will be turned ON and then returned. For example, a command
service code of 32 Hex is returned as B2 Hex in the response.

j+0 0 0 0 0

j+1 6 1 4 3

j+2 0 0 0 5

j+0 0 0 0 2

j+1 4 8 8 9

j+2 8 0 0 0

j+0 0 0 0 A

j+1 x103 x102 x101 x100

j+2 x107 x106 x105 x104

Decimal point A = 0 (Indicates 1)
1 (Indicates 0.1)
2 (Indicates 0.01)
3 (Indicates 0.001)
4 (Indicates 0.0001)

Position data

Sign bit (s)
0: positive
1: negative

3 2 1 0 bit

s x107

28 01 32 00 8A 00 01 242 bytes max.

Destination node address
Service code

Instance IDCommand
code

Class ID Service Data

28 01 00 00 240 bytes max.

Source node address

Command
code

Response
code

No. of bytes
received

Service code

Service Data

74

DeviceNet (MCW151-DRT-E only) Section 4-2

Error Response
The following response is returned if an error occurs for the explicit message.

Parameters Destination node address (command)
The node address of the destination of the explicit message.

Service code (command, response)
A service code defined for DeviceNet. In a normal response, bit 15 of the ser-
vice code specified will be turned ON and returned. For an error response, the
service code will always be 94 Hex.

Class ID (command)
The class ID of the destination of the explicit message. The class ID is always
008A Hex when reading or writing the MC Unit memory.

Instance ID (command)
The instance ID of the destination of the explicit message. The instance ID is
always 0001 Hex when reading or writing the MC Unit memory.

Service data (command, response)
The data defined for the services codes.

No. of bytes received (response)
The number of bytes received from the destination node address (local node).

Source node address (response)
The node address of the OMRON I/O Slave Unit or slave manufactured by
another company of which the explicit message was sent is returned.

General error code (response)
The following error codes may be returned.

28 01 00 00 94 FF

Source node address

Additional error code FF Hex
Command

code
Response

code
No. of bytes

received
General error code

Service code 94 Hex

General
error code

Error name Cause of error

08 Hex Service not supported The requested service was not imple-
mented or was not defined for this
Object Class/Instance.

09 Hex Invalid attribute value Invalid attribute data detected.

11 Hex Reply data too large The data to be transmitted in the
response buffer is larger than the allo-
cated response buffer.

13 Hex Not enough data The service did not supply enough
data to perform the specified opera-
tion.

15 Hex Too much data The service supplied more data than
was expected.

16 Hex Object does not exist The object does not exist in the
device.

20 Hex Invalid parameter A parameter associated with the
request was invalid.

75

DeviceNet (MCW151-DRT-E only) Section 4-2

Note 1. Unlike other FINS commands, this command is addressed to the local
node’s DeviceNet Master Unit. The actual destination of the explicit mes-
sage is given in the command data, as described above.
Always specify the local node’s DeviceNet Master Unit in the control code
of the CMND or IOWR instruction. An error will occur if another node’s
Master Unit is specified.

2. If the DeviceNet Master Unit receives an explicit message, it will automat-
ically return a response.

4-2-2-2 Explicit Messages
TABLE DATA READ
(THREE-WORD FORMAT)

TABLE DATA READ (THREE-WORD FORMAT) will read Table data. The
data will be converted in three-word format.

Command Block

Response Block

Parameters

Service code (command, response)
In the command, 32 Hex is specified. In the response, the leftmost bit is
turned ON and B2 Hex is returned.

Address H, Address L (command)
The address in hexadecimal of the first word of data to be read.
Address H: Leftmost 2 digits of the address in 4-digit hexadecimal.
Address L: Rightmost 2 digits of the address in 4-digit hexadecimal.
For the Table memory, the maximum value is 7999 (1F3F Hex).

Length H, Length L (command)
The number of Table memory elements to read.
Length H: Leftmost 2 digits of the length in 4-digit hexadecimal (ignored for
MC Unit).
Length L: Rightmost 2 digits of the length in 4-digit hexadecimal.
When an OMRON Master is being used, the maximum is 39 elements (27
Hex). The 39 Table elements imply 234 bytes to be transferred.

Read data (response)
The specified data is returned from word H (leftmost byte: bits 08 to 15) to
word L (rightmost byte: bits 00 to 07).

Note The user should be aware that the MC Unit does not check if the MC Unit
memory data is within range of the three-word format.

28 01 32 00 8A 00 01

Destination node address
Service code

Instance ID
Address H

Address L
Length H

Length LCommand
code

Class ID

28 01 00 00 B2 ..

Source node address

Read data
(Maximum 240 bytes)

Word data H
Word data LCommand

code
Response

code
No. of bytes

received
Service code

76

DeviceNet (MCW151-DRT-E only) Section 4-2

VR DATA READ (THREE-
WORD FORMAT)

VR DATA READ (THREE-WORD FORMAT) will read VR data. The data will
be converted in three-word format.

Command Block

Response Block

Parameters

Service code (command, response)
In the command, 33 Hex is specified. In the response, the leftmost bit is
turned ON and B3 Hex is returned.

Address H, Address L (command)
The address in hexadecimal of the first word of data to be read.
Address H: Leftmost 2 digits of the address in 4-digit hexadecimal (ignored
for MC Unit).
Address L: Rightmost 2 digits of the address in 4-digit hexadecimal.
For the VR memory, the maximum value is 250 (FA Hex).

Length H, Length L (command)
The number of VR memory elements to read.
Length H: Leftmost 2 digits of the length in 4-digit hexadecimal (ignored for
MC Unit).
Length L: Rightmost 2 digits of the length in 4-digit hexadecimal.
When an OMRON Master is being used, the maximum is 39 elements (27
Hex). The 39 VR elements imply 234 bytes to be transferred.

Read data (response)
The specified data is returned from word H (leftmost byte: bits 08 to 15) to
word L (rightmost byte: bits 00 to 07).

Note The user should be aware that the MC Unit does not check if the MC Unit
memory data is within range of the three-word format.

VR DATA READ (ONE-
WORD FORMAT)

VR DATA READ (ONE-WORD FORMAT) will read VR data. The data will be
converted in one-word format.

28 01 33 00 8A 00 01

Destination node address
Service code

Instance ID
Address H

Address L
Length H

Length LCommand
code

Class ID

28 01 00 00 B3 ..

Source node address

Read data
(Maximum 240 bytes)

Word data H
Word data LCommand

code
Response

code
No. of bytes

received
Service code

77

DeviceNet (MCW151-DRT-E only) Section 4-2

Command Block

Response Block

Parameters

Service code (command, response)
In the command, 34 Hex is specified. In the response, the leftmost bit is
turned ON and B4 Hex is returned.

Address H, Address L (command)
The address in hexadecimal of the first word of data to be read.
Address H: Leftmost 2 digits of the address in 4-digit hexadecimal (ignored
for MC Unit).
Address L: Rightmost 2 digits of the address in 4-digit hexadecimal.
For the VR memory, the maximum value is 250 (FA Hex).

Length H, Length L (command)
The number of VR memory elements to read.
Length H: Leftmost 2 digits of the length in 4-digit hexadecimal (ignored for
MC Unit).
Length L: Rightmost 2 digits of the length in 4-digit hexadecimal.
When an OMRON Master is being used, the maximum is 119 elements (77
Hex). The 119 VR elements imply 238 bytes to be transferred.

Read data (response)
The specified data is returned from word H (leftmost byte: bits 08 to 15) to
word L (rightmost byte: bits 00 to 07).

TABLE DATA WRITE
(THREE-WORD FORMAT)

TABLE DATA WRITE (THREE-WORD FORMAT) will write Table data. The
Table data will be defined according to the three-word format.

Command Block

28 01 34 00 8A 00 01

Destination node address
Service code

Instance ID
Address H

Address L
Length H

Length LCommand
code

Class ID

28 01 00 00 B4 ..

Source node address

Read data
(Maximum 240 bytes)

Word data H
Word data LCommand

code
Response

code
No. of bytes

received
Service code

28 01 35 00 8A 00 01 ..

Destination node address
Service code

Instance ID
Length H

Length L
Word data H

Word data LCommand
code

Class ID
Address H

Address L

Write data
(Max. 238 bytes)

78

DeviceNet (MCW151-DRT-E only) Section 4-2

Response Block

Parameters

Service code (command, response)
In the command, 35 Hex is specified. In the response, the leftmost bit is
turned ON and B5 Hex is returned.

Address H, Address L (command)
The address in hexadecimal of the first word of data to be read.
Address H: Leftmost 2 digits of the address in 4-digit hexadecimal.
Address L: Rightmost 2 digits of the address in 4-digit hexadecimal.
For the Table memory, the maximum value is 7999 (1F3F Hex).

Length H, Length L (command)
The number of Table memory elements to write.
Length H: Leftmost 2 digits of the length in 4-digit hexadecimal (ignored for
MC Unit).
Length L: Rightmost 2 digits of the length in 4-digit hexadecimal.
When an OMRON Master is being used, the maximum is 39 elements (27
Hex). The 39 Table elements imply 234 bytes to be transferred.

Write data (command)
The specified data should be written from word H (leftmost byte: bits 08 to 15)
to word L (rightmost byte: bits 00 to 07).

Note The user should be aware that the MC Unit does not check if the PC memory
data complies to the three-word format.

VR DATA WRITE (THREE-
WORD FORMAT)

VR DATA WRITE (THREE-WORD FORMAT) will write VR data. The VR data
will be defined according to the three-word format.

Command Block

28 01 00 00 00 02 B5

Source node address

Command
code

Response
code

No. of bytes
received

Service code

28 01 36 00 8A 00 01 ..

Destination node address
Service code

Instance ID
Length H

Length L
Word data H

Word data LCommand
code

Class ID
Address H

Address L

Write data
(Max. 238 bytes)

79

DeviceNet (MCW151-DRT-E only) Section 4-2

Response Block

Parameters

Service code (command, response)
In the command, 36 Hex is specified. In the response, the leftmost bit is
turned ON and B6 Hex is returned.
Address H, Address L (command)
The address in hexadecimal of the first word of data to be read.
Address H: Leftmost 2 digits of the address in 4-digit hexadecimal (ignored
for MC Unit).
Address L: Rightmost 2 digits of the address in 4-digit hexadecimal.
For the VR memory, the maximum value is 250 (FA Hex).

Length H, Length L (command)
The number of VR memory elements to read.
Length H: Leftmost 2 digits of the length in 4-digit hexadecimal (ignored for
MC Unit).
Length L: Rightmost 2 digits of the length in 4-digit hexadecimal.
When an OMRON Master is being used, the maximum is 39 elements (27
Hex). The 39 VR elements imply 234 bytes to be transferred.

Write data (command)
The specified data should be written from word H (leftmost byte: bits 08 to 15)
to word L (rightmost byte: bits 00 to 07).

Note The user should be aware that the MC Unit does not check if the PC memory
data complies to the three-word format.

VR DATA WRITE (ONE-
WORD FORMAT)

VR DATA WRITE (ONE-WORD FORMAT) will write VR data. The VR data
will be defined according to the one-word format.

Command Block

28 01 00 00 00 02 B6

Source node address

Command
code

Response
code

No. of bytes
received

Service code

28 01 37 00 8A 00 01 ..

Destination node address
Service code

Instance ID
Length H

Length L
Word data H

Word data LCommand
code

Class ID
Address H

Address L

Write data
(Max. 238 bytes)

80

DeviceNet (MCW151-DRT-E only) Section 4-2

Response Block

Parameters

Service code (command, response)
In the command, 37 Hex is specified. In the response, the leftmost bit is
turned ON and B7 Hex is returned.
Address H, Address L (command)
The address in hexadecimal of the first word of data to be read.
Address H: Leftmost 2 digits of the address in 4-digit hexadecimal (ignored
for MC Unit).
Address L: Rightmost 2 digits of the address in 4-digit hexadecimal.
For the VR memory, the maximum value is 250 (FA Hex).

Length H, Length L (command)
The number of VR memory elements to write.
Length H: Leftmost 2 digits of the length in 4-digit hexadecimal (ignored for
MC Unit).
Length L: Rightmost 2 digits of the length in 4-digit hexadecimal.
When an OMRON Master is being used, the maximum is 119 elements (77
Hex). The 119 VR elements imply 238 bytes to be transferred.

Write data (command)
The specified data should be written from word H (leftmost byte: bits 08 to 15)
to word L (rightmost byte: bits 00 to 07).

RESET RESET will perform a software reset of both the MC Unit and the Servo Driver
(as DRV_RESET command).

Command Block

Response Block

28 01 00 00 00 02 B7

Source node address

Command
code

Response
code

No. of bytes
received

Service code

28 01 05 00 8A 00 01

Destination node address
Service code

Instance ID
Address H

Command
code

Class ID

28 01 00 00 00 02 85

Source node address

Command
code

Response
code

No. of bytes
received

Service code

81

DeviceNet (MCW151-DRT-E only) Section 4-2

Parameters

Service code (command, response)
In the command, 05 Hex is specified. In the response, the leftmost bit is
turned ON and 85 Hex is returned.

4-2-2-3 Sample Programs
Using the CMD(490)
instruction to read data

In the following example, the CMD(490) instruction is used to read data (one-
word format) from VR(200) to VR(203) (4 words) on the Slave Unit, and store
them to the Master (CS1 PCs) from D02000 onwards. For more information
on explicit messages, refer to the DeviceNet Master Unit Operation Manual or
for information on the CMD(490) instruction, refer to the PCs Operation Man-
ual.

Example Conditions
Master node address: 0
Slave network address: 1
Slave node address: 2

Example: Using CMD(490)

Command Words (S: First Command word)

D: Response Words (D: First Response Word)

Results are stored as shown in the following table.

Word Contents (Hex) Meaning

S 28 01 EXPLICIT MESSAGE SEND command
code: 28 01 Hex

S+1 02 34 Slave node address: 2
VR DATA READ (ONE-WORD FORMAT)
command service code: 34 Hex

S+2 00 8A Class ID: 008A Hex

S+3 00 01 Instance ID: 0001 Hex

S+4 00 C8 Read start address VR(200): 00C8 Hex

S+5 00 04 Number of Table elements to write: 0004
Hex

Word Contents (Hex) Meaning

D 28 01 EXPLICIT MESSAGE SEND command
code: 28 01 Hex

D+1 00 00 Response code (0000 Hex: Normal com-
pletion)

D+2 00 0A No. of received bytes (data length after
D02003): 10 bytes

D+3 02 B4 Slave node address: 2
VR DATA READ (ONE-WORD FORMAT)
response service code: B4 Hex

D+4 00 0F Data read from the MC Unit’s VR(200).
One-word format: 15

D+5 00 BF Data read from the MC Unit’s VR(201).
One-word format: 191

CMD

S

D

C

82

DeviceNet (MCW151-DRT-E only) Section 4-2

Control Words (C: First Control Word)

Using the CMD(490)
instruction to write data

In the following example, the CMD(490) instruction is used to write data (three
word format) to Table(10) to Table(12) on the Slave Unit, from the Master
(CS1 PCs). For more information on explicit messages, refer to the DeviceNet
Master Unit Operation Manual or for information on the CMD(490) instruction,
refer to the PCs Operation Manual.

Example Conditions
Master node address: 0
Slave network address: 1
Slave node address: 2

Example: Using CMND(490)

Command Words (S: First Command Word)

D+6 0A 33 Data read from the MC Unit’s VR(202).
One-word format: 2611

D+7 FF FF Data read from the MC Unit’s VR(203).
One-word format: 65535

Word Contents (Hex) Meaning

C 00 0C No. of bytes of command data: 12 bytes of
command data, S

C+1 00 10 No. of bytes of response data: 16 bytes of
response data, D

C+2 00 01 Destination node network address: 1

C+3 00 FE Master’s node address: 0
Master’s Unit address: FE Hex

C+4 00 00 Response returned, communication port
No.: 0, No. of retries: 0

C+5 00 64 Response monitoring time: 10 s

Word Contents (Hex) Meaning

Word Contents (Hex) Meaning

S 28 01 EXPLICIT MESSAGE SEND command
code: 28 01 Hex

S+1 02 35 Slave node address: 2
TABLE DATA WRITE (THREE-WORD
FORMAT) command service code: 35
Hex

S+2 00 8A Class ID: 008A Hex

S+3 00 01 Instance ID: 0001 Hex

S+4 00 0A Write start address Table(10): 000A Hex

S+5 00 03 Number of Table elements to write: 0003
Hex

S+6 00 00 Data written to the MC Unit’s Table(10).
Three word format: 279278S+7 92 78

S+8 00 27

CMND

S

D

C

83

DeviceNet (MCW151-DRT-E only) Section 4-2

D: Response Words (D: First Response Word)

Results are stored as shown in the following table.

Control Words (C: First Control Word)

S+9 00 01 Data written to the MC Unit’s Table(11).
Three word format: -1428.6S+10 42 86

S+11 80 01

S+12 00 00 Data written to the MC Unit’s Table(12).
Three word format: 928824S+13 88 24

S+14 00 92

Word Contents (Hex) Meaning

D 28 01 EXPLICIT MESSAGE SEND command
code: 28 01 Hex

D+1 00 00 Response code (0000 Hex: Normal com-
pletion)

D+2 00 02 No. of received bytes (data length after
D02003): 2 bytes

D+3 02 B5 Slave node address: 2
TABLE DATA WRITE (THREE-WORD
FORMAT) response service code: B5 Hex

Word Contents (Hex) Meaning

C 00 1E No. of bytes of command data: 30 bytes of
command data, S

C+1 00 08 No. of words of response data: 8 bytes of
response data, D

C+2 00 01 Destination node network address: 1

C+3 00 FE Master’s node address: 0
Master’s Unit address: FE Hex

C+4 00 00 Response returned, communications port
No.: 0, No. of retries: 0

C+5 00 64 Response monitoring time: 10 s

Word Contents (Hex) Meaning

85

SECTION 5
Multitasking BASIC Programming

This section provides an overview of the fundamentals of multitasking BASIC programs and the methods by which
programs are managed in the MC Unit.

5-1 Overview . 86
5-2 BASIC Programming . 86

5-2-1 Axis, System and Task Statements . 86
5-2-2 Data Structures and Variables . 87
5-2-3 Mathematical Specifications. 88

5-3 Motion Execution . 89
5-4 Command Line Interface. 90
5-5 BASIC Programs. 90

5-5-1 Managing Programs . 91
5-5-2 Program Compilation . 91
5-5-3 Program Execution . 92

5-6 Task Operation Sequence . 93
5-7 Error Processing . 94

86

Overview Section 5-1

5-1 Overview
The MCW151-E and MCW151-DRT-E Motion Control Units feature a multi-
tasking version of the BASIC programming language. The motion control lan-
guage is largely based upon a tokenised BASIC and the programs are
compiled into the tokenised form prior to their execution.
Multitasking is simple to set up and use and allows very complex machines to
be programmed. Multitasking gives the MC Unit a significant advantage over
equivalent single task systems. It allows modular applications where the logi-
cally connected processes can be grouped together in the same task pro-
gram, thus simplifying the code architecture and design.
The MC Unit can hold up to 14 programs if memory size permits. A total of 3
tasks can be allocated to the programs. The execution of the programs is user
controlled using BASIC.
The BASIC commands, functions and parameters presented here can be
found in SECTION 6 BASIC Motion Control Programming Language.

5-2 BASIC Programming
The BASIC language consists among others of commands, functions and
parameters. These BASIC statements are the building blocks provided to
control the MC Unit operation.

Commands Commands are words recognized by the processor that perform a certain
action but do not return a value. For example, PRINT is a recognized word
that will cause the value of the following functions or variables to be printed on
a certain output device.

Functions Functions are words recognized by the processor that perform a certain
action and return a value related to that action. For example, ABS will take the
value of its parameter and return the absolute value of it to be used by some
other function or command. For example ABS(-1) will return the value 1,
which can be used by the PRINT command, for example, to generate a string
to be output to a certain device.

Parameters Parameters are words recognized by the processor that contain a certain
value. This value can be read and, if not read only, written. Parameters are
used to determine and monitor the behavior of the system. For example,
ACCEL determines the acceleration rate of a movement for a certain axis.

5-2-1 Axis, System and Task Statements
The commands, functions and parameters apply either to (one of) the axes,
the tasks running or the general system.

Axis Statements The motion control commands and the axis parameters apply to one or more
axes. Axis parameters determine and monitor how an axis reacts on com-
mands given and how it reacts to the outside world. Every axis has a set of
parameters, so that all axes can work independently of each other. The
motion control commands are able to control one or more of the axes simulta-
neously, while every axis has its own behavior. The axis parameters are reset
to their default values for each startup.
The commands and parameters work on some base axis or group of axes,
specified by the BASE command. The BASE command is used to change this
base axis group and every task has its own group which can be changed at
any time. The default base axis is 0.
Individual axis dependent commands or parameters can also be programmed
to work on a temporary base axis by including the AXIS function as a modifier

87

BASIC Programming Section 5-2

in the axis dependent command. A temporary base axis is effective only for
the command or parameter after which AXIS appears.

Task Statements The task parameters apply to a single task. The task parameters monitor the
task for example for error handling. The PROC modifier allows the user to
access a parameter of a certain task. Without PROC the current task is
assumed. The BASE command (see above) is task specific and can be used
with the PROC modifier.

System Statements These statements govern the overall system features, which are basically all
statements which do not belong to the first two groups.

5-2-2 Data Structures and Variables
BASIC programs can store numerical data in various types of variables. Some
variables have predefined functions, such as the axis parameters and system
parameters; other variables are available for the programmer to define as
required in programming. The MC Unit’s Table, global and local variables are
explained in this section. Furthermore also the use of labels will be specified.

Table Variables The Table is an array structure that contains a series of numbers. These num-
bers are used for instance to specify positions in the profile for a CAM or
CAMBOX command. They can also be used to store data for later use, for
example to store the parameters used to define a workpiece to be processed.
The Table is common to all tasks on the MC Unit, i.e., the values written to the
Table from one task can be read from other tasks.
Table values can be written and read using the TABLE command. The maxi-
mum length of the array is 8000 elements, from TABLE(0) to TABLE(7999).
The Table array is initialized up to the highest defined element.

Global Variables The global variables, also called VR variables, are common to all tasks on the
MC Unit. This means that if a program running on task 2 sets VR(25) to a cer-
tain value, then any other program running on a different task can read that
same value from VR(25). This is very useful for synchronizing two or more
tasks, but care must be taken to avoid more than one program writing to the
same variable at the same time. The controller has 251 global variables,
VR(0) to VR(250). The variables are read and written using the VR command.

Precautions for using
Table and VR variables

1. The Table and VR data can be accessed from the different running tasks.
When using either VR or Table variables, be sure to use only one task to
write to one particular variable. This to avoid problems of two program
tasks writing unexpectedly to one variable.

2. The Table and VR data in RAM are not backed up and will be lost when
the power of the MC Unit is switched OFF. If valid data needs to be recov-
ered during start-up, write the data into Flash memory using the FLASHVR
command.

Local Variables Named variables or local variables can be declared in programs and are local
to the task. This means that two or more programs running on different tasks
can use the same variable name, but their values can be different. Local vari-
ables cannot be read from any task except for the one in which they are
declared. Local variables are always cleared when a program is started. The
local variables can be cleared by using either the CLEAR or the RESET com-
mand.
A maximum of 255 local variables can be declared. Only the first 16 charac-
ters of the name are significant. Undefined local variables will return zero.
Local variables cannot be declared on the command line.

Labels The BASIC programs are executed in descending order through the lines.
Labels can be used to alter this execution flow using the BASIC commands

88

BASIC Programming Section 5-2

GOTO and GOSUB. To define a label it must appear as the first statement on
a line and it must be ended by a colon (:). Labels can be character strings of
any length, but only the first 15 characters are significant.

Using Variables and
Labels

Each task has its own local labels and local variables. For example, consider
the two programs shown below:

These two programs when run simultaneously in different tasks and have
their own version of variable “a” and label “start”.
If you need to hold data in common between two or more programs, VR vari-
ables should be used, or alternatively, if a large amount of data is to be held,
the Table can be used.
To make a program more readable when using a VR variable, a named local
variable can be used as a constant in the VR variable. The constant, however,
must be declared in each program using the variable. In the example below,
VR(3) is used to hold a length parameter.

5-2-3 Mathematical Specifications
Number format The MC Unit has two main formats for numeric values: single precision float-

ing point and single precision integer.
The single precision floating point format is internally a 32 bit value. It has an
8 bit exponent field, a sign bit and 23 bit fraction field with an implicit 1 as the
24th bit. Floating point numbers have a valid range of to

.
Integers are essentially floating point numbers with a zero exponent. This
implies that the integers are 24 bits wide. The integer range is therefore given
from -16777216 to 16777215. Numeric values outside this range will be float-
ing point.

!WARNING All mathematical calculations are done in floating point format. This implies
that for calculations of/with larger values the results may have limited accu-
racy. The user should be aware of this when developing the motion control
application.

Hexadecimal format The MC Unit supports assigning and printing hexadecimal values. A hexadec-
imal number is inputted by proceeding the number by character $. Valid range
is from 0x0 to 0xFFFFFF. Example:

start:

FOR a = 1 to 100
MOVE(a)
WAIT IDLE

NEXT a
GOTO start

start:

a=0
REPEAT

a = a + 1
PRINT a

UNTIL a = 300
GOTO start

start:
GOSUB initial
VR(length) = x

...Body of program

initial:
length = 3
RETURN

start:
GOSUB initial
MOVE(VR(length))
PRINT VR(length)

...Body of program

initial:
length = 3
RETURN

5.9± 10
39–⋅

3.4± 10
38⋅

89

Motion Execution Section 5-3

>> VR(0)=$FF
>> PRINT VR(0)
255.0000
A value can be printed in hexadecimal by using the HEX function. Negative
values result in the 2’s complement hexadecimal value (24-bit). Valid range is
from -8388608 to 16777215. Example:
>> TABLE(0,-10,65536)
>> PRINT HEX(TABLE(0)),HEX(TABLE(1))
FFFFF6 10000

Positioning For positioning, the Unit will round up if the fractional encoder edge distance
calculated exceeds 0.9. Otherwise the fractional value will be rounded down.
The internal measured and demanded position of the axes, represented by
the MPOS and DPOS axis parameters, have 32-bit counters. Note that print-
ing the MPOS and DPOS parameters will give the 24-bit integer value (see
above description).

Floating point comparison The comparison functions considers small difference between values as
equal to avoid unexpected comparison results. Therefore any two values for
which the difference is less than are considered equal.

Precedence The precedence of the operators is given below:
Unary Minus, NOT
^
/ *
MOD
+ -
= <> > >= <= <
AND OR XOR
Left to Right

The best way to ensure the precedence of various operators is through the
use of parentheses.

5-3 Motion Execution
Every task on the MC Unit has a set of buffers that holds the information from
the motion commands given. The motion commands include MOVE, MOVE-
ABS, MOVEMODIFY, MOVECIRC, FORWARD, REVERSE, MOVELINK,
CONNECT, CAM and CAMBOX. Refer to 6-2-1 Motion Control Commands
for details on specific commands.

Motion Generator The motion generator, a background process that prepares and runs moves,
has a set of two motion buffers for each axis. One buffer holds the Actual
Move, which is the move currently executing on the axis. The MTYPE axis
parameter contains the identity number of this move. For example the MTYPE
will have value 10 if currently the FORWARD move is executed. The other
buffer holds the Next Move, which is executed after the Actual Move has fin-
ished. The NTYPE axis parameter contains the identity number of this next
move.
The BASIC programs are separate from the motion generator program, which
controls moves for the axes. The motion generator has separate functions for
each axis, so each axis is capable of being programmed with its own axis
parameters (for example speed, acceleration) and moving independently and
simultaneously or they can be linked together using special commands.
When a move command is processed, the motion generator waits until the
move buffers for the required axes are empty and then loads these buffers
with the move information.

1.19 10
6–⋅

90

Command Line Interface Section 5-4

Note If the task buffers are full, the program execution is paused until buffers are
available again. This also applies to the command line task and no com-
mands can be given for that period. Motion Perfect will disconnect in such a
case. The PMOVE task parameter will be set to TRUE when the task buffers
are full and will be reset to FALSE when the task buffers are available again.

Sequencing On each servo cycle interrupt (see 5-5-3 Program Execution), the motion gen-
erator examines the NTYPE buffers to see if any of them are available. If
there are any available then it checks the task buffers to see if there is a move
waiting to be loaded. If a move can be loaded, then the data for all the speci-
fied axes is loaded from the task buffers into the NTYPE buffers and the cor-
responding task buffers are marked as idle. This process is called
sequencing.

Move Loading Once sequencing has been completed, the MTYPE buffers are checked to
see if any moves can be loaded. If the required MTYPE buffers are available,
then the move is loaded from the NTYPE buffers to the MTYPE buffers and
the NTYPE buffers are marked as idle. This process is called move loading.
If there is a valid move in the MTYPE buffers, then it is processed. When the
move has been completed, the MTYPE buffers are marked as idle.

5-4 Command Line Interface
The Command Line Interface provides a direct interface for the user to exe-
cute commands and access parameters on the system. There are two options
to use the command line interface:

• Use the Terminal Window within Motion Perfect and the MC Unit con-
nected. See SECTION 7 Motion Perfect Software Package for details.

• Use a VT100 Terminal to connect to the MC Unit. This is similar to using
the Terminal Window within Motion Perfect when the MC Unit is discon-
nected.

The MC Unit puts the last 10 commands given on the command line in a
buffer. Pressing the Up and Down Cursor Key will cycle through the buffer to
execute the command again.

5-5 BASIC Programs
The MC Unit can store up to 14 programs in memory, provided the capacity of
memory is not exceeded. The MC Unit supports simple file-handling instruc-
tions for managing these program files rather like the DOS filing system on a
computer.

Task buffers

Task 1
 MOVECIRC(..) AXIS(0)
 FORWARD AXIS(1)

Task 2

Task 3
 MOVE(..) AXIS(0)

Motion
Generator

Move buffers
Axis 0 1 2

Next Move (NTYPE) MOVE (1) FORWARD (10) IDLE (0)

Actual Move (MTYPE) MOVECIRC (4) MOVECIRC (4) IDLE (0)

Sequencing

Move
Loading

91

BASIC Programs Section 5-5

The Motion Perfect software package is used to store and load programs to
and from a computer for archiving, printing and editing. It also has several
controller monitor and debugging facilities. Refer to SECTION 7 Motion Per-
fect Software Package for details on Motion Perfect.

5-5-1 Managing Programs
Motion Perfect automatically creates a project which contains the programs to
be used for an application. The programs of the project are kept both in the
controller as on the computer. Whenever a program is created or edited,
Motion Perfect edits both copies in order to always have an accurate backup
outside the controller at any time. Motion Perfect checks that the two versions
of the project are identical using a cyclic redundancy check. If the two differ,
Motion Perfect allows copying the MC Unit version to disk or vice versa.
Programs on the computer are stored in ASCII text files. They may therefore
be printed, edited and copied using a simple text editor. The source programs
are held in the MC Unit in a tokenised form and as a result, the sizes of the
programs will be less on the MC Unit compared to the same programs on the
computer.

Storing Programs Programs on the MC Unit must be held in Flash memory when power is
turned OFF. Similar to the Table and VR variable data, the data will be lost
when the Unit is powered OFF. When a session will be ended, the current
programs in RAM must be copied to Flash memory by using the EPROM
command. The Motion Perfect package provides a button on the control panel
to perform the operation. It will also prompt the user when the program is
closed.
At each start-up before operation the program data in Flash memory will be
copied to RAM.

Program Commands The MC Unit has a number of BASIC commands to allow creation, manipula-
tion and deletion of programs. Motion Perfect provides buttons which also
perform these operations.

5-5-2 Program Compilation
The MC Unit system compiles programs automatically when required. It is not
normally required to force the MC Unit to compile programs, but programs
can be compiled under the Program Menu in Motion Perfect.
The MC Unit automatically compiles programs at the following times.

• The selected program is compiled before it is executed if it has been
edited.

• The selected program is compiled if it has been edited before switching
the selected program to another program.

• The selected program is compiled by using the COMPILE command.

Command Function

SELECT Selects a program for editing, deleting etc.

NEW Deletes the current selected program, a specified
program or all programs.

DIR Lists the directory of all programs.

COPY Duplicates a specified program.

RENAME Renames a specified program.

DEL Deletes the current selected program or a specified
program.

LIST Lists the current selected program or a specified
program.

92

BASIC Programs Section 5-5

The program syntax and structure are checked during compilation. If compila-
tion is unsuccessful, a message will be provided and no program code will be
generated. A red cross will appear in the Motion Perfect directory box.
Programs cannot be run when compilation errors occur. The errors should be
corrected and the program recompiled.
The compilation process also includes the following:

• Removing comments.
• Compiling numbers into the internal processor format.
• Converting expressions into reverse Polish Notation format for execution.
• Precalculating variable locations.
• Calculating and embedding loop structure destinations.

!WARNING As the compiling process requires some free memory, un-expected compiling
errors may be occurring when the amount of free memory is not sufficient.

5-5-3 Program Execution
The timing of the execution for the different tasks and the refreshing of the I/O
of the MC Unit revolves around the servo cycle period of the system. The
servo cycle period is determined by the SERVO_PERIOD system parameter.
The MC Unit will either have a servo cycle period of 0.5 or 1.0 ms.

I/O Refresh The I/O status of the MC Unit is refreshed at the beginning of every servo
cycle.

• The captured status of the digital inputs is transferred to the IN system
input variable. Note that this is the status captured in the previous servo
cycle.

• The analogue outputs for the speed references are updated.
• The digital outputs are updated conform the status of the OP system out-

put variable.
• The status of the digital inputs is captured.

Note that no automatic processing of the I/O signals is taking place, except for
registration. This implies that all actions must be programmed in the BASIC
programs.

Relevant commands Motion Perfect provides several ways of executing, pausing and stopping the
programs using buttons on the control panel and the editing windows. The fol-
lowing commands can be given on the command line to control the execution.

The user can explicitly allocate the task priority on which the BASIC program
is expected to run. When a user program is run without explicit task allocation,
it is assigned the highest available task priority. Tasks 3 has high priority and
task 2 and 1 have low priority.

Setting Programs to Run
at Start-up

Programs can be set to run automatically at different priorities when power is
turned ON. If required, the computer can be left connected as an operator
interface or may be removed and the programs run “stand-alone”.
Programs are set in Motion Perfect to run automatically at start-up using the
Set Power Up Mode… selection under the Program Menu. This operation

Command Function

RUN Run the current selected program or a specified pro-
gram, optionally on a specified task number.

STOP Stop the current selected program or a specified
program.

HALT Stop all programs on the system

PROCESS Displays all running tasks.

93

Task Operation Sequence Section 5-6

sets which program to run automatically and at which priority. This can also
be accomplished by the RUNTYPE BASIC command. The current status can
be seen using the DIR command.

5-6 Task Operation Sequence
The allocation of the system tasks and the program tasks with the different
priorities over the available processing time is explained in the following sec-
tion. The MC Unit generates a fixed interrupt every 250 s, which result in
4 routines to be executed each millisecond. Each interrupt will start the next
routine.
Depending on the setting of the Servo Period (using the SERVO_PERIOD
parameter), the motion sequence is executed every 500 s or every 1000 s.

The tasks (simplified) of each individual routine is shown in the next table.

Motion Sequence The motion sequence which will be executed at the beginning of each Servo
Period will contain the following elements:
1. Transfer any moves from BASIC process buffers to motion buffers (see

5-3 Motion Execution).
2. Read digital inputs.
3. Load moves. (See note).
4. Calculate speed profile. (See note).
5. Calculate axis positions. (See note).
6. Execute position servo. For axis 0 this also includes the Servo Driver com-

munications. (See note).
7. Update outputs.

Note Each of these items will be performed for each axis in turn before moving on
to the next item.

Program task execution There are three slots available for the BASIC tasks execution. The slots will
be allocated to the different tasks based on the task priorities. Tasks 3 and 2
have high priority and task 1 and 0 (command line) have low priority.
For each period (1 ms) the high priority tasks are always allocated the two
time slots for high priority (routine 2 and 3). Use this task for programs which

Routine 1 Routine 2

• Motion Sequence
• Program task execution (low pri-

ority)

• Low level serial communication
• Program task execution (high

priority)

Routine 3 Routine 4

• Motion Sequence (if period is
500 s)

• LEDs update
• Program task execution (high

priority)

• Communications (DeviceNet,
Host Link)

µ

µ µ

Routine 1 Routine 2 Routine 3 Routine 4 ...

Time (s)µ250 250 250 250

Servo Period 500 sµ
Servo Period 1000 sµ

µ

94

Error Processing Section 5-7

have higher execution requirements for demanding calculations or processing
and which task may not vary in execution speed.
The lower priority task 1 and 0 (command line) will be allocated to the single
time slot of routine 1. These tasks get less execution time and also the execu-
tion is depending on how many other low priority task are running.
If all running tasks have the same priority, the tasks will be allocated to all
available slots.
The following examples show the different allocations of the tasks.
Example 1: Tasks 1 & 3 and command line task 0 running

The task 3 is allocated two time slots each millisecond. The other time slot is
equally allocated to the other tasks over multiple cycles.

Example 2: Tasks 1,2 & 3 and command line task 0 running

Both high priority tasks (3 and 2) are allocated to the two time slots. The other
time slot is equally allocated to the other tasks over multiple cycles.

5-7 Error Processing
For the safety of the application it is very important that proper safety mea-
sures are taken for the different problems which may occur in the system. For
safe operation at all times the user must make use of the several options to
check for these errors in both the MC Unit and Servo Driver.
As for the MC Unit, the BASIC programming language provide the program-
mer with the freedom to include a lot of safety measures or not. This requires
a sensible solution, which covers all possible behaviour of the system.
This section will present the possible errors that may occur and suggest the
way to detect them. For a full description of the error handling refer to section
8-2 Error Handling.

!Caution The MC Unit outputs may have undefined status due to deposits on or burn-
ing of the output relays, or destruction of the output transistors. As a counter-
measure for such problems, external safety measures must be provided to
ensure safety in the system.

BASIC Errors If a BASIC error is generated during the execution of a BASIC command in
some task, the program will be halted immediately or the user can define a
specific error routine structure to stop the system. The error routine can stop
the driver, put the digital I/O in a safe status and notify the PC Unit of the
error. Please refer to section 6-3-31 BASICERROR on the way to include an
error subroutine in a BASIC program.

Motion Error In case a motion error occurs, the MC Unit will disable the control of the driver
automatically. The user has the ability to decide for each axis which motion
errors will disable the driver by using the ERRORMASK parameter (see sec-
tion 6-3-67 ERRORMASK). After detection of the motion error the user is free
to program the necessary countermeasures for the other axes and the com-
plete system.

Host Link Master The Host Link Master protocol uses the HLM_STATUS parameter to define
the different error states. The HLM_STATUS parameter will contain error
states like Timeout and invalid Host Link strings received from the master.
The required actions such as a re-try for the error states are required to be

1 ms 1 ms

Task 0 Task 3 Task 3 Task 1 Task 3 Task 3

1 ms 1 ms

Task 0 Task 3 Task 2 Task 1 Task 3 Task 2

95

Error Processing Section 5-7

programmed in BASIC. See 4-1-2 Host Link Slave for details on Host Link
error handling.

Host Link Slave The Host Link Slave protocol will respond with the proper end code to the
Master when some error has been detected. No programmed error routine in
BASIC is necessary, all error handling is done by the Host Link Master.

DeviceNet Although most error handling will be at the DeviceNet master, the MC Unit as
DeviceNet slave has a status parameter. The FB_STATUS will return the sta-
tus of the Remote I/O Communication with the Master.
Please refer to Appendix C Programming Examples to find an implementation
of the master shell program. The master shell program is used for the config-
uration of the MC Unit and Servo Driver, for the control of the application pro-
gram tasks and for the continuous checking any error event that may occur. It
is strongly recommended to use this program or a similar program for every
application.

97

SECTION 6
BASIC Motion Control Programming Language

This section describes all commands, functions and parameters required for programing the motion control application
using the MC Unit.

6-1 Overview . 102
6-2 Command Reference List . 103

6-2-1 Motion Control Commands . 103
6-2-2 I/O Commands and Functions . 103
6-2-3 Loop and Conditional Structures . 104
6-2-4 Program Commands and Functions . 104
6-2-5 System Commands and Parameters . 105
6-2-6 Mathematical and Logical Functions . 106
6-2-7 Constants. 107
6-2-8 Motion Perfect Commands, Functions and Parameters 107
6-2-9 Axis Parameters . 107
6-2-10 Task Commands and Parameters . 109
6-2-11 Servo Driver Commands and Parameters . 110
6-2-12 Host Link Commands and Parameters . 110
6-2-13 DeviceNet Commands and Parameters. 110

6-3 Command, function and parameter description . 111
6-3-1 Multiply: * . 111
6-3-2 Power: ^ . 111
6-3-3 Add: + . 111
6-3-4 Subtract: – . 112
6-3-5 Divide: / . 112
6-3-6 Is Less Than: < . 112
6-3-7 Is Less Than Or Equal To: <=. 112
6-3-8 Is Not Equal To: <> . 113
6-3-9 Is Equal To: = . 113
6-3-10 Is Greater Than: > . 113
6-3-11 Is Greater Than or Equal To: >=. 113
6-3-12 Hexadecimal input: $. 114
6-3-13 Statement separator: “:” . 114
6-3-14 Comment field: ‘ . 114
6-3-15 ABS. 114
6-3-16 ACCEL . 115
6-3-17 ACOS . 115
6-3-18 ADD_DAC . 115
6-3-19 ADDAX_AXIS. 116
6-3-20 ADDAX . 117
6-3-21 AIN . 117
6-3-22 AND . 118
6-3-23 ASIN . 119
6-3-24 ATAN . 119
6-3-25 ATAN2 . 119
6-3-26 ATYPE . 119
6-3-27 AUTORUN . 120
6-3-28 AXIS . 120
6-3-29 AXISSTATUS. 121
6-3-30 BASE . 121

98

6-3-31 BASICERROR . 122
6-3-32 CAM . 123
6-3-33 CAMBOX . 124
6-3-34 CANCEL. 125
6-3-35 CHECKSUM. 126
6-3-36 CLEAR . 126
6-3-37 CLEAR_BIT . 126
6-3-38 CLOSE_WIN . 126
6-3-39 CLUTCH_RATE. 126
6-3-40 COMMSERROR. 127
6-3-41 COMPILE . 127
6-3-42 CONNECT . 127
6-3-43 CONTROL . 128
6-3-44 COPY . 128
6-3-45 COS . 128
6-3-46 CREEP . 129
6-3-47 D_GAIN . 129
6-3-48 DATUM. 129
6-3-49 DATUM_IN. 130
6-3-50 DECEL . 131
6-3-51 DEFPOS . 131
6-3-52 DEL . 131
6-3-53 DEMAND_EDGES . 132
6-3-54 DIR . 132
6-3-55 DPOS. 132
6-3-56 DRV_CLEAR . 133
6-3-57 DRV_READ . 133
6-3-58 DRV_RESET. 134
6-3-59 DRV_STATUS . 134
6-3-60 DRV_WRITE . 135
6-3-61 EDIT . 135
6-3-62 ENCODER . 136
6-3-63 ENDMOVE . 136
6-3-64 EPROM . 136
6-3-65 ERROR_AXIS . 136
6-3-66 ERROR_LINE. 136
6-3-67 ERRORMASK . 137
6-3-68 EXP . 137
6-3-69 FALSE. 137
6-3-70 FAST_JOG . 137
6-3-71 FB_SET. 138
6-3-72 FB_STATUS . 138
6-3-73 FE . 138
6-3-74 FE_LIMIT . 138
6-3-75 FE_RANGE . 139
6-3-76 FHOLD_IN . 139
6-3-77 FHSPEED . 139
6-3-78 FLASHVR. 139
6-3-79 FOR TO STEP NEXT. 140
6-3-80 FORWARD . 141
6-3-81 FRAC. 141
6-3-82 FREE . 141
6-3-83 FS_LIMIT . 142

99

6-3-84 FWD_IN . 142
6-3-85 FWD_JOG . 142
6-3-86 GET. 142
6-3-87 GOSUB RETURN . 143
6-3-88 GOTO . 143
6-3-89 HALT . 144
6-3-90 HLM_COMMAND . 144
6-3-91 HLM_READ. 146
6-3-92 HLM_STATUS . 147
6-3-93 HLM_TIMEOUT . 147
6-3-94 HLM_WRITE. 148
6-3-95 HLS_MODEL. 149
6-3-96 HLS_NODE . 149
6-3-97 I_GAIN . 150
6-3-98 IF THEN ELSE ENDIF . 150
6-3-99 IN . 151
6-3-100 INDEVICE . 151
6-3-101 INPUT. 152
6-3-102 INT . 152
6-3-103 JOGSPEED. 153
6-3-104 KEY . 153
6-3-105 LAST_AXIS . 153
6-3-106 LINK_AXIS . 154
6-3-107 LINPUT . 154
6-3-108 LIST . 154
6-3-109 LN . 155
6-3-110 LOCK . 155
6-3-111 MARK . 155
6-3-112 MARKB . 156
6-3-113 MERGE . 156
6-3-114 MOD . 156
6-3-115 MOTION_ERROR . 156
6-3-116 MOVE. 157
6-3-117 MOVEABS . 158
6-3-118 MOVECIRC . 159
6-3-119 MOVELINK . 160
6-3-120 MOVEMODIFY . 163
6-3-121 MPOS . 163
6-3-122 MSPEED. 163
6-3-123 MTYPE. 163
6-3-124 NEW . 164
6-3-125 NIO . 164
6-3-126 NOT . 164
6-3-127 NTYPE . 165
6-3-128 OFF . 165
6-3-129 OFFPOS . 165
6-3-130 ON. 165
6-3-131 ON. 166
6-3-132 OP . 166
6-3-133 OPEN_WIN . 167
6-3-134 OR. 167
6-3-135 OUTDEVICE . 168

100

6-3-136 OUTLIMIT . 168
6-3-137 OV_GAIN . 168
6-3-138 P_GAIN. 169
6-3-139 PI . 169
6-3-140 PMOVE . 169
6-3-141 PP_STEP . 169
6-3-142 PRINT . 170
6-3-143 PROC. 171
6-3-144 PROC_LINE . 171
6-3-145 PROC_STATUS . 172
6-3-146 PROCESS . 172
6-3-147 PROCNUMBER . 172
6-3-148 PSWITCH . 172
6-3-149 RAPIDSTOP . 173
6-3-150 READ_BIT . 174
6-3-151 REG_POS . 174
6-3-152 REG_POSB . 174
6-3-153 REGIST. 174
6-3-154 REMAIN . 177
6-3-155 RENAME . 177
6-3-156 REP_DIST. 177
6-3-157 REP_OPTION. 178
6-3-158 REPEAT UNTIL . 178
6-3-159 RESET. 179
6-3-160 REV_IN. 179
6-3-161 REV_JOG . 179
6-3-162 REVERSE . 179
6-3-163 RS_LIMIT. 180
6-3-164 RUN. 180
6-3-165 RUN_ERROR . 180
6-3-166 RUNTYPE. 181
6-3-167 S_RATE. 181
6-3-168 S_REF . 182
6-3-169 S_REF_OUT . 182
6-3-170 SCOPE . 182
6-3-171 SCOPE_POS . 183
6-3-172 SELECT . 184
6-3-173 SERVO . 184
6-3-174 SERVO_PERIOD . 184
6-3-175 SET_BIT . 185
6-3-176 SETCOM. 185
6-3-177 SGN . 185
6-3-178 SIN . 186
6-3-179 SPEED. 186
6-3-180 SQR . 186
6-3-181 SRAMP . 186
6-3-182 STEPLINE . 186
6-3-183 STOP . 187
6-3-184 SWITCH_STATUS . 187
6-3-185 T_RATE . 188
6-3-186 T_REF . 188
6-3-187 TABLE . 188
6-3-188 TAN . 189

101

6-3-189 TICKS. 189
6-3-190 TRIGGER . 190
6-3-191 TROFF . 190
6-3-192 TRON . 190
6-3-193 TRUE . 191
6-3-194 TSIZE . 191
6-3-195 UNITS. 191
6-3-196 VERSION . 191
6-3-197 VFF_GAIN . 192
6-3-198 VP_SPEED . 192
6-3-199 VR. 192
6-3-200 WA . 193
6-3-201 WAIT IDLE . 193
6-3-202 WAIT LOADED . 194
6-3-203 WAIT UNTIL . 194
6-3-204 WDOG . 195
6-3-205 WHILE WEND . 195
6-3-206 XOR . 195

102

Overview Section 6-1

6-1 Overview
This section contains the description of the commands, functions and param-
eters of the MC Unit. All items can be found in alphabetical order. For quick
command reference, check the following section.

Group Structure The complete set of commands, functions and parameters is divided in the
following groups.
1. Motion Control Commands
2. I/O Commands and Functions
3. Loop and Conditional Structures
4. Program Commands and Parameters
5. System Commands and Parameters
6. Mathematical Functions
7. Constants
8. Motion Perfect Commands and Parameters
9. Axis Parameters
10. Task Functions and Parameters
11. Servo Driver Commands and Parameters
12. Host Link Commands and Parameters
13. DeviceNet Commands and Parameters

Notation Used in this
Section

Each of the descriptions of the commands, functions and parameters will con-
tain some of the following attributes. Individual attributes are omitted when not
applicable.

Type: The classification is given for command, function or parameter.

Syntax: Standard BASIC notation is used to show command or function syntax. Syn-
tax definition:

• Syntax code is given in typewriter font. Text must be typed exactly
as given.

• Argument names are given in italic font with underscores_for_spaces.
Replace these with the actual arguments.

• Optional items are denoted with square brackets “[]” in the syntax nota-
tion. The items are optional and can be omitted.

• Repetition items are denoted with “{ }” brackets in the syntax notation.
Items enclosed in these brackets are repeated zero or more times.

Alternative: Any alternative form of a command, function or parameter is given.

Description: This field describes the purpose and application of the command, function or
parameter.

Precautions: Specific precautions related to programming are provided.

Arguments: The name of each argument is given in bold italic font followed by the
description of the argument.

See also: In this field the related commands, functions and parameters are given.

Example: One or more application examples are given for most commands, functions,
and parameters.

103

Command Reference List Section 6-2

6-2 Command Reference List
6-2-1 Motion Control Commands

The table below outlines the motion control commands. Refer to the specified
pages for details.

6-2-2 I/O Commands and Functions
The table below outlines the I/O commands and functions. Refer to the speci-
fied pages for details.

Name Description Page

ADD_DAC ADD_DAC allows a secondary encoder to be used on a servo
axis to achieve dual feed-back control.

115

ADDAX ADDAX sets a link to a superimposed axis. All demand posi-
tion movements for the superimposed axis will be added to
any moves that are currently being executed.

117

BASE BASE is used to set the base axis to the axis specified with
axis.

121

CAM CAM moves an axis according to values of a movement pro-
file stored in the Table variable array.

123

CAMBOX CAMBOX moves an axis according to values of a movement
profile stored in the Table variable array. The motion is linked
to the measured motion of another axis to form a continuously
variable software gearbox.

124

CANCEL CANCEL cancels the move on an axis. 125

CONNECT CONNECT connects the demand position of an axis to the
measured movements of the axis specified for driving_axis to
produce an electronic gearbox.

127

DATUM DATUM performs one of 7 origin search sequences to posi-
tion an axis to an absolute position or reset a motion error.

129

DEFPOS DEFPOS defines the current position as a new absolute posi-
tion.

131

FORWARD FORWARD moves an axis continuously forward at the speed
set in the SPEED parameter.

141

MOVE MOVE moves one or more axes at the demand speed, accel-
eration and deceleration to the position specified as increment
from the current position.

157

MOVEABS MOVEABS moves one or more axes at the demand speed,
acceleration and deceleration to the position specified as
absolute position, i.e., in reference to the origin.

158

MOVECIRC MOVECIRC interpolates 2 orthogonal axes in a circular arc. 159

MOVELINK MOVELINK creates a linear move on the base axis linked via
a software gearbox to the measured position of a link axis.

160

MOVEMODIFY MOVEMODIFY changes the absolute end position of the cur-
rent single-axis linear move (MOVE or MOVEABS).

163

RAPIDSTOP RAPIDSTOP cancels the current move on all axes. 173

REVERSE REVERSE moves an axis continuously in reverse at the
speed set in the SPEED parameter.

179

Name Description Page

AIN AIN provides four analog channels which contain the Servo
Driver monitor data signals.

117

GET GET waits for the arrival of a single character and assigns the
ASCII code of the character to variable.

142

IN IN returns the value of digital inputs. 151

INDEVICE INDEVICE parameter defines the default input device. 151

104

Command Reference List Section 6-2

6-2-3 Loop and Conditional Structures
The table below outlines the loop and conditional structure commands. Refer
to the specified pages for details.

6-2-4 Program Commands and Functions
The table below outlines commands used for general programming purposes.
Refer to the specified pages for details.

INPUT INPUT waits for a string to be received and assigns the
numerical value to variable.

152

KEY KEY returns TRUE or FALSE depending on if character is
received.

153

LINPUT LINPUT waits for a string and puts it in VR variables. 154

OP OP sets one or more outputs or returns the state of the first 24
outputs.

166

OUTDEVICE OUTDEVICE defines the default output device. 168

PRINT PRINT outputs a series of characters to a serial port. 170

PSWITCH PSWITCH turns ON an output when a predefined position is
reached, and turns OFF the output when a second position is
reached.

172

REGIST REGIST captures an axis position when a registration input or
the Z mark on the encoder is detected.

174

SETCOM SETCOM sets the serial communications. 185

Name Description Page

Name Description Page

FOR TO STEP
NEXT

FOR ... NEXT loop allows a program segment to be repeated
with increasing/decreasing variable.

140

GOSUB RETURN GOSUB jumps to a subroutine at the line just after label. The
program execution returns to the next instruction after a
RETURN is given.

143

GOTO GOTO jumps to the line containing the label. 143

IF THEN ELSE
ENDIF

IF controls the flow of the program base on the results of the
condition.

150

ON GOSUB or
GOTO

ON GOSUB or ON GOTO enables a conditional jump to one
of several labels.

166

REPEAT UNTIL REPEAT ... UNTIL loop allows the program segment to be
repeated until the condition becomes TRUE.

178

WHILE WEND WHILE ... WEND loop allows the program segment to be
repeated until the condition becomes FALSE.

195

Name Description Page

Statement separator:
“ : “

The statement separator enables more statements on one
line.

114

Comment field: “ ‘ “ The single quote enables a line not to be executed. 114

AUTORUN AUTORUN starts all the programs that have been set to run at
start-up.

120

COMPILE COMPILE compiles the current program. 127

COPY COPY copies an existing program in memory to a new pro-
gram.

128

DEL DEL deletes a program from memory. 131

DIR DIR displays a list of the programs held in memory, their size
and their RUNTYPE.

132

EDIT EDIT allows a program to be modified using a VT100 Termi-
nal.

135

105

Command Reference List Section 6-2

6-2-5 System Commands and Parameters
The table below outlines the system commands and parameters. Refer to the
specified pages for details.

EPROM EPROM stores the BASIC programs in the MC Unit in the
Flash memory.

136

FREE FREE returns the amount of available memory. 141

HALT HALT stops execution of all programs currently running. 144

LIST LIST prints the lines of a program. 154

NEW NEW deletes all the program lines in MC Unit memory. 164

PROCESS PROCESS returns the running status and task number for
each current task.

172

RENAME RENAME changes the name of a program in the MC Unit
directory.

177

RUN RUN executes a program. 180

RUNTYPE RUNTYPE determines if a program is run at start-up, and
which task it is to run on.

181

SELECT SELECT specifies the current program. 184

STEPLINE STEPLINE executes a single line in a program. 186

STOP STOP halts program execution. 187

TROFF TROFF suspends a trace at the current line and resumes nor-
mal program execution.

190

TRON TRON creates a breakpoint in a program. 190

Name Description Page

Name Description Page

Hexadecimal input:
“$”

Command $ assigns a hexadecimal number to a variable. 114

AXIS AXIS sets the axis for a command, axis parameter read, or
assignment to a particular axis.

120

BASICERROR BASICERROR is used to run a specific routine when an error
occurs in a BASIC command.

122

CHECKSUM CHECKSUM contains the checksum for the programs in
RAM.

126

CLEAR CLEAR clears all global variables and the local variables on
the current task.

126

CLEAR_BIT CLEAR_BIT clears the specified bit of the specified VR vari-
able.

126

COMMSERROR COMMSERROR contains all the communications errors that
have occurred since the last time that it was initialised.

127

CONTROL CONTROL contains the type of MC Unit in the system. 128

ERROR_AXIS ERROR_AXIS contains the number of the axis which caused
the motion error.

136

FLASHVR FLASHVR is used to store VR or Table variable data into the
Flash memory.

139

LAST_AXIS LAST_AXIS contains the number of the last axis processed
by the system.

153

LOCK LOCK prevents the programs from being viewed or modified. 155

MOTION_ERROR MOTION_ERROR contains an error flag for axis motion
errors.

156

NIO NIO contains the number of inputs and outputs connected to
the system.

164

READ_BIT READ_BIT returns the value of the specified bit in the speci-
fied VR variable.

174

RESET RESET resets all local variables on a task. 179

106

Command Reference List Section 6-2

6-2-6 Mathematical and Logical Functions
The table below outlines the mathematical and logical functions. Refer to the
specified pages for details.

SERVO_PERIOD SERVO_PERIOD sets the servo cycle period of the MC Unit. 184

SET_BIT SET_BIT command sets the specified bit in the specified VR
variable to one.

185

SWITCH_STATUS SWITCH_STATUS contains the status of the 10 external DIP-
switches on the MC Unit.

187

TABLE TABLE writes and reads data to and from the Table variable
array.

188

TSIZE TSIZE returns the size of the currently defined Table. 191

VERSION VERSION returns the version number of the BASIC language
installed in the MC Unit.

191

VR VR writes and reads data to and from the global (VR) vari-
ables.

192

WA WA holds program execution for the number of milliseconds
specified.

193

WAIT IDLE WAIT IDLE suspends program execution until the base axis
has finished executing its current move and any buffered
move.

193

WAIT LOADED WAIT LOADED suspends program execution until the base
axis has no moves buffered ahead other than the currently
executing move.

194

WAIT UNTIL WAIT UNTIL repeatedly evaluates the condition until TRUE. 194

WDOG WDOG contains the software switch which enables the Servo
Driver.

195

Name Description Page

Name Description Page

Multiply: * * multiplies any two valid expressions. 111

Power: ^ ^ takes the power of any two valid expressions 111

Add: + + adds any two valid expressions. 111

Subtract: – – subtracts any two valid expressions. 112

Divide: / / divides any two valid expressions. 112

Is Less Than: < < returns TRUE if expression_1 is less than expression_2,
otherwise FALSE.

112

Is Less Than Or
Equal To: <=

<= returns TRUE if expression_1 is less than or equal to
expression_2, otherwise FALSE.

112

Is Not Equal To: <> <> returns TRUE if expression_1 is not equal to
expression_2, otherwise FALSE.

113

Is Equal To: = = returns TRUE if expression_1 is equal to expression_2, oth-
erwise FALSE.

113

Is Greater Than: > > returns TRUE if expression_1 is greater than expression_2,
otherwise FALSE.

113

Is Greater Than or
Equal To: >=

>= returns TRUE if expression_1 is greater than or equal to
expression_2, otherwise FALSE.

113

ABS ABS returns the absolute value of expression. 114

ACOS ACOS returns the arc-cosine of expression. 115

AND AND performs an AND operation on corresponding bits of the
integer parts of two valid BASIC expressions.

118

ASIN ASIN returns the arc-sine of expression. 119

ATAN ATAN returns the arc-tangent of expression. 119

ATAN2 ATAN2 returns the arc-tangent of the nonzero complex num-
ber (expression_2, expression_1).

119

107

Command Reference List Section 6-2

6-2-7 Constants
The table below outlines the constants. Refer to the specified pages for
details.

6-2-8 Motion Perfect Commands, Functions and Parameters
The table below outlines the Motion Perfect commands, functions, and
parameters. Refer to the specified pages for details.

6-2-9 Axis Parameters
The table below outlines the axis parameters. Refer to the specified pages for
details.

COS COS returns the cosine of expression. 128

EXP EXP returns the exponential value of expression. 137

FRAC FRAC returns the fractional part of expression. 141

INT INT returns the integer part of expression. 152

LN LN returns the natural logarithm of expression. 155

MOD MOD returns the expression_2 modulus of an expression_1. 156

NOT NOT performs an NOT operation on corresponding bits of the
integer part of the expression.

164

OR OR performs an OR operation between corresponding bits of
the integer parts of two valid BASIC expressions.

167

SGN SGN returns the sign of expression. 185

SIN SIN returns the sine of expression. 186

SQR SQR returns the square root of expression. 186

TAN TAN returns the tangent of expression. 189

XOR XOR performs an XOR function between corresponding bits
of the integer parts of two valid BASIC expressions.

195

Name Description Page

Name Description Page

FALSE FALSE returns the numerical value 0. 137

OFF OFF returns the numerical value 0. 165

ON ON returns the numerical value 1. 165

PI PI returns the numerical value 3.1416. 169

TRUE TRUE returns the numerical value -1. 191

Name Description Page

SCOPE SCOPE programs the system to automatically store up to 4
parameters every sample period to the Table variable array.

182

SCOPE_POS SCOPE_POS contains the current Table position at which the
SCOPE command is currently storing its first parameter.

183

TRIGGER TRIGGER starts a previously set SCOPE command. 190

Name Description Page

ACCEL ACCEL contains the axis acceleration rate. 115

ADDAX_AXIS ADDAX_AXIS returns the number of the axis to which the
base axis is currently linked to by ADDAX.

116

ATYPE ATYPE contains the axis type. 119

AXISSTATUS AXISSTATUS contains the axis status. 121

CLOSE_WIN CLOSE_WIN defines the end of the window in which a regis-
tration mark is expected.

126

108

Command Reference List Section 6-2

CLUTCH_RATE CLUTCH_RATE defines the change in connection ratio when
using the CONNECT command.

126

CREEP CREEP contains the creep speed. 129

D_GAIN D_GAIN contains the derivative control gain. 129

DATUM_IN DATUM_IN contains the input number to be used as the ori-
gin input.

130

DECEL DECEL contains the axis deceleration rate. 131

DEMAND_EDGES DEMAND_EDGES contains the current value of the DPOS
axis parameter in encoder edges.

132

DPOS DPOS contains the demand position generated by the move
commands.

132

ENCODER ENCODER contains a raw copy of the encoder hardware reg-
ister.

136

ENDMOVE ENDMOVE holds the position of the end of the current move. 136

ERRORMASK ERRORMASK contains the mask value which determines if a
Motion Error occurs depending on the axis status.

137

FAST_JOG FAST_JOG contains the input number to be used as the fast
jog input.

137

FE FE contains the following error. 138

FE_LIMIT FE_LIMIT contains the maximum allowable following error. 138

FE_RANGE FE_RANGE contains the following error warning range limit. 139

FHOLD_IN FHOLD_IN contains the input number to be used as the feed-
hold input.

137

FHSPEED FHSPEED contains the feedhold speed. 139

FS_LIMIT FS_LIMIT contains the absolute position of the forward soft-
ware limit.

142

FWD_IN FWD_IN contains the input number to be used as a forward
limit input.

142

FWD_JOG FWD_JOG contains the input number to be used as a jog for-
ward input.

142

I_GAIN I_GAIN contains the integral control gain. 150

JOGSPEED JOGSPEED sets the jog speed. 153

LINK_AXIS LINK_AXIS contains the axis number of the link axis during
any linked move.

154

MARK MARK contains TRUE when a registration event has
occurred.

155

MERGE MERGE is a software switch that can be used to enable or
disable the merging of consecutive moves.

156

MPOS MPOS is the position of the axis as measured by the encoder. 163

MSPEED MSPEED represents the change in the measured position in
the last servo period.

163

MTYPE MTYPE contains the type of move currently being executed. 163

NTYPE NTYPE contains the type of the move in the Next Move buffer. 165

OFFPOS OFFPOS contains an offset that will be applied to the demand
position without affecting the move in any other way.

165

OPEN_WIN OPEN_WIN defines the beginning of the window in which a
registration mark is expected.

167

OUTLIMIT OUTLIMIT contains the limit that restricts the speed reference
output from the MC Unit.

168

OV_GAIN OV_GAIN contains the output velocity control gain. 168

P_GAIN P_GAIN contains the proportional control gain. 169

PP_STEP PP_STEP contains an integer value that scales the incoming
raw encoder count.

169

Name Description Page

109

Command Reference List Section 6-2

6-2-10 Task Commands and Parameters
The table below outlines the task commands and parameters. Refer to the
specified pages for details.

REG_POS REG_POS contains the position at which a registration event
occurred.

174

REMAIN REMAIN is the distance remaining to the end of the current
move.

177

REP_DIST REP_DIST contains sets the repeat distance. 177

REP_OPTION REP_OPTION controls the application of the REP_DIST axis
parameter.

178

REV_IN REV_IN contains the input number to be used as a reverse
limit input.

179

REV_JOG REV_JOG contains the input number to be used as a jog
reverse input.

179

RS_LIMIT RS_LIMIT contains the absolute position of the reverse soft-
ware limit.

180

S_RATE S_RATE contains the speed reference rate for the attached
Servomotor.

181

S_REF S_REF contains the speed reference value which is applied
when the axis is in open loop.

182

S_REF_OUT S_REF_OUT contains the speed reference value being
applied to the Servo Driver for both open as closed loop.

182

SERVO SERVO determines whether the axis runs under servo control
or open loop.

184

SPEED SPEED contains the demand speed in units/s. 186

SRAMP SRAMP contains the S-curve factor. 186

T_RATE T_RATE contains the torque reference rate for the attached
Servomotor.

188

T_REF T_REF contains the torque reference value which is applied
to the Servomotor.

188

UNITS UNITS contains the unit conversion factor. 191

VFF_GAIN VFF_GAIN contains the speed feed forward control gain. 192

VP_SPEED VP_SPEED contains the speed profile speed. 192

Name Description Page

Name Description Page

ERROR_LINE ERROR_LINE contains the number of the line which caused
the last BASIC program error.

136

PMOVE PMOVE contains the status of the task buffers. 169

PROC PROC allows a process parameter from a particular process
to be accessed.

171

PROC_LINE PROC_LINE returns the current line number of the specified
program task.

171

PROC_STATUS PROC_STATUS returns the status of the process specified. 172

PROCNUMBER PROCNUMBER contains the number of the task in which the
currently selected program is running.

172

RUN_ERROR RUN_ERROR contains the number of the last BASIC error
that occurred on the specified task.

180

TICKS TICKS contains the current count of the task clock pulses. 189

110

Command Reference List Section 6-2

6-2-11 Servo Driver Commands and Parameters
The table below outlines the Servo Driver commands and parameters. Refer
to the specified pages for details.

6-2-12 Host Link Commands and Parameters
The table below outlines the Host Link commands and parameters. Refer to
the specified pages for details.

6-2-13 DeviceNet Commands and Parameters
The table below outlines the DeviceNet commands and parameters. Refer to
the specified pages for details.

Name Description Page

DRV_CLEAR DRV_CLEAR clears the alarm status of the Servo Driver. 133

DRV_READ DRV_READ reads the specified parameter of the Servo
Driver.

133

DRV_RESET DRV_RESET will software reset both the Servo Driver as the
MC Unit.

134

DRV_STATUS DRV_STATUS contains the current servo alarm code of the
Servo Driver.

134

DRV_WRITE DRV_WRITE writes a specific value to the specified parame-
ter of the Servo Driver.

135

Name Description Page

HLM_COMMAND HLM_COMMAND executes a specific Host Link command to
the Slave.

144

HLM_READ HLM_READ reads data from the Host Link Slave to either VR
or Table variable array.

146

HLM_STATUS HLM_STATUS represents the status of the last Host Link
Master command.

147

HLM_TIMEOUT HLM_TIMEOUT defines the Host Link Master timeout time. 147

HLM_WRITE HLM_WRITE writes data to the Host Link Slave from either
VR or Table variable array.

148

HLS_MODEL HLS_MODEL defines the MC Unit model code for the Host
Link Slave protocol.

149

HLS_NODE HLS_NODE defines the Slave unit number for the Host Link
Slave protocol.

149

Name Description Page

FB_SET FB_SET sets the Remote I/O Messaging data to be trans-
ferred for input word 2.

138

FB_STATUS FB_STATUS returns the status of the communications of the
MC Unit with the DeviceNet master.

138

111

Command, function and parameter description Section 6-3

6-3 Command, function and parameter description
This section describes the commands, functions and parameters which are
used in the BASIC programming language.

!WARNING It is the responsibility of the programmer to ensure that the motion func-
tions are invoked correctly, with the correct number of parameters and
values. Failure to do so may result in unexpected behavior, loss or dam-
age to the machinery.

6-3-1 Multiply: *
Type: Arithmetic Operation

Syntax: expression_1 * expression_2

Description: The multiply operator “*” multiplies any two valid expressions.

Arguments: expression_1
Any valid BASIC expression.
expression_2
Any valid BASIC expression.

Example: factor = 10*(2.1+9)
The parentheses are evaluated first, and then the result, 11.1, is multiplied by
10. Therefore, factor would contain the value 111

6-3-2 Power: ^
Type: Arithmetic Operation

Syntax: expression_1 ^ expression_2

Description: The power operator “^” raises expression_1 to the power of expression_2.

!WARNING This operation uses floating point algorithms and may give small deviations
for integer calculations.

Arguments: expression_1
Any valid BASIC expression.
expression_2
Any valid BASIC expression.

Example: thirtytwo = 2^5
This sets the variable thirtytwo to 32.

6-3-3 Add: +
Type: Arithmetic Operation

Syntax: expression_1 + expression_2

Description: The add operator “+” adds any two valid expressions.

Arguments: expression_1
Any valid BASIC expression.
expression_2
Any valid BASIC expression.

Example: result = 10+(2.1*9)
The parentheses are evaluated first, and the result, 18.9, is added to 10.
Therefore, result would contain the value 28.9.

112

Command, function and parameter description Section 6-3

6-3-4 Subtract: –
Type: Arithmetic Operation

Syntax: expression_1 - expression_2

Description: The subtract operator “–” subtracts any two valid expressions.

Arguments: expression_1
Any valid BASIC expression.
expression_2
Any valid BASIC expression.

Example: VR(0) = 10-(2.1*9)
The parentheses are evaluated first, and the result, 18.9, is subtracted from
10. Therefore, VR(0) would contain the value –8.9.

6-3-5 Divide: /
Type: Arithmetic Operation

Syntax: expression_1 / expression_2

Description: The divide operator “/” divides any two valid expressions.

Arguments: expression_1
Any valid BASIC expression.
expression_2
Any valid BASIC expression.

Example: a = 10/(2.1+9)
The parentheses are evaluated first, and then 10 is divided by the result, 11.1.
Therefore, a would contain the value 0.9009

6-3-6 Is Less Than: <
Type: Logical Operation

Syntax: expression_1 < expression_2

Description: The less than operator “<“ returns TRUE if expression_1 is less than
expression_2, otherwise it returns FALSE.

Arguments: expression_1
Any valid BASIC expression.
expression_2
Any valid BASIC expression.

Example: IF VR(1) < 10 THEN GOSUB rollup
If the value returned from VR(1) is less than 10, then subroutine ”rollup” would
be executed.

6-3-7 Is Less Than Or Equal To: <=
Type: Logical Operation

Syntax: expression_1 <= expression_2

Description: The less than or equal to operator “<=” returns TRUE if expression_1 is less
than or equal to expression_2, otherwise it returns FALSE.

Arguments: expression_1
Any valid BASIC expression.
expression_2
Any valid BASIC expression.

Example: maybe = 1 <= 0

113

Command, function and parameter description Section 6-3

In the above line, 1 is not less than or equal to 0 and, therefore, variable
maybe would contain the value 0 (FALSE).

6-3-8 Is Not Equal To: <>
Type: Logical Operation

Syntax: expression_1 <> expression_2

Description: The not equal to operator “<>” returns TRUE if expression_1 is not equal to
expression_2, otherwise it returns FALSE.

Arguments: expression_1
Any valid BASIC expression.
expression_2
Any valid BASIC expression.

Example: IF MTYPE <> 0 THEN GOTO 3000
If the base axis is not idle (MTYPE=0 indicates an axis idle), then a jump
would be made to label 3000.

6-3-9 Is Equal To: =
Type: Logical Operation

Syntax: expression_1 = expression_2

Description: The equal to operator “=” returns TRUE if expression_1 is equal to
expression_2, otherwise it returns FALSE.

Arguments: expression_1
Any valid BASIC expression.
expression_2
Any valid BASIC expression.

Example: IF IN(7) = ON THEN GOTO label
If input 7 is ON, then program execution will continue at line starting “label:”.

6-3-10 Is Greater Than: >
Type: Logical Operation

Syntax: expression_1 > expression_2

Description: The greater than operator “>” returns TRUE if expression_1 is greater than
expression_2, otherwise it returns FALSE.

Arguments: expression_1
Any valid BASIC expression.
expression_2
Any valid BASIC expression.

Examples: Example 1
VR(0) = 1 > 0
In the above line, 1 is greater than 0 and, therefore, VR(0) would contain the
value –1
Example 2
WAIT UNTIL MPOS > 200
Program execution will wait until the measured position is greater than 200.

6-3-11 Is Greater Than or Equal To: >=
Type: Logical Operation

Syntax: expression_1 >= expression_2

114

Command, function and parameter description Section 6-3

Description: The greater than or equal to operator “>=” returns TRUE if expression_1 is
greater than or equal to expression_2, otherwise it returns FALSE.

Arguments: expression_1
Any valid BASIC expression.
expression_2
Any valid BASIC expression.

Example: IF target >= 120 THEN MOVEABS(0)
If the variable target holds a value greater than or equal to 120, then the base
axis will move to an absolute position of 0.

6-3-12 Hexadecimal input: $
Type: System Command

Syntax: $hex_number

Description: The hexadecimal input command (character $) assigns a hexadecimal num-
ber to a variable. The hexadecimal number is inputted by proceeding the
number by the $ character. This operation will write the decimal equivalent to
the VR, Table or local variable.

Arguments: hex_number
Any hexadecimal number (characters 0-9,A-F). Range: [0, FFFFFF] Hex.

See also: HEX (PRINT)

Example: >>TABLE(0,$F,$ABCD)
>>print TABLE(0),TABLE(1)
15.0000 43981.0000

6-3-13 Statement separator: “:”
Type: Program command

Syntax: <statement>:<statement>

Description: The statement separator, represented by the colon “:”, can be used to sepa-
rate BASIC statements on a multi-statement line. This separator can be used
both on the command line as in programs.

Example: PRINT "THIS LINE": GET low : PRINT "DOES THREE THINGS"

6-3-14 Comment field: ‘
Type: Program command

Syntax: ‘ [<Comment field>]

Description: The single quote “ ‘ “ can be used in a program to mark a line as being com-
ment which will not be executed. The single quote can be put at the beginning
of a line or after any valid statement.

Example: ‘ This line will not be printed.
PRINT "Start"

6-3-15 ABS
Type: Mathematical Function

Syntax: ABS(expression)

Description: The ABS function converts a negative number into its positive equal. Positive
numbers are unaltered.

Arguments: expression
Any valid BASIC expression.

115

Command, function and parameter description Section 6-3

Example: IF ABS(VR(0)) > 100 THEN PRINT "VR(0) Outside ±100"

6-3-16 ACCEL
Type: Axis parameter

Description: The ACCEL axis parameter contains the axis acceleration rate. The rate is set

in units/s2. The parameter can have any positive value including zero.

See also: AXIS, DECEL, UNITS

Example: BASE(0)
ACCEL = 100 ‘Set acceleration rate
PRINT "Acceleration rate: ";ACCEL;" mm/s/s"
ACCEL AXIS(2) = 100 ‘Sets acceleration rate for axis (2)

6-3-17 ACOS
Type: Mathematical Function

Syntax: ACOS(expression)

Description: The ACOS function returns the arc-cosine of the expression. The expression
value must be between –1 and 1. The result in radians will be between 0 and
PI. Input values outside the range will return zero.

Arguments: expression
Any valid BASIC expression.

Example: >> PRINT ACOS(-1)
3.1416

6-3-18 ADD_DAC
Type: Motion Control Command

Description: The ADD_DAC command can provide dual feedback control by allowing a
secondary encoder (axis 1) to be used on the servo axis (axis 0). The com-
mand allows the output of 2 servo loops to be summed to determine the
speed reference to the servo driver.
This command is typically used in applications such as a roll-feed where a
secondary encoder would be required to compensate for slippage.

For using ADD_DAC it is necessary for the two axes with physical feedback to
link to a common axis on which the required moves are executed. Typically
this would be achieved by running the moves on one of the two axes and
using ADDAX or CONNECT to produce a matching demand position (DPOS)
for both axes. The servo loop gains need to be set for both axes. The servo

M E E

Axis 0 Axis 1

116

Command, function and parameter description Section 6-3

loop outputs are summed to the speed reference output of the servo axis
(axis 0). Use ADD_DAC(-1) to cancel the link.
ADD_DAC works on the default basis axis (set with BASE) unless AXIS is
used to specify a temporary base axis.

Note 1. Be aware that the control loop gains for both axes need to be determined
with care. As different encoders with different resolutions are used, the
gains are not identical.

2. To create a servo loop on axis 1, set the ATYPE parameter of that axis to
servo (value 2).

3. Set the OUTLIMIT parameter of axis 1 to the same value as the value for
axis 0, which is 15000. Otherwise the output reference axis 1 will be limit-
ed.

Arguments: axis
The axis from which to sum the speed reference output to the base axis. Set
the argument to –1 to cancel the link and return to normal operation.

See also: AXIS, ADDAX, OUTLIMIT

Examples: Example 1
The following example shows controlling the Servo Driver axis 0 with dual
feedback control using both axis 0 and axis 1.
BASE(0)
OUTLIMIT AXIS(1) = 15000
ADD_DAC(1) AXIS(0)
ADDAX(0) AXIS(1)

WDOG = ON
SERVO AXIS(0) = ON
SERVO AXIS(1) = ON

‘ Execute moves on axis 0
Example 2
The following example shows controlling the Servo Driver axis 0 with using
only encoder feedback on axis 1.
BASE(0)
OUTLIMIT AXIS(1) = 15000
ADD_DAC(1) AXIS(0)

WDOG = ON
SERVO = OFF
S_REF = 0

BASE(1)
SERVO = ON

‘ Execute moves on axis 1

6-3-19 ADDAX_AXIS
Type: Axis parameter

Description: The ADDAX_AXIS axis parameter returns the number of the axis to which the
base axis is currently linked to by ADDAX.

Note This parameter is read-only.

See also: AXIS, ADDAX

Example: >> BASE(0)
>> ADDAX(2)

117

Command, function and parameter description Section 6-3

>> PRINT ADDAX_AXIS
2.0000

6-3-20 ADDAX
Type: Motion Control Command

Syntax: ADDAX(axis)

Description: The ADDAX command takes the demand position changes from the superim-
posed axis as specified by the axis argument and adds them to any move-
ment running on the axis to which the command is issued.
After the ADDAX command has been issued the link between the two axes
remains until broken. Use ADDAX(-1) to cancel the axis link. ADDAX allows
an axis to perform the moves specified for 2 axes added together. Combina-
tions of more than two axes can be made by applying ADDAX to the superim-
posed axis as well.
ADDAX works on the default basis axis (set with BASE) unless AXIS is used
to specify a temporary base axis.

!WARNING Beware that giving several ADDAX commands in a system can create a dan-
gerous loop when for instance one axis is linked to another and vice versa.
This may cause instability in the system.

Arguments: axis
The axis to be set as a superimposed axis. Set the argument to –1 to cancel
the link and return to normal operation.

See also: ADDAX_AXIS, AXIS

Example: Pieces are placed onto a continuously moving belt and further along the line
are picked up. A detection system gives an indication as to whether a piece is
in front of or behind its nominal position, and how far.
In the example below, axis 0 is assumed to be the base axis and it executes a
continuous forward movement and a superimposed move on axis 2 is used to
apply offsets according to the offset calculated in a subroutine.
FORWARD ’Set continuous move
ADDAX(2) ’Add axis 2 for correction
REPEAT

GOSUB getoffset ’Get offset to apply
MOVE(offset) AXIS(2)

UNTIL IN(2) = ON ’Until correction is done

6-3-21 AIN
Type: System Parameters

Syntax: AIN0, AIN1, AIN2, AIN3

118

Command, function and parameter description Section 6-3

Description: The AIN parameters provide four analog channels which contain the Servo
Driver monitor data signals. The channels return a decimal representation of
the internal Servo Driver data. The following data can be accessed.

For the AIN2 channel the S_RATE axis parameter can be used to convert the
data into a value in round per minute. For both the AIN1 and AIN3 channels
the T_RATE axis parameter can be used to convert the value into a percent-
age of the rated torque.

See also: IN, S_RATE, T_RATE

Example: Consider an application where the speed of movement is determined by the
analog input voltage.
MOVE(10000)
WHILE MTYPE<>0
 sp = AIN0
 IF sp < 0 THEN sp = 0
 SPEED = sp*0.1
WEND

6-3-22 AND
Type: Logical Operator

Syntax: expression_1 AND expression_2

Description: The AND operator performs the logical AND function on the corresponding
bits of the integer parts of two valid BASIC expressions.
The logical AND function between two bits is defined as follows:

Arguments: expression_1
Any valid BASIC expression.
expression_2
Any valid BASIC expression.

Examples: Example 1
VR(0) = 10 AND (2.1*9)
The parentheses are evaluated first, but only the integer part of the result, 18,
is used for the AND operation. Therefore, this expression is equivalent to the
following:
VR(0) = 10 AND 18
The AND is a bit operator and so the binary action is as follows:

Param
eter

Description Range

AIN0 Servo Driver analog input
(REF), connected to CN1 pin 5
and 6.

(-26214, 26213) => (- 12 V, 12 V)

AIN1 Servo Driver torque command
signal.

(-15000, 15000) => (- max. torque, max.
torque)

AIN2 Servomotor rotation speed sig-
nal.

(-15000, 15000) => (- overspeed, over-
speed)

AIN3 Servo Driver torque monitor sig-
nal.

(-15000, 15000) => (- max. torque, max.
torque)

Bit 1 Bit 2 Result

0 0 0

0 1 0

1 0 0

1 1 1

119

Command, function and parameter description Section 6-3

Therefore, VR(0) will contain the value 2.

Example 2
IF MPOS AXIS(0) > 0 AND MPOS AXIS(1) > 0 THEN GOTO cycle1

6-3-23 ASIN
Type: Mathematical Function

Syntax: ASIN(expression)

Description: The ASIN function returns the arc-sine of the expression. The expression
value must be between –1 and 1. The result in radians will be between –PI/2
and PI/2. Input values outside the range will return zero.

Arguments: expression
Any valid BASIC expression.

Example: >> PRINT ASIN(-1)
-1.5708

6-3-24 ATAN
Type: Mathematical Function

Syntax: ATAN(expression)

Description: The ATAN function returns the arc-tangent of the expression. ATAN can have
any value. The result will be in radians and will be between -PI/2 and PI/2.

Arguments: expression
Any valid BASIC expression.

Example: >> PRINT ATAN(1)
0.7854

6-3-25 ATAN2
Type: Mathematical Function

Syntax: ATAN2(expression_1,expression_2)

Description: The ATAN2 function returns the arc-tangent of the nonzero complex number
(expression_2, expression_1), which is equivalent to the angle between a
point with coordinate (expression_1, expression_2) and the x-axis. If
expression_2 >= 0, the result is equal to the value of ATAN (expression_1 /
expression_2). The result in radians will be between –PI and PI.

Arguments: expression_1
Any valid BASIC expression.
expression_2
Any valid BASIC expression.

Example: >> PRINT ATAN2(0,1)
0.0000

6-3-26 ATYPE
Type: Axis parameter

01010

AND 10010

00010

120

Command, function and parameter description Section 6-3

Description: The ATYPE axis parameter sets the axis type for the axis. The valid values is
depending on the axis

The ATYPE parameters are set by the system at start-up to the default value
of the axis. Refer to 3-3 System Functions for more details on the different
axis types.

See also: AXIS

Example: The following command will set axis 1 as encoder output axis.
>> ATYPE AXIS(1)=14

6-3-27 AUTORUN
Type: Program Command

Syntax: AUTORUN

Description: The AUTORUN command starts all the programs that have been set to run at
start-up.

See also: RUNTYPE

6-3-28 AXIS
Type: System Command

Syntax: AXIS(axis_number)

Description: The AXIS modifier sets the axis for a single motion command or a single axis
parameter read/write to a particular axis. AXIS is effective only for the com-
mand or program line in which it is programmed. Use the BASE command to
change the base axis for all following command lines.

Arguments: axis_number
Any valid BASIC expression specifying the axis number.

Precautions: The AXIS command can be used to modify any axis parameter expression
and the following axis dependent commands: ADDAX, CAM, CAMBOX, CAN-
CEL, CONNECT, DATUM, DEFPOS, FORWARD, MOVEABS, MOVECIRC,
MOVELINK, MOVE, MOVEMODIFY and REVERSE. Other commands for
which AXIS is used are: REGIST, WAIT IDLE and WAIT LOADED.

See also: BASE

Examples: Example 1
BASE(0)
PRINT VP_SPEED AXIS(2)
Example 2
MOVE(300) AXIS(0)
Example 3
REPDIST AXIS(1) = 100

Axis
number

Axis type ATYPE value

0 Servo 13 (fixed)

1 Virtual 0

Servo 2

Encoder input 3 (default)

Encoder output 14

2 Virtual 0 (fixed)

121

Command, function and parameter description Section 6-3

6-3-29 AXISSTATUS
Type: Axis Parameter

Description: The AXISSTATUS axis parameter contains the axis status. The AXISSTA-
TUS axis parameter definition for the three axes are shown in the following
table.

The AXISSTATUS parameter is used for the motion error handling of the unit.
Refer to 8-2 Error Handling for more detailed information on error handling.

Note This parameter is read-only.

See also: AXIS, ERRORMASK

Example: IF (AXISSTATUS AND 16)>0 THEN PRINT "In forward limit"

6-3-30 BASE
Type: Motion Control Command

Syntax: BASE(axis_1 [,axis_2 [, axis_3]])
BASE

Alternative: BA(axis_1 [, axis_2 [, axis_3]])
BA

Description: The BASE command is used to set the default base axis or to set a specified
axis sequence group. All subsequent motion commands and axis parameters
will apply to the base axis or the specified axis group unless the AXIS com-
mand is used to specify a temporary base axis. The base axis is effective until
it is changed again with BASE.
Each BASIC process can have its own axis group and each program can set
its own axis group independently. Use the PROC modifier to access the
parameter for a certain task.
The BASE order grouping can be set by explicitly assigning the order of axes.
This order is used for interpolation purposes in multi-axes linear and circular
moves. The default for the base axis group is (0,1,2) at start-up or when a pro-
gram starts running on a task. The BASE command without any arguments
returns the current base order grouping.

Bit
num
ber

Description Value Character
(as used
in Motion
Perfect)

Axis 0
(Servo
Driver)

Axis 1
(Encoder in/
out, virtual)

Axis 2
(Virtual)

0 - 1 - - - -

1 Following Error Warning 2 w x - -

2 Servo Driver Communication Error 4 a x - -

3 Servo Driver Alarm 8 m x - -

4 Forward Limit 16 f x x x

5 Reverse Limit 32 r x x x

6 Datuming 64 d x x x

7 Feed Hold Input 128 h x x x

8 Following Error Limit 256 e x - -

9 Forward Software Limit 512 x x x x

10 Reverse Software Limit 1024 y x x x

11 Cancelling Move 2048 c x x x

12 Encoder Out Overspeed 4096 o - x -

122

Command, function and parameter description Section 6-3

Arguments: axis_i
The number of the axis set as the base axis and any subsequent axes in the
group order for multi-axis moves.

See also: AXIS

Examples: Example 1
It is possible to program each axis with its own speed, acceleration and other
parameters.
BASE(1)
UNITS = 2000 ’Set unit conversion factor for axis 1
SPEED = 100 ’Set speed for axis 1
ACCEL = 5000 ’Set acceleration rate for axis 1
BASE(2)
UNITS = 2000 ’Set unit conversion factor for axis 2
SPEED = 125 ’Set speed for axis 2
ACCEL = 10000 ’Set acceleration rate for axis 2
Example 2
In the example below, axes 0, 1 and 2 will move to the specified positions at
the speed and acceleration set for axis 0. BASE(0) sets the base axis to
axis 0, which determines the three axes used by MOVE and the speed and
acceleration rate.
BASE(0)
MOVE(100,-23.1,1250)
Example 3
On the command line the base group order can be shown by typing BASE.
>> BASE(0,2,1)
>> BASE
(0,2,1)
Example 4
Use the PROC modifier to show the base group order of a certain task.
>> RUN "PROGRAM",3
>> BASE PROC(3)
(0,2,1)
Example 5
Printing BASE will return the current selected base axis.
>> BASE(2)
>> PRINT BASE
2.0000

6-3-31 BASICERROR
Type: System Command

Description: The BASICERROR command can be used to run a routine when a run-time
error occurs in a program. BASICERROR can only be used as part of an ON
... GOSUB or ON ... GOTO command. This command is required to be exe-
cuted once in the BASIC program. If several commands are used only the one
executed last is effective.

See also: ERROR_LINE, ON, RUN_ERROR

Example: If an error occurs in a BASIC command in the following example, then the
error routine will be executed.

ON BASICERROR GOTO error_routine
....
no_error = 1
STOP

error_routine:
IF no_error = 0 THEN

123

Command, function and parameter description Section 6-3

PRINT "The error ";RUN_ERROR[0];
PRINT " occurred in line ";ERROR_LINE[0]

ENDIF
STOP

The IF statement is present to prevent the program going into error routine
when it is stopped normally.

6-3-32 CAM
Type: Motion Control Command

Syntax: CAM(start_point, end_point, table_multiplier, distance)

Description: The CAM command is used to generate movement of an axis following a
position profile which is stored in the Table variable array. The Table values
are absolute positions relative to the starting point and are specified in
encoder edges. The Table array is specified with the TABLE command.
The movement can be defined with any number of points from 2 to 8.000. The
MC Unit moves continuously between the values in the Table to allow a num-
ber of points to define a smooth profile. Two or more CAM commands can be
executed simultaneously using the same or overlapping values in the Table
array. The Table profile is traversed once.
CAM requires that the start element in the Table array has value zero. The
distance argument together with the SPEED and ACCEL parameters deter-
mine the speed moving through the Table array. Note that in order to follow
the CAM profile exactly the ACCEL parameter of the axis must be at least
1000 times larger than the SPEED parameter.
CAM works on the default basis axis (set with BASE) unless AXIS is used to
specify a temporary base axis.

Arguments: start_point
The address of the first element in the Table array to be used.
Being able to specify the start point allows the Table array to hold more than
one profile and/or other information.
end_point
The address of the end element in the Table array.
table_multiplier
The Table multiplier value used to scale the values stored in the Table. As the
Table values are specified in encoder edges, use this argument to set the val-
ues for instance to the unit conversion factor (set by UNITS parameter).
distance
A factor given in user units that controls the speed of movement through the
Table. The time taken to execute CAM depends on the current axis speed
and this distance. For example, assume the system is being programmed in
mm and the speed is set to 10 mm/s and the acceleration sufficiently high. If a
distance of 100 mm is specified, CAM will take 10 seconds to execute.
The SPEED parameter in the base axis allows modification of the speed of
movement when using the CAM move.

See also: ACCEL, AXIS, CAMBOX, SPEED, TABLE

Example: Assume that a motion is required to follow the following position equation:
t(x) = x*25 + 10000(1–cos(x))

Here, x is in degrees. This example is for a Table that provides a simple oscil-
lation superimposed with a constant speed. To load the Table and cycle it
continuously the following code would be used.

GOSUB camtable
loop:

124

Command, function and parameter description Section 6-3

CAM(1,19,1,200)
GOTO loop

Note The subroutine camtable would load the data below into the Table array.

6-3-33 CAMBOX
Type: Motion Control Command

Syntax: CAMBOX(start_point, end_point, table_multiplier, link_distance, link_axis
[, link_option [, link_position]])

Description: The CAMBOX command is used to generate movement of an axis following a
position profile in the Table variable array. The motion is linked to the mea-
sured motion of another axis to form a continuously variable software gear-
box. The Table values are absolute position relative to the starting point and
are specified in encoder edges.
The Table array is specified with the TABLE command. The movement can
be defined with any number of points from 2 to 8.000. Being able to specify
the start point allows the Table array to be used to hold more than one profile
and/or other information. The MC Unit moves continuously between the val-
ues in the Table to allow a number of points to define a smooth profile. Two or
more CAMBOX commands can be executed simultaneously using the same
or overlapping values in the Table array.
The CAMBOX command requires the start element of the Table to have
value zero. Note also that CAMBOX command allows traversing the Table
backwards as well as forwards depending on the Master axis direction.
The link_option argument can be used to specify different options to start the
command and to specify a continuous CAM. For example, if the link_option is
set to 4 then the CAMBOX operates like a “physical” CAM.
CAMBOX works on the default basis axis (set with BASE) unless AXIS is
used to specify a temporary base axis.

Arguments: start_point
The address of the first element in the Table array to be used.

Table
position

Degree Value

1 0 0

2 20 1103

3 40 3340

4 60 6500

5 80 10263

6 100 14236

7 120 18000

8 140 21160

9 160 23396

10 180 24500

11 200 24396

12 220 23160

13 240 21000

14 260 18236

15 280 15263

16 300 12500

17 320 10340

18 340 9103

19 360 9000

125

Command, function and parameter description Section 6-3

end_point
The address of the end element in the Table array.
table_multiplier
The Table multiplier value used to scale the values stored in the Table. As the
Table values are specified in encoder edges, use this argument to set the val-
ues for instance to the unit conversion factor (set by UNITS parameter).
link_distance
The distance in user units the link axis must move to complete the specified
output movement. The link distance must be specified as a positive distance.
link_axis
The axis to link to.

link_option

link_position
The absolute position where CAMBOX will start when link_option is set to 2.

Precautions: While CAMBOX is being executed, the ENDMOVE parameter will be set to
the end of the previous move. The REMAIN axis parameter will hold the
remainder of the distance on the link axis.

See also: AXIS, CAM, REP_OPTION, TABLE

6-3-34 CANCEL
Type: Motion Control Command

Syntax: CANCEL[(1)]

Alternative: CA[(1)]

Description: The CANCEL command cancels the current move on an axis. Speed-profiled
moves (FORWARD, REVERSE, MOVE, MOVEABS and MOVECIRC) will be
decelerated at the deceleration rate as set by the DECEL parameter and then
stopped. Other moves will be immediately stopped.
CANCEL command cancels the contents of the current move buffer
(MTYPE). The command CANCEL(1) command cancels the contents of the
next move buffer (NTYPE) without affecting the current move in the MTYPE
buffer.
CANCEL works on the default basis axis (set with BASE) unless AXIS is used
to specify a temporary base axis.

Precautions: • CANCEL cancels only the presently executing move. If further moves are
buffered they will then be loaded.

• During the deceleration of the current move additional CANCELs will be
ignored.

• CANCEL(1) cancels only the presently buffered move. Any moves stored
in the task buffers indicated by the PMOVE variable can be loaded into
the buffer as soon as the buffered move is cancelled.

See also: AXIS, MTYPE, NTYPE, PMOVE, RAPIDSTOP

1 Link starts when registration event occurs on link axis.
2 Link starts at an absolute position on link axis (see link_position).
4 CAMBOX repeats automatically and bi-directionally. This option is

canceled by setting bit 1 of REP_OPTION parameter (i.e.
REP_OPTION = REP_OPTION OR 2).

5 Combination of options 1 and 4.
6 Combination of options 2 and 4.

126

Command, function and parameter description Section 6-3

Examples: Example 1
FORWARD
WA(10000)
CANCEL
Example 2
MOVE(1000)
MOVEABS(3000)
CANCEL ’Cancel the move to 3000 and move to 4000 instead.
MOVEABS(4000)
Note that the command MOVEMODIFY is a better solution for modifying end-
points of moves in this case.

6-3-35 CHECKSUM
Type: System Parameter

Description: The CHECKSUM parameter contains the checksum for the programs in RAM.
At start-up, the checksum is recalculated and compared with the previously
held value. If the checksum is incorrect the program will not run.

Note This parameter is read-only.

6-3-36 CLEAR
Type: System Command

Syntax: CLEAR

Description: The CLEAR command resets all global VR variables to zero and when used
in program will also reset the local variables on the current task to zero.

See also: RESET, VR

6-3-37 CLEAR_BIT
Type: System Command

Syntax: CLEAR_BIT(bit_number, vr_number)

Description: The CLEAR_BIT command resets the specified bit in the specified VR vari-
able to zero. Other bits in the variable will keep their values.

Arguments: bit_number
The number of the bit to be reset. Range: [0, 23].
vr_number
The number of the VR variable for which the bit will be reset. Range: [0, 250]

See also: READ_BIT, SET_BIT, VR

6-3-38 CLOSE_WIN
Type: Axis Parameter

Alternative: CW

Description: The CLOSE_WIN axis parameter defines the end of the window inside or out-
side which a registration mark is expected. The value is in user units.

See also: AXIS, OPEN_WIN, REGIST, UNITS

6-3-39 CLUTCH_RATE
Type: Axis Parameter

Description: The CLUTCH_RATE axis parameter defines the change in connection ratio
when using the CONNECT command. The rate is defined as amount of ratio
per second.

127

Command, function and parameter description Section 6-3

The default value is set to a high value (1000000) in order to ensure compat-
ibility with previous MC Units (MC402-E).

Note The operation using CLUTCH_RATE is not deterministic in position. If
required, use the MOVELINK command instead to avoid unnecessary phase
difference between master and slave.

See also: AXIS, CONNECT, MOVELINK

Example: CLUTCH_RATE = 4
This setting will imply that when giving CONNECT(4,1), it will take one second
to reach the full connection.

6-3-40 COMMSERROR
Type: System Parameter

Description: The COMMSERROR parameter contains the serial communication errors
that have occurred since the last time that it was initialized.
The bits in COMMSERROR are defined as follows:
Bit Description
0 Overrun error port 0
1 Parity error port 0
2 Framing error port 0
3 Break interrupt port 0
4 Overrun error port 1
5 Parity error port 1
6 Framing error port 1
7 Break interrupt port 1
8 Overrun error port 2
9 Parity error port 2
10 Framing error port 2
11 Break interrupt port 2
This parameter is read-only.

6-3-41 COMPILE
Type: Program Command

Syntax: COMPILE

Description: The COMPILE command forces the compilation the current program to inter-
mediate code. Program are compiled automatically by the system software
prior to program execution or when another program is selected.

6-3-42 CONNECT
Type: Motion Control Command

Syntax: CONNECT(ratio, driving_axis)

Alternative: CO(ratio, driving_axis)

Description: The CONNECT command connects the demand position of the base axis to
the measured movements of the axis specified by driving_axis to achieve an
electronic gearbox.
The ratio can be changed at any time by executing another CONNECT com-
mand on the same axis. To change the driving axis the CONNECT command
needs to be cancelled first. CONNECT with different driving axis will be
ignored. The CONNECT command can be cancelled with a CANCEL or RAP-
IDSTOP command. The CLUTCH_RATE axis parameter can be used to set a
specified connection change rate.

128

Command, function and parameter description Section 6-3

CONNECT works on the default basis axis (set with BASE) unless AXIS is
used to specify a temporary base axis.

Arguments: ratio
The connection ratio of the gearbox. The ratio is specified as the encoder
edge ratio (not units). It holds the number of edges the base axis is required to
move per edge increment of the driving axis. The ratio value can be either
positive or negative and has sixteen bit fractional resolution.
driving_axis
The Master axis which will drive the base axis.

See also: AXIS, CANCEL, CLUTCH_RATE, CONNECT, RAPIDSTOP

Example: In a press feed, a roller is required to rotate at a speed one quarter of the
measured rate from an encoder mounted on the incoming conveyor. The
roller is wired to axis 0. An input channel monitors the encoder pulses from
the conveyor and forms axis 1. The following code can be used.
BASE(1)
SERVO = OFF ’This axis is used to monitor the conveyor
BASE(0)
SERVO = ON
CONNECT(0.25,1)

6-3-43 CONTROL
Type: System Parameter

Description: The CONTROL parameter contains the type of MC Unit in the system. For
both the MCW151-E and MCW151-DRT-E it will returns value 260.

Note This parameter is read-only.

6-3-44 COPY
Type: Program Command

Syntax: COPY “program_name” “new_program_name”

Description: The COPY command copies an existing program in memory to a new pro-
gram with the specified name. The program names can also be specified
without quotes.

Precautions: This command is implemented for an offline (VT100) terminal. Within Motion
Perfect users can select the command from the Program menu.

Arguments: program_name
Name of the program to be copied.
new_program_name
Name to use for the new program.

See also: DEL, NEW, RENAME

Example: >> COPY "prog" "newprog"

6-3-45 COS
Type: Mathematical Function

Syntax: COS(expression)

Description: The COS function returns the cosine of the expression. Input values are in
radians and may have any value. The result value will be in the range from -1
to 1.

Arguments: expression
Any valid BASIC expression.

129

Command, function and parameter description Section 6-3

Example: >> PRINT COS(0)
1.0000

6-3-46 CREEP
Type: Axis Parameter

Description: The CREEP axis parameter contains the creep speed on the axis. The creep
speed is used for the slow part of an origin search sequence. CREEP is
allowed to have any positive value (including zero).
The creep speed is entered in units/s using the unit conversion factor UNITS.
For example, if the unit conversion factor is set to the number of encoder
edges/inch, the speed is set in inches/s.

See also: AXIS, DATUM, UNITS

Example: BASE(2)
CREEP = 10
SPEED = 500
DATUM(4)
CREEP AXIS(1) = 10
SPEED AXIS(1) = 500
DATUM(4) AXIS(1)

6-3-47 D_GAIN
Type: Axis Parameter

Description: The D_GAIN axis parameter contains the derivative gain for the axis. The
derivative output contribution is calculated by multiplying the change in follow-
ing error with D_GAIN. The default value is zero.
Adding derivative gain to a system is likely to produce a smoother response
and allow the use of a higher proportional gain than could otherwise be used.
High values may cause oscillation.
See section 1-4-1 Servo System Principles for more details.

See also: AXIS, I_GAIN, OV_GAIN, P_GAIN, VFF_GAIN

Precautions: In order to avoid any instability the servo gains should be changed only when
the SERVO is OFF.

6-3-48 DATUM
Type: Motion Control Command

Syntax: DATUM(sequence)

Description: The DATUM command performs one of 6 origin search sequences to position
an axis to an absolute position and also can be used to reset the following
errors. The origin search mechanism of the Servo Driver is used for axis 0.
Axis 1 uses the mechanism in the MC Unit.
DATUM uses both the creep speed and the demand speed for the origin
searches. For axis 0 the Servo Driver function is used. The creep speed in the
sequences is set using the CREEP axis parameter and the demand speed is
set using the SPEED axis parameter. The datum switch input number, which
is used for sequences 3 to 7, is selected by the DATUM_IN parameter.
DATUM works on the default basis axis (set with BASE) unless AXIS is used
to specify a temporary base axis.

130

Command, function and parameter description Section 6-3

Arguments: sequence

Precautions: The origin input set with the DATUM_IN parameter is active low, i.e., the ori-
gin switch is set when the input is OFF. The feedhold, reverse jog, forward
jog, forward and reverse limit inputs are also active low. Active low inputs are
used to enable fail-safe wiring.

See also: ACCEL, AXIS, AXISSTATUS, CREEP, DATUM_IN, DECEL,
MOTION_ERROR, SPEED

6-3-49 DATUM_IN
Type: Axis Parameter

Alternative: DAT_IN

Description: The DATUM_IN axis parameter contains the input number to be used as the
datum switch input for the DATUM command. The valid input range is given
by 0 to 7. If DATUM_IN is set to –1, then no input is used as the datum switch
input.

Precautions: The origin input is active low, i.e., the origin switch is set when the input is
OFF. The feedhold, reverse jog, forward jog, forward and reverse limit inputs
are also active low. Active low inputs are used to enable fail-safe wiring.

See also: AXIS, DATUM

Example: DATUM_IN AXIS(0) = 5

0 The DATUM(0) command will clear the motion error. The currently
measured position is set as the demand position and the AXISSTA-
TUS status will be cleared. Note that the status can not be cleared if
the cause of the problem is still present.

1 The axis moves at creep speed forward until the Z marker is encoun-
tered. The demand position is then reset to zero and the measured
position is corrected to maintain the following error.

2 The axis moves at creep speed reverse until the Z marker is encoun-
tered. The demand position is then reset to zero and the measured
position is corrected to maintain the following error.

3 The axis moves at the demand speed forward until the datum switch
is reached. The axis then moves reverse at creep speed until the
datum switch is reset. The demand position is then reset to zero and
the measured position corrected so as to maintain the following
error.

4 The axis moves at the demand speed reverse until the datum switch
is reached. The axis then moves forward at creep speed until the
datum switch is reset. The demand position is then reset to zero and
the measured position corrected so as to maintain the following
error.

5 The axis moves at demand speed forward until the datum switch is
reached. The axis then reverses at creep speed until the Z marker is
encountered. The demand position is then reset to zero and the
measured position corrected so as to maintain the following error.

6 The axis moves at demand speed reverse until the datum switch is
reached. The axis then moves forward at creep speed until the
Z marker is encountered. The demand position is then reset to zero
and the measured position corrected so as to maintain the following
error.

131

Command, function and parameter description Section 6-3

6-3-50 DECEL
Type: Axis Parameter

Description: The DECEL axis parameter contains the axis deceleration rate. The rate is

set in units/s2. The parameter can have any positive value including zero.

See also: ACCEL, AXIS, UNITS

Example: DECEL = 100 ’Set deceleration rate
PRINT " Deceleration rate is ";DECEL;" mm/s/s"

6-3-51 DEFPOS
Type: Motion Control Command

Syntax: DEFPOS(pos_1 [, pos_2 [, pos_3]])

Alternative: DP(pos_1 [, pos_2 [, pos_3]])

Description: The DEFPOS command defines the current demand position (DPOS) as a
new absolute position. The measured position (MPOS) will be changed
accordingly in order to keep the following error. DEFPOS is typically used
after an origin search sequence (see DATUM command), as this sets the cur-
rent position to zero. DEFPOS can be used at any time.
As an alternative also the OFFPOS axis parameter can be used. This param-
eter can be used to perform a relative adjustment of the current position.
DEFPOS works on the default basis axis (set with BASE) unless AXIS is used
to specify a temporary base axis.

Precaution: The changes to the axis position made using DEFPOS or OFFPOS are made
on the next servo update. This can potentially cause problems when a move
is initiated in the same servo period as the DEFPOS or OFFPOS.
The following example shows how the OFFPOS parameter can be used to
avoid this problem. DEFPOS commands are internally converted into OFF-
POS position offsets, which provides an easy way to avoid the problem by
programming as follows:
DEFPOS(100)
WAIT UNTIL OFFPOS = 0
MOVEABS(0)

Arguments: pos_i
The absolute position for (base+i) axis in user units. Refer to the BASE com-
mand for the grouping of the axes.

See also: AXIS, DATUM, DPOS, OFFPOS, MPOS, UNITS

Example: The last line defines the current position to (–1000,–3500) in user units. The
current position would have been reset to (0,0) by the two DATUM com-
mands.
BASE(2)
DATUM(5)
BASE(1)
DATUM(4)
WAIT IDLE
DEFPOS(-1000,-3500)

6-3-52 DEL
Type: Program Command

Syntax: DEL [“program_name”]

Alternative: RM [“program_name”]

132

Command, function and parameter description Section 6-3

Description: The DEL command deletes a program from memory. DEL without a program
name can be used to delete the currently selected program (using SELECT).
The program name can also be specified without quotes. DEL ALL will delete
all programs.
DEL can also be used to delete the Table as follows:

DEL “TABLE”
The name “TABLE” must be in quotes.

Precautions: This command is implemented for an offline (VT100) terminal. Within Motion
Perfect users can select the command from the Program menu.

Arguments: program_name
Name of the program to be deleted.

See also: COPY, NEW, RENAME, SELECT, TABLE

Example: >> DEL oldprog

6-3-53 DEMAND_EDGES
Type: Axis Parameter

Description: The DEMAND_EDGES axis parameter contains the current value of the
DPOS axis parameter in encoder edge units.

See also: AXIS, DPOS

Note This parameter is read-only.

6-3-54 DIR
Type: Program Command

Syntax: DIR

Alternative: LS

Description: The DIR command displays a list of the programs held in memory, their mem-
ory size and their RUNTYPE. Furthermore the controller’s available memory
size, power up mode and current selected program is displayed.

See also: FREE, POWER_UP, PROCESS, RUNTYPE, SELECT

6-3-55 DPOS
Type: Axis Parameter

Description: The DPOS axis parameter contains the demand position in user units, which
is generated by the move commands in servo control. When the controller is
in open loop (SERVO=OFF), the measured position (MPOS) will be copied to
the DPOS in order to maintain a zero following error.
The range of the demand position is controlled with the REP_DIST and
REP_OPTION axis parameters. The value can be adjusted without doing a
move by using the DEFPOS command or OFFPOS axis parameter. DPOS is
reset to zero at start-up.

Note This parameter is read-only.

See also: AXIS, DEFPOS, DEMAND_EDGES, FE, MPOS, REP_DIST, REP_OPTION,
OFFPOS, UNITS

Example: >> PRINT DPOS AXIS(0)
34.0000
The above line will return the demand position in user units.

133

Command, function and parameter description Section 6-3

6-3-56 DRV_CLEAR
Type: Servo Driver Command

Syntax: DRV_CLEAR

Description: The DRV_CLEAR command clears the alarm status of the Servo Driver. This
command is not capable of clearing all the possible alarm states. Some
alarms can only be cancelled by turning OFF the power supply (both the MC
Unit as the Servo Driver), and then turning it ON again.
Please refer to 8-2 Error Handling for further details on Servo Driver alarms.

!Caution Be sure that no Parameter Unit or Personal Computer Software is connected
to the Servo Driver when executing this command. Otherwise the program
task will be paused until the connection of the other device to the Servo Driver
is removed.

See also: DRV_STATUS

6-3-57 DRV_READ
Type: Servo Driver Function

Syntax: DRV_READ(parameter [, selection])

Description: The DRV_READ function reads the specified parameter of the Servo Driver.
DRV_READ is able to read Pn-type and Un-type parameters and also can
return Servomotor specifics which normally can be accessed using Fn011.
The Servo Driver Pn parameters are divided into two groups:

• Selection parameters, which contain hexadecimal value. One example is
for instance the Pn50A (input signal selection 1)

• Value parameters, which contain integer values. One example is for
instance the Pn205 (absolute encoder multi-turn limit setting)

Please note that executing a DRV_READ will temporarily disable the Servo
Driver Front Panel display.

!Caution Be sure that no Parameter Unit or Personal Computer Software is connected
to the Servo Driver when executing this command. Otherwise the program
task will be paused until the connection of the other device to the Servo Driver
is removed.

Arguments: parameter
The number of the parameter to be read. Note that the parameter numbers
are hexadecimal. For selection = 2, the following data can be read:

The format of the data can be found in the Servo Driver manual.
selection
The selection of the parameter type of the Servo Driver to be read.

If the selection argument is omitted, the Pn parameter will be read.

See also: DRV_WRITE, HEX (PRINT), hexadecimal input ($)

0 Motor type (Fn011-F)

1 Motor capacity (Fn011-P)

2 Encoder type (Fn011-E)

3 Driver specification (Fn011-Y)

0 Pn parameter

1 Un parameter

2 Fn011 function information (Servomotor specification)

134

Command, function and parameter description Section 6-3

Examples: Example 1
Reading the “Input signal selection 1” parameter, which contains a hexadeci-
mal selection value.
>> VR(0)=DRV_READ($50A)
>> PRINT HEX(VR(0))
2881
Reading the “Speed loop gain“ parameter, which contains an integer value.
>> PRINT DRV_READ($100)
80
Example 2
Monitoring cumulative load ratio (Un009) parameter.
>> PRINT DRV_READ($009,1)
Example 3
Reading the capacity of the connected Servomotor from Fn011-P.
>> PRINT DRV_READ(1,2)
3.0000
Apparently this is a 30 W Servomotor.

6-3-58 DRV_RESET
Type: Servo Driver Command

Syntax: DRV_RESET

Alternatives: EX, INITIALISE

Description: The DRV_RESET command will software reset both the Servo Driver as the
MC Unit. Execution of DRV_RESET will have the following actions:

• The Servo Driver parameter changes are initiated.
• Programs will read again from Flash memory and run depending on the

RUNTYPE settings. Be sure to write program data to Flash memory
before executing the command

• All data of Table and VR variables is erased and possibly re-read from
Flash memory.

• All axis parameters are set to default.
During the DRV_RESET communication between the MC Unit and other
devices is temporarily not possible. If a connection with Motion Perfect was
present, this will disconnect.

!Caution Be sure that no Parameter Unit or Personal Computer Software is connected
to the Servo Driver when executing this command. Otherwise the program
task will be paused until the connection of the other device to the Servo Driver
is removed.

6-3-59 DRV_STATUS
Type: Servo Driver Parameter

Description: The DRV_STATUS parameter contains the current servo alarm code of the
Servo Driver. The alarm codes are given as hexadecimal values. No alarm
will return value 99 Hex. Please refer to 8-2 Error Handling for further details
on Servo Driver alarms.

Note This parameter is read-only.

See also: DRV_CLEAR, HEX (PRINT)

Example: The Servo Driver of this system has an overcurrent alarm:
>> PRINT HEX(DRV_STATUS)
10

135

Command, function and parameter description Section 6-3

6-3-60 DRV_WRITE
Type: Servo Driver Command

Syntax: DRV_WRITE(parameter, value)

Description: The DRV_WRITE command writes a specific value to the specified Pn-type
parameter of the Servo Driver. For some parameters the system needs to be
powered OFF, and turned ON again. Also the DRV_RESET command can be
used.
The Servo Driver Pn parameters are divided into two groups:

• Selection parameters, which contain hexadecimal value. One example is
for instance the Pn50A (input signal selection 1)

• Value parameters, which contain integer values. One example is for
instance the Pn205 (absolute encoder multi-turn limit setting)

Please note that executing a DRV_WRITE will temporarily disable the Servo
Driver Front Panel display.

!Caution Be sure that no Parameter Unit or Personal Computer Software is connected
to the Servo Driver when executing this command. Otherwise the program
task will be paused until the connection of the other device to the Servo Driver
is removed.

Arguments: parameter
The number of the Pn-parameter to be written. Note that the parameter num-
bers are hexadecimal.
value
The value to write to the parameter.

See also: DRV_READ, DRV_RESET, hexadecimal input ($)

Examples: Writing the “Input signal selection 2” parameter, which contains a hexadeci-
mal selection value.
>> DRV_WRITE($50B,$8883)
Reading the “Speed loop integration constant“ parameter, which contains an
integer value.
>> DRV_WRITE($101,4000)

6-3-61 EDIT
Type: Program Command

Syntax: EDIT [line_number]

Alternative: ED [line_number]

Description: The EDIT command starts the built in screen editor allowing a program in the
MC Unit memory to be modified using a VT100 Terminal. The currently
selected program will be edited.
The editor commands are as follows:

Quit Editor [CTRL] K and D
Delete Line [CTRL] Y

Precautions: This command is implemented for an offline (VT100) terminal. Within Motion
Perfect users can select the command from the Program menu.

Arguments: line_number
The number of the line at which to start editing.

See also: SELECT

136

Command, function and parameter description Section 6-3

6-3-62 ENCODER
Type: Axis Parameter

Description: The ENCODER axis parameter contains a raw copy of the encoder.
The MPOS axis parameter contains the measured position calculated from
the ENCODER value automatically, allowing for overflows and offsets.

Note This parameter is read-only.

See also: AXIS, MPOS

6-3-63 ENDMOVE
Type: Axis Parameter

Description: The ENDMOVE axis parameter holds the position of the end of the current
move in user units. If the SERVO axis parameter is ON, the ENDMOVE
parameter can be written to produce a step change in the demand position
(DPOS).

Note As the measured position is not changed initially, the following error limit
(FE_LIMIT) should be considered. If the change of demanded position is too
big, the limit will be exceeded.

See also: AXIS, DPOS, FE_LIMIT, UNITS

6-3-64 EPROM
Type: Program Command

Syntax: EPROM

Description: The EPROM command stores the BASIC programs in the MC Unit in the
Flash memory. At each start-up the program data from the Flash memory will
be copied to the RAM.

Note Motion Perfect offers this command as a button on the control panel. Also
pop-up screens will prompt to write the program data into Flash memory.

See also: FLASHVR, RUNTYPE

6-3-65 ERROR_AXIS
Type: System Parameter

Description: The ERROR_AXIS axis parameter contains the number of the axis which has
caused the motion error.
A motion error occurs when the AXISSTATUS state for one of the axes
matches the ERRORMASK setting. In this case the enable switch (WDOG)
will be turned OFF, the MOTION_ERROR parameter will have value 1 and
the ERROR_AXIS parameter will contain the number of the first axis to have
the error. Refer to 8-2 Error Handling for more detailed information on error
handling.

Note This parameter is read-only.

See also: AXISSTATUS, ERRORMASK, MOTION_ERROR, WDOG

6-3-66 ERROR_LINE
Type: Task Parameter

Description: The ERROR_LINE parameter contains the number of the line which caused
the last BASIC run-time error in the program task. This value is only valid
when the BASICERROR parameter is TRUE.

137

Command, function and parameter description Section 6-3

Each task has its own ERROR_LINE parameter. Use the PROC modifier to
access the parameter for a certain task. Without PROC the current task will
be assumed. Refer to 8-2 Error Handling for more detailed information on
error handling.

Note This parameter is read-only.

See also: BASICERROR, PROC, RUN_ERROR

Example: >> PRINT ERROR_LINE PROC(4)
23.0000

6-3-67 ERRORMASK
Type: Axis Parameter

Description: The ERRORMASK axis parameter contains a mask value that is ANDed bit
by bit with the AXISSTATUS axis parameter on every servo cycle to deter-
mine if a motion error has occurred.
When a motion error occurs the enable switch (WDOG) will be turned OFF,
the MOTION_ERROR parameter will have value 1 and the ERROR_AXIS
parameter will contain the number of the first axis to have the error.
Check the AXISVALUES parameter for the status bit allocations. The default
setting of ERRORMASK is 268. Refer to 8-2 Error Handling for more detailed
information on error handling.

!Caution It is up to the user to define in which cases a motion error is generated. For
safe operation it is strongly recommended to generate a motion error when
the following error has exceed its limit for the servo axis 0 in all cases. This is
done by setting bit 8 of ERRORMASK.

See also: AXIS, AXISSTATUS, ERROR_AXIS, MOTION_ERROR, WDOG

6-3-68 EXP
Type: Mathematical Function

Syntax: EXP(expression)

Description: The EXP function returns the exponential value of the expression.

Arguments: expression
Any valid BASIC expression.

Example: >> print exp(1.0)
2.7183

6-3-69 FALSE
Type: Constant

Description: The FALSE constant returns the numerical value 0.

Note A constant is read-only.

Example: test:
res = IN(0) OR IN(2)
IF res = FALSE THEN

PRINT "Inputs are off"
ENDIF

6-3-70 FAST_JOG
Type: Axis Parameter

138

Command, function and parameter description Section 6-3

Description: The FAST_JOG axis parameter contains the input number to be used as the
fast jog input. The number can be from 0 to 7. As default the parameter is set
to –1, no input is selected.
The fast jog input controls the jog speed between two speeds. If the fast jog
input is set, the speed as given by the SPEED axis parameter will be used for
jogging. If the input is not set, the speed given by the JOGSPEED axis param-
eter will be used.

Note This input is active low.

See also: AXIS, FWD_JOG, JOGSPEED, REV_JOG, SPEED

6-3-71 FB_SET
Type: DeviceNet Parameter

Description: The FB_SET DeviceNet parameter sets the Remote I/O Messaging data to be
transferred for input word 2. The following settings can be made:

See 4-2-1 Remote I/O Communications for detailed information on bit alloca-
tion.

See also: FB_STATUS

6-3-72 FB_STATUS
Type: DeviceNet Parameter

Description: The FB_STATUS DeviceNet parameter returns the status of the communica-
tions of the MC Unit with the DeviceNet master. The following values can be
returned:

See also: FB_SET

6-3-73 FE
Type: Axis Parameter

Description: The FE axis parameter contains the position error in user units. This is calcu-
lated by the demand position (DPOS axis parameter) minus the measured
position (MPOS axis parameter). The value of the following error can be
checked by using the axis parameters FE_LIMIT and FE_RANGE.

Note This parameter is read-only.

See also: AXIS, DPOS, FE_LIMIT, FE_RANGE, MPOS, UNITS

6-3-74 FE_LIMIT
Type: Axis Parameter

FB_SET Allocation

0 VR(0)

1 MC Unit I/O mapping

2 Servo Driver I/O mapping

FB_STATUS Allocation

0 • A master has not established the remote I/O connection
and does not perform polled data exchange with the MC
Unit.

• The MC Unit is in a bus-off state.
• There is no network power available.

1 • A master has established the remote I/O connection and
performs polled data exchange with the MC Unit.

• The MC Unit is not in a bus-off state.
• There is network power available.

139

Command, function and parameter description Section 6-3

Alternative: FELIMIT

Description: The FE_LIMIT axis parameter contains the limit for the maximum allowed fol-
lowing error in user units. When exceeded, bit 8 of the AXISSTATUS parame-
ter of the axis will be set. If the ERRORMASK parameter has been properly
set, a motion error will be generated.
This limit is used to guard against fault conditions, such as mechanical lock-
up, loss of encoder feedback, etc.

See also: AXIS, AXISSTATUS, ERRORMASK, FE, FE_RANGE, UNITS

6-3-75 FE_RANGE
Type: Axis Parameter

Alternative: FERANGE

Description: The FE_RANGE axis parameter contains the limit for the following error warn-
ing range in user units. When the following error exceeds this value on a
servo axis, bit 1 in the AXISSTATUS axis parameter will be turned ON.
This range is used as a first indication for fault conditions in the application
(compare FE_LIMIT).

See also: AXIS, AXISSTATUS, ERRORMASK, FE, FE_LIMIT, UNITS

6-3-76 FHOLD_IN
Type: Axis Parameter

Alternative: FH_IN

Description: The FHOLD_IN axis parameter contains the input number to be used as the
feedhold input. The number can be from 0 to 7. As default the parameter is
set to –1, no input is selected.
If an input number is set and the feedhold input turns set, the speed of the
move on the axis is changed to the value set in the FH_SPEED axis parame-
ter. The current move is NOT cancelled. Furthermore, bit 7 of the AXISSTA-
TUS parameter is set. When the input turns reset again, any move in progress
when the input was set will return to the programmed speed.

Precautions: This feature only works on speed controlled moves. Moves which are not
speed controlled (CAMBOX, CONNECT and MOVELINK) are not affected.

Note This input is active low.

See also: AXIS, AXISSTATUS, FHSPEED

6-3-77 FHSPEED
Type: Axis Parameter

Description: The FHSPEED axis parameter contains the feedhold speed. This parameter
can be set to a value in user units/s at which speed the axis will move when
the feed-hold input turns ON. The current move is not cancelled. FHSPEED
can have any positive value including zero. The default value is zero.

Precautions: This feature only works on speed controlled moves. Moves which are not
speed controlled (CAMBOX, CONNECT and MOVELINK) are not affected.

See also: AXIS, FHOLD_IN, UNITS

6-3-78 FLASHVR
Type: System Command

Syntax: FLASHVR(address)

140

Command, function and parameter description Section 6-3

Description: The FLASHVR command is used to store VR or Table variable data into the
Flash memory. After the data has been stored, at each power up the VR and
Table data will be restored to the values held in Flash memory. Storing the
data in Flash memory for this Unit is required as data in RAM is not contained
when power is down. The command will write either a single VR variable or
the entire Table array.
Although the Table array is updated correctly with the Flash memory data at
start-up, the Table pointer (TSIZE parameter) is zero. To able to access the
Table data, a write operation needs to be performed to the Table variable with
address one higher than the highest variable used.

Note 1. When the entire Table array is restored from Flash memory at start-up, the
Table has not yet been initialised. To initialise the Table for the range used
in the application, write a value to the Table variable with address one
higher than used. From that moment the Table variables can be accessed.

2. Each FLASHVR command generates a write to a block of the Flash mem-
ory. Although this memory allows numerous writes and erases, it has a lim-
ited life cycle. Programmers should be aware of this fact and use the
command as limited as possible.

Arguments: address
The address of the VR variable. Range: [0, 250]. To write the Table data into
the following options are used
FLASHVR(-1) Write entire Table array
FLASHVR(-2) Cancel update of Table data at start-up

See also: EPROM

6-3-79 FOR TO STEP NEXT
Type: Structural Command

Syntax: FOR variable = start TO end [STEP increment]
<commands>

NEXT variable

Description: The FOR ... NEXT loop allows the program segment between the FOR and
the NEXT statement to be repeated a number of times.
On entering this loop, the variable is initialized to the value of start and the
block of commands is then executed. Upon reaching the NEXT command, the
variable is increased by the increment specified after STEP. The STEP value
can be positive or negative, if omitted the value is assumed to be 1.
While variable is less than or equal to end, the block of commands is repeat-
edly executed until variable is greater than end, at which time program execu-
tion will continue after NEXT.

Precautions: FOR ... NEXT statements can be nested up to 8 levels deep in a BASIC pro-
gram.

Arguments: variable
Any valid BASIC expression.
start
Any valid BASIC expression.
end
Any valid BASIC expression.
increment
Any valid BASIC expression.

See also: REPEAT, WHILE

141

Command, function and parameter description Section 6-3

Examples: Example 1
The following loop turns ON outputs 8 to 13.
FOR opnum = 8 TO 13

OP(opnum,ON)
NEXT opnum
Example 2
The STEP increment can be positive or negative.
loop:

FOR dist = 5 TO -5 STEP -0.25
MOVEABS(dist)
GOSUB pick_up

NEXT dist
Example 3
FOR...NEXT statements can be nested (up to 8 levels deep) provided the
inner FOR and NEXT commands are both within the outer FOR...NEXT loop:
loop1:

FOR l1 = 1 TO 8
loop2:

FOR l2 = 1 TO 6
MOVEABS(l1*100,l2*100)
GOSUB 1000

NEXT l2
NEXT l1

6-3-80 FORWARD
Type: Motion Control Command

Syntax: FORWARD

Alternative: FO

Description: The FORWARD command moves an axis continuously forward at the speed
set in the SPEED axis parameter. The acceleration rate is defined by the
ACCEL axis parameter.
FORWARD works on the default basis axis (set with BASE) unless AXIS is
used to specify a temporary base axis.

Precautions: The forward motion can be stopped by executing the CANCEL or RAPID-
STOP command, or by reaching the forward limit.

See also: AXIS, CANCEL, RAPIDSTOP, REVERSE, UNITS

Example: start:
FORWARD
WAIT UNTIL IN(0) = ON ’Wait for stop signal
CANCEL

6-3-81 FRAC
Type: Mathematical Function

Syntax: FRAC(expression)

Description: The FRAC function returns the fractional part of the expression.

Arguments: expression
Any valid BASIC expression.

Example: >> PRINT FRAC(1.234)
0.2340

6-3-82 FREE
Type: System Function

142

Command, function and parameter description Section 6-3

Syntax: FREE

Description: The FREE function returns the remaining amount of memory available for
user programs and Table array elements.

Precautions: Each line takes a minimum of 4 characters (bytes) in memory. This is for the
length of this line, the length of the previous line, number of spaces at the
beginning of the line and a single command token. Additional commands
need one byte per token; most other data is held as ASCII.
The MC Unit compiles programs before they are executed, this means that
twice the memory is required to be able to execute a program.

Example: >> PRINT FREE
47104.0000

6-3-83 FS_LIMIT
Type: Axis Parameter

Alternative: FSLIMIT

Description: The FS_LIMIT axis parameter contains the absolute position of the forward
software limit in user units.
A software limit for forward movement can be set from the program to control
the working range of the machine. When the limit is reached, the MC Unit will
decelerate to zero, and then cancel the move. Bit 9 of the AXISSTATUS axis
parameter will be turned ON while the axis position is greater than FS_LIMIT.

See also: AXIS, AXISSTATUS, RS_LIMIT, UNITS

6-3-84 FWD_IN
Type: Axis Parameter

Description: The FWD_IN axis parameter contains the input number to be used as a for-
ward limit input. The number can be set from 0 to 7 and 18. Range 0 to 7 is
used to select one of the MC Unit inputs. Defining value 18 will select the
Servo Driver’s POT (Forward drive prohibited, CN1 pin 42) input. As default
the parameter is set to –1, no input is selected.
If an input number is set and the limit is reached, any forward motion on that
axis will be stopped. Bit 4 of the AXISSTATUS will also be set.

Note This input is active low.

See also: AXIS, AXISSTATUS, REV_IN

6-3-85 FWD_JOG
Type: Axis Parameter

Description: The FWD_JOG axis parameter contains the input number to be used as a jog
forward input. The input can be set from 0 to 7. As default the parameter is set
to –1, no input is selected.

Note This input is active low.

See also: AXIS, FAST_JOG, JOGSPEED, REV_JOG

6-3-86 GET
Type: I/O Command

Syntax: GET [#n,] variable

Description: The GET command assigns the ASCII code of a received character to a vari-
able. If the serial port buffer is empty, program execution will be paused until a
character has been received. Channels 5 to 7 are logical channels that are

143

Command, function and parameter description Section 6-3

superimposed on the RS-232C programming port 0 when using Motion Per-
fect.

Arguments: n
The specified input device. When this argument is omitted, the port as speci-
fied by INDEVICE will be used.

variable
The name of the variable to receive the ASCII code.

Precautions: Channel 0 is reserved for the connection to Motion Perfect and/or the com-
mand line interface. Please be aware that this channel may give problems for
this function.

See also: INDEVICE, INPUT, KEY, LINPUT

Example: The following line can be used to store the ASCII character received on the
Motion Perfect port channel 5 in k.
GET#5, k

6-3-87 GOSUB RETURN
Type: Structural Command

Syntax: GOSUB label ... RETURN

Description: The GOSUB structure enables a subroutine jump. GOSUB stores the position
of the line after the GOSUB command and then jumps to the specified label.
Upon reaching the RETURN statement, program execution is returned to the
stored position. Labels can be character strings of any length, but only the first
15 characters are significant.

Precautions: Subroutines on each task can be nested up to 8 levels deep.

Arguments: label
A valid label that occurs in the program. An invalid label will give a compilation
error before execution.

See also: GOTO

Example: main:
GOSUB routine
GOTO main

routine:
PRINT "Measured position=";MPOS;CHR(13);
RETURN

6-3-88 GOTO
Type: Structural Command

Syntax: GOTO label

Description: The GOTO structure enables a jump of program execution. GOTO jumps pro-
gram execution to the line of the program containing the label. Labels can be
character strings of any length, but only the first 15 characters are significant.

0 RS-232C programming port 0

1 RS-232C serial port 1

2 RS-422A/485 serial port 2

5 Motion Perfect port 0 user channel 5

6 Motion Perfect port 0 user channel 6

7 Motion Perfect port 0 user channel 7

144

Command, function and parameter description Section 6-3

Arguments: label
A valid label that occurs in the program. An invalid label will give a compilation
error before execution.

See also: GOSUB

Example: loop:
PRINT "Measured position = ";MPOS;CHR(13);
GOTO loop

6-3-89 HALT
Type: System Command

Syntax: HALT

Description: The HALT command stops execution of all program tasks currently running.
The command can be used both on command line as in programs. The STOP
command can be used to stop a single program task.

See also: PROCESS, STOP

6-3-90 HLM_COMMAND
Type: Host Link Command

Syntax: HLM_COMMAND(command, port [, node [, mc_area/mode [, mc_offset]]])

Description: The HLM_COMMAND command performs a specific Host Link command
operation to one or to all Host Link Slaves on the selected port.
Program execution will be paused until the response string has been received
or the timeout time has elapsed. The timeout time is specified by using the
HLM_TIMEOUT parameter. The status of the transfer can be monitored with
the HLM_STATUS parameter.

Note 1. When using the HLM_READ, be sure to set-up the Host Link Master pro-
tocol by using the SETCOM command.

2. The Host Link Master commands are required to be executed from one
program task only to avoid any multi-task timing problems.

Arguments: command
The selection of the Host Link operation to perform:

HLM_MREAD
(or value 0)

This performs the Host Link PC MODEL READ (MM)
command to read the CPU Unit model code. The result
is written to the MC Unit variable specified by mc_area
and mc_offset.

HLM_TEST
(or value 1)

This performs the Host Link TEST (TS) command to
check correct communication by sending string
“MCW151 TEST STRING” and checking the echoed
string. Check the HLM_STATUS parameter for the
result.

HLM_ABORT
(or value 2)

This performs the Host Link ABORT (XZ) command to
abort the Host Link command that is currently being
processed. The ABORT command does not receive a
response.

HLM_INIT
(or value 3)

This performs the Host Link INITIALIZE (**) command
to initialize the transmission control procedure of all
Slave Units.

HLM_STWR
(or value 4)

This performs the Host Link STATUS WRITE (SC)
command to change the operating mode of the CPU
Unit.

145

Command, function and parameter description Section 6-3

port
The specified serial port.

node (for HLM_MREAD, HLM_TEST, HLM_ABORT and HLM_STWR)
The Slave node number to send the Host Link command to. Range: [0, 31].
mode (for HLM_STWR)
The specified CPU Unit operating mode.

mc_area (for HLM_MREAD)
The MC Unit’s memory selection to read the send data from.

mc_offset (for HLM_MREAD)
The address of the specified MC Unit memory area to read from. Range for
VR variables: [0, 250]. Range for Table variables: [0, 7999].

See also: HLM_READ, HLM_STATUS, HLM_TIMEOUT, HLM_WRITE, SETCOM

Examples: Example 1:
The following command will read the CPU Unit model code of the Host Link
Slave with node address 12 connected to the RS-232C port. The result is writ-
ten to VR(233).
HLM_COMMAND(HLM_MREAD,1,12,MC_VR,233)

If the connected Slave is a C200HX PC, the VR(233) will contain value 12
(hex) after successfull execution.
Example 2:
The following command will check the Host Link communication with the Host
Link Slave (node 23) connected to the RS-422A port.
HLM_COMMAND(HLM_TEST,2,23)
PRINT HLM_STATUS PORT(2)

If the HLM_STATUS parameter contains value zero, the communication is
functional.
Example 3:
The following two commands will perform the Host Link INITIALIZE and
ABORT operations on the RS-422A port 2. The Slave has node number 4.
HLM_COMMAND(HLM_INIT,2)
HLM_COMMAND(HLM_ABORT,2,4)
Example 4:
When data has to be written to a PC using Host Link, the CPU Unit can not be
in RUN mode. The HLM_COMMAND command can be used to set it to MON-
ITOR mode. The Slave has node address 0 and is connected to the RS-232C
port.
HLM_COMMAND(HLM_STWR,2,0,2)

1 RS-232C serial port 1

2 RS-422A serial port 2

0 PROGRAM mode

2 MONITOR mode

3 RUN mode

MC_area Data area

MC_TABLE
(or value 8)

Table variable array

MC_VR
(or value 9)

Global (VR) variable array

146

Command, function and parameter description Section 6-3

6-3-91 HLM_READ
Type: Host Link Command

Syntax: HLM_READ(port, node, pc_area, pc_offset, length, mc_area, mc_offset)

Description: The HLM_READ command reads data from a Host Link Slave by sending a
Host Link command string containing the specified node of the Slave to the
serial port. The received response data will be written to either VR or Table
variables. Each word of data will be transferred to one variable. The maximum
data length is 30 words (single frame transfer).
Program execution will be paused until the response string has been received
or the timeout time has elapsed. The timeout time is specified by using the
HLM_TIMEOUT parameter. The status of the transfer can be monitored with
the HLM_STATUS parameter.

Note 1. When using the HLM_READ, be sure to set-up the Host Link Master pro-
tocol by using the SETCOM command.

2. The Host Link Master commands are required to be executed from one
program task only to avoid any multi-task timing problems.

Arguments: port
The specified serial port.

node
The Slave node number to send the Host Link command to. Range: [0, 31].
pc_area
The PC memory selection for the Host Link command.

pc_offset
The address of the specified PC memory area to read from. Range: [0, 9999].
length
The number of words of data to be transfered. Range: [1, 30].
mc_area
The MC Unit’s memory selection to write the received data to.

1 RS-232C serial port 1

2 RS-422A serial port 2

pc_area Data area Host Link
command

PLC_DM
(or value 0)

DM area RD

PLC_IR
(or value 1)

CIO/IR area RR

PLC_LR
(or value 2)

LR area RL

PLC_HR
(or value 3)

HR area RH

PLC_AR
(or value 4)

AR area RJ

PLC_EM
(or value 6)

EM area RE

MC_area Data area

MC_TABLE
(or value 8)

Table variable array

MC_VR
(or value 9)

Global (VR) variable array

147

Command, function and parameter description Section 6-3

mc_offset
The address of the specified MC Unit memory area to write to. Range for VR
variables: [0, 250]. Range for Table variables: [0, 7999].

See also: HLM_COMMAND, HLM_STATUS, HLM_TIMEOUT, HLM_WRITE, SETCOM

Example: The following example shows how to read 20 words from the PC DM area
addresses 120-139 to MC Unit’s Table addresses 4000-4019. The PC has
Slave node address 17 and is connected to the RS-422A port.
HLM_READ(2,17,PLC_DM,120,20,MC_TABLE,4000)

6-3-92 HLM_STATUS
Type: Host Link Parameter

Syntax: HLM_STATUS PORT(n)

Description: The HLM_STATUS parameter contains the status of the last Host Link Master
command sent to the specified port. The parameter will indicate the status for
the HLM_READ, HLM_WRITE and HLM_COMMAND commands. The status
bits are defined in the following table.

The HLM_STATUS will have value 0 when no problems did occur. In case of
a non-zero value, any appropriate action such as a re-try or emergency stop
needs to be programmed in the user BASIC program.
Each port has an HLM_STATUS parameter. The PORT modifier is required to
specify the port.

Arguments: n
The specified serial port.

See also: HLM_COMMAND, HLM_READ, HLM_TIMEOUT, HLM_WRITE

Examples: Example 1:
>> HLM_WRITE(1,28,PLC_EM,50,25,MC_VR,200)
>> PRINT HEX(HLM_STATUS PORT(1))
1
Apparently the CPU Unit is in RUN mode and does not accept the write oper-
ation.
Example 2:
>> HLM_COMMAND(HLM_TEST,2,0)
>> PRINT HLM_STATUS PORT(2)
256.0000
A timeout error has occured.

6-3-93 HLM_TIMEOUT
Type: Host Link Parameter

Bit Name Description

0 - 7 End code The end code can be either the end code which is
defined by the Host Link Slave (problem in sent com-
mand string) or an end code defined because of a
problem found by the Host Link Master (problem in
received response string).

8 Timeout error A timeout error will occur if no response has been
received within the timeout time. This indicates com-
munication has been lost.

9 Command not
recognized

This status indicates that the Slave did not recognize
the command and has returned a IC response.

1 RS-232C serial port 1

2 RS-422A serial port 2

148

Command, function and parameter description Section 6-3

Description: The HLM_TIMEOUT parameter specifies the fixed timeout time for the Host
Link Master protocol for both serial ports. A timeout error will occur when the
time needed to both send the command and receive the response from the
Slave is longer than the time specified with this parameter.

The parameter applies for the HLM_READ, HLM_WRITE and
HLM_COMMAND commands. The HLM_TIMEOUT parameter is specified in
servo periods.

See also: HLM_COMMAND, HLM_READ, HLM_STATUS, HLM_WRITE,
SERVO_PERIOD

Example: Consider the servo period of the MC Unit is set to 500 ms
(SERVO_PERIOD=500).
>> HLM_TIMEOUT=2000
For both serial ports the Host Link Master timeout time has been set to 1 s.

6-3-94 HLM_WRITE
Type: Host Link Command

Syntax: HLM_WRITE(port, node, pc_area, pc_offset, length, mc_area, mc_offset)

Description: The HLM_WRITE command writes data from the MC Unit to a Host Link
Slave by sending a Host Link command string containing the specified node
of the Slave to the serial port. The received response data will be written from
either VR or Table variables. Each variable will define on word of data which
will be transferred. The maximum data length is 29 words (single frame trans-
fer).
Program execution will be paused until the response string has been received
or the timeout time has elapsed. The timeout time is specified by using the
HLM_TIMEOUT parameter. The status of the transfer can be monitored with
the HLM_STATUS parameter.

Note 1. When using the HLM_READ, be sure to set-up the Host Link Master pro-
tocol by using the SETCOM command.

2. The Host Link Master commands are required to be executed from one
program task only to avoid any multi-task timing problems.

Arguments: port
The specified serial port.

node
The Slave node number to send the Host Link command to. Range: [0, 31].

Command Response

Characters @ *↵ @ *↵

Timeout

1 RS-232C serial port 1

2 RS-422A serial port 2

149

Command, function and parameter description Section 6-3

pc_area
The PC memory selection for the Host Link command.

pc_offset
The address of the specified PC memory area to write to. Range: [0, 9999].
length
The number of words of data to be transfered. Range: [1, 29].
mc_area
The MC Unit’s memory selection to read the send data from.

mc_offset
The address of the specified MC Unit memory area to read from. Range for
VR variables: [0, 250]. Range for Table variables: [0, 7999].

See also: HLM_COMMAND, HLM_READ, HLM_STATUS, HLM_TIMEOUT, SETCOM

Example: The following example shows how to write 25 words from MC Unit’s VR
addresses 200-224 to the PC EM area addresses 50-74. The PC has Slave
node address 28 and is connected to the RS-232C port.
HLM_WRITE(1,28,PLC_EM,50,25,MC_VR,200)

6-3-95 HLS_MODEL
Type: Host Link Parameter

Description: The HLS_MODEL parameter defines the MC Unit model code for the Host
Link Slave protocol. When a Host Link Master gives a PC MODEL READ
(MM) command, the MC Unit will return the code as defined by this parame-
ter.
The MCW151 has been assigned the model code value FA Hex, which is the
default of this parameter. If this model code gives compatibility problems for
the Master, another model code can be assigned. The valid range for this
parameter is [00, FF] Hex.

See also: HLS_NODE

6-3-96 HLS_NODE
Type: Host Link Parameter

pc_area Data area Host Link
command

PLC_DM
(or value 0)

DM area RD

PLC_IR
(or value 1)

CIO/IR area RR

PLC_LR
(or value 2)

LR area RL

PLC_HR
(or value 3)

HR area RH

PLC_AR
(or value 4)

AR area RJ

PLC_EM
(or value 6)

EM area RE

MC_area Data area

MC_TABLE
(or value 8)

Table variable array

MC_VR
(or value 9)

Global (VR) variable array

150

Command, function and parameter description Section 6-3

Description: The HLS_NODE parameter defines the Slave unit number for the Host Link
Slave protocol. The MC Unit will only respond to Host Link Master command
strings with the unit number as specified in this parameter. The valid range for
this parameter is [0, 31]. The default value is 0.

See also: HLS_MODEL

6-3-97 I_GAIN
Type: Axis Parameter

Description: The I_GAIN parameter contains the integral gain for the axis. The integral out-
put contribution is calculated by multiplying the sums of the following errors
with the value of the I_GAIN parameter. The default value is zero.
Adding integral gain to a servo system reduces positioning error when at rest
or moving steadily. It can produce or increase overshooting and oscillation
and is therefore only suitable for systems working on constant speed and with
slow accelerations.
See section 1-4-1 Servo System Principles for more details.

Precautions: In order to avoid any instability the servo gains should be changed only when
the SERVO is OFF.

See also: D_GAIN, OV_GAIN, P_GAIN, VFF_GAIN

6-3-98 IF THEN ELSE ENDIF
Type: Structural Command

Syntax: IF condition THEN
<commands>

[ELSE
<commands>]

ENDIF

IF condition THEN <commands>

Description: The IF..THEN..ELSE..ENDIF structure controls the flow of the program based
on the results of the condition. If the condition is TRUE the commands follow-
ing THEN up to ELSE (or ENDIF if not included) will be executed. If the condi-
tion is FALSE the commands following ELSE will be executed or the program
will resume at the line after ENDIF in case no ELSE is included. The ENDIF is
used to mark the end of the conditional block.

Precautions: IF...THEN [ELSE] ENDIF sequences can be nested without limit. For a multi-
line IF...THEN construction, there must not be any statement after THEN. A
single-line construction must not use ENDIF.

Arguments: condition
Any logical expression.
commands
Any valid BASIC commands.

Examples: Example 1
IF MPOS > (0.22 * VR(0)) THEN GOTO exceeds_length
Example 2
IF IN(0) = ON THEN

count = count + 1
PRINT "COUNTS = ";count
fail = 0

ELSE
fail = fail + 1

ENDIF

151

Command, function and parameter description Section 6-3

6-3-99 IN
Type: I/O Function

Syntax: IN(input_number [,final_input_number])
IN

Description: The IN function returns the value of digital inputs.
• IN(input_number, final_input_number) will return the binary sum of the

group of inputs. The two arguments must be less than 24 apart.
• IN(input_number) with the value for input_number less than 32 will return

the value of the particular channel.
• IN (without arguments) will return the binary sum of the first 24 inputs (as

IN(0,23)).
Refer to 3-3-2 Digital I/O for a description of the various types of output and
inputs.

Arguments: input_number.
The number of the input for which to return a value. Value: An integer
between 0 and 31.
final_ input_number.
The number of the last input for which to return a value. Value: An integer
between 0 and 31.

See also: OP

Examples: Example 1
The following lines can be used to move to the position set on a thumbwheel
multiplied by a factor. The thumbwheel is connected to inputs 4, 5, 6 and 7,
and gives output in BCD.
moveloop:

MOVEABS(IN(4,7)*1.5467)
WAIT IDLE
GOTO moveloop

The MOVEABS command is constructed as follows:
Step 1: IN(4,7) will get a number between 0 and 15.
Step 2: The number is multiplied by 1.5467 to get required distance.
Step 3: An absolute move is made to this position.
Example 2
In this example a single input is tested:
test:

WAIT UNTIL IN(4)=ON ‘Conveyor is in position when ON
GOSUB place

6-3-100 INDEVICE
Type: I/O Parameter

Description: The INDEVICE parameter defines the default input device. This device will be
selected for the input commands when the #n option is omitted. The INDE-
VICE parameter is task specific. The following values are supported.

0 RS-232C programming port 0 (default)

1 RS-232C serial port 1

2 RS-422A/485 serial port 2

5 Motion Perfect port 0 user channel 5

6 Motion Perfect port 0 user channel 6

7 Motion Perfect port 0 user channel 7

152

Command, function and parameter description Section 6-3

See also: GET, INPUT, LINPUT, KEY

6-3-101 INPUT
Type: I/O Command

Syntax: INPUT [#n], variable { , variable }

Description: The INPUT command will assign numerical input string values to the specified
variables. Multiple input string values can be requested on one line, separated
by commas, or on multiple lines separated by carriage return. The program
execution will be paused until the string is terminated with a carriage
return <CR> after the last variable has been assigned.
If the string is invalid, the user will be prompted with an error message and the
task will be repeated. The maximum amount of inputs on one line has no limit
other than the line length.
Channels 5 to 7 are logical channels that are superimposed on the RS-232C
programming port 0 when using Motion Perfect.

Arguments: n
The specified input device. When this argument is omitted, the port as speci-
fied by INDEVICE will be used.

variable
The variable to write to.

Precautions: Channel 0 is reserved for the connection to Motion Perfect and/or the com-
mand line interface. Please be aware that this channel may give problems for
this function.

See also: GET, LINPUT

Example: Consider the following program to receive data from the terminal.
INPUT#5, num
PRINT#5, "BATCH COUNT=";num[0]
A possible response on the terminal could be:
123<CR>
BATCH COUNT=123

6-3-102 INT
Type: Mathematical Function

Syntax: INT(expression)

Description: The INT function returns the integer part of the expression.

Note To round a positive number to the nearest integer value take the INT function
of the value added by 0.5. Similarly, to round for a negative value subtract 0.5
to the value before applying INT.

Arguments: expression
Any valid BASIC expression.

Example: >> PRINT INT(1.79)
1.0000

0 RS-232C programming port 0

1 RS-232C serial port 1

2 RS-422A/485 serial port 2

5 Motion Perfect port 0 user channel 5

6 Motion Perfect port 0 user channel 6

7 Motion Perfect port 0 user channel 7

153

Command, function and parameter description Section 6-3

6-3-103 JOGSPEED
Type: Axis Parameter

Description: The JOGSPEED parameter sets the jog speed in user units for an axis. A jog
will be performed when a jog input for an axis has been declared and that
input is low. A forward jog input and a reverse jog input are available for each
axis, respectively set by FWD_JOG and REV_JOG. The speed of the jog can
be controlled with the FAST_JOG input.

See also: AXIS, FAST_JOG, FWD_JOG, REV_JOG, UNITS

6-3-104 KEY
Type: I/O Parameter

Syntax: KEY [#n]

Description: The KEY parameter returns TRUE or FALSE depending on if a character has
been received at the serial port buffer or not. A TRUE result will reset when
the character is read with the GET command.
Channels 5 to 7 are logical channels that are superimposed on the RS-232C
programming port 0 when using Motion Perfect.

Argument: n
The specified input device. When this argument is omitted, the port as speci-
fied by INDEVICE will be used.

Precautions: Channel 0 is reserved for the connection to Motion Perfect and/or the com-
mand line interface. Please be aware that this channel may give problems for
this function.

See also: GET

Example: WAIT UNTIL KEY#1
GET#1, k
Beware that for using KEY#1 in an equation may require parentheses in the
statement, in this case: WAIT UNTIL (KEY#1)=TRUE.

6-3-105 LAST_AXIS
Type: System Parameter

Description: The LAST_AXIS parameter contains the number of the last axis processed by
the system.
Most systems do not use all the available axes. It would therefore be a waste
of time to task the idle moves on all axes that are not in use. To avoid this to
some extent, the MC Unit will task moves on the axes from 0 to LAST_AXIS,
where LAST_AXIS is the number of the highest axis for which an AXIS or
BASE command has been processed, whichever of the two is larger.

Note This parameter is read-only.

See also: AXIS, BASE

0 RS-232C programming port 0

1 RS-232C serial port 1

2 RS-422A/485 serial port 2

5 Motion Perfect port 0 user channel 5

6 Motion Perfect port 0 user channel 6

7 Motion Perfect port 0 user channel 7

154

Command, function and parameter description Section 6-3

6-3-106 LINK_AXIS
Type: System Parameter

Description: The LINK_AXIS parameter contains the axis number of the link axis during
any linked move. Linked moves are defined where the demanded position is a
function of another axis (CAMBOX, CONNECT and MOVELINK).

Note This parameter is read-only.

See also: AXIS, CAMBOX, CONNECT, MOVELINK

6-3-107 LINPUT
Type: I/O Command

Syntax: LINPUT [#n ,] vr_variable

Description: The LINPUT command assigns the ASCII code of the characters to an array
of variables starting with the specified VR variable. Program execution will be
paused until the string is terminated with a carriage return <CR>, which is also
stored. The string is not echoed by the controller.
Channels 5 to 7 are logical channels that are superimposed on the RS-232C
programming port 0 when using Motion Perfect.

Arguments: n
The specified input device. When this argument is omitted, the port as speci-
fied by INDEVICE will be used.

vr_variable
The first VR-variable to write to.

Precautions: Channel 0 is reserved for the connection to Motion Perfect and/or the com-
mand line interface. Please be aware that this channel may give problems for
this command.

See also: GET, INPUT,VR

Example: Consider the following line in a program.
LINPUT#5, VR(0)
Entering START<CR> will give
VR(0)=83 S
VR(1)=84 T
VR(2)=65 A
VR(3)=82 R
VR(4)=84 T
VR(5)=13 <CR>

6-3-108 LIST
Type: Program Command

Syntax: LIST [“program_name”]

Alternative: TYPE [“program_name”]

0 RS-232C programming port 0

1 RS-232C serial port 1

2 RS-422A/485 serial port 2

5 Motion Perfect port 0 user channel 5

6 Motion Perfect port 0 user channel 6

7 Motion Perfect port 0 user channel 7

155

Command, function and parameter description Section 6-3

Description: The LIST command prints the current selected program or the program spec-
ified by program_name. The program name can also be specified without
quotes. If the program name is omitted, the current selected program will be
listed.

Precautions: This command is implemented for an offline (VT100) terminal. Within Motion
Perfect users can use the Program Editor.

Arguments: program_name
The program to be printed.

See also: SELECT

6-3-109 LN
Type: Mathematical Function

Syntax: LN(expression)

Description: The LN function returns the natural logarithm of the expression. The input
expression value must be greater than zero.

Arguments: expression
Any valid BASIC expression.

Example: >> PRINT LN(10)
2.3026

6-3-110 LOCK
Type: System Command

Syntax: LOCK(code)
UNLOCK(code)

Description: The LOCK command prevents the program from being viewed, modified or
deleted by personnel unaware of the security code. The UNLOCK command
allows the locked state to be unlocked. The code number can be any integer
and is held in encoded form. LOCK is always an immediate command and
can be issued only when the system is UNLOCKED.

!WARNING The security code must be remembered; it will be required to unlock the sys-
tem. Without the security code the system can not be recovered.

Arguments: code
Any valid integer with maximum 7 digits.

Example: >> LOCK(561234)
The programs cannot be modified or seen.
>> UNLOCK(561234)
The system is now unlocked.

6-3-111 MARK
Type: Axis Parameter

Description: The MARK parameter contains value TRUE when a (primary) registration
event has occurred to indicate that the value in the REG_POS axis parameter
is valid. MARK is set to FALSE when the REGIST command has been exe-
cuted and is set to TRUE when the register event occurs.

Note This parameter is read-only.

See also: AXIS, REG_POS, REGIST

156

Command, function and parameter description Section 6-3

6-3-112 MARKB
Type: Axis Parameter

Description: The MARKB parameter contains value TRUE when a secondary registration
event has occurred to indicate that the value in the REG_POSB axis parame-
ter is valid. MARKB is set to FALSE when the REGIST command has been
executed and is set to TRUE when the register event occurs.

Note This parameter is read-only.

See also: AXIS, REG_POSB, REGIST

6-3-113 MERGE
Type: Axis Parameter

Description: The MERGE parameter is a software switch that can be used to enable or dis-
able the merging of consecutive moves. With MERGE is ON and the next
move already in the next move buffer (NTYPE), the axis will not ramp down to
zero speed but will load up the following move enabling a seamless merge.
The default setting of MERGE is OFF.
It is up to the programmer to ensure that merging is sensible. For example,
merging a forward move with a reverse move will cause an attempted instan-
taneous change of direction.
MERGE will only function if the following are all true.
1. Only the speed profiled moves MOVE, MOVEABS, MOVECIRC and

MOVEMODIFY can be merged with each other.
2. There is a move in the next move buffer (NTYPE).
3. The axis group does not change for multi-axis moves.
When merging multi-axis moves, only the base axis MERGE axis parameter
needs to be set.

Precautions: If the moves are short, a high deceleration rate must be set to avoid the MC
Unit decelerating in anticipation of the end of the buffered move.

See also: AXIS

Example: MERGE = OFF ‘Decelerate at the end of each move
MERGE = ON ‘Moves will be merged if possible

6-3-114 MOD
Type: Mathematical Function

Syntax: expression_1 MOD expression_2

Description: The MOD function returns the expression_2 modulus of expression_1. This
function will take the integer part of any non-integer input.

Arguments: expression_1
Any valid BASIC expression.
expression_2
Any valid BASIC expression.

Example: >> PRINT 122 MOD 13
5.0000

6-3-115 MOTION_ERROR
Type: System Parameter

Description: The MOTION_ERROR parameter contains an error flag for axis motion
errors. The parameter will have value 1 when a motion error has occurred.

157

Command, function and parameter description Section 6-3

A motion error occurs when the AXISSTATUS state for one of the axes
matches the ERRORMASK setting. In this case the enable switch (WDOG)
will be turned OFF, the MOTION_ERROR parameter will have value 1 and
the ERROR_AXIS parameter will contain the number of the first axis to have
the error.
A motion error can be cleared executing a DATUM(0) command.

Note This parameter is read-only.

See also: AXISSTATUS, DATUM, ERROR_AXIS, ERRORMASK, WDOG

6-3-116 MOVE
Type: Motion Control Command

Syntax: MOVE(dist_1 [, dist_2 [, dist_3]])

Alternative: MO(dist_1 [, dist_2 [, dist_3]])

Description: The MOVE command moves with one or more axes at the demand speed and
acceleration and deceleration to a position specified as increment from the
current position. In multi-axis moves the movement is interpolated and the
speed, acceleration and deceleration are taken from the base axis.
The specified distances are scaled using the unit conversion factor in the
UNITS axis parameter. If, for example, an axis has 4,000 encoder edges/mm,
then the number of units for that axis would be set to 4000, and MOVE(12.5)
would move 12.5 mm.
MOVE works on the default basis axis group (set with BASE) unless AXIS is
used to specify a temporary base axis. Argument dist_1 is applied to the base
axis, dist_2 is applied to the next axis, etc. By changing the axis between indi-
vidual MOVE commands, uninterpolated, unsynchronised multi-axis motion
can be achieved. Incremental moves can be merged for profiled continuous
path movements by turning ON the MERGE axis parameter.
Considering a 2-axis movement, the individual speeds are calculated using
the equations below. Given command MOVE() and the profiled speed

 as calculated from the SPEED, ACCEL and DECEL parameters from the
base axis and the total multi-axes distance .

The individual speed for axis at any time of the movement is calculated
as

Arguments: dist_i
The distance to move for every axis i in user units starting with the base axis.

See also: AXIS, MOVEABS, UNITS

Examples: Example 1
A system is working with a unit conversion factor of 1 and has a 1000-line
encoder. It is, therefore, necessary to use the following command to move 10
turns on the motor. (A 1000 line encoder gives 4000 edges/turn).
MOVE(40000)
Example 2
In this example, axes 0, 1 and 2 are moved independently (without interpola-
tion). Each axis will move at its programmed speed and other axis parame-
ters.
MOVE(10) AXIS(0)

x1 x2,
vp

L

L x1
2

x2
2

+ .=

vi i

vi

xi vp⋅
L

-------------.=

158

Command, function and parameter description Section 6-3

MOVE(10) AXIS(1)
MOVE(10) AXIS(2)
Example 3
An X-Y plotter can write text at any position within its working envelope. Indi-
vidual characters are defined as a sequence of moves relative to a start point
so that the same commands can be used no matter what the plot position.
The command subroutine for the letter “m” might be as follows:
m:
MOVE(0,12) ’move A -> B
MOVE(3,-6) ’move B -> C
MOVE(3,6) ’move C -> D
MOVE(0,-12) ’move D -> E

6-3-117 MOVEABS
Type: Motion Control Command

Syntax: MOVEABS(pos_1 [, pos_2 [, pos_3]])

Alternative: MA(pos_1 [, pos_2 [, pos_3]])

Description: The MOVEABS command moves one or more axes at the demand speed,
acceleration and deceleration to a position specified as absolute position, i.e.,
in reference to the origin. In multi-axis moves the movement is interpolated
and the speed, acceleration and deceleration are taken from the base axis.
The specified distances are scaled using the unit conversion factor in the
UNITS axis parameter. If, for example, an axis has 4,000 encoder edges/mm,
then the number of units for that axis would be set to 4000, and MOVE-
ABS(12.5) would move to a position 12.5 mm from the origin.
MOVEABS works on the default basis axis group (set with BASE) unless
AXIS is used to specify a temporary base axis. Argument pos_1 is applied to
the base axis, pos_2 is applied to the next axis, etc. By changing the axis
between individual MOVE commands, uninterpolated, unsynchronised multi-
axis motion can be achieved. Absolute moves can be merged for profiled con-
tinuous path movements by turning ON the MERGE axis parameter.
Considering a 2-axis movement, the individual speeds are calculated using
the equations below. Given command MOVE(), the current position
() and the profiled speed as calculated from the SPEED, ACCEL
and DECEL parameters from the base axis and the total multi-axes distance

 where .

The individual speed for axis at any time of the movement is calculated
as

Arguments: pos_i
The position to move every axis i to in user units starting with the base axis.

B

EA

D

C

ax1 ax2,
ay1 ay2, vp

L x1
2

x2
2

+= xi axi ayi–=

vi i

vi

xi vp⋅
L

-------------.=

159

Command, function and parameter description Section 6-3

See also: AXIS, MOVE, UNITS

Examples: Example 1
An X-Y plotter has a pen carousel whose position is fixed relative to the plotter
origin. To change pen, an absolute move to the carousel position will find the
target irrespective of the plot position when the command is executed.
MOVEABS(20,350)
Example 2
A pallet consists of a 6 by 8 grid in which gas canisters are inserted 85mm
apart by a packaging machine. The canisters are picked up from a fixed point.
The first position in the pallet is defined as position (0,0) using the DEFPOS
command. The part of the program to position the canisters in the pallet is as
follows:
xloop:
FOR x = 0 TO 5
yloop:

FOR y = 0 TO 7
MOVEABS(-340,-516.5) ’Move to pick up point
GOSUB pick ’Go to pick up subroutine
PRINT "MOVE TO POSITION: ";x*6+y+1
MOVEABS(x*85,y*85)
GOSUB place ’Go to place down subroutine

NEXT y
NEXT x

6-3-118 MOVECIRC
Type: Motion Control Command

Syntax: MOVECIRC(end_1,end_2,centre_1,centre_2,direction)

Alternative: MC(end_1,end_2,centre_1,centre_2,direction)

Description: The MOVECIRC command interpolates 2 orthogonal axes in a circular arc.
The path of the movement is determined by the 5 arguments, which are incre-
mental from the current position.
The arguments end_1 and centre_1 apply to the base axis and end_2 and
centre_2 apply to the following axis. All arguments are given in user units of
each axis. The speed of movement along the circular arc is set by the
SPEED, ACCEL and DECEL parameters of the base axis.
MOVECIRC works on the default basis axis group (set with BASE) unless
AXIS is used to specify a temporary base axis.

Precautions: The MOVECIRC computes the radius and the total angle of rotation from the
centre, and end-point. If the endpoint does not lie on the calculated path, the
move simply ends at the computed end and not the specified end point. It is
the responsibility of the programmer to ensure that the two points correspond
to correct points on a circle.
For MOVECIRC to be correctly executed, the two axes moving in the circular
arc must have the same number of encoder pulses per linear axis distance. If
they do not, it is possible to adjust the encoder scales in many cases by
adjusting with PP_STEP axis parameters for the axis.

Arguments: end_1
The end position for the base axis.
end_2
The end position for the next axis.
centre_1
The position around which the base axis is to move.

160

Command, function and parameter description Section 6-3

centre_2
The position around which the next axis is to move.
direction
A software switch that determines whether the arc is interpolated in a clock-
wise or counterclockwise direction. Value: 0 or 1

If the two axes involved in the movement form a right-hand axis, set direction
to 0 to produce positive motion about the third (possibly imaginary) orthogonal
axis.
If the two axes involved in the movement form a left-hand axis. set direction to
0 to produce negative motion about the third (possibly imaginary) orthogonal
axis.

See also: AXIS, PP_STEP, UNITS

Example: The command sequence to plot the letter 0 might be as follows:
MOVE(0,6) ’Move A -> B
MOVECIRC(3,3,3,0,1) ’Move B -> C
MOVE(2,0) ’Move C -> D
MOVECIRC(3,-3,0,-3,1) ’Move D -> E
MOVE(O,-6) ’Move E -> F
MOVECIRC(-3,-3,-3,0,1) ’Move F -> G
MOVE(-2,0) ’Move G -> H
MOVECIRC(-3,3,0,3,1) ’Move H -> A

6-3-119 MOVELINK
Type: Motion Control Command

Syntax: MOVELINK(distance, link_distance, link_acceleration, link_deceleration,
link_axis [, link_option [, link_position]])

Alternative: ML(distance, link_distance, link_acceleration, link_deceleration, link_axis
[, link_option [, link_position]])

Description: The MOVELINK command creates a linear move on the base axis linked via a
software gearbox to the measured position of a link axis. The link axis can
move in either direction to drive the output motion.
The parameters indicate what distance the base axis will move for a certain
distance of the link axis (link_distance). The link axis distance is divided into
three phases which apply to the movement of the base axis. These parts are

Direction Right-hand axis Left-hand axis

1 Negative Positive

0 Positive Negative

Direction=0 Direction=1

1

2

1

2

A

B

C D

E

F

GH

161

Command, function and parameter description Section 6-3

the acceleration part, the constant speed part and the deceleration part. The
link acceleration and deceleration distances are specified by the
link_acceleration and link_deceleration parameters. The constant speed link
distance is derived from the total link distance and these two parameters.
The three phases can be divided into separate MOVELINK commands or can
be added up together into one. Consider the following two rules when setting
up the MOVELINK command.

Rule 1
In an acceleration and deceleration phase with matching speed, the
link_distance must be twice the distance.

Rule 2
In a constant speed phase with matching speeds, the two axes travel the
same distance so the distance to move must equal the link_distance.

MOVELINK works on the default basis axis group (set with BASE) unless
AXIS is used to specify a temporary base axis. The axis set for link_axis
drives the base axis.

Note If the sum of link_acceleration and link_deceleration is greater than
link_distance, they are both reduced in proportion in order to equal the sum to
link_distance.

Arguments: distance
The incremental distance in user units to move the base axis, as a result of
the measured link_distance movement on the link axis.
link_distance
The positive incremental distance in user units that is required to be mea-
sured on the link axis to result in the distance motion on the base axis.
link_acceleration
The positive incremental distance in user units on the link axis over which the
base axis will accelerate.
link_deceleration
The positive incremental distance in user units on the link axis over which the
base axis will decelerate.
link_axis
The axis to link to.

Speed

Time

link
speed

link
distance

distance

Acceleration

Speed

Time

link
speed

link
distance

distance

Deceleration

162

Command, function and parameter description Section 6-3

link_option

link_position
The absolute position where MOVELINK will start when link_option is set to 2

See also: AXIS, REP_OPTION, UNITS

Example: A flying shear cuts a roll of paper every 160 m while moving at the speed of
the paper. The shear is able to travel up to 1.2 m of which 1 m is used in this
example. The paper distance is measured by an encoder, the unit conversion
factor being set to give units of metres on both axes. Axis 1 is the link axis.
MOVELINK(0,150,0,0,1) ‘wait distance
MOVELINK(0.4,0.8,0.8,0,1) ‘accelerate
MOVELINK(0.6,1.0,0,0.8,1) ‘match speed then decelerate
WAIT UNTIL NTYPE=0 ‘wait till last move started
OP(8,ON) ‘activate cutter
MOVELINK(-1,8.2,0.5,0.5,1) ‘move back

In this program, the MC Unit waits for the roll to feed out 150 m in the first line.
After this distance, the shear accelerates to match the speed of the paper,
coasts at the same speed, then decelerates to a stop within a 1 m stroke. This
movement is specified using two separate MOVELINK commands. The pro-
gram then waits for the next move buffer to be clear NTYPE=0. This indicates
that the acceleration phase is complete. The distances on the link axis
(link_distance) in the MOVELINK commands are 150, 0.8, 1.0, and 8.2, which
add up to 160 m.
To ensure that the speeds and positions of the cutter and paper match during
the cut task, the arguments of the MOVELINK command must be correct.
Therefore it is easiest to first consider the acceleration, constant speed and
deceleration phases separately. As mentioned before the acceleration and
deceleration phases require the link_distance to be twice the distance. Both
phases can therefore be specified as:
MOVELINK(0.4,0.8,0.8,0,1) ’This move is all accel

MOVELINK(0.4,0.8,0,0.8,1) ’This move is all decel

In a constant speed phase with matching speeds, the two axes travel the
same distance so the distance to move must equal the link distance. The con-
stant speed phase could, therefore, be specified as follows:
MOVELINK(0.2,0.2,0,0,1) ’This is all constant speed

The MOVELINK command allows the three sections to be added by summing
the distance, link_distance, link_acceleration and link_deceleration for each
phase, producing the following command.
MOVELINK(1,1.8,0.8,0.8,1)

In the program above, the acceleration phase is programmed separately. This
is done to be able to perform some action at the end of the acceleration
phase.

1 Link starts when registration event occurs on link axis.
2 Link starts at an absolute position on link axis (see link_position).
4 MOVELINK repeats automatically and bi-directionally. This option is

canceled by setting bit 1 of REP_OPTION parameter (i.e.
REP_OPTION = REP_OPTION OR 2).

5 Combination of options 1 and 4.
6 Combination of options 2 and 4.

163

Command, function and parameter description Section 6-3

MOVELINK(0.4,0.8,0.8,0,1)
MOVELINK(0.6,1.0,0,0.8,1)

6-3-120 MOVEMODIFY
Type: Motion Control Command

Syntax: MOVEMODIFY(position)

Alternative: MM(position)

Description: The MOVEMODIFY command changes the absolute end position of the cur-
rent single-axis linear move (MOVE or MOVEABS). If there is no current
move or the current move is not a linear move, then MOVEMODIFY is treated
as a MOVEABS command. The ENDMOVE parameter will contain the posi-
tion of the end of the current move in user units.
MOVEMODIFY works on the default basis axis (set with BASE) unless AXIS
is used to specify a temporary base axis.

Arguments: position
The absolute position to be set as the new end of move.

See also: AXIS, MOVE, MOVEABS, UNITS

6-3-121 MPOS
Type: Axis Parameter

Description: The MPOS parameter is the measured position of the axis in user units as
derived from the encoder. This parameter can be set using the DEFPOS com-
mand. The OFFPOS axis parameter can also be used to shift the origin point.
MPOS is reset to zero at start-up.
The range of the measured position is controlled with the REP_DIST and
REP_OPTION axis parameters.

Note This parameter is read-only.

See also: AXIS, DEFPOS, DPOS, ENCODER, FE, OFFPOS, REP_DIST,
REP_OPTION, UNITS

Example: WAIT UNTIL MPOS >= 1250
SPEED = 2.5

6-3-122 MSPEED
Type: Axis Parameter

Description: The MSPEED parameter contains the measured speed in units/s. It is calcu-
lated by taking the change in the measured position in user units in the last
servo period and divide it by the servo period (in seconds). The servo period
is set with the SERVO_PERIOD parameter.
MSPEED represents a snapshot of the speed and significant fluctuations,
which can occur, particularly at low speeds. It can be worthwhile to average
several readings if a stable value is required at low speeds.

Note This parameter is read-only.

See also: AXIS, SERVO_PERIOD, VP_SPEED, UNITS

6-3-123 MTYPE
Type: Axis Parameter

Description: The MTYPE parameter contains the type of move currently being executed.
The possible values are given below.
Move No. Move Type

164

Command, function and parameter description Section 6-3

0 IDLE (no move)
1 MOVE
2 MOVEABS
4 MOVECIRC
5 MOVEMODIFY
10 FORWARD
11 REVERSE
12 DATUM
13 CAM
14 JOG_FORWARD
15 JOG_REVERSE
20 CAMBOX
21 CONNECT
22 MOVELINK
MTYPE can be used to determine whether a move has finished or if a transi-
tion from one move type to another has taken place.
A non-idle move type does not necessarily mean that the axis is actually mov-
ing. It can be at zero speed part way along a move or interpolating with
another axis without moving itself.

Note This parameter is read-only.

See also: AXIS, NTYPE

6-3-124 NEW
Type: Program Command

Syntax: NEW [“program_name”]

Description: The NEW command deletes all program lines of the program from memory.
NEW without a program name can be used to delete the currently selected
program (using SELECT). The program name can also be specified without
quotes. NEW ALL will delete all programs.
The command can also be used to delete the Table.

NEW “TABLE”
The name “TABLE” must be in quotes.

Precautions: This command is implemented for an offline (VT100) terminal. Within Motion
Perfect users can select the command from the Program menu.

See also: COPY, DEL, RENAME, SELECT, TABLE

6-3-125 NIO
Type: System Parameter

Description: The NIO parameter contains the total number of inputs and outputs of the sys-
tem.

6-3-126 NOT
Type: Logical Operator

Syntax: NOT expression

Description: The NOT operator performs the logical NOT function on all bits of the integer
part of the expression.
The logical NOT function is defined as follows:

165

Command, function and parameter description Section 6-3

Arguments: expression
Any valid BASIC expression.

Example: >> PRINT 7 AND NOT 1
6.0000

6-3-127 NTYPE
Type: Axis Parameter

Description: The NTYPE parameter contains the type of the move in the next move buffer.
Once the current move has finished, the move present in the NTYPE buffer
will be executed. The values are the same as those for the MTYPE axis
parameter.
NTYPE is cleared by the CANCEL(1) command.

Note This parameter is read-only.

See also: AXIS, MTYPE

6-3-128 OFF
Type: Constant

Description: The OFF constant returns the numerical value 0.

Note A constant is read-only.

Example: OP (lever,OFF)
The above line sets the output named lever to OFF.

6-3-129 OFFPOS
Type: Axis Parameter

Description: The OFFPOS parameter contains an offset that will be applied to the demand
position (DPOS) without affecting the move in any other way. The measured
position will be changed accordingly in order to keep the following error. OFF-
POS effectively adjusts the zero position of the axis. The value set in OFF-
POS will be reset to zero by the system as the offset is loaded.

Precautions: The offset is applied on the next servo period. Other commands may be exe-
cuted prior to the next servo period. Be sure that these commands do not
assume the position shift has occurred. This can be done by using the WAIT
UNTIL statement (see example).

See also: AXIS, DEFPOS, DPOS, MPOSUNITS

Example: The following lines define the current demand position as zero.
OFFPOS = -DPOS
WAIT UNTIL OFFPOS = 0 ’Wait until applied
This example is equivalent to DEFPOS(0).

6-3-130 ON
Type: Constant

Description: The ON constant returns the numerical value 1.

Note A constant is read-only.

Example: OP (lever,ON)
The above line sets the output named lever to ON.

Bit Result

0 1

1 0

166

Command, function and parameter description Section 6-3

6-3-131 ON
Type: Structural Command

Syntax: ON expression GOSUB label { , label }
ON expression GOTO label { , label }

Description: The ON..GOSUB and ON..GOTO structures enable a conditional jump. The
integer expression is used to select a label from the list. If the expression has
value 1 the first label is used, for value 2 then the second label is used, and so
on. Depending on the GOSUB or GOTO command the subroutine or normal
jump is performed.

Precautions: If the expression is not valid, no jump is performed.

Arguments: expression
Any valid BASIC expression.
label
Any valid label in the program.

See also: GOSUB, GOTO

Example: REPEAT
GET#5,char

UNTIL 1<=char and char<=3
ON char GOSUB mover, stopper, change

6-3-132 OP
Type: I/O Function/Command

Syntax: OP(output_number, value)
OP(binary_pattern)
OP

Description: The OP command sets one or more outputs or returns the state of the first 24
outputs. OP has three different forms depending on the number of arguments.

• Command OP(output_number,value) sets a single output channel. The
range of output_number is between 8 and 17 and value is the value to be
output, either 0 or 1.

• Command OP(binary_pattern) sets the binary pattern to the 24 outputs
according to the value set by binary_pattern.

• Function OP (without arguments) returns the status of the first 24 outputs.
This allows multiple outputs to be set without corrupting others which are
not to be changed.

Refer to 3-3-2 Digital I/O for a description of the various types of output and
inputs.

Precautions: The first 8 outputs (0 to 7) do not physically exist on the MC Unit. They can
not be written to and will always return 0.

Arguments: output_number
The number of the output to be set.
value
The value to be output, either OFF or ON. All non-zero values are considered
as ON.
binary_pattern
The integer equivalent of the binary pattern is to be output.

See also: IN

Examples: Example 1
The following two lines are equivalent.

167

Command, function and parameter description Section 6-3

OP(12,1)
OP(12,ON)
Example 2
This following line sets the bit pattern 10010 on the first 5 physical outputs,
outputs 13 to 17 would be cleared. The bit pattern is shifted 8 bits by multiply-
ing by 256 to set the first available outputs as outputs 0 to 7 do not exist.
OP(18*256)

Example 3
This routine sets outputs 8 to 15 ON and all others OFF.
VR(0) = OP
VR(0) = VR(0) AND 65280
OP(VR(0))
The above programming can also be written as follows:
OP(OP AND 65280)
Example 4
This routine sets value val to outputs 8 to 11 without affecting the other out-
puts by using masking.

val = 8 ‘The value to set
mask = OP AND NOT(15*256) ‘Get current status and mask
OP(mask OR val*256) ‘Set val to OP(8) to OP(11)

6-3-133 OPEN_WIN
Type: Axis Parameter

Alternative: OW

Description: The OPEN_WIN parameter defines the beginning of the window inside or out-
side which a registration event is expected. The value is in user units.

See also: CLOSE_WIN, REGIST, UNITS

6-3-134 OR
Type: Logical Operator

Syntax: expression_1 OR expression_2

Description: The OR operator performs the logical OR function between corresponding
bits of the integer parts of two valid BASIC expressions.
The logical OR function between two bits is defined as follows:

Arguments: expression_1
Any valid BASIC expression.
expression_2
Any valid BASIC expression.

Examples: Example 1
result = 10 OR (2.1*9)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

val

Bit 1 Bit 2 Result

0 0 0

0 1 1

1 0 1

1 1 1

168

Command, function and parameter description Section 6-3

The parentheses are evaluated first, but only the integer part of the result, 18,
is used for the operation. Therefore, this expression is equivalent to the fol-
lowing:
result = 10 OR 18

The OR is a bit operator and so the binary action taking place is:

Therefore, result will contain the value 26.
Example 2
IF KEY OR VR(0) = 2 THEN GOTO label

6-3-135 OUTDEVICE
Type: I/O Parameter

Description: The OUTDEVICE parameter defines the default output device. This device
will be selected for the PRINT command when the #n option is omitted. The
OUTDEVICE parameter is task specific. The following values are supported.

See also: PRINT

6-3-136 OUTLIMIT
Type: Axis Parameter

Description: The OUTLIMIT parameter contains the speed reference limit that restricts the
speed reference from the MC Unit to the Servo Driver for both servo loop
(SERVO=ON) and open loop (SERVO=OFF).
The default value of OUTLIMIT for axis 0 is 15000. This sets the speed refer-
ence range to [-15000, 14999], which is the actual input reference range of
the Servo Driver.

See also: AXIS, S_RATE, S_REF, S_REF_OUT, SERVO

6-3-137 OV_GAIN
Type: Axis Parameter

Description: The OV_GAIN parameter contains the output velocity gain. The output veloc-
ity output contribution is calculated by multiplying the change in measured
position with the OV_GAIN parameter value. The default value is 0.
Adding output velocity gain to a system is mechanically equivalent to adding
damping. It is likely to produce a smoother response and allow the use of a
higher proportional gain than could otherwise be used, but at the expense of
higher following errors. High values may cause oscillation and produce high
following errors.
See section 1-4-1 Servo System Principles for more details.

Precautions: In order to avoid any instability the servo gains should be changed only when
the SERVO is OFF.

01010

OR 10010

11010

0 RS-232C programming port 0 (default)

1 RS-232C serial port 1

2 RS-422A/485 serial port 2

5 Motion Perfect port 0 user channel 5

6 Motion Perfect port 0 user channel 6

7 Motion Perfect port 0 user channel 7

169

Command, function and parameter description Section 6-3

See also: AXIS, D_GAIN, I_GAIN, P_GAIN, VFF_GAIN

6-3-138 P_GAIN
Type: Axis Parameter

Description: The P_GAIN parameter contains the proportional gain. The proportional out-
put contribution is calculated by multiplying the following error with the
P_GAIN parameter value. The default value for axis 0 is 0.1.
The proportional gain sets the ’stiffness’ of the servo response. Values that
are too high will cause oscillation. Values that are too low will cause large fol-
lowing errors.
See section 1-4-1 Servo System Principles for more details.

Precautions: In order to avoid any instability the servo gains should be changed only when
the SERVO is OFF.

See also: AXIS, D_GAIN, I_GAIN, OV_GAIN, VFF_GAIN

6-3-139 PI
Type: Constant

Description: The PI constant returns the numerical value 3.1416.

Note A constant is read-only.

Example: circum = 100
PRINT "Radius = ";circum/(2*PI)

6-3-140 PMOVE
Type: Task Parameter

Description: The PMOVE parameter contains the status of the task buffers. The parameter
will return TRUE if the task buffers are occupied, and FALSE if they are
empty.
When the task executes a movement command, the task loads the movement
information into the task move buffers. The buffers can hold one movement
instruction for any group of axes. PMOVE will be set to TRUE when loading of
the buffers has been completed. When the next servo interrupt occurs, the
motion generator will load the movement into the next move (NTYPE) buffers
of the required axes if they are available. When this second transfer has been
completed, PMOVE will be cleared to zero until another move is executed in
the task.
Each task has its own PMOVE parameter. Use the PROC modifier to access
the parameter for a certain task. Without PROC the current task will be
assumed.

Note This parameter is read-only.

See also: NTYPE, PROC

6-3-141 PP_STEP
Type: Axis Parameter

Description: The PP_STEP parameter contains an integer value that scales the incoming
raw encoder count. The incoming raw encoder count will be multiplied by
PP_STEP before being applied. Scaling can be used to match encoders to
high-resolution motors for position verification or for moving along circular
arcs on machines where the number of encoder edges/distance is not the
same on the axes.
The valid range is [-1023, -1] and [1, 1023]. Default is value 1.

170

Command, function and parameter description Section 6-3

Precautions: Changing the PP_STEP value will influence the position control loop. Modify
the control gains accordingly.

See also: AXIS, MOVECIRC, UNITS

Example: A motor has 20,000 steps/rev. The MC Unit will thus internally process 40,000
counts/rev. A 2,500-pulse encoder is to be connected. This will generate
10,000 edge counts/rev. A multiplication factor of 4 is therefore required to
convert the 10,000 counts/rev to match the 40,000 counts/rev of the motor.
The following line would be used for axis 0.
PP_STEP AXIS(0) = 4

6-3-142 PRINT
Type: I/O Command

Syntax: PRINT [#n,] expression { , expression}
? [#n,] expression { , expression }

Description: The PRINT command outputs a series of characters to the serial ports.
PRINT can output parameters, fixed ASCII strings, and single ASCII charac-
ters. By using PRINT#n, any port can be selected to output the information to.
Multiple items to be printed can be put on the same line separated by a
comma “,” or a semi-colon “;”. A comma separator in the print command
places a tab between the printed items. The semi-colon separator prints the
next item without any spaces between printed items.
The width of the field in which a number is printed can be set with the use of
[w,x] after the number to be printed. The width of the column is given by w and
the number of decimal places is given by x. Using only one parameter [x]
takes the default width and specifies the number of decimal places to be
printed. The numbers are right aligned in the field with any unused leading
characters being filled with spaces. If the number is too long, then the field will
be filled with asterisks to signify that there was not sufficient space to display
the number. The maximum field width allowable is 127 characters.
CHR(x)
The CHR(x) command is used to send individual ASCII characters using their
ASCII codes. The semi-colon on the end of the print line suppresses the car-
riage return normally sent at the end of a print line. ASCII(13) generates CR
without a linefeed so the line above would be printed on top of itself if it were
the only print statement in a program. PRINT CHR(x); is equivalent to PUT(x)
in some forms of BASIC.
HEX(x)
The HEX command is used to print the hexadecimal value of the output. Neg-
ative values will result in the 2’s complement hexadecimal value (24-bit). The
valid range is [-8388608, 16777215].
\ (back slash)
The back slash (\) command can be used to print a single ASCII character.
For example,
>> PRINT “\a”,”\\”,”\%”
a \ %

Arguments: n
The specified output device. When this argument is omitted, the port as spec-
ified by OUTDEVICE will be used.

0 RS-232C programming port 0

1 RS-232C serial port 1

2 RS-422A/485 serial port 2

171

Command, function and parameter description Section 6-3

expression
The expression to be printed.

See also: OUTDEVICE, hexadecimal input ($)

Examples: Example 1
PRINT "CAPITALS and lower case CAN BE PRINTED"
Example 2
Consider VR(1) = 6 and variab = 1.5, the print output will be as follows:
PRINT 123.45,VR(1)-variab
123.4500 4.5000
Example 3
In this example, the semi-colon separator is used. This does not tab into the
next column, allowing the programmer more freedom in where the print items
are placed.
length:

PRINT "DISTANCE = ";mpos
DISTANCE = 123.0000

Example 4
PRINT VR(1)[4,1];variab[6,2]
6.0 1.50
Example 5
params:

PRINT "DISTANCE = ";mpos[0];" SPEED = ";v[2];
DISTANCE = 123 SPEED = 12.34

Example 6
PRINT "ITEM ";total" OF ";limit;CHR(13);
Example 7
>> PRINT HEX(15),HEX(-2)
F FFFFA

6-3-143 PROC
Type: Task Command

Syntax: PROC(task_number)

Description: The PROC modifier allows a process parameter from a particular process to
be read or written. If omitted, the current task will be assumed.

Argument: task_number
The number of the task to access.

Example: WAIT UNTIL PMOVE PROC(3)=0

6-3-144 PROC_LINE
Type: Task Parameter

Description: The PROC_LINE parameter returns the current line number of the specified
program task. The parameter is used with the PROC modifier.

Note This parameter is read-only.

See also: PROC_STATUS, PROCNUMBER, PROC

5 Motion Perfect port 0 user channel 5

6 Motion Perfect port 0 user channel 6

7 Motion Perfect port 0 user channel 7

172

Command, function and parameter description Section 6-3

6-3-145 PROC_STATUS
Type: Task Parameter

Description: The PROC_STATUS parameter returns the status of the process or task
specified. The parameter is used with the PROC modifier and can return the
following values.

See also: PROC_LINE, PROCNUMBER, PROC

Example: WAIT UNTIL PROC_STATUS PROC(3)=0

6-3-146 PROCESS
Type: Program Command

Syntax: PROCESS

Description: The PROCESS command returns the status list of all running tasks with their
task number.

See also: HALT, RUN, STOP

6-3-147 PROCNUMBER
Type: Task Parameter

Description: The PROCNUMBER parameter contains the number of the task in which the
currently selected program is running. PROCNUMBER is often required when
multiple copies of a program are running on different tasks.

Note This parameter is read-only.

See also: PROC_LINE, PROC_STATUS, PROC

Example: MOVE(length) AXIS(PROCNUMBER)

6-3-148 PSWITCH
Type: I/O Command

Syntax: PSWITCH(switch, enable [, axis, output_number, output_state, set_position,
reset_position])

Description: The PSWITCH command turns ON an output when a predefined position is
reached, and turns OFF the output when a second position is reached. The
positions are specified as the measured absolute positions.
There are 16 position switches each of which can be assigned to any axis.
Each switch is assigned its own ON and OFF positions and output number.
The command can be used with 2 or all 7 arguments. With only 2 arguments a
given switch can be disabled.
PSWITCHs are calculated on each servo cycle and the output result applied
to the hardware. The response time is therefore 1 servo cycle period approxi-
mately.

Precautions: An output may remain ON if it was ON when the PSWITCH was turned OFF.
The OP command can be used to turn OFF an output as follows:
PSWITCH(2,OFF)
OP(14,OFF) ’Turn OFF pswitch controlling OP 14

0 Process stopped

1 Process running

2 Process stepping

3 Process paused

173

Command, function and parameter description Section 6-3

Arguments: switch
The switch number. Range: [0,15].
enable
The switch enable. Range: [ON, OFF].
axis
The number of the axis providing the position input.
output_number
The physical output to set. Range: [8,31].
output_state
The state to output. Range: [ON, OFF].
set_position
The absolute position in user units at which output is set.
reset_position
The absolute position in user units at which output is reset.

See also: OP, UNITS

Example: A rotating shaft has a cam operated switch which has to be changed for differ-
ent size work pieces. There is also a proximity switch on the shaft to indicate
the TDC of the machine. With a mechanical cam, the change from job to job is
time consuming. This can be eased by using PSWITCH as a software cam
switch. The proximity switch is wired to input 7 and the output is output 11.
The shaft is controlled by axis 0. The motor has a 900ppr encoder. The output
must be on from 80 units.
PSWITCH uses the unit conversion factor to allow the positions to be set in
convenient units. First the unit conversion factor must be calculated and set.
Each pulse on an encoder gives four edges for the MC Unit to count. There
are thus 3,600 edges/rev or 10 edges/degree. If we set the unit conversion
factor to 10, we can work in degrees.
Next we have to determine a value for all the PSWITCH arguments.

This can all be put together in the following lines of BASIC code:
switch:

UNITS AXIS(0) = 10 ’Set unit conversion factor
REPDIST = 360
REP_OPTION = ON
PSWITCH(0,ON,0,11,ON,80,200)

This program uses the repeat distance set to 360 degrees and the repeat
option ON so that the axis position will be maintained between 0 and 360
degrees.

6-3-149 RAPIDSTOP
Type: Motion Control Command

Syntax: RAPIDSTOP

Alternative: RS

sw The switch number can be any switch that is not in use. In
this example, we will use number 0.

en The switch must be enabled to work; set the enable to 1.

axis The shaft is controlled by axis 0.

opno The output being controlled is output 11.

opst The output must be on so set to 1.

setpos The output is to produced at 80 units.

rspos The output is to be on for a period of 120 units.

174

Command, function and parameter description Section 6-3

Description: The RAPIDSTOP command cancels the current move on all axes from the
current move buffer (MTYPE). Moves for speed profiled move commands
(MOVE, MOVEABS, MOVEMODIFY, FORWARD, REVERSE and
MOVECIRC) will decelerate to a stop with the deceleration rate as set by the
DECEL parameter. Moves for other commands will be immediately stopped.

Precautions: • RAPIDSTOP cancels only the presently executing moves. If further
moves are buffered in the next move buffers (NTYPE) or the task buffers
they will then be loaded.

• During the deceleration of the current moves additional RAPIDSTOPs will
be ignored.

See also: CANCEL, MTYPE, NTYPE

6-3-150 READ_BIT
Type: System Command

Syntax: READ_BIT(bit_number, vr_number)

Description: The READ_BIT command returns the value of the specified bit in the speci-
fied VR variable, either 0 or 1.

Arguments: bit_number
The number of the bit to be read. Range: [0,23].
vr_number
The number of the VR variable for which the bit is read. Range: [0,250].

See also: CLEAR_BIT, SET_BIT, VR

6-3-151 REG_POS
Type: Axis Parameter

Alternative: RPOS

Description: The REG_POS parameter stores the position in user units at which the (pri-
mary) registration event occurred.

Note This parameter is read-only.

See also: AXIS, MARK, REGIST, UNITS

6-3-152 REG_POSB
Type: Axis Parameter

Description: The REG_POSB parameter stores the position in user units at which the sec-
ondary registration event occurred.

Note This parameter is read-only.

See also: AXIS, MARKB, REGIST, UNITS

6-3-153 REGIST
Type: Axis Command

Syntax: REGIST(mode)

Description: The REGIST command performs the print registration operation. The com-
mand captures an axis position when a registration input or the Z-marker on
the encoder is detected. The capture is carried out by hardware, so software
delays do not affect the accuracy of the position captured.
The operation of the print registration is axis specific. REGIST works on the
default basis axis (set with BASE) unless AXIS is used to specify a temporary
base axis.

175

Command, function and parameter description Section 6-3

Axis 0
For axis 0 the print registration mechanism of the Servo Driver is used. The
registration is either triggered by the Servomotor encoder Z-marker or the dig-
ital input on the Servo Driver (CN1-46). The Servo Driver parameter Pn511.3
will set the input to register on falling or rising edge. For details please refer to
3-3-2 Digital I/O.
When the registration event has occured, MARK axis parameter will be set to
TRUE and the position will be stored in the REG_POS axis parameter.

Axis 1
For axis 1 the print registration mechanism of the MC Unit provides two regis-
ters, which allows two simultaneous events to be captured. The registration
event can either be input I0 / R0, input I1 / R1 or the encoder input Z-marker
phase.
When a primary registration event has occured, MARK axis parameter will be
set to TRUE and the position will be stored in the REG_POS axis parameter.
For the secondary registration event, the MARKB axis parameter will be set
and the position will be stored in the REG_POSB axis parameter.
Inclusive windowing
Inclusive windowing allows the print registration event only to occur within the
specified window. When inclusive windowing is applied, signals will be
ignored if the axis measured position is not greater than the OPEN_WIN
parameter and less than the CLOSE_WIN parameter. Add 256 to the mode
argument value to apply inclusive windowing.
Exclusive windowing
Exclusive windowing allows the print registration event only to occur outside
the specified window. When exclusive windowing is applied, signals will be
ignored if the axis measured position is not less than the OPEN_WIN param-
eter or greater than the CLOSE_WIN parameter. Add 768 to the mode argu-
ment value to apply exclusive windowing.

Precautions: REGIST must be executed once for each position capture.

Arguments: mode
Specifies the type of capture to make depending on the axis

axis mode Description

0 1 Captures absolute position on Z-marker to REG_POS.

2 Captures absolute position on input CN1-46 to REG_POS.

176

Command, function and parameter description Section 6-3

See also: AXIS, CLOSE_WIN, MARK, MARKB, OPEN_WIN, REG_POS, REG_POSB

Examples: Example 1
BASE(0)

catch:
REGIST(2)
WAIT UNTIL MARK
PRINT "Registration input at:";REG_POS

Example 2
A paper cutting machine uses a CAM profile to quickly draw paper through
servo-driven rollers and then stop it while it is cut. The paper is printed with a
registration mark. This mark is detected and the length of the next sheet is
adjusted by scaling the CAM profile with the third argument (table_multiplier)
of the CAM command:

‘Set window open and close
length = 200
OPEN_WIN = 10
CLOSE_WIN = length-10

GOSUB Initial

loop:
TICKS = 0 ’Set servo cycle counter to 0
IF MARK THEN

offset = REG_POS
 ’Next line makes offset -ve if at end of sheet

IF ABS(offset-length) < offset THEN
offset=offset - length

ENDIF
PRINT "Mark seen at:"offset[5.1]

ELSE
offset = 0
PRINT "Mark not seen"

ENDIF

1 1 Captures absolute position on rising edge of Z-marker to REG_POS.

2 Captures absolute position on falling edge of Z-marker to REG_POS.

3 Captures absolute position on rising edge of input R0 to REG_POS.

4 Captures absolute position on falling edge of input R0 to REG_POS.

5 -

6 Captures absolute position on rising edge of input R0 to REG_POS
and on rising edge of Z-marker to REG_POSB.

7 Captures absolute position on rising edge of input R0 to REG_POS
and on falling edge of Z-marker to REG_POSB.

8 Captures absolute position on falling edge of input R0 to REG_POS
and on rising edge of Z-marker to REG_POSB.

9 Captures absolute position on falling edge of input R0 to REG_POS
and on falling edge of Z-marker to REG_POSB.

10 Captures absolute position on rising edge of input R0 to REG_POS
and on rising edge of input R1 to REG_POSB.

11 Captures absolute position on rising edge of input R0 to REG_POS
and on falling edge of input R1 to REG_POSB.

12 Captures absolute position on falling edge of input R0 to REG_POS
and on rising edge of input R1 to REG_POSB.

13 Captures absolute position on falling edge of input R0 to REG_POS
and on falling edge of input R1 to REG_POSB.

axis mode Description

177

Command, function and parameter description Section 6-3

‘Reset registration prior to each move
DEFPOS(0)
REGIST(2+768)

’Allow mark at first 10 mm or last 10 mm of sheet
CAM(0,50,(length+offset*0.5)*cf,1000)
WAIT UNTIL TICKS > 500
GOTO loop

The variable cf is a constant which would be calculated depending on the
machine draw length per encoder edge.

6-3-154 REMAIN
Type: Axis Parameter

Description: The REMAIN parameter contains the distance remaining to the end of the
current move. It can be checked to see how much of the move has been com-
pleted. REMAIN is defined in user units.

Note This parameter is read-only.

See also: AXIS, UNITS

Example: To change the speed to a slower value 5mm from the end of a move.
start:

SPEED = 10
MOVE(45)
WAIT UNTIL REMAIN < 5
SPEED = 1
WAIT IDLE

6-3-155 RENAME
Type: Program Command

Syntax: RENAME “old_program_name” “new_program_name”

Description: The RENAME command changes the name of a program in the MC Unit
directory. The program names can also be specified without quotes.

Precautions: This command is implemented for an offline (VT100) terminal. Within Motion
Perfect users can select the command from the Program menu.

Arguments: old_program_name
The current name of the program.
new_program_name
The new name of the program.

See also: COPY, DEL, NEW

Example: RENAME "car" "voiture"

6-3-156 REP_DIST
Type: Axis Parameter

Description: The REP_DIST parameter contains the repeat distance, which is the allow-
able range of movement for an axis before the demand position (DPOS) and
measured position (MPOS) are corrected. REP_DIST is defined in user units.
The exact range is controlled by REP_OPTION. The REP_DIST can have
any non-zero positive value.
When the measured position has reached its limit, the MC unit will adjust the
absolute positions without affecting the move in progress or the servo algo-

178

Command, function and parameter description Section 6-3

rithm. Not that the demand position can be outside the range because the
measured position is used to trigger the adjustment.
For every occurrence (DEFPOS, OFFPOS, MOVEABS, MOVEMODIFY)
which defines a position outside the range, the end position will be redefined
within the range.
The default value for axis 0, 1 and 2 are respectively 2147483648, 5000000
and 5000000.

See also: AXIS, DPOS, MPOS, REP_OPTION, UNITS

6-3-157 REP_OPTION
Type: Axis Parameter

Description: The REP_OPTION parameter controls the application of the REP_DIST axis
parameter and the repeat option of the CAMBOX and MOVELINK motion
control commands. The default value is 0.

See also: AXIS, CAMBOX, MOVELINK, REP_DIST

6-3-158 REPEAT UNTIL
Type: Structural Command

Syntax: REPEAT

<commands>
UNTIL condition

Description: The REPEAT ... UNTIL structure allows the program segment between the
REPEAT and the UNTIL statement to be repeated a number of times until the
condition becomes TRUE.

Precautions: REPEAT ... UNTIL construct can be nested indefinitely.

Arguments: commands
Any valid set of BASIC commands
condition
Any valid BASIC logical expression

See also: FOR, WHILE

Example: A conveyor is to index 100mm at a speed of 1000mm/s, wait for 0.5s and then
repeat the cycle until an external counter signals to stop by turning ON
input 4.
cycle:

SPEED = 1000
REPEAT

MOVE(100)

Bit Description

0 The repeated distance range is controlled by bit 0 of the
REP_OPTION parameter.

• If REP_OPTION bit 0 is OFF, the range of the demanded and
measured positions will be between -REP_DIST and
REP_DIST.

• If REP_OPTION bit 0 is ON, the range of the demanded and
measured positions will be between 0 and REP_DIST.

1 The automatic repeat option of the CAMBOX and MOVELINK com-
mands are controlled by bit 1 of the REP_OPTION parameter. The
bit is set ON to request the system software to end the automatic
repeat option. When the system software has set the option OFF it
automatically clears bit 1 of REP_OPTION.

179

Command, function and parameter description Section 6-3

WAIT IDLE
WA(500)

UNTIL IN(4) = ON

6-3-159 RESET
Type: System Command

Syntax: RESET

Description: The RESET command sets the value of all local variables of the current
BASIC task to zero.

See also: CLEAR

6-3-160 REV_IN
Type: Axis Parameter

Description: The REV_IN parameter contains the input number to be used as a reverse
limit input. The number can be set from 0 to 7 and 19. Range 0 to 7 is used to
select one of the MC Unit inputs. Defining value 19 will select the Servo
Driver’s NOT (Reverse drive prohibited, CN1 pin 43) input. As default the
parameter is set to –1, no input is selected.
If an input number is set and the limit is reached, any reverse motion on that
axis will be stopped. Bit 5 of the AXISSTATUS axis parameter will also be set.

Note This input is active low.

See also: AXIS, AXISSTATUS, FWD_IN

6-3-161 REV_JOG
Type: Axis Parameter

Description: The REV_JOG parameter contains the input number to be used as a jog
reverse input. The input can be from 0 to 7. As default the parameter is set to
–1, no input is selected.

Note This input is active low.

See also: AXIS, FAST_JOG, FWD_JOG, JOGSPEED

6-3-162 REVERSE
Type: Motion Control Command

Syntax: REVERSE

Alternative: RE

Description: The REVERSE command moves an axis continuously in reverse at the speed
set in the SPEED parameter. The acceleration rate is defined by the ACCEL
axis parameter.
REVERSE works on the default basis axis (set with BASE) unless AXIS is
used to specify a temporary base axis.

Precautions: The reverse motion can be stopped by executing the CANCEL or RAPID-
STOP command, or by reaching the reverse limit, inhibit, or origin return limit.

See also: AXIS, CANCEL, FORWARD, RAPIDSTOP

Example: back:
REVERSE
WAIT UNTIL IN(0) = ON ’Wait for stop signal
CANCEL

180

Command, function and parameter description Section 6-3

6-3-163 RS_LIMIT
Type: Axis Parameter

Alternative: RSLIMIT

Description: The RS_LIMIT parameter contains the absolute position of the reverse soft-
ware limit in user units.
A software limit for reverse movement can be set from the program to control
the working range of the machine. When the limit is reached, the MC Unit will
decelerate to zero, and then cancel the move. Bit 10 of the AXISSTATUS axis
parameter will be turned ON while the axis position is smaller than / below
RS_LIMIT.

See also: AXIS, FS_LIMIT, UNITS

6-3-164 RUN
Type: Program Command

Syntax: RUN [“program_name” [, task_number]]

Description: The RUN command executes the program in the MC Unit as specified with
program_name. RUN with the program name specification will run the current
selected program. The program name can also be specified without quotes.
The task number specifies the task number on which the program will be run.
If the task number is omitted, the program will run on the highest available
task. RUN can be included in a program to run another program.

Precautions: Execution continues until one of the following occurs:
• There are no more lines to execute.
• HALT is typed at the command line to stop all programs.
• STOP is typed at the command line to stop a single program.
• A run-time error is encountered.

Arguments: program_name
Any valid program name.
task_number
Any valid task number. Range: [1,3].

See also: HALT, STOP

Examples: Example 1
The following example executes the currently selected program.
>> SELECT "PROGRAM"
PROGRAM selected
>> RUN
Example 2
The following example executes the program named “sausage”.
RUN "sausage"
Example 3
The following example executes the program named “sausage” on task 3.
RUN "sausage",3

6-3-165 RUN_ERROR
Type: Task Parameter

Description: The RUN_ERROR parameter contains the number of the last BASIC run-time
error that occurred on the specified task.

181

Command, function and parameter description Section 6-3

Each task has its own RUN_ERROR parameter. Use the PROC modifier to
access the parameter for a certain task. Without PROC the current task will
be assumed.

Note This parameter is read-only.

See also: BASICERROR, ERROR_LINE, PROC

Example: >> PRINT RUN_ERROR PROC(5)
9.0000

6-3-166 RUNTYPE
Type: Program Command

Syntax: RUNTYPE “program_name”, auto_run [, task_number]

Description: The RUNTYPE command determines whether the program, specified by
program_name, is run automatically at start-up or not and which task it is to
run on. The task number is optional, if omitted the program will run at the high-
est available task.
The current RUNTYPE status of each programs is displayed when a DIR
command is executed. If one program has compilation errors no programs will
be started at power up. To set the RUNTYPE using Motion Perfect, select
"Set Power-up mode" from the Program Menu.

Note The execution of the EPROM command is required to store the new
RUNTYPE settings into Flash memory. Otherwise the new settings will be lost
when the power is switched off.

Arguments: program_name
The name of the program whose RUNTYPE is being set.

autorun

task_number
The number of the step on which to execute the program. Range: [1, 3].

See also: AUTORUN, EPROM, EX

Example: >> RUNTYPE progname,1,3
The above line sets the program "progname" to run automatically at start-up
on task 3.
>> RUNTYPE progname,0
The above line sets the program "progname" to manual running.

6-3-167 S_RATE
Type: Axis Parameter

Description: The S_RATE parameter contains the speed reference rate for the attached
Servomotor. This parameter is defined as the speed value in rounds per
minute which the Servomotor will move per reference unit.

This parameter will apply to the following parameters: S_REF, S_REF_OUT,
OUTLIMIT, AIN2 (Servo Driver rotation speed data).

Note This parameter is read-only.

0 Running manually on command.

1 Automatically execute on power up. All non-zero values are consid-
ered as 1.

Rotational Speed [RPM] Speed Reference[1] S_RATE⋅=

182

Command, function and parameter description Section 6-3

See also: AIN2, AXIS, S_REF, S_REF_OUT, OUTLIMIT

Example: The following the statement will print the current speed reference in RPM
which is applied to the Servo Driver.
>> PRINT S_REF_OUT*S_RATE

6-3-168 S_REF
Type: Axis Parameter

Alternative: DAC

Description: The S_REF parameter contains the speed reference value which is applied
directly to the Servo Driver when the axis is in open loop (SERVO=OFF). The
range of the S_REF parameter is defined by [-15000, 14999], but can be lim-
ited by using the OUTLIMIT parameter.
The actual speed reference is depending on the Servomotor. To determine
the speed reference in rounds per minute (RPM), multiply the S_REF param-
eter value with the S_RATE parameter value.
The value currently being applied to the drive can be read using the
S_REF_OUT axis parameter.

See also: AXIS, S_RATE, S_REF_OUT, OUTLIMIT, SERVO

Example: The following lines can be used to force a square wave of positive and nega-
tive movement with a period of approximately 500ms on axis 0.

WDOG = ON
SERVO = OFF

square:
S_REF AXIS(0) = 2000
WA(250)
S_REF AXIS(0) = -2000
WA(250)
GOTO square

6-3-169 S_REF_OUT
Type: Axis Parameter

Alternative: DAC_OUT

Description: The S_REF_OUT parameter contains the speed reference value being
applied to the Servo Driver for both open and closed loop.
In closed loop (SERVO=ON), the motion control algorithm will output a speed
reference signal determined by the control gain settings and the following
error. The position of the Servomotor is determined using the motion control
commands. In open loop (SERVO=OFF), the speed reference signal is deter-
mined by the S_REF axis parameter.
The actual speed reference is depending on the Servomotor. To determine
the speed reference in rounds per minute (RPM), multiply the S_REF param-
eter value with the S_RATE parameter value.

Note This parameter is read-only.

See also: AXIS, OUTLIMIT, S_REF, S_REF_OUT, SERVO

Example: >> PRINT S_REF_OUT AXIS(0)
288.0000

6-3-170 SCOPE
Type: Motion Perfect Command

Syntax: SCOPE(control, period, table_start, table_stop, P0 [, P1 [, P2 [, P3]]])

183

Command, function and parameter description Section 6-3

Description: The SCOPE command programs the system to automatically store up to 4
parameters every sample period. The storing of data will start as soon as the
TRIGGER command has been executed.
The sample period can be any multiple of the servo period. The parameters
are stored in the Table array and can then be read back to a computer and
displayed on the Motion Perfect Oscilloscope or written to a file for further
analysis using the "Create Table file" option on the File Menu.
The current Table position for the first parameter which is written by SCOPE
can be read from the SCOPE_POS parameter.

Note 1. Motion Perfect uses the SCOPE command when running the Oscilloscope
function.

2. To minimize calculation time for writing the real-time data, the SCOPE
command is writing raw data to the Table array. For example
a) The parameters are written in encoder edges (per second) and there-

fore not compensated for the UNITS conversion factor.
b) The MSPEED parameter is written as the change in encoder edges

per servo period.
3. Applications like the CAM command, CAMBOX command and the SCOPE

command all use the same Table as the data area.

Arguments: control
Set ON or OFF to control SCOPE execution. If turned ON the SCOPE is
ready to run as soon as the TRIGGER command is executed.
period
The number of servo periods between data samples.
table_start
The address of the first element in the Table array to start storing data.
table_stop
The address of the last element in the Table array to be used.
P0
First parameter to store.
P1
Optional second parameter to store.
P2
Optional third parameter to store.
P3
Optional fourth parameter to store.

See also: SCOPE_POS, TABLE, TRIGGER

Examples: Example 1
SCOPE(ON,10,0,1000,MPOS AXIS(1),DPOS AXIS(1))
This example programs the SCOPE function to store the MPOS parameter for
axis 1 and the DPOS parameter for axis 1 every 10 servo cycles. The MPOS
parameter will be stored in table locations 0 to 499; the DPOS parameters, in
table locations 500 to 999. The SCOPE function will wrap and start storing at
the beginning again unless stopped. Sampling will not start until the TRIG-
GER command is executed.
Example 2
SCOPE(OFF)
This above line turns the scope function off.

6-3-171 SCOPE_POS
Type: Motion Perfect Parameter

184

Command, function and parameter description Section 6-3

Description: The SCOPE_POS parameter contains the current Table position at which the
SCOPE command is currently storing its first parameter.

Note This parameter is read-only.

See also: SCOPE

6-3-172 SELECT
Type: Program Command

Syntax: SELECT “program_name“

Description: The SELECT command specifies the current program for editing, running, list-
ing, etc. SELECT makes a new program if the name entered does not exist.
The program name can also be specified without quotes.
When a program is selected, the commands COMPILE, DEL, EDIT, LIST,
NEW, RUN, STEPLINE, STOP and TROFF will apply to the currently selected
program unless a program is specified in the command line. When another
program is selected, the previously selected program will be compiled. The
selected program cannot be changed when a program is running.

Precautions: This command is implemented for an offline (VT100) terminal. Motion Perfect
automatically selects programs when you click on their entry in the list in the
control panel.

See also: COMPILE, DEL, EDIT, LIST, NEW, RUN, STEPLINE, STOP, TROFF

Example: >> SELECT "PROGRAM"
PROGRAM selected
>> RUN

6-3-173 SERVO
Type: Axis Parameter

Description: The SERVO parameter determines whether the base axis runs under servo
control (SERVO=ON) or open loop (SERVO=OFF). In closed loop, the motion
control algorithm will output a speed reference signal determined by the con-
trol gain settings and the following error. The position of the Servomotor is
determined using the motion control commands.
In open loop, the speed reference signal is completely determined by the
S_REF axis parameter.

See also: AXIS, FE_LIMIT, S_REF, S_REF_OUT, WDOG

Example: SERVO AXIS(0) = ON ’Axis 0 is under servo control
SERVO AXIS(1) = OFF ’Axis 1 is run open loop

6-3-174 SERVO_PERIOD
Type: System Parameter

Description: The SERVO_PERIOD parameter sets the servo cycle period of the MC Unit.
The timing of the execution of the program tasks and the refreshing of the
control data and I/O of the Unit are all depending on this setting. The parame-
ter is defined in microseconds. The MC Unit can be set in either 0.5 ms or
1.0 ms servo cycle.

!Caution When the parameter has been set, a power down or software reset (using
DRV_RESET) must be performed for the complete system. Not doing so may
result in undefined behaviour.

Value Description

500 0.5 ms

1000 1.0 ms

185

Command, function and parameter description Section 6-3

See also: DRV_RESET

6-3-175 SET_BIT
Type: System Command

Syntax: SET_BIT(bit_number, vr_number)

Description: The SET_BIT command sets the specified bit in the specified VR variable to
one. Other bits in the variable will keep their values.

Arguments: bit_number
The number of the bit to be set. Range: [0,23].
vr_number
The number of the VR variable for which the bit is set. Range: [0,250].

See also: CLEAR_BIT, READ_BIT, VR

6-3-176 SETCOM
Type: I/O Command

Syntax: SETCOM(baud_rate, data_bits, stop_bits, parity, port_number, mode)

Description: The SETCOM command sets the serial communications for the serial ports.
The command will enable the Host Link protocols or define the general-pur-
pose communication.
The serial ports have 9,600 baud, 7 data bits, 2 stop bits, even parity and
XON/XOFF enabled for general-purpose communication by default. These
default settings are recovered at start-up.

Arguments: baud_rate

data_bits

stop_bits

parity

port_number

mode
Select one of the following modes for serial ports 1 and 2:

6-3-177 SGN
Type: Mathematical Function

Syntax: SGN(expression)

Description: The SGN function returns the sign of a number. It returns value 1 for positive
values (including zero) and value -1 for negative values.

1200, 2400,4800, 9600,19200, 38400

7, 8

1, 2

0 None

1 Odd

2 Even

0 RS-232C programming port 0

1 RS-232C serial port 1

2 RS-422A/485 serial port 2

0 General-purpose communication (no XON/XOFF mechanism)

5 Host Link Slave protocol

6 Host Link Master protocol

186

Command, function and parameter description Section 6-3

Arguments: expression
Any valid BASIC expression.

Example: >> PRINT SGN(-1.2)
-1.0000

6-3-178 SIN
Type: Mathematical Function

Syntax: SIN(expression)

Description: The SIN function returns the sine of the expression. Input values are in radi-
ans and may have any value. The result value will be in the range from -1 to 1.

Arguments: expression
Any valid BASIC expression.

Example: >> PRINT SIN(PI/2)
1.0000

6-3-179 SPEED
Type: Axis Parameter

Description: The SPEED parameter contains the demand speed in units/s. It can have any
positive value (including zero). The demand speed is the maximum speed for
the speed profiled motion commands.

See also: ACCEL, AXIS, DATUM, DECEL, FORWARD, MOVE, MOVEABS,
MOVECIRC, MOVEMODIFY, REVERSE, UNITS

Example: SPEED = 1000
PRINT "Set speed = ";SPEED

6-3-180 SQR
Type: Mathematical Function

Syntax: SQR(expression)

Description: The SQR function returns the square root of the expression. The expression
must have positive (including zero) value.

Arguments: expression
Any valid BASIC expression.

Example: >> PRINT SQR(4)
2.0000

6-3-181 SRAMP
Type: Axis Parameter

Description: The SRAMP parameter contains the S-curve factor. The S-curve factor con-
trols the amount of rounding applied to the trapezoidal profiles. A value of 0
sets no rounding. A value of 10 sets maximum rounding. The default value of
the parameter is 0.
SRAMP is applied to the FORWARD, MOVE, MOVEABS, MOVECIRC and
REVERSE commands. Note that using S-curves increases the time required
for the movement to complete.

Precautions: The S-curve factor must not be changed while a move is in progress.

See also: AXIS

6-3-182 STEPLINE
Type: Program Command

187

Command, function and parameter description Section 6-3

Syntax: STEPLINE [“program_name” [, task_number]]

Description: The STEPLINE command executes one line (i.e., “steps”) in the program
specified by program_name. The program name can also be specified without
quotes. If STEPLINE is executed without program name on the command line
the current selected program will be stepped. If STEPLINE is executed with-
out program name in a program this program will be stepped.
If the program is specified then all occurrences of this program will be
stepped. A new task will be started when there is no copy of the program run-
ning. If the task is specified as well then only the copy of the program running
on the specified task will be stepped. If there is no copy of the program run-
ning on the specified task then one will be started on it.

Arguments: program_name
The name of the program to be stepped.
task_number
The number of the task with the program to be stepped. Range: [1,3].

See also: RUN, SELECT, STOP, TROFF, TRON

Examples: Example 1
>> STEPLINE "conveyor"
Example 2
>> STEPLINE "maths",2

6-3-183 STOP
Type: Program Command

Syntax: STOP [“program_name” [, task_number]

Description: The STOP command will halt execution of the program specified with
program_name. If the program name is omitted, then the currently selected
program will be halted. The program name can also be specified without
quotes.
In case of multiple executions of a single program on different tasks the
task_number can be used to specify the specific task to be stopped.

Arguments: program_name
The name of the program to be stopped.
task_number
The number of the task with the program to be stepped. Range: [1,3].

See also: HALT, RUN, SELECT

Examples: Example 1
>> STOP progname
Example 2
The lines from label on will not be executed in this example.

STOP
label:

PRINT var
RETURN

6-3-184 SWITCH_STATUS
Type: System Parameter

Description: The SWITCH_STATUS parameter contains the status of the 10 external DIP-
switches on the MC Unit. For the MCW151-DRT-E these are also used for the
DeviceNet settings.

188

Command, function and parameter description Section 6-3

If the status of the switches are changed during operation, the parameter sta-
tus will be automatically updated.

Note This parameter is read-only.

6-3-185 T_RATE
Type: Axis Parameter

Description: The T_RATE parameter contains the torque reference rate for the attached
Servomotor. This parameter is defined as the torque value in percentage of
the rated torque which is applied to the Servomotor per reference unit
(T_RATE parameter).

This parameter will apply to the following parameters: T_REF, AIN1 (Servo
Driver torque command data), AIN3 (Servo Driver torque monitor data).

Note This parameter is read-only.

See also: AIN1, AIN3, AXIS, T_REF

Example: The following the statement will print the torque monitor value from the Servo
Driver in percentage of the rated torque which is applied to the Servomotor.
>> PRINT AIN3*T_RATE

6-3-186 T_REF
Type: Axis Parameter

Alternative: DAC

Description: The T_REF parameter contains the torque reference value which will be
applied to the Servomotor. The range of the T_REF parameter is defined by [-
15000, 15000].
The actual torque reference is depending on the Servomotor. To determine
the torque reference in percentage of the rated torque, multiply the T_REF
parameter value with the T_RATE parameter value.

See also: AXIS, T_REF

Example: T_REF AXIS(0)=1000

6-3-187 TABLE
Type: System Command

Syntax: TABLE(address, value {, value})
TABLE(address)

Description: The TABLE command loads data to and reads data from the Table array. The
Table has a maximum length of 8.000 elements. The table values are floating-
point numbers with fractions. The table can also be used to hold information,
as an alternative to variables. The TABLE command has two forms.

• TABLE(address, value{, value}) writes a sequence of values to the Table
array. The location of the element is specified by address. The sequence
can have a maximum length of 20 elements.

• TABLE(address) returns the table value at that entry.
A value in the table can be read only if a value of that number or higher has
been previously written to the table. For example, printing TABLE(1001) will
produce an error message if the highest table location previously written to
the table is location 1000. The total Table size is indicated by the TSIZE

Applied Torque [% of rated torque] T_REF[1] T_RATE⋅=

189

Command, function and parameter description Section 6-3

parameter. Note that this value is one more than the highest defined element
address.
The table can be deleted with by using DEL “TABLE” or NEW “TABLE” on the
command line.

Precautions: 1. Applications like the CAM command, CAMBOX command and the SCOPE
command in Motion Perfect all use the same Table as the data area. Do
not use the same data area range for different purposes.

2. The Table and VR data can be accessed from all different running tasks.
To avoid problems of two program tasks writing unexpectedly to one global
variable, write the programs in such a way that only one program writes to
the global variable at a time.

3. The Table and VR data in RAM will be lost when the power is switched
OFF. If valid data needs to be recovered during start-up, write the data into
Flash memory using the FLASHVR command.

Arguments: address
The first location in the Table to read or write. Range: [0,7999]
value
The value to write at the given location and at subsequent locations.

See also: CAM, CAMBOX, DEL, FLASHVR, NEW, SCOPE, TSIZE, VR

Examples: Example 1
TABLE(100,0,120,250,370,470,530,550)
The above line loads the following internal table:
Table Entry Value
100 0
101 120
102 250
103 370
104 470
105 530
106 550
Example 2
The following line will print the value at location 1000.
>> PRINT TABLE(1000)

6-3-188 TAN
Type: Mathematical Function

Syntax: TAN(expression)

Description: The TAN function returns the tangent of the expression. The expression is
assumed to be in radians.

Arguments: expression
Any valid BASIC expression.

Example: >> print TAN(PI/4)
1.0000

6-3-189 TICKS
Type: Task Parameter

Description: The TICKS parameter contains the current count of the task clock pulses.
TICKS is a 32-bit counter that is decremented on each servo cycle. TICKS
can be written and read. It can be used to measure cycles times, add time
delays, etc.

190

Command, function and parameter description Section 6-3

Each task has its own TICKS parameter. Use the PROC modifier to access
the parameter for a certain task. Without PROC the current task will be
assumed.

Example: delay:
TICKS = 3000
OP(9,ON)

test:
IF TICKS< = 0 THEN

OP(9,OFF)
ELSE

GOTO test
ENDIF

6-3-190 TRIGGER
Type: Motion Perfect Command

Syntax: TRIGGER

Description: The TRIGGER command starts a previously set up SCOPE command.

Note Motion Perfect uses TRIGGER automatically for its oscilloscope function.

See also: SCOPE

6-3-191 TROFF
Type: Program Command

Syntax: TROFF [“program_name”]

Description: The TROFF command suspends a trace at the current line and resumes nor-
mal program execution for the program specified with program_name. The
program name can also be specified without quotes. If the program name is
omitted, the selected program will be assumed.

Arguments: program_name
The name of the program for which to suspend tracing.

See also: SELECT, TRON

Example: >> TROFF "lines"

6-3-192 TRON
Type: Program Command

Syntax: TRON

Description: The TRON command creates a breakpoint in a program that will suspend pro-
gram execution at the line following the TRON command. The program can
then for example be executed one line at a time using the STEPLINE com-
mand.

• Program execution can be resumed without using the STEPLINE com-
mand by executing the TROFF command.

• The trace mode can be stopped by issuing a STOP or HALT command.
• Motion Perfect highlights lines containing TRON in the Edit and Debug

Windows.

See also: TROFF

Example: TRON
MOVE(0,10)
MOVE(10,0)
TRON
MOVE(0,-10)

191

Command, function and parameter description Section 6-3

MOVE(-10,0)

6-3-193 TRUE
Type: Constant

Description: The TRUE constant returns the numerical value -1.

Note A constant is read-only.

Example: test:
t = IN(0) AND IN(2)
IF t = TRUE THEN

PRINT "Inputs are ON"
ENDIF

6-3-194 TSIZE
Type: System Parameter

Description: The TSIZE parameter returns the size of the Table array, which is one more
than the currently highest defined table element.
TSIZE is reset to zero when the Table array is deleted using DEL “TABLE” or
NEW “TABLE” on the command line.

Note This parameter is read-only.

See also: DEL, NEW, TABLE

Example: The following example assumes that no location higher than 1000 has been
written to the Table array.
>> TABLE(1000,3400)
>> PRINT TSIZE
1001.0000

6-3-195 UNITS
Type: Axis Parameter

Description: The UNITS parameter contains the unit conversion factor. The unit conver-
sion factor enables the user to define a more convenient user unit like m, mm
or motor revolutions by specifying the amount of encoder edges to include a
user unit.
Axis parameters like speed, acceleration, deceleration and the motion control
commands are specified in these user units.

Precautions: The UNITS parameter can be any non-zero value, but it is recommended to
design systems with an integer number of encoder pulses per user unit.
Changing UNITS will affect all axis parameters which are dependent on
UNITS in order to keep the same dynamics for the system.

See also: AXIS, PP_STEP

Example: A leadscrew arrangement has a 5mm pitch and a 1,000-pulse/rev encoder.
The units must be set to allow moves to be specified in mm.
The 1,000 pulses/rev will generate 1,000 x 4 = 4,000 edges/rev. One rev is
equal to 5mm. Therefore, there are 4,000/5 = 800 edges/mm. UNITS is thus
set as following.
>> UNITS = 1000*4/5

6-3-196 VERSION
Type: System Parameter

Description: The VERSION parameter returns the current firmware version number of the
current system installed in the MC Unit.

192

Command, function and parameter description Section 6-3

Note This parameter is read-only.

Example: >> PRINT VERSION
1.6100

6-3-197 VFF_GAIN
Type: Axis Parameter

Description: The VFF_GAIN parameter contains the speed feed forward gain. The speed
feed forward output contribution is calculated by multiplying the change in
demand position with the VFF_GAIN parameter value. The default value is
zero.
Adding speed feed forward gain to a system decreases the following error
during a move by increasing the output proportionally with the speed.
See section 1-4-1 Servo System Principles for more details.

Precautions: In order to avoid any instability the servo gains should be changed only when
the SERVO is OFF.

See also: AXIS, D_GAIN, I_GAIN, OV_GAIN, P_GAIN

6-3-198 VP_SPEED
Type: Axis Parameter

Description: The VP_SPEED parameter contains the speed profile speed in user units/s.
The speed profile speed is an internal speed which is accelerated and decel-
erated as the movement is profiled.

Note This parameter is read-only.

See also: AXIS, MSPEED, UNITS

Example: ’Wait until at command speed
MOVE(100)
WAIT UNTIL SPEED = VP_SPEED

6-3-199 VR
Type: System Command

Syntax: VR(address)

Description: The VR command reads or writes the value of a global (VR) variable. These
VR variables hold real numbers and can be easily used as an element or as
an array of elements. The MC Unit has in total 251 VR variables.
The VR variables can be used for several purposes in BASIC programming.
The VR variables are globally shared between tasks and can be used for
communications between tasks.

Precautions: 1. The Table and VR data can be accessed from all different running tasks.
To avoid problems of two program tasks writing unexpectedly to one global
variable, write the programs in such a way that only one program writes to
the global variable at a time.

2. The Table and VR data in RAM will be lost when the power is switched
OFF. If valid data needs to be recovered during start-up, write the data into
Flash memory using the FLASHVR command.

Arguments: address
The address of the VR variable. Range: [0,250].

See also: CLEAR_BIT, READ_BIT, SET_BIT, TABLE

Examples: Example 1

193

Command, function and parameter description Section 6-3

In the following example, the value 1.2555 is placed into VR variable 15. The
local variable val is used to name the global variable locally:
val = 15
VR(val) = 1.2555
Example 2
A transfer gantry has 10 put down positions in a row. Each position may at
any time be full or empty. VR(101) to VR(110) are used to hold an array of ten
1’s and 0’s to signal that the positions are full (1) or empty (0). The gantry puts
the load down in the first free position. Part of the program to achieve this
would be as follows:
movep:

MOVEABS(115) ‘Move to first put down position
FOR VR(0) = 101 TO 110

IF (VR(VR(0)) = 0) THEN GOSUB load
MOVE(200) ‘200 is spacing between positions

NEXT VR(0)
PRINT "All positions are full"
WAIT UNTIL IN(3) = ON
GOTO movep

load: ’Put load in position and mark array
OP(15,OFF)
VR(VR(0)) = 1
RETURN

The variables are backed up by a battery so the program here could be
designed to store the state of the machine when the power is OFF. It would of
course be necessary to provide a means of resetting completely following
manual intervention.
Example 3
loop: ‘Assign VR(65) to VR(0) multiplied by

‘axis 1 measured position
VR(65) = VR(0)*MPOS AXIS(1)
PRINT VR(65)
GOTO loop

6-3-200 WA
Type: System Command

Syntax: WA(time)

Description: The WA command pauses program execution for the number of milliseconds
specified for time. The command can only be used in a program.

Arguments: time
The number of milliseconds to hold program execution.

Example: The following lines would turn ON output 7 two seconds after turning OFF out-
put 1.
OP(1,OFF)
WA(2000)
OP(7,ON)

6-3-201 WAIT IDLE
Type: System Command

Syntax: WAIT IDLE

Description: The WAIT IDLE command suspends program execution until the base axis
has finished executing its current move and any buffered move. The com-
mand can only be used in a program.

194

Command, function and parameter description Section 6-3

WAIT IDLE works on the default basis axis (set with BASE) unless AXIS is
used to specify a temporary base axis.

Precautions: The execution of WAIT IDLE does not necessarily mean that the axis will be
stationary in a servo motor system.

See also: AXIS, WAIT LOADED

Example: MOVE(100)
WAIT IDLE
PRINT "Move Done"

6-3-202 WAIT LOADED
Type: System Command

Syntax: WAIT LOADED

Description: The WAIT LOADED command suspends program execution until the base
axis has no moves buffered ahead other than the currently executing move.
The command can only be used in a program.
This is useful for activating events at the beginning of a move, or at the end
when multiple moves are buffered together.
WAIT LOADED works on the default basis axis (set with BASE) unless AXIS
is used to specify a temporary base axis.

See also: AXIS, WAIT IDLE

Example: ‘Switch output 8 ON at start of start of MOVE(500)
‘and OFF at end
MOVE(800)
MOVE(500)
WAIT LOADED
OP(8,ON)
MOVE(400)
WAIT LOADED
OP(8,OFF)

6-3-203 WAIT UNTIL
Type: System Command

Syntax: WAIT UNTIL condition

Description: The WAIT UNTIL command repeatedly evaluates the condition until it is
TRUE. After this program execution will continue. The command can only be
used in a program.

Arguments: condition
Any valid BASIC logical expression.

Examples: Example 1
In this example, the program waits until the measured position on axis 0
exceeds 150, and then starts a movement on axis 1
WAIT UNTIL MPOS AXIS(0)>150
MOVE(100) AXIS(1)
Example 2
The expressions evaluated can be as complex as you like provided they fol-
low BASIC syntax, for example:
WAIT UNTIL DPOS AXIS(2)< = 0 OR IN(1) = ON
The above line would wait until the demand position of axis 2 is less than or
equal to 0 or input 1 is ON.

195

Command, function and parameter description Section 6-3

6-3-204 WDOG
Type: System Parameter

Description: The WDOG parameter contains the software switch which enables the Servo
Driver using the RUN (Servo ON) input signal. The enabled Servo Driver will
control the Servomotor depending on the speed and torque reference values.
WDOG can be turned ON and OFF under program control, on command line
and the Motion Perfect control button.
The Servo Driver will automatically be disabled when a MOTION_ERROR
occurs. A motion error occurs when the AXISSTATUS state for one of the
axes matches the ERRORMASK setting. In this case the software switch
(WDOG) will be turned OFF, the MOTION_ERROR parameter will have
value 1 and the ERROR_AXIS parameter will contain the number of the first
axis to have the error.

Precautions: The WDOG parameter can be executed automatically by Motion Perfect
when the Drives Enable Button is clicked on the control panel.

See also: AXISSTATUS, ERROR_AXIS, ERRORMASK, MOTION_ERROR, SERVO

6-3-205 WHILE WEND
Type: Structural Command

Syntax: WHILE condition
<commands>

WEND

Description: The WHILE ... WEND structure allows the program segment between the
WHILE and the WEND statement to be repeated a number of times until the
condition becomes FALSE. In that case program execution will continue after
WEND.

Precautions: WHILE ... WEND loops can be nested without limit.

Arguments: condition
Any valid logical BASIC expression.

See also: FOR, REPEAT

Example: WHILE IN(12) = OFF
MOVE(200)
WAIT IDLE
OP(10,OFF)
MOVE(-200)
WAIT IDLE
OP(10,ON)

WEND

6-3-206 XOR
Type: Logical Operator

Syntax: expression_1 XOR expression_2

Description: The XOR operator performs the logical XOR function between corresponding
bits of the integer parts of two valid BASIC expressions.
The logical XOR function between two bits is defined as follows:

Bit 1 Bit 2 Result

0 0 0

0 1 1

196

Command, function and parameter description Section 6-3

Arguments: expression_1
Any valid BASIC expression.
expression_2
Any valid BASIC expression.

Example: a = 10 XOR (2.1*9)
The parentheses are evaluated first, but only the integer part of the result, 18,
is used for the operation. Therefore, this expression is equivalent to the fol-
lowing:
VR(0)=10 XOR 18

The XOR is a bit operator and so the binary action taking place is as follows:

The result is, therefore, 24.

1 0 1

1 1 0

Bit 1 Bit 2 Result

01010

XOR 10010

11000

197

SECTION 7
Motion Perfect Software Package

This section describes the operation of the Motion Perfect programming software package. Motion Perfect provides the
user a tool to program, monitor and debug motion based applications for the MC Unit.

7-1 Features and Requirements . 198
7-2 Connecting to the MC Unit . 198
7-3 Motion Perfect Projects. 199

7-3-1 Project Manager . 199
7-3-2 Creating a Project for the First Time . 201

7-4 Desktop Appearance . 201
7-4-1 Control Panel . 202
7-4-2 Editing and Running Simple Programs . 203

7-5 Motion Perfect Tools . 204
7-5-1 Terminal . 204
7-5-2 Editor . 205
7-5-3 Axis Parameters . 208
7-5-4 Controller Configuration . 209
7-5-5 VR and Table Editors . 209
7-5-6 I/O Status Window . 210
7-5-7 Full Controller Directory . 211
7-5-8 Jog Screen . 211
7-5-9 Oscilloscope . 212

7-6 Suggestions and Precautions . 217

198

Features and Requirements Section 7-1

7-1 Features and Requirements
Motion Perfect provides the following features.

• Using the Project Manager to maintain a consistent copy of application
programs on the computer.

• Creating, copying, renaming, deleting, editing, running and debugging
programs on the MC Unit.

• Using the Control Panel, Full Controller Directory, Axis Parameters Win-
dow, and I/O status to monitor the MC Unit and to control its status.

• Using the Program Debugger, Axis Parameters Window, Software Oscil-
loscope Window and Jog Axes Window to adjust the servo system.

It is possible to open several windows on the Motion Perfect desktop and run
them simultaneously. A user could be stepping through a program displayed
in an Editor Window, while checking the program’s output and entering input
characters via a separate terminal Window, and while also monitoring and
updating the axis parameters and I/O status.

Requirements The MC Unit requires Motion Perfect version 2.0 or later. Please note that
previous versions of the package will not work with this MC Unit.
The following are required to run Motion Perfect version 2.0.
1. IBM Personal Computer or 100% compatible.
2. Microsoft Windows 95, 98, 2000 or NT 4.0.
3. 66 MHz 486 based processor (133 MHz Pentium recommended).
4. 16 MB RAM (32 MB recommended).
5. 10 MB of hard disk space.
6. Enhanced serial communications port (UART 16550).
7. 800 x 600 pixel display or higher resolution with at least 256 colors.
8. Mouse or tracker ball.

7-2 Connecting to the MC Unit
Motion Perfect can be connected to the MC Unit once the MC Unit is pow-
ered-up and running in order to use all features. After installation Motion Per-
fect can be started by using the Start Button.

Note The computer should be connected to the MC Unit using a RS-232C Serial
Cable (by OMRON) between a COM port on the computer and the MC Units
RS-232C Programming Port. Refer to 2-3-2 Serial Port Connections for
details.

When started, Motion Perfect will display its introductory splash screen whilst
looking for any controllers connected to the computer.

199

Motion Perfect Projects Section 7-3

The status of the connection to the controller is displayed on the screen. The
statements indicate at which COM port Motion Perfect is currently checking
for a Motion Controller and which settings are used. The screen will confirm if
Motion Perfect has found a controller or will indicate that no controller is
found.
Motion Perfect will be disconnected when no suitable controllers have been
found. The offline terminal will be shown. Refer to SECTION 8 Troubleshoot-
ing.

7-3 Motion Perfect Projects
Motion Perfect facilitates the works with MC Unit applications by using
projects, which are a valuable aid in efficient application design and develop-
ment. Projects are stored on the computer and each project contains the MC
Unit programs, parameters and data required for one motion application.
Managing each application as one project enables effective version control
and provides a mechanism for verifying the application programs on the MC
Unit.

7-3-1 Project Manager
The project manager is a background process that automatically maintains
consistency between the programs on the MC Unit and the project on the
computer. When you edit a program in the Motion Perfect editor, it changes
both copies of the program. This avoids the slow process of uploading and
downloading programs and ensures that there is always a backup of changes
you make. As programs are created, copied or erased on the MC Unit using
the Motion Perfect tools, the project is updated so that the files and programs
are always consistent.

Project Backups A backup copy of the project is stored on the computer after on-line operation
has been successfully started. The backup copy can be loaded if the MC Unit
version of the programs become corrupted for any reason by selecting Revert
to backup from the File Menu.
The backup file will be overwritten each time a project is opened. If you open
a new project during a development session, the new projects backup copy
will overwrite the previous backup.

200

Motion Perfect Projects Section 7-3

Consistency Check When Motion Perfect starts, it always performs a consistency check between
any programs on the MC Unit and the current project files on the computer. It
will only enable its tool site when it has successfully verified that the programs
in the controller matches the project on the computer. The CRC values of the
programs are compared to perform the check. The Check Project Window
shows the status of the check. When both projects are consistent, the state-
ment “Project check OK” is shown in the message field.
If both projects differ, the window will display the options for the user to deter-
mine how to resolve this inconsistency. The Check Project Window is shown
here:

The window enables the user to select the required option to resolve the dis-
crepancy. The options available include:

You can force Motion Perfect to verify that the two copies are identical at any
time by selecting Check project from the File Menu.

Function Purpose

Save Save controller programs to new project. Create a new project
on the computer and save the programs to this project.

Load Load a different project. Select a new project on the computer
and load this project into the controller.

Change Change project for comparison. Select a different project on the
computer with which to perform the programs consistency
check.

New Erase controller programs and create a new project. Create a
new empty project on the computer and delete all programs on
the controller.

Resolve Resolve project and controller mismatches. Continue to check
the project, enabling the user to resolve each individual program
inconsistency by either saving the project version into the con-
troller or loading the controller version into the project.

Cancel Run Motion Perfect without connection to the controller.

201

Desktop Appearance Section 7-4

7-3-2 Creating a Project for the First Time
If this is the first time the MC Unit has been used with Motion Perfect and you
do not have any programs on the MC Unit, click the New Button in the Check
Project Options Window and then click the Yes Button when asked.

New Project Window The New Project Window will open enabling you to enter the required name of
the new project and specify the directory on your computer in which to store
the project.

1,2,3... 1. Type a suitable project name in the Project Name text box, and then use
the Disk Directory box to move to the directory in which to store the project.

2. If you wish to create a new directory on your computer, then move to the
parent directory and click on the Create Directory button. Type the name
of the new directory in the New Directory Window.

3. After selecting the required directory and entering the new project name,
click the Create Button.

4. If the project path and name already exist, a window will appear asking
whether to overwrite the existing project. If you confirm, the previous
project will be overwritten and lost.

5. When a new project has been created, the Check Project Window will be
displayed, with empty MC Unit Program and Project Program List Boxes
and a ‘Project check OK’ message. Click the Ok Button to continue.

You have now created a new project on your computer, the Motion Perfect
desktop will open, and all its facilities will be available.

7-4 Desktop Appearance
Once Motion Perfect has verified that the contents of the controller and the
project on the computer are consistent, the Motion Perfect Desktop will
appear. The desktop work area of Motion Perfect is where you will open up
the windows to use when editing programs and using the Motion Perfect
tools. The general look of the desktop is displayed below.

Control Panel

Toolbar Editor Window Terminal Window

Controller
Messages
Window

202

Desktop Appearance Section 7-4

7-4-1 Control Panel
Motion Perfect is equipped with a Control Panel that is used to control pro-
gram execution and the MC Unit while editing and debugging the programs.
The Control Panel will appear after the initial opening window on the left of the
main Motion Perfect Window:

Controller Status The Store Programs in EPROM button writes the programs from RAM into
Flash memory. The programs from Flash memory will be updated to RAM
during start-up.
The Drives enabled button toggles the state of the enable (watchdog) relay
on the controller, which controls the drivers. See 6-3-204 WDOG for details.
The Axis status error button monitors the Motion errors of the MC Unit. This
button is normally greyed out, unless a motion error occurs on the controller.
When an error does occur, you can use this button to clear the error condition.
This is equivalent to using the DATUM(0) command. See 6-3-48 DATUM for
details.

Program List Box The Program List Box in the middle of the Control Panel will show a list of the
programs in the project. There are two buttons next to each program name to
control the execution of this program.
The Run/Stop button (red) shows that the program is stopped and can be
clicked to start program execution.
When a program is being executed, the program name in the Program List
Box will appear in italics, the MC Unit task number on which the program is
running will appear alongside the program name, and the color of the Run/
Stop button will change into green.
To stop the program click the Run/Stop button again to stop the program. A
program cannot be edited while it is being executed.
The Step button (yellow) can be used to step through the program. The Run/
Stop Button will turn yellow and one line of the program will be executed each
time the Run/Stop button is clicked. When the Step button is clicked again,
the program will be run normally.
When a program is being stepped, a green bar will appear in the Editor Win-
dow, highlighting the line of the program about to be executed.

203

Desktop Appearance Section 7-4

Programs are compiled before execution. If there are any compilation errors
in the program, a window will appear briefly describing the error and giving the
number of the line containing the error. You can correct the error and repeat
the process.

Shortcut Buttons Underneath the Program List Box you can find four shortcut buttons which are
used for (from left to right):

• Controller configuration
• Full controller directory
• Create new program
• Halt all programs

Selected Program Box The Select Program box displays the current selected program and the avail-
able buttons, which can be performed on the selected program. These five
available functions are (from left to right):

• Run
• Step
• Stop
• Edit
• Set power up mode

Refer to 5-5-3 Program Execution and 6-3-166 RUNTYPE for details on set-
ting the power up mode.

Free Memory The Free Memory field indicates the remaining free memory available on the
controller.

Motion Stop The Motion Stop button stops all programs and cancels all moves in case of
emergency.

7-4-2 Editing and Running Simple Programs
This section provides a couple of typical examples of a simple programming
session using Motion Perfect. The following procedure assumes that the MC
Unit is already on-line with Motion Perfect and a new project has been cre-
ated.

Example 1
1,2,3... 1. Create a new program in the new project by selecting New from the Pro-

gram Menu or by clicking on the Control Panel’s shortcut button “Create
New Program”.

2. Name your program ‘OP1’ and click the OK Button.
3. Using the editor, enter a simple program to flash output 8. Type the pro-

gram in lower case. When you press the Return Key, Motion Perfect will
update the program on the computer and in the MC Unit, and will replace
the BASIC keywords with their tokenised versions in upper case.

loop:
OP(8,ON)
WA(1000)
OP(8,OFF)
WA(1000)
GOTO loop

The program can now be run, stepped and stopped without closing the Editor
Window. The Program Menu can be used, but it is easier to use the Control
Panel as described in the previous section. The Editor Window has similar
buttons itself to do the same.

Note The command line will also remain available for immediate commands if the
Terminal Window is open.

204

Motion Perfect Tools Section 7-5

Compilation The system will compile and link the program before running it. If the compiler
detects errors in the program, it will not run, but will print the line number at
which the error occurred. The line can be located by looking at the current line
number displayed in the bottom right of the Editor Window’s status bar or by
selecting Goto from the Edit Menu.

Example 2
A similar second program can be made based on the first program. This can
be done quickly by copying the OP1 program and then editing it.

1,2,3... 1. Select Copy program from the Program Menu and copy the OP1 pro-
gram, calling the new program ‘OP2’.

2. Select the OP2 program and press the Edit Button to open it.
3. Change the OP2 program to control a different OP with a different period.

Refer to for SECTION 6 BASIC Motion Control Programming Language
details on programming.

4. Executed the programs together.
The Run and Step Buttons on the Control Panel will control only the currently
selected program Use the Run/Stop and Step Button or the menus to control
other programs at the same time.

7-5 Motion Perfect Tools
This section describes the main Motion Perfect tools.
1. Terminal
2. Editor
3. Axis Parameters
4. Controller Configuration
5. VR and Table Editors
6. I/O Status
7. Full Controller Directory
8. Jog Axes
9. Oscilloscope

7-5-1 Terminal
The Terminal Window provides a direct connection to the MC Unit. Most com-
mands, functions and parameter read/writes can be issued directly on the
command line.
Most of the functions that must be performed during the installation, program-
ming and final setup of a system with a MC Unit have been automated by the
options available in the Motion Perfect Menus. A Terminal Window is shown
in the following display.

205

Motion Perfect Tools Section 7-5

Up to four Terminal Windows can be opened simultaneously over the single
serial port. Channel 0 must be used to issue commands. Channels 5, 6 and 7
can be used to provide I/O windows to programs running on the MC Unit.
Channel Number
The Channel Number Combo Box can be used to select one of the valid
async communications channels.
VT100 Emulation
The MC Unit expects to talk to a terminal that accepts the DEC VT100 termi-
nal protocol. This setting can be used for the Terminal Window to emulate a
VT100 terminal.
ASCII Emulation
This mode will echo the ASCII description for the non-printing characters
received. Also, CR and LF will cause the corresponding action.

7-5-2 Editor
This section describes the Editor used to edit BASIC programs for the MC
Unit. The Editor is a fully featured Windows-based tool. An Editor Window will
be opened when a new program is created or an existing program is selected
for editing.
When the cursor is moved off the current line, any changes made to this line
are sent to the MC Unit, which performs syntax checking, tokenises the line
(all recognized BASIC keywords are converted to upper case), and returns
the tokenised result to the window. When an Editor Window is closed, the
project file is updated with the modified program.

Note It is not possible to open a new Editor Window while any program is running
on the MC Unit.

206

Motion Perfect Tools Section 7-5

Creating and Opening Programs
There are several ways that programs can be opened or created.

Opening Programs
Existing programs can be edited by opening an Editor Window using one of
the following methods.

• Select Edit from the Program Menu and then selecting the required pro-
gram.

• Click the Edit Button on the Control Panel to open an Editor Window for
the selected program.

• Double-click a program in the Program List Box on the Control Panel.

Creating Programs
New programs can be created using one of the following methods.

• Select New from the Program Menu. The default name can be changed
before opening the Editor Window. Click into the Program Name Text
Box, enter the new name and then press the Edit Button.

• Click the Create New program button on the Control Panel.
When opening an Editor Window, Motion Perfect performs a CRC check
between the program on the MC Unit and the program in the project. If the
CRCs are different, the user will be advised to perform a project check to
obtain further information on the differences.

Basic Editing Operations
The basic editing operations that can be used in an Editor Window are out-
lined below. The operation can be accessed by selecting the corresponding
button on the top of the Editor Window or can be selected from one of the
menu's of the window.The operations correspond to the buttons displayed in
the picture below (from left to right).

Saving Program This enables the user to force the program to be saved on the computer hard-
disk. Motion Perfect saves the file automatically when the Editor Window is
closed or the program is compiled.

Printing Program This will print the code of the program.

Cut, Copy and Paste Windows-style cut, copy paste operation can be performed using the mouse
and/or the keyboard. Use the following procedure to cut or copy text.
Select the text, and cut or copy it to the clipboard.
Move the cursor to the insert point, and paste the text on the clipboard.

Listing and Jumping to
Labels

A list of all labels in the program in the current Editor Window will be dis-
played. To jump to a specific label, click the desired label in the display to
enter it in the text box at the bottom of the window and press the OK button.
The cursor will move to the specified label in the program. Alternatively, a
specific line number can be selected by entering the value of the line number
text box at the bottom of the window, and the pressing the OK button.

Finding Text The program in the current Editor Window can be searched for a specific text
string. One can specify the search to be case sensitive and the search direc-
tion. The user can continue the program while the Find Window is displayed,
by simply clicking back to the Editor Window. The Find Window will remain on
the display until the Cancel Button is clicked.

207

Motion Perfect Tools Section 7-5

Replacing Text Text found in an Editor Window can be replaced with a specified text string.
Enter both strings in the appropriate fields. The following buttons are available
in the Find and Replace Window:

Run, Step and Stop These operations are used to run the program, run a single line in the pro-
gram and stop the program. These operations can also be found on the con-
trol panel (same buttons).

Add breakpoint In the Editor Window breakpoints can be added to enable easy debugging.
Debugging is explained in the Debugging part of this section below.

Compiling This operation forces the program to be compiled.

Debugging
The Motion Perfect debugger allows you to run a program directly from the
Editor Window in a special trace mode, executing one line at a time (known as
stepping) whilst viewing the line in the window. It is also possible to set break-
points in the program, and run it at normal speed until it reached the break-
point.
Any open Editor Windows will automatically enter the 'Debug Mode - Read
Only' when programs are running on the Motion Controller. Hence, break-
points are set in the Editor Window, and the code viewed in the same window
in debug mode when the program is running.

Stepping Through a
Program

The next line in a program can be executed by doing one of the following:
• Use the Step button (yellow) alongside the required program name in the

Program List box on the Control Panel.
• If the required program is currently selected, see Selected Program box

of the Control Panel, then push the Step button of this box.
• Push the Step button of the Editor Window toolbar.
• Selecting Start Stepping... from the Program menu. If one program is exe-

cuting on several tasks, then the task number can also be specified.
The next program line to be executed will be highlighted in the Editor Window
with a green background. The operation can be repeated to step multiple
lines.

Breakpoints Breakpoints are special place markers in the code which allow us to identify a
particular section (or sections) of the program when debugging the code. At
the point on which the breakpoint is inserted, the program will pause and
return control to Motion Perfect. This is enabling to check the current state of
the controller or single step through the code of the program. Breakpoints are
indicated in the program using the TRON command.
Breakpoints can be set by moving the cursor to the required line, and then
either

• Typing command TRON on this line.
• Pushing the Add Breakpoint button on the Editor Window toolbar.
• Selecting Toggle Breakpoint from the Program Menu.
• Pressing Ctrl–B from the keyboard.

A TRON command will be inserted at the current line in the program, indi-
cated by highlighting. The breakpoint can be removed to selecting the same

Button Function
FindNext A simple search will be made for the specified string.

Replace A specified search string will be replaced with a replace string.

ReplaceAll All occurrences of the search string will be replaced from the
current cursor position to the beginning or end of the program,
depending upon the search direction.

208

Motion Perfect Tools Section 7-5

operation again or to just by removing the line manually. All breakpoints can
be removed from a program by selecting Clear All Breakpoints from the
Debug Menu.

7-5-3 Axis Parameters
The Axis Parameters Window allows the user to set and read the axis param-
eter settings. This window works like a Windows-based spread sheet. The
Axis Parameter Window is shown below.

The Axis Parameters Window is made up of a table of cells separated into two
banks, bank 1 at the top and bank 2 at the bottom.

• Bank 1 contains the values of parameters that can be changed by the
user. The values can be changed by clicking on it and entering the new
value.

• Bank 2 is read-only and contains the values which are set by the system
software of the MC Unit as it processes the BASIC commands and moni-
tors the status. These values are updated continuously at a specified rate.

The following operations are possible on the Axis Parameters Window.
• The user is able to change the size of the window. The black dividing bar

can be repositioned to change the space occupied by the two banks.
• When the user changes the UNITS parameter for an axis, all the parame-

ters given in user units for that axis will be adjusted by the new factor.
These new values will loaded automatically in the screen.

• The AXISSTATUS parameter field displays the axis status bits. The char-
acters indicating each bit will turn red and capital if the bit is ON and
green if the bit is OFF. The ‘ocyxehdrfmaw’ characters correspond to

w Following Error Warning

a Servo Driver Communication Error

m Servo Driver Alarm

f Forward Limit

r Reverse Limit

d Datuming

h Feed Hold Input

e Following Error Limit

x Forward Software Limit

y Reverse Software Limit

209

Motion Perfect Tools Section 7-5

• The Axes Button at the bottom of the window can be pressed to access a
Window to select the axes that are displayed. By default, the axes set for
the last modified start-up program from the File Menu, Jog Axes Window
or Axes Parameters Window will be displayed.

• The parameters in the bank 1 section are only read when the screen is
first displayed or the parameter is edited by the user. It is possible that if a
parameter is changed in the controller then the value displayed may be
incorrect. The refresh button will force Motion Perfect to read the whole
selection again.

7-5-4 Controller Configuration
The Controller Configuration Window shows the hardware and software con-
figuration of the MC Unit. The MC Unit configuration can be checked by
selecting Controller Configuration from the Controller Menu or the appropriate
button of the Control Panel.

7-5-5 VR and Table Editors
The VR and Table Editor tools provide a spreadsheet style interface to view
and modify a range of values in memory. To modify a value, click on the exist-
ing value with the mouse and type in the new value and press return. The

c Cancelling Move

o Encoder Out Overspeed

210

Motion Perfect Tools Section 7-5

change will be immediate and can be made whilst programs are running.
Push the refresh button to reload the values.

Range Both in the VR and Table Editor you can select the range of the view by giving
the begin and end element. The range of the Table Editor is limited to the
highest element, which is specified by the TSIZE system parameter. Both edi-
tor show up to a maximum of 100 elements. Use the scroll bar to scroll
through the data.

Refresh Button The editors do not update the shown values automatically. Push the Refresh
Button to update the values of the elements or when you have changed the
range of elements.

7-5-6 I/O Status Window
The I/O Status Window allows the user to view the status of all the I/O points
and toggle the status of the output points. The I/O Status Window is shown in
the centre of the screen below. Refer to 5-3 Motion Execution for a description
of the different types of I/O.

Digital Inputs This shows the total range of input channels on the current Motion Controller.

Digital Outputs This shows the total range of output channels on the current Motion Control-
ler.

IN These banks show the status of the inputs of the Motion Controller. Each
bank contains 8 indicators which show the status of the inputs.

OUT These banks show the status of the outputs of the Motion Controller. Each
bank contains 8 indicators which show the status of the outputs. These output
points can be put ON or OFF by clicking on the indicators.
Refer to 3-3-2 Digital I/O for details on the MC Unit input and output map-
pings. The in- and outputs can be accessed by using controller commands IN
and OP. Refer to 6-3-99 IN and 6-3-132 OP.

211

Motion Perfect Tools Section 7-5

7-5-7 Full Controller Directory
The Full Controller Directory Window dynamically shows details of all pro-
grams on the MC Unit, and details of all running tasks or processes. The win-
dow can be opened by selecting Full Directory from the Program Menu or
the appropriate button on the Control Panel.

7-5-8 Jog Screen
The Jog Screen can be used to set-up and operate the jogging operation of
the motion controller with the bi-directional virtual I/O. The screen sets the
axis parameters corresponding to jogging (FWD_JOG, REV_JOG and
JOGSPEED) and controls the virtual inputs which are set to jogging. This tool
will not use the Fast Jog feature of the controller and therefore the
FAST_JOG parameter is assumed to be -1.

Note The jogging inputs which are connected are considered to be active low (nor-
mally closed). This implies that jogging is enabled when the input is low and is
disabled when the input is high.

The Jog Screen is shown below.

Jog Inputs There are separate inputs for forward and reverse jogging of each axis. When
a jog input is set to a valid input number, the corresponding output will be
turned ON and then the corresponding FWD_JOG or REV_JOG axis parame-
ter will be set.

Jog Speed Settings This is the speed at which the jog will be performed, which is given by the
JOGSPEED parameter. The value of the speed is limited to the range from 0
to the demand speed given by the SPEED parameter for this axis. This value
can be changed by writing directly to this field or by using the jog speed con-
trol (up/down) buttons.

212

Motion Perfect Tools Section 7-5

Jog Buttons The screen provides Forward and Reverse Jog Buttons for each axis. When
the button is pushed the jogging is activated and the corresponding virtual
input will be OFF. Prior to the activation the value of the Jog Speed field will
be written to the JOGSPEED parameter. When released this input is ON and
the jogging will be stopped.

Warnings Area The Warnings Area shows the status of the last jog request.
When a Jog Button is pressed, a warning will be given for any of the following:

• The axis is a SERVO axis and the servo is OFF
• The jog speed is 0.
• The acceleration or deceleration rate for this axis is 0
• The forward or reverse jog input is out of range
• There is already a move other than a jog being performed on this axis

7-5-9 Oscilloscope
The software oscilloscope can be used to trace axis and motion parameters,
which is a helpful tool for program development and system setup. The oscil-
loscope provides four channels, each capable of recording at up to 1,000
samples/s, with manual cycling or program-linked triggering.
The MC Unit records the data at the selected frequency, and then uploads the
information to the scope to be displayed. If a larger time base value is used,
the data is retrieved in sections, and the trace is seen to be plotted in sections
across the display.

Note 1. Motion Perfect uses the SCOPE command when running the Oscilloscope
function.

2. To minimize calculation time for writing the real-time data, the SCOPE
command is writing raw data to the Table array. For example
a) The parameters are written in encoder edges (per second) and there-

fore not compensated for the UNITS conversion factor.
b) The MSPEED parameter is written as the change in encoder edges

per servo period.
3. Applications like the CAM command, CAMBOX command and the SCOPE

command all use the same Table as the data area.
Exactly when the MC Unit starts to record the required data depends upon
whether it is in Manual or Program Trigger Mode.

• In Program Trigger Mode, it starts recording data when it encounters a
TRIGGER command in a program running on the MC Unit.

• In Manual Mode, it starts recording data immediately.
The Trigger Button can be used to start the scope as soon as the required
settings have been made. The scope controls are divided into the two parts:
the general controls and the channel specific controls.

213

Motion Perfect Tools Section 7-5

General Controls The oscilloscope general control appear at the bottom left of the oscilloscope
window. From here you can control the time base, triggering modes, Table
range used and others.

The general controls are explained here:

Time base The required time base is selected using the up/down scale but-
tons either side of the current time base scale text box (left hand
side button decreases the scale, and the right hand side button
increases the scale value.) The value selected is the time per grid
division on the display.
If the time base is greater than a predefined value, then the data is
retrieved from the controller in sections (as opposed to retrieving a
compete trace of data at one time.) These sections of data are
plotted on the display as they are received, and the last point plot-
ted is seen as a white spot.
After the scope has finished running and a trace has been dis-
played, the time base scale can be changed to view the trace with
respect to different horizontal time scales. If the time base scale is
reduced, a section of the trace can be viewed in greater detail, with
access provided to the complete trace by moving the horizontal
scroll bar.

Horizontal Scroll
Bar

Once the scope has finished running and displayed the trace of the
recorded data, only part of the trace will be displayed if the time
base is changed to a faster value. The remainder can be viewed
by moving the thumb box on the horizontal scroll bar.
Additionally, If the scope is configured to record both motion
parameters and plot table data, then the number of points plotted
across the display can be determined by the motion parameter. If
there are additional table points not visible, these can be brought
into view by scrolling the table trace using the horizontal scroll bar.
The motion parameter trace will not move.

214

Motion Perfect Tools Section 7-5

Channel-specific Controls Each scope channel has the following channel-specific controls organized in
each of four channel control blocks surrounded by a colored border. The color
of the border is the same as the color for the channel trace on the display.

Each channel has the following:

One-shot/ Con-
tinuous Trigger
Mode

The One-shot/Continuous Trigger Mode Button toggles between
these two modes:
One Shot Trigger Mode (Button raised)
In One-shot Mode, the scope runs until it has been triggered and
one set of data recorded by the MC Unit, retrieved and displayed.
Continuous Trigger Mode (Button pressed)
In Continuous Mode the scope continues running, retrieving data
from the MC Unit each time it is re-triggered and new data is
recorded. The scope continues to run until the Trigger Button is
pressed for a second time to stop the scope.

Manual/Pro-
gram Trigger
Mode

The Manual/Program Trigger Mode Button toggles between these
two modes.
Manual Mode (Button raised, pointing hand)
In Manual Mode, the MC Unit is triggered and starts to record data
immediately after the Trigger Button is pressed.
Program Mode (Button pressed, program listing)
In Program Trigger Mode, the scope starts running when the Trig-
ger Button is pressed. The MC Unit will start recording data when a
TRIGGER command is executed in a program running on the MC
Unit.
After the TRIGGER command is executed by the program and the
MC Unit has recorded the required data, the required data is
retrieved by the scope and displayed. The scope stops running if in
One-shot Trigger Mode, or it waits for the next trigger on the MC
Unit if in Continuous Trigger Mode.

Trigger Button When the Trigger Button is pressed, the scope will be started. If
the scope is Manual Mode then the MC Unit immediately starts
recording data. If it is in Program Trigger Mode then the MC Unit
waits until it encounters a TRIGGER command in a running pro-
gram.
After the Trigger Button has been pressed, the text on the Button
changes to ‘Halt’ while the scope is running. If the scope is in the
One-shot Mode, then after the data has been recorded and plotted
on the display, the Trigger Button text will return to ‘Trigger’, indi-
cating that the operation has been completed.
The scope can be halted at any time when it is running by pressing
the trigger button (the 'Halt' text is displayed).

Reset Scope
Configuration

The current scope configuration and all settings will be saved
when the scope window is closed, and retrieved when the scope
window is next opened. This removes the need to set each individ-
ual control again every time the scope window is opened.
The Reset Scope Configuration Button can be pressed to reset the
scope configuration, clearing all controls to their default values.

Status Indicator The Status Indicator is located between the Options Button and
the Reset Scope Configuration Button. This indicator changes
color according to the current status of the scope as follows:
Red Scope stopped.
Black Waiting for MC Unit to complete recording data.
Yellow Retrieving data from the MC Unit.

215

Motion Perfect Tools Section 7-5

Parameter Box The parameters which the scope can record and display are
selected using a pull-down list box in the upper left corner of each
channel control block.
Depending upon the parameter chosen, the next label will switch
between axis or channel.
It is also possible to plot the points held in the MC Unit Table array
directly by selecting the Table parameter, followed by the number
of a channel whose first/last points have been configured using the
Advanced Options Window, which is described later in this section.
If the scope channel is not required then ‘NONE’ should be
selected in the parameter list box.

Axis/Channel
List Box

The Axis/Channel List Box allows the user to select the required
axis for a motion parameter, or channel for a digital input/output.
The list box label will switch according to the setting in the Param-
eter List Box.

Vertical Scale The scope vertical scale in units per grid division on the display
can be set to either Automatic or Manual Mode.
In Automatic Mode, the scope calculates the most appropriate
scale when it has finished running and prior to displaying the trace.
If the scope is running with continuous triggering, it will initially be
unable to select a suitable vertical scale. When this happens, the
scope must be halted and re-started, or used in the manual scaling
mode.
In Manual Mode, the user selects the scale per grid division. The
vertical scale is changed by pressing the Up/Down Scale Buttons
at the sides of the Current Scale Text Box. The button on the left
decreases the scale value, and the button on the right increases
the scale value.
To return to the Automatic Mode, continue pressing the left button
(decreasing the scale value) until the word ‘AUTO’ appears in the
current scale text box.

Channel Trace
Vertical Offset

The Vertical Offset Buttons are used to move a trace vertically on
the display. This control is useful when two or more traces are
identical, in which case they will overlay each other and only the
uppermost trace will be seen on the display.
The offset value will remain in effect for a channel until the Vertical
Offset Reset Button is pressed or the scroll bar is used to return
the trace to its original position.

Vertical Offset
Reset

The vertical offset value applied using the vertical offset scroll bars
can be cleared when the Vertical Offset Reset Button is pressed.

Cursor Button After the scope has finished running and has displayed a trace, the
cursor bars can be enabled. These are displayed as two vertical
bars of the same color as the channel trace, and initially located at
the maximum and minimum trace points. The values these repre-
sent are shown below the scope display, and the text is of the
same color as the channel the values represent.
The bars can be moved by positioning the mouse cursor over the
required bar, holding down the left mouse button, and dragging the
bar to the required position. The maximum or minimum value
shown below the display is updated as the bar is dragged along
with the value of the trace at the current bar position.
The cursor bars are enabled/disabled by pressing the Cursor But-
ton, which toggles alternately displaying and removing the cursor
bars.
When the cursor bars are disabled, the maximum and minimum
points are indicated by a single white pixel on the trace.

216

Motion Perfect Tools Section 7-5

Advanced Oscilloscope
Configuration Options

When the Options Button of the General Options is pressed, the Advanced
Oscilloscope Configuration Window will be displayed.

It is possible to plot MC Unit Table ranges directly with the Oscilloscope.
Select Table in the parameter box of the Axis Specific Controls to display the
Table elements.

Parameter Checks There is a maximum Table size on the MC Unit, and it is not possible to enter
Table channel values beyond this value. It is also not possible to enter a lower
scope table value or increase the samples per grid division to a value which
causes the upper scope Table value to exceed the MC Unit maximum Table
value.
If the number of samples per grid division is increased, and subsequently the
time base scale is set to a faster value, causing an unobtainable resolution,
the scope will automatically reset the number of samples per grid division.

Displaying MC Unit Table
Points

If the scope is configured for both Table and motion parameters, then the
number of points plotted across the display is determined by the time base
and samples per division. If the number of points to be plotted for the table
parameter is greater than the number of points for the motion parameter, the
additional table points will not be displayed, but can be viewed by scrolling the
table trace using the horizontal scroll bar. The motion parameter trace will not
move.

Uploading Data from the
MC Unit to the Scope

If the overall time base is greater than a predefined value, then the data is
retrieved from the MC Unit in blocks, and the display can be seen to be
updated in sections. The last point plotted in the current section will be dis-
played as a white spot.
If the scope is configured both to record motion parameters and to plot Table
data, then the Table data is returned in one complete block, and the motion

Oscilloscope:
Samples per Divi-
sion

The scope defaults to recording five points per horizontal time
base grid division. This value can be adjusted using the adjacent
scroll bar.
To achieve the fastest scope sample rate it is necessary to
reduce the number of samples per grid division to 1 and increase
the time base scale to its fastest value of 1 ms per grid division.
The trace might not be plotted completely to the right side of the
display, depending upon the time base scale and number of
samples per grid division.

Oscilloscope:
Table Range

The MC Unit records the required parameter data values in the
MC Unit’s Table array prior to uploading these values to the
scope. By default, the lowest scope Table value used is zero. If
this conflicts with programs running on the MC Unit that require
this section of the Table, then the lower scope table value can be
set.
The lower scope table value is adjusted by clicking into the text
box and entering the new value. The upper scope table value will
be automatically updated and cannot be changed by the user.
The upper scope table value depends on the number of channels
in use and the number of samples per grid division.
If an attempt is made to enter a lower table value which causes
the upper table value to exceed the maximum permitted value on
the MC Unit, then the original value will be used by the scope.

Table Graph:
Points per division

The scope defaults to recording fifty points per horizontal time
base grid division. This value can be adjusted using the adjacent
scroll bar.

Table Graph:
Table Range

The Table Limit Text Boxes are used to enter the Table ranges
for the four possible channels of the Oscilloscope.

217

Suggestions and Precautions Section 7-6

parameters are read either continuously or in block, depending upon the time
base.
Even if the scope is in Continuous Trigger Mode, the Table data is not re-
read; only the motion parameters are continuously read from the MC Unit.

Enabling/Disabling Scope
Controls

While the scope is running, all the scope controls except the Trigger Button
will be disabled. To change the time base or vertical scale, the scope must be
stopped and restarted.

Display Accuracy The MC Unit records the parameter values at the required sample rate in the
Table, and then passes the information to the scope. The trace displayed is
therefore accurate with respect to the selected time base. There is, however,
a delay between when the data is recorded by the MC Unit and when it is dis-
played on the scope due to the time taken to upload the data via the serial
link.

7-6 Suggestions and Precautions
Programming and
Program Control

When using Motion Perfect, please consider the following items:
• Motion Perfect provides complete programming functions, such as edit,

delete, rename, create, select and copy functions. When available, these
should be used instead of the equivalent BASIC system commands in the
Terminal Window. Motion Perfect cannot detect changes made by these
BASIC system commands and a project check will be required to resolve
inconsistencies.

• Use Reset the Controller on the MC Unit Menu to perform a software
reset of both the MC Unit and the Servo Driver (as DRV_RESET com-
mand).

• You do not need to close an Editor Window to run a program. It saves
time not to. It is better to open an edit session for each program you want
to see before running any programs. If there are programs already run-
ning, then it will not be possible to open an edit session.

• Do not turn the power ON and OFF or remove the serial connection when
using Motion Perfect. If you do so, a communications error message will
appear, and Motion Perfect will go off-line.

• You can force Motion Perfect to compare the computer project with the
MC Unit programs at any time by selecting Check project from the File
Menu.

Running Motion Perfect
Off-line

Motion Perfect can be run in an off-line mode if it is unable to find a MC Unit
and open a valid project. This may occur if it does not find any MC Units con-
nected to the computer or if the project consistency check fails and the check
is canceled.
In the offline mode, all project-related functions will be disabled. The user will
only have access to

• Terminal Window (VT100 emulation).
• System software load.
• Communications setup.

A Terminal Window can be opened and an attempt can be made to establish
communications with the MC Unit. If the MC Units line mode >> prompt is
returned when the Enter Key is pressed, then the MC Unit can be communi-
cated with using the BASIC system commands (see the BASIC on-line help
for further information). The commands given in 6-2-4 Program Commands
and Functions can be used to manipulate programs using a terminal.

Project Backups If the MC Unit stops responding during a development session and the same
project is reconnected, then it is likely the consistency check will be passed.

218

Suggestions and Precautions Section 7-6

In the case that the programs are not consistent, the Check Project Options
Window will be displayed. Please be aware that if the current project is re-
opened, the backup copy of the project will be overwritten. It is therefore nec-
essary to determine which copy of the programs to use before re-connecting
Motion Perfect.
To investigate the inconsistency further, a Terminal Window can be opened
off-line and the programs on the MC Unit can be listed. Any computer-based
editor or word processor can be used to examine the computer backup
project file copy of the programs. In this way, the location of the uncorrupted
or latest version of the programs can be identified. The correct program can
be imported to the project by using the Load Program File option of the
Project Menu.
The computer project copy of a program is updated during a Motion Perfect
development session whenever an edit session for the program is closed.

Retrieving Backup If you want to abandon changes made during a development session and
reload the backup copy made at the start of the session, then select Revert to
Backup from the Project Menu.

Downloading Firmware The MC Unit has Flash memory for storage of both user programs and the
system software. From Motion Perfect it is possible to upgrade the software to
a newer version using a system file.
Select the 'Load System Software' option from the controller menu and a
warning dialog will be presented to ensure the current project has been saved
the user wishes to continue. Press OK and select the file which needs to be
loaded.

!Caution Do not download any firmware to the MC Unit that has not been distributed by
OMRON or that has not been authorized and approved by OMRON for down-
loading into the MCW151 series. Failure to do so may result in permanent or
temporary malfunction of the Unit or unexpected behaviour.

Downloading will take several minutes, depending on the speed of the per-
sonal computer. When the download is complete, a checksum is performed to
ensure that the download process was successful, and a confirmation screen
will be presented to store the software into Flash memory. The controller will
take a few moments to store the software.

!WARNING During the process of storing the software into Flash memory the power must
NEVER be interrupted. If power is interrupted the MC Unit may disfunction
and has to be returned to OMRON for repair.

If the storing has been completed the unit is back to normal operation. At this
point you can check the controller configuration to confirm the new software
version.

219

SECTION 8
Troubleshooting

This section describes error processing and troubleshooting procedures needed to keep the system operating properly.

8-1 Error Indicators . 220
8-2 Error Handling . 221

8-2-1 MC Unit Error Handling. 221
8-2-2 Servo Driver Alarms . 225

8-3 Problems and Countermeasures . 227
8-3-1 General Problem Solving . 227
8-3-2 DeviceNet Slave Problem Solving . 230

220

Error Indicators Section 8-1

8-1 Error Indicators
MC Unit Indicators The following errors are displayed at the LED indicators at the top of the MC

Unit’s front panel.

■ General Indicators

■ DeviceNet Indicators (MCW151-DRT-E only)
The following table lists probable causes and remedies for errors that occur in
the Slave Unit.

RUN STS

SD RD

MCW151 MCW151-DRT

RUN

MS

STS

NS

MCW151-E MCW151-DRT-E

RUN STS Error Remedy

ON --- (Normal) ---

OFF OFF The MC Unit is defective. Replace the MC Unit.

--- Flashing A motion error has occurred.
The Servo Driver has been
disabled.

Check what caused the
error, correct the problem
and restart application.

Flashing Flashing An error occurred in the com-
munication with the Servo
Driver.

Check what caused the
error, correct the problem
and cycle the power.

Display/Indicator
status

Network status Probable cause and remedy

MS NS

ON
(green)

ON
(green)

Remote I/O or message communi-
cation in progress (normal status)

Remote I/O communications and/or message communications
are active on the Network.

ON
(green)

OFF Checking for node address dupli-
cation

Checking whether the Unit’s node address has been set on
another node.

ON
(green)

Flashing
(green)

Waiting for connection The Unit is waiting for a connection from the Master Unit.

ON (red) OFF Watchdog timer error A watchdog timer error occurred in the Unit. Replace the Unit.

Flashing
(red)

OFF Incorrect switch settings A mistake has been made in the switch settings. Check the
settings and restart the Slave.

ON
(green)

ON (red) Node address duplication The Slave Unit’s node address has been set on another node.
Change settings to eliminate the duplication and restart the
Slave.

ON
(green)

ON (red) Bus Off error detected The communications controller detected a Bus Off status and
communications have been stopped.
Check the following and restart the Slave: Master/Slave baud
rates, for loose or broken cables, for noise, cable lengths, and
Terminating Resistors.

ON
(green)

Flashing
(red)

Communications timeout The connection with the Master Unit timed out.
Check the following and restart the Slave: Master/Slave baud
rates, for loose or broken cables, for noise, cable lengths, and
Terminating Resistors.

221

Error Handling Section 8-2

Servo Driver Indicators The Servo Driver provides a Display Area and two LED indicators.

■ Servo Driver Display Area
The Servo Driver Display Area displays among others status, alarm signals,
parameters in five digits 7-segment LED. A summary of the symbol display
contents is given in the following table.

■ Servo Driver Indicators

8-2 Error Handling
8-2-1 MC Unit Error Handling
Motion Error The MC Unit is continuously checking for error conditions during operation,

parallel to all running processes. If a motion error occurs, the Servo Driver will
be disabled by using the RUN (Servo ON) signal to the Servo Driver.
A motion error will occur when the AXISSTATUS state for one of the axes
matches the ERRORMASK parameter setting (defined by the user) of that
axis. The Servo ON signal (WDOG) will be turned OFF, the
MOTION_ERROR parameter will be set to 1 and the ERROR_AXIS parame-
ter will contain the number of the first axis to have the error condition. The
motion error can be cleared by using the DATUM(0) command or performing
a system reset by using the DRV_RESET command.
The relevant parameters and commands are given here.

Symbol display Contents

bb Base block (no power to Servomotor, Servo Driver is not
enabled)

run Operating (power to Servomotor, Servo Driver is enabled)

Pot Forward rotation prohibited (POT (Forward limit switch) is
OFF)

Not Reverse rotation prohibited (NOT (Reverse limit switch) is
OFF)

A.❏❏ Alarm display

Symbol Name Color Function

POWER Power supply indicator Green Lit when control power supply is
normal.

CHARGE Charge indicator Red Lit when main-circuit power sup-
ply is charging.

Parameter Description

WDOG The WDOG system parameter is the software switch used to
control the Driver Servo ON input, which enables the driver.

AXISSTATUS The AXISSTATUS axis parameter contains the current status
bits of an axis.

222

Error Handling Section 8-2

■ Axis Status Definition
The axis status for each axis is defined using the AXISSTATUS axis parame-
ter. The AXISSTATUS axis parameter definition for the three axes is shown in
the following table. The default value of ERRORMASK for all axes is 268.
Note that the ERRORMASK parameter can be set separately for each axis.

■ Servo Driver Alarm
If the Servo Driver detects an error, it will generate an alarm. The MC Unit
provides the following utilities to detect the Servo Driver alarm:

• The Servo Driver Alarm bit (no. 3) of the AXISSTATUS axis parameter for
axis 0 will be set. Also input no. 24 will be set.

• The DRV_STATUS system parameter will contain the Servo Driver alarm
code (in hex). During normal operation DRV_STATUS will have value
99 Hex.

Refer to the Servo Driver manual for appropriate alarm countermeasures.
Cancel the alarm using one of the following methods.

• Perform the DRV_CLEAR command in the MC Unit. Please note that this
is only able to cancel some of the alarm states.

• Turn OFF the power supply (both the Servo Driver and MC Unit), and turn
it ON again.

ERRORMASK The ERRORMASK axis parameter enables to user to deter-
mine which condition will generate a motion error for each
axis.
If the result of a bitwise AND operation of the ERRORMASK
and AXISSTATUS parameter value for one axis is non-zero, a
motion error will occur.

MOTION_ERROR The MOTION_ERROR system parameter will be ON when a
motion error has occurred.

ERROR_AXIS The ERROR_AXIS system parameter contains the axis num-
ber for which the detected motion error has occurred.

DATUM The DATUM(0) will clear the motion error. The AXISSTATUS
status will be cleared.

DRV_RESET DRV_RESET will software reset both the Servo Driver as the
MC Unit.

Parameter Description

Bit Description Value Character
(as used
in Motion
Perfect)

Axis 0
(Servo
Driver)

Axis 1
(Encoder in/
out, virtual)

Axis 2
(Virtual)

0 - 1 - - - -

1 Following Error Warning 2 w x - -

2 Servo Driver Communication Error 4 a x - -

3 Servo Driver Alarm 8 m x - -

4 Forward Limit 16 f x x x

5 Reverse Limit 32 r x x x

6 Datuming 64 d x x x

7 Feed Hold Input 128 h x x x

8 Following Error Limit 256 e x - -

9 Forward Software Limit 512 x x x x

10 Reverse Software Limit 1024 y x x x

11 Cancelling Move 2048 c x x x

12 Encoder Out Overspeed 4096 o - x -

223

Error Handling Section 8-2

If the alarm is canceled while the Servo ON signal (WDOG) is still ON, the
Servo Driver will start as soon as the alarm is cleared, which is dangerous. Be
sure to turn OFF the WDOG system parameter before cancelling the alarm.

■ Servo Driver Warning
If the Servo Driver detects a warning (e.g., overload warning or regenerative
overload warning), MC Unit Warning input no. 25 will be set and the code is
defined in the DRV_STATUS parameter. The Servo Driver will not be dis-
abled and operation will continue.

■ Servo Driver Communication Error
When during start-up or operation the MC Unit detects an error in the commu-
nication interface to the Servo Driver, the AXISSTATUS bit 2 is set and a
motion error is generated (if ERRORMASK bit 2 is set).
When the interface to the Servo Driver is lost, the following data and opera-
tions are invalid and therefore should not be used:

• Servo Driver analog monitor signals (AIN0, AIN1, AIN2 and AIN3)
• Servo Driver digital inputs (inputs 16 to 31)
• Commands DRV_READ and DRV_WRITE (will give BASIC error)
• Commands DRV_RESET and DRV_CLEAR

Although the MC Unit will attempt to re-establish the communication after
detecting the error during operation, it is strongly advisable to put the system
in a fail-safe halt.
When the communication is re-established, the user has the possibility to exe-
cute the DRV_RESET or DRV_CLEAR command to clear the error. However,
if the communication is still down, this will hang the program task.

Run-time BASIC Errors Run-time BASIC errors will stop the program or will go into the error routine as
defined by BASICERROR. The following parameters are relevant when
checking a run-time error.

The table below shows a list of the different types of BASIC run-time errors
which are detected.

Parameter Description

BASICERROR The BASICERROR command traps the error and allows the
control of the program to go to an error handling routine

ERROR_LINE The ERROR_LINE parameter which shows which line in the
program has encountered the error.

RUN_ERROR The RUN_ERROR shows the identity number of the actual
error.

Error No. Message Displayed Error No. Message Displayed

1 Command not recognized 42 UNTIL without previous REPEAT

2 Invalid transfer type 43 Variable expected

3 Error programming Flash 44 TO expected after FOR

4 Operand expected 45 Too many nested FOR/NEXT

5 Assignment expected 46 NEXT without FOR

6 QUOTES expected 47 UNTIL/IDLE expected after WAIT

7 Stack overflow 48 GOTO/GOSUB expected

8 Too many named variables 49 Too many nested GOSUB

9 Divide by zero 50 RETURN without GOSUB

10 Extra characters at end of line 51 LABEL must be at start of line

11] expected in PRINT 52 Cannot nest one line IF commands

12 Cannot modify a special program 53 Label not found

13 THEN expected in IF/ELSEIF 54 LINE NUMBER cannot have decimal point

224

Error Handling Section 8-2

Host Link Master For the Host Link master protocol, any error with communication can be read
from the status represented by the HLM_STATUS parameter. In the process
of sending a Host Link command and receiving a response several problems
may occur:
1. The slave detects an error within the command and will send a corre-

sponding end code indication.
2. The slave cannot decode the command header code and sends a IC re-

sponse.
3. The master detects an error within the response. The corresponding end

code will be defined in the status.

14 Error erasing Flash 58 Program already exists

15 Start of expression expected 59 Process already selected

16) expected 60 Duplicate axes not permitted

17 , expected 61 PLC type is invalid

18 Command line broken by ESC 62 Evaluation error

19 Parameter out of range 63 Reserved keyword not available on this control-
ler

20 No process available 64 VARIABLE not found

21 Value is read only 65 Table index range error

22 Modifier not allowed 66 Table is full

24 Command is command line only 67 Invalid line number

25 Command runtime only 68 String exceeds permitted length

26 LABEL expected 70 Value is incorrect

27 Program not found 71 Invalid I/O channel

28 Duplicate label 72 Value cannot be set.

29 Program is locked 73 Directory not locked

30 Program(s) running 74 Directory already locked

31 Program stopped 75 Program not running on this process

32 Cannot select program 76 Program not running

33 No program selected 77 Program not paused on this process

34 No more programs available 78 Program not paused

35 Out of memory 79 Command not allowed when running Motion
Perfect

36 No code available to run 80 Directory structure invalid

37 Command out of context 81 Directory is locked

38 Too many nested structures 82 Cannot edit program

39 Structure nesting error 83 Too many nested OPERANDS

40 ELSE/ELSEIF/ENDIF without previous IF 84 Cannot reset when drive servo on

41 WEND without previous WHILE 86 Drive interface requires re-power up

56 Invalid use of $ 89 Network timeout

57 VR(x) expected 92 Invalid program name

Error No. Message Displayed Error No. Message Displayed

225

Error Handling Section 8-2

4. The timeout time has elapsed for the master.

If no error did occur the HLM_STATUS will have value 0. In case of a non-
zero value, any appropriate action such as a re-try or emergency stop needs
to be programmed in the user BASIC program.

8-2-2 Servo Driver Alarms
The Servo Driver Front Panel Display Area will display if an alarm is gener-
ated in the Servo Driver. The display will display an A.❏❏ number on screen.

Alarm Table The Servo Driver alarms related to the option boards such as the MCW151
are given in the following table. Refer to the OMNUC W-series user’s manual
(I531) for specific details on other alarms and how to resolve them.

Alarm Description

■ A.E0
A.E0: No MC Unit

Display and Outputs

Note OFF: Output transistor is OFF (alarm state). ON: Output transistor is ON.

Status and Remedy for Alarm

■ A.E1
A.E1: MC Unit Timeout

HLM_STATUS status bits

9 8 7 0

End code (case 1 or case 3)

Timeout error (case 4)

Command not recognized (case 2)

Display Error Description

A.❏❏ See Servo Driver manual. -

A.E0 MC Unit Initiation Error No MC unit has been mounted.

A.E1 MC Unit Timeout Error No response from the MC Unit.

A.E2 WDC Error of MC Unit There is an error in the MC Unit
watchdog counter.

A.E7 MC Unit Detection Error No MC Unit has been mounted.

Alarm Outputs

Alarm Code Outputs ALM Output

ALO1 ALO2 ALO3

OFF ON ON OFF

Cause Remedy

A The MC Unit is defective. Replace the MC Unit

AAt power on

226

Error Handling Section 8-2

Display and Outputs

Note OFF: Output transistor is OFF (alarm state). ON: Output transistor is ON.

Status and Remedy for Alarm

■ A.E2
A.E2: WDC Error of MC Unit

Display and Outputs

Note OFF: Output transistor is OFF (alarm state). ON: Output transistor is ON.

Status and Remedy for Alarm

■ A.E7
A.E7: MC Unit Detection Error when Servo Driver is turned ON.
A.E7 occurs when Servo Driver is used after disconnection of MC Unit without
clearing the unit detection.

Display and Outputs

Note OFF: Output transistor is OFF (alarm state). ON: Output transistor is ON.

Alarm Outputs

Alarm Code Outputs ALM Output

ALO1 ALO2 ALO3

OFF ON ON OFF

Cause Remedy

A The MC Unit is defective. Replace the MC Unit

AAt power on

Alarm Outputs

Alarm Code Outputs ALM Output

ALO1 ALO2 ALO3

OFF ON ON OFF

Cause Remedy

A The MC Unit is defective. Replace the MC Unit

AAt power on

Alarm Outputs

Alarm Code Outputs ALM Output

ALO1 ALO2 ALO3

OFF ON ON OFF

227

Problems and Countermeasures Section 8-3

Status and Remedy for Alarm

8-3 Problems and Countermeasures
8-3-1 General Problem Solving

The following table shows possible problems which may occur and the possi-
ble solution.

Cause Remedy

A The MC Unit is not mounted properly. Check that MC Unit mounted cor-
rectly.

B The MC Unit is not mounted. Execute Fn014 (option unit detection
result clear) and then cycle the power.

A,BMC Unit detection error

No. Problem Probable causes Items to check Remedy

1 None of the MC
Unit’s indicators
are lit when the
power is turned
ON.

Power supply lines are wired
incorrectly.

Check the power supply wiring. Correct the power supply wir-
ing.

2 The power supply voltage is
low.

Check the power supply volt-
age.

Check the power supply
capacity and correct the
power supply.

3 The power supply is defective. Check the power supply. Replace the power supply.

4 None of the
Servo Driver’s
indicators are lit.

Power supply lines are wired
incorrectly.

Check the power supply wiring. Correct the power supply wir-
ing.

5 The power supply voltage is
low.

Check the power supply volt-
age.

Check the power supply
capacity and correct the
power supply.

6 The power supply is defective. Check the power supply. Replace the power supply.

7 Motion Perfect
cannot connect
to the MC Unit.

Serial communications cable is
not connected properly.

Check the cable connection and
wiring.

Correct the cable wiring.
Replace cable if necessary.

8 Motion Perfect serial communi-
cations settings are different
from the MC Unit settings.

Check Motion Perfect settings. Correct the settings or set the
settings to default and reset
the MC Unit. Default settings
of the Unit is 9600 baud,
7 data bits, even parity and
two stop bits.

9 A program is running which is
printing to the port and interfer-
ing Motion Perfect’s protocol.

Check the MC Unit by using a
VT100 Terminal.

Stop the program (verify if it
is safe to do so) by giving
command HALT or STOP.

10 The MC Unit is defective --- Replace the MC Unit.

11 Driver cannot be
enabled.

The MC Unit is not operating. Is the RUN indicator lit? Check No. 1

12 The MC Unit is indicating a
motion error has occurred.

Check the cause of the problem
with the AXISSTATUS parame-
ter.

13 The communication between
the MC Unit and Servo Driver is
malfunctioning.

Check both the MC Unit and
Servo Driver if they indicate a
communication error.

If there is an error, try to find
the cause and cycle power of
system.

14 A Servo Driver alarm has been
generated.

Check the contents of the Servo
Driver alarm.

If there is an alarm, follow the
instructions.

15 The MC Unit is defective. --- Replace the MC Unit.

228

Problems and Countermeasures Section 8-3

16 Motor is not turn-
ing.

The Servo Driver is not
enabled.

Check the MC Unit to see
whether the Driver is enabled
and the servo loop is active
(WDOG and SERVO parame-
ters).
Check whether the Servo Driver
is operating.

Correct the MC Unit settings.
Correct the Servo Driver
operation.

17 The communication between
the MC Unit and Servo Driver is
malfunctioning.

Check both the MC Unit and
Servo Driver if they indicate a
communication error.

If there is an error, try to find
the cause and cycle power of
system.

18 The FWD or REV limit switch
are set for the Servo Driver or
MC Unit.

Check the limit switch inputs. Turn OFF the Servo Driver
run prohibit input.
Make the setting so that the
Servo Driver run prohibit
inputs will not be used.

19 The Servo Driver is not in the
correct (speed control) mode
(and is not receiving MC Unit
speed reference).

Check the Servo Driver set-
tings.

Correct the Servo Driver set-
tings.

20 The mechanical axis is locked. Check whether there is a
mechanical limit or lock in
effect.

Manually release the
mechanical lock.

21 The MC Unit is defective. --- Replace the MC Unit.

22 Rotation is
reversed.

The Servo Driver is set for
reverse rotation.

Check whether the Servo Driver
is set for reverse rotation by jog-
ging.

Correct the setting for the
direction of Servo Driver rota-
tion.

23 The PP_STEP parameter set-
ting is set for reverse rotation.

Check whether the parameter is
set for reverse rotation (is nega-
tive).

Correct the parameter value.

24 There are
unusual noises.

The machinery is vibrating. Check for foreign objects in the
machinery’s moving parts, and
inspect for damage, deforma-
tion, and looseness.

Make any necessary repairs.

25 The speed loop gain is insuffi-
cient. (The gain is too high.)

--- Perform autotuning.
Manually adjust (decrease)
the gain.

26 The wrong Servomotor is
selected (so it cannot be
adjusted).

Check the torque and inertia
ratings and select another Ser-
vomotor.

Change to a suitable Servo-
motor.

27 There is eccentricity in the cou-
plings connecting the Servomo-
tor axis and the mechanical
system.

--- Adjust the mounting of the
Servomotor and machinery.

No. Problem Probable causes Items to check Remedy

229

Problems and Countermeasures Section 8-3

28 Motor rotation is
unstable.

The parameters are set incor-
rectly.

Check the MC Unit parameters
with Motion Perfect.

Set the parameters correctly
and modify the initialisation
program accordingly.

29 The Servo Motor power lines
and encoder lines are wired
incorrectly.

Check the Servo Motor power
lines and encoder lines.

Correct the wiring.

30 There is eccentricity in the cou-
plings connecting the Servomo-
tor axis and the mechanical
system. There may be loose
screws or load torque fluctua-
tion due to the meshing of pul-
ley gears.

Check the machinery. Try turn-
ing the motor with no load (i.e.,
with the machinery removed
from the coupling).

Adjust the machinery.

31 The gain adjustment is insuffi-
cient.

--- Execute Servomotor autotun-
ing.
Manually adjust the Servo-
motor gain.
Adjust the servo control
parameters with Motion Per-
fect.

32 The wrong Servomotor is
selected (so it cannot be
adjusted).

Check the torque and inertia
ratings and select another Ser-
vomotor.

Change to a suitable Servo-
motor.

33 The Servomotor bearings are
damaged.

Turn OFF the Servo Driver
power. If the Servomotor has a
brake, turn ON the brake power
supply and release the brake,
and then manually turn the
motor’s output axis with the
motor’s power line discon-
nected (because the dynamic
brake may be applied).

Replace the Servomotor.

34 The Servomotor windings are
disconnected.

With a tester, check resistance
between the Servomotor’s U, V
and W power lines. There
should be a proper balance
between the line resistances.

Replace the Servomotor.

35 Vibration is
occurring at the
same frequency
as the application
frequency.

Inductive noise is being gener-
ated.

Check whether the Servo Driver
control signals are too long.
Check whether the control sig-
nal lines and power lines are
bundled together.

Shorten the control signals.
Separate the control signal
lines and the power lines.
Use a low-impedance power
supply for the control signal
lines.

36 The control signals are not
properly grounded.

Check whether the control sig-
nal shield is properly grounded
at the Servo Driver.
Check whether the control sig-
nal lines are in contact with
ground.

Correct the wiring.

37 Twisted-pair or shielded cable
is not being used between the
MC Unit and other devices.

Check whether twisted-pair
cables are used for the encoder
signals and speed references,
and whether the cables are
shielded.

Use twisted-pair and shielded
cable as in the wiring exam-
ples.

No. Problem Probable causes Items to check Remedy

230

Problems and Countermeasures Section 8-3

8-3-2 DeviceNet Slave Problem Solving
Red Indicator (ON or
Flashing)

Use the following table to troubleshoot in a Slave that has a red indicator that
is ON or flashing.

38 The motor axis is
vibrating
unsteadily.

The gain adjustment is insuffi-
cient. (The gain is too low.)

--- Perform autotuning.
Manually adjust (increase)
the gain.

39 The gain cannot be adjusted
because the mechanical rigidity
is too weak.

This particularly tends to occur
in systems with vertical axes,
scalar robots, palletisers, and
so on, which place a torsion
load on the axes.

Increase the mechanical rgid-
ity.
Re-adjust the gain.

40 The mechanical structure is
producing stick slip (high vis-
cosity statical friction).

--- Perform autotuning.
Manually adjust the gain.

41 The wrong Servomotor is
selected (so it cannot be
adjusted).

Check the torque and inertia
ratings and select another Ser-
vomotor.

Change to a suitable Servo-
motor.

42 The Servomotor or Servo Driver
is defective.

--- Replace the Servomotor or
the Servo Driver.

43 There is slip-
page in position-
ing.

The slippage is not constant.
Malfunction due to noise.

Is shielded cable being used? Use shielded cable.

44 The shield is not properly
grounded at the Servo Driver.

Check the ground wiring. Correct the wiring.

45 The MC Unit’s output power
supply is not separated from
other power supplies.

Check whether the MC Unit’s
output power supply is sepa-
rated from other power sup-
plies.

Separate the MC output sup-
ply from other power sup-
plies.

46 Install a noise filter at the pri-
mary side of the MC Unit’s
output power supply.

47 Ground the MC Unit’s output
power supply

48 Twisted-pair cable is not being
used for the encoder in- or out-
puts.

Check whether twisted-pair
cable is being used for the
encoder wires. (The connected
voltage is 0 V or 5/24 VDC.)

Use twisted-pair cable for
pulse outputs.

The encoder and other control
wires are not separated from
other power lines.

Check whether the cable is sep-
arated from other power lines.

Separate the cable from
other power lines.

53 There is malfunctioning due to
noise from a welding machine,
inverter, etc.

Check whether there is a device
such as a welding machine or
inverter nearby.

Separate the Unit from the
noise source.

54 There is slippage in the
mechanical system.

Check for slippage by marking
the mechanical connections.

Tighten the connections.

No. Problem Probable causes Items to check Remedy

Error Probable cause

The MS indicator is a constant red. The Slave Unit is faulty. Replace the Unit.

The MS indicator is flashing red. • Check that the Slave’s baud rate setting is correct. The setting must be
125 kbps, 250 kbps, or 500 kbps. Restart the Unit after changing the
baud rate.

• Replace the Unit if the MS indicator continues to flash red even though
the baud rate setting is correct.

231

Problems and Countermeasures Section 8-3

Trouble Adding a Slave to
the Network

Use the following table to troubleshoot problems in adding a Slave to the net-
work.

After the MS indicator turns green, the NS
indicator does not flash green - it turns red
immediately.

Restart the faulty Slave Unit after checking the following points.
• Make sure that the Master and Slaves baud rate settings all match. If

they do not match, set all of the baud rates to the same value.
• Check for a node address duplication. If necessary change the node

address settings so that each node has a unique number.
• See the troubleshooting steps below under the error heading: “The NS

indicator lights green but turns red after a short time.”
• Check whether all of the Slaves’ settings are correct.
• If a particular Slave’s NS indicator is always red, replace that Slave.

The NS indicator lights green but turns red
after a short time
or
The NS indicator lights green but starts
flashing red after a short time.

• Restart the faulty Slave Unit after checking the following points.
• Make sure that there are 121- Terminating Resistors connected at

both ends of the trunk line. Connect 121- Terminating Resistors if the
wrong resistance is being used.

• Check whether all of the Slaves’ settings are correct.
• Check whether the communications cables are connected properly.
• Check whether the power supply is set correctly.
• Check all the nodes for broken wires in the communications and power

supply cables attached to the connectors.
• Check whether power is correctly supplied to the network.
• If there is nearby equipment that generates electrical noise, take steps to

shield the Master, Slaves, and communications cables from the noise.
• If an error has occurred with an OMRON Master Unit, refer to the Master

Unit’s Operation Manual. If an error has occurred in a Master supplied by
another maker, refer to the relevant operation manual.

• If a particular Slave’s NS indicator is always red, replace that Slave.

Error Probable cause

Ω
Ω

Error Probable cause

The NS indicator remains OFF. • Check if the baud rate of the Master Unit coincides with that of the Slave
Unit. If the baud rate are different, correct the baud rate of the Slave Unit.

• Check that the Slave’s connector is connected correctly.
• Check whether the communications power supply is supplying 24 VDC.
• Make sure that the Master is operating properly.

When using an OMRON Master, refer to the Master Unit’s Operation
Manual. When using another company’s Master Unit, refer to that Mas-
ter’s user’s manual.

• Check whether the communications cables are connected properly.
• Check whether the power supply is set correctly.
• Check for broken wires in the communications and power supply cables

attached to the connectors.

232

Problems and Countermeasures Section 8-3

The NS indicator continues to flash green • Make sure that the Master is operating properly.
When using an OMRON Master, refer to the Master Unit’s Operation
Manual. When using another company’s Master Unit, refer to that Mas-
ter’s user’s manual.

• Check whether the Slave is registered in the Master’s scan list.
If an OMRON Master Unit is being used, a new Slave cannot be added
to the network if the Master is operating with the scan list enabled. First
perform the clear scan list operation, check that the Slave has joined the
network, and then perform the create scan list operation.
If another company’s Master Unit is being used, refer to that Master’s
operation manual for details on adding a new Slave to its scan list.

The NS Indicator alternates between
being green and flashing green, or alter-
nates between flashing red and flashing
green.

• When using an OMRON Master, check the following items and perform
the necessary error processing steps.
-> Register the scan list again.

(After performing the clear scan list operation, check that the Slave
has joined the network and perform the create scan list operation.)

-> Make sure that the Slave’s allocated I/O area does not overlap with
that of another Slave. If there is an overlap, change the Slave’s node
address to eliminate it.

-> Make sure the the allocated I/O area does not exceed the allowed
range. If the I/O area exceeds this range, change the Slave’s node
address to correct the problem.

• When using another company’s Master Unit, check that the I/O size reg-
istered in the Master’s scan list matches the actual I/O size of the Slave.
The I/O size is recorded in the following attributes of the connection
object:

Interface 2 (Polled I/O Connection)
Produced Connection size (Input size)
Consumed Connection size (Output size)

and:
Interface 3 (Bit strobed I/O Connection)

Produced Connection size (Input size)
Refer to the Master’s manual for details on registering the values.

Error Probable cause

233

SECTION 9
Maintenance and Inspection

This section explains the maintenance and inspection procedures that must be followed to keep the MC Unit operating in
optimum condition. It also includes proper procedures when replacing an MC Unit.

9-1 Routine Inspections. 234
9-2 Replacing a MC Unit . 235

234

Routine Inspections Section 9-1

9-1 Routine Inspections
In order for your MC Unit to continue operating at optimum condition, periodic
inspections are necessary. The main components of the Unit are semicon-
ductors and have a long service life, but depending on the operating environ-
ment, there may be more or less deterioration of these and other parts. A
standard inspection schedule is once every six months to one year. More fre-
quent inspections may be advisable depending on the operating environment.
Maintain the inspection schedule once it has been set.

Inspection Points Check to be sure that the power supply, ambient temperature, humidity, and
other specifications are within the specifications. Be sure that there are no
loose screws and that all battery and cable connections are secure. Clean
any dust or dirt that has accumulated.

Item Inspection points Criteria Remarks

I/O Power
Supply

Measure the voltage variations at
the I/O power supply terminal block.
Do they meet the standards?

24 VDC: 20.4 to 26.4 VDC With a voltage tester, check
between the terminals and make
sure that the power supply falls
within the acceptable range.

Installation
and wiring

Is the MC Unit securely mounted? There must be looseness. With a Phillips screwdriver, tighten
all mounting screws.

Are the cable connectors properly
inserted and locked?

Carefully insert and lock all cable
connectors.

Are there any loose screws in the
external wiring?

With a Phillips screwdriver, tighten
all screws in the external wiring.

Are any crimp terminals for external
wiring too close together?

There must be sufficient dis-
tance between them.

Do a visual check and separate the
terminals as required.

Are any external cables discon-
nected?

There must be no external
abnormalities.

Do a visual check and connect or
replace cables as required.

Environment
conditions

Is the ambient temperature within
the acceptable range? (When used
in a panel, the ambient temperature
inside the panel must be checked.)

0 to 55°C With a thermometer, check the
ambient temperature inside the
panel and make sure that it falls
within the acceptable range.

Is the ambient humidity within the
acceptable range? (When used in a
panel, the ambient temperature
inside the panel must be checked.)

10% to 90% RH (with no con-
densation)

With a hydroscope, check the
ambient humidity inside the panel
and make sure that it falls within the
acceptable range.

Is the Unit exposed to direct sun-
light?

It must not be exposed to
direct sunlight.

Shield the Unit from direct sunlight.

Is there any accumulation of dust
(especially iron dust) or salts?

There must be none of these
present.

Remove any accumulation of dust
or salts and protect against them.

Is the Unit exposed to any spray of
water, oil, or chemicals?

It must not be exposed to any
of these.

Protect the Unit from water, oil, and
chemicals.

Is the location subject to corrosive
or flammable gases?

The Unit must not be exposed
to these.

Check for smells or use a gas sen-
sor.

Is the location subject to shock or
vibration?

The amount of shock or vibra-
tion must be within the
acceptable ranges given in
the specifications.

Install a cushion or other device to
reduce shock and vibration.

Is the location near any source of
noise?

There must be no noise. Remove the Unit from the noise
source or apply countermeasures.

235

Replacing a MC Unit Section 9-2

Required Tools The following tools, materials, and equipment are required when performing
an inspection.

• Phillips screwdriver
• Voltage tester or digital voltage meter
• Industrial alcohol and a clean cotton cloth
• Synchroscope
• Oscilloscope
• Thermometer
• Hydrometer

9-2 Replacing a MC Unit
The application and communication network are affected when (part of) a Unit
is faulty, so a faulty Unit must be repaired or replaced quickly. We recommend
having a spare Unit available to restore operation as quickly as possible.

Precautions Observe the following precautions when replacing a faulty Unit.
• After replacement make sure that there are no errors with the new Unit.
• When returning a faulty Unit for repair, make a detailed record of the

problem and return the Unit to your nearest OMRON office or sales repre-
sentative.

• If there is a faulty contact, put some industrial alcohol on a clean cotton
cloth and wipe the surface.

Use the following procedure when it is necessary to replace an MC Unit.

1,2,3... 1. Make a note of the switch settings of the MC Unit to be replaced.
2. Use Motion Perfect to check the project of the Unit and to make a local

copy saved on the Personal Computer.
3. Turn OFF the system power supply.
4. Replace the MC Unit, and reconnect the wiring as before.
5. Set the switch settings for the MC Unit.
6. Turn ON the system power supply.
7. Clear all the programs in the MC Unit.
8. Download all of the programs to the MC Unit, save the programs in flash

memory and set the correct program to run at power up.

Installation
and wiring

Is the MC Unit securely mounted? There must be looseness. With a Phillips screwdriver, tighten
all mounting screws.

Are the cable connectors properly
inserted and locked?

Carefully insert and lock all cable
connectors.

Are there any loose screws in the
external wiring?

With a Phillips screwdriver, tighten
all screws in the external wiring.

Are any crimp terminals for external
wiring too close together?

There must be sufficient dis-
tance between them.

Do a visual check and separate the
terminals as required.

Are any external cables discon-
nected?

There must be no external
abnormalities.

Do a visual check and connect or
replace cables as required.

Item Inspection points Criteria Remarks

237

Appendix A
Servo Driver Parameter List

The following Servo Driver parameter settings are required for operation with the MC Unit. Refer to the
OMNUC W-series user’s manual (I531) for details.

Param-
eter No.

Parameter Name Required
Setting

Explanation Remark

Pn000.1 Control Mode Selection 0 Speed Control

9 Torque / Speed Control

Pn002.0 Torque command input
(during speed control)

0 Not used

1 Use TREF as analog torque limit
input

Pn002.1 Speed command input
(during torque control)

0 Not used

1 Use (S)REF as analog speed limit
input

Pn003.0 Monitor 1 2 Torque Reference Monitor

Pn003.1 Monitor 2 0 Motor Speed Monitor

Pn50A.0 Input Signal Allocation
Mode

1 User-defined

Pn50A.1 RUN Signal Input Alloca-
tion

8 Always disabled Switch is controlled by the MC
Unit.

Pn50A.2 MING Signal Input Allo-
cation

8 Always disabled Switch is controlled by the MC
Unit.

Pn50A.3 POT Signal Input Alloca-
tion

2 Assigned to CN1, pin 42 (valid for
low input)

8 Always disabled

Pn50B.0 NOT Signal Input Alloca-
tion

3 Assigned to CN1, pin 43 (valid for
low input)

8 Always disabled

Pn50B.1 RESET Signal Input Allo-
cation

8 Always disabled Switch is controlled by the MC
Unit.

Pn50C.3 TVSEL Signal Input Allo-
cation

8 Always disabled Switch is controlled by the MC
Unit.

Pn511.0 - 8 Always disabled

Pn511.1 - 8 Always disabled

Pn511.2 - 8 Always disabled

Pn511.3 /EXT3 (Print Registra-
tion) Signal Input Alloca-
tion

6 Assigned to CN1, pin 46 (valid for
low input)

Print registration on rising
edge.

F Assigned to CN1, pin 46 (valid for
high input)

Print registration on falling
edge.

239

Appendix B
Device Protocol (MCW151-DRT-E only)

Object Mounting
Identity Object (0x01)

General data Compatible DeviceNet
specifications

Volume I-Release 1.3
Volume II-Release 1.3

Vendor name OMRON Corporation Vendor ID = 47

Device profile name Slave: Generic Profile number = 00

Product catalog number I203 ---

Product revision 3.2 ---

Physical conformance
data

Network current consumption 30 mA max. at 24 VDC ---

Physical layer insulation Yes ---

Supported LEDs Module Network ---

MAC ID setting DIP switch ---

Default MAC ID 0 ---

Baud rate setting DIP switch ---

Supported baud rates 125 kbps, 250 kbps and 500 kbps ---

Communications data Predefined Master/Slave
connection set

Group 2 only server ---

Dynamic connection support
(UCMM)

No ---

Explicit message fragmentation
support

Yes ---

Object class Attribute Not supported

Service Not supported

Item ID content Get
(read)

Set
(write)

Value

Object instance Attribute 1 Vendor Yes No 47

2 Product Type Yes No 0

3 Product Code Yes No 900

4 Revision Yes No 3.2

5 Status (bits supported) Yes No bit 0 only

6 Serial number Yes No Unique for each Unit

7 Product name Yes No R88A-MCW151-
DRT-E

8 State Yes No ---

Item DeviceNet service Parameter option

Object instance Service 05 Reset No

0E Get_Attribute_Single

240

Device Protocol (MCW151-DRT-E only) Appendix B

Message Router Object (0x02)

DeviceNet Object (0x03)

Assembly Object (0x04)

Connection Object (0x05)

Object class Attribute Not supported

Service Not supported

Object instance Attribute Not supported

Service Not supported

Vendor specification addition No

Object class Attribute Not supported

Service Not supported

Item ID content Get
(read)

Set
(write)

Value

Object instance Attribute 1 MAC ID Yes No ---

2 Baud rate Yes No ---

3 BOI Yes No ---

4 Bus Off counter Yes No ---

5 Allocation information Yes No ---

6 MAC ID switch changed No No ---

7 Baud rate switch changed No No ---

8 MAC ID switch value No No ---

9 Baud rate switch value No No ---

Item DeviceNet service Parameter option

Object instance Service 0E Get_Attribute_Single No

4B Allocate_Master/Slave_Connection Set No

4C Release_Master/Slave_Connection_Set

Object class Attribute Not supported

Service Not supported

Item ID content Get
(read)

Set
(write)

Value

Object instance 100 Attribute 3 Data Yes No ---

Item DeviceNet service Parameter option

Object instance Service 0E Get_Attribute_Single No

Item ID content Get
(read)

Set
(write)

Value

Object instance 101 Attribute 3 Data Yes Yes ---

Item DeviceNet service Parameter option

Object instance Service 0E Get_Attribute_Single No

10 Set_Attribute_Single No

Object class Attribute Not supported

Service Not supported

Max. number of active connections 1

241

Device Protocol (MCW151-DRT-E only) Appendix B

Item Section Information Max. number of instances

Object instance 1 Attribute Instance type Explicit Message 1

Production trigger Cyclic ---

Transport type Server

Transport class 3

Item ID content Get
(read)

Set
(write)

Value

Object instance 1 Attribute 1 State Yes No ---

2 Instance type Yes No 0000 (hexadecimal)

3 Transport class trigger Yes No 83 (hexadecimal)

4 Produced connection ID Yes No ---

5 Consumed connection ID Yes No ---

6 Initial comm. characteristics Yes No 21 (hexadecimal)

7 Produced connection size Yes No 00FE (hexadecimal)

8 Consumed connection size Yes No 00FE (hexadecimal)

9 Expected packet rate Yes Yes ---

12 Watchdog time-out action Yes No 01 (hexadecimal)

13 Produced connection path length Yes No 0000 (hexadecimal)

14 Produced connection path Yes No ---

15 Consumed connection path length Yes No 0000 (hexadecimal)

16 Consumed connection path Yes No ---

17 Production inhibit time Yes No 0000 (hexadecimal)

Item DeviceNet service Parameter option

Object instance 1 Service 05 Reset No

0E Get_Attribute_Single No

10 Set_Attribute_Single No

Item Section Information Max. number of instances

Object instance 2 Attribute Instance type Polled I/O 1

Production trigger Cyclic ---

Transport type Server

Transport class 2

242

Device Protocol (MCW151-DRT-E only) Appendix B

Note The number of bytes for the consumed and the produced size depends on the
I/O Slave Messaging mode of the MC Unit. The mode set by pin 7 of the
DeviceNet switch settings.

MCW151 Object (0x8A)

Item ID content Get
(read)

Set
(write)

Value

Object instance 2 Attribute 1 State Yes No ---

2 Instance type Yes No 0100 (hexadecimal)

3 Transport class trigger Yes No 82 (hexadecimal)

4 Produced connection ID Yes No ---

5 Consumed connection ID Yes No ---

6 Initial comm. characteristics Yes No 01 (hexadecimal)

7 Produced connection size Yes No See note

8 Consumed connection size Yes No See note

9 Expected packet rate Yes Yes ---

12 Watchdog time-out action Yes No 0000 (hexadecimal)

13 Produced connection path length Yes No 0000 (hexadecimal)

14 Produced connection path Yes No No

15 Consumed connection path length Yes No 0000 (hexadecimal)

16 Consumed connection path Yes No No

17 Production inhibit time Yes No 0000 (hexadecimal)

Item DeviceNet service Parameter option

Object instance 2 Service 05 Reset No

0E Get_Attribute_Single No

10 Set_Attribute_Single No

Pin 7 I/O Slave
Messaging Mode

Connection size

OFF Mode I Produced connection size: Read area bytes (default
0004 (hexadecimal))
Consumed connection size: Write area bytes
(default 0004 (hexadecimal))

ON Mode II Produced connection size: Read area bytes (default
0008 (hexadecimal))
Consumed connection size: Write area bytes
(default 0008 (hexadecimal))

Object class Attribute Not supported

Service Not supported

Item ID content Get
(read)

Set
(write)

Value

Object instance 1 Attribute Yes Yes Need to perform ser-
vices on.

243

Device Protocol (MCW151-DRT-E only) Appendix B

Item DeviceNet service Parameter option

Object instance 1 Service 05 Reset No

32 Table_Memory_Read_3W

33 VR_Memory_Read_3W

34 VR_Memory_Read_1W

35 Table_Memory_Write_3W

36 VR_Memory_Write_3W

37 VR_Memory_Write_1W

245

Appendix C
Programming Examples

Master Shell Program
Good programming practice requires to have a master shell program. A master shell program can be used for
most applications and will perform the following tasks:

• Set-up the MC Unit and the Servo Driver
• Control the application program tasks
• Continuously monitoring the status of the system.

Please find below an example of such a master shell program. Be sure to modify it to the specific application
and to check proper operation for all possible conditions before relying on its safety operation. This program
should be set to run at power-up at low priority (task 1).
 '##
 ' Master shell program
 ' Tasks: 1. Set-up MC Unit and Servo Driver
 ' 2. Control application program tasks
 ' 3. Continuous error checking
 ' Inputs: IN(6) start_machine (active high)
 ' Start application
 ' IN(7) e_stop (active low)
 ' Emergency stop
 ' (IN(5)) resetting (active high)
 ' Reset motion error
 ' Main variables used:
 ' Program status VR(111)
 ' 0 Initialising system
 ' 1 Motion & programs stopped
 ' 2 Normal running
 ' 3 Error or emergency stop

 ' Execution: Run program on priority 1 (lowest priority)

 '##

 ' Initialisation of variables
 '---
 GOSUB init_vars

 ' Initialisation of serial ports
 '---
 GOSUB init_serial

 ' Initialisation axis parameters
 '---
 RUN "STARTUP",3
 WA(5)

 ' Wait until process is stopped
 WAIT UNTIL PROC_STATUS PROC(3) = 0

 ' Set ERRORMASK parameter
 '---
 ' Following statuses will result in Motion Error:
 ' (bit 2) Servo Driver Communication Error
 ' (bit 3) Servo Driver Alarm
 ' (bit 8) Following Error Limit
 BASE(0)
 ERRORMASK = 268

 ' Initialisation Servo Driver
 '---
 ' If no communication error
 IF (AXISSTATUS AND 4) = 0 THEN
 ' Set Servo Driver parameters
 RUN "INIT_DRIVER",3
 WA(5)

246

Programming Examples Appendix C

 ' Wait until process is stopped
 WAIT UNTIL PROC_STATUS PROC(3) = 0

 ' Possible reset of system
 IF VR(force_reset) = TRUE THEN
 WA(100)
 DRV_RESET
 WA(100)
 ENDIF
 ELSE
 GOTO m_error
 ENDIF

start:
 'Stops all movements and programs
 '---
 GOSUB stop_all

 ' Program status: Motion & programs stopped
 VR(programstatus) = 1
 WA(10)

 'Necessary condition to start operation
 '---
 WAIT UNTIL IN(start_machine)=1

 'Start the application program(s)
 RUN "application",3
 '...
 WA(10)

 ' Program status: Normal running
 VR(programstatus) = 2

 BASE(0)

 'Main loop
 '--
loop:

 ' Check for motion error or Servo Driver OFF
 IF MOTION_ERROR THEN
 '...
 GOTO m_error
 ENDIF

 ' Check for emergency stop
 IF IN(e_stop) = 0 THEN
 '...
 GOTO e_stop
 ENDIF

 GOTO loop

'------------------------------
'SUBROUTINE AREA
'------------------------------

'Variable initialisation
'------------------------------
init_vars:
 'Init local variables
 programstatus = 111
 alarm_mcw151 = 112
 alarm_servodriver = 113
 force_reset = 114
 '...

 'Init local variables
 ' Program status = Initialising system
 VR(programstatus) = 0
 VR(alarm_mcw151) = 0
 VR(alarm_servodriver) = 0
 VR(force_reset) = 0

247

Programming Examples Appendix C

 '...
 'Init I/O naming
 resetting = 5
 start_machine = 6
 e_stop = 7
 pos_torque = 16
 startup_flag = 18
 servo_alarm_bit = 24
 rdy = 28
 '...
 RETURN

'Serial ports initialisation
'------------------------------
init_serial:
 ' Port 1
 '------------------------------
 baud_rate = 9600
 data_bits = 7
 stop_bits = 2
 parity = 2 ' Even parity
 option = 6 ' Host Link Master
 SETCOM(baud_rate,data_bits,stop_bits,parity,1,option)

 ' Port 2 (MCW151-E only)
 '------------------------------
 baud_rate = 9600
 data_bits = 7
 stop_bits = 2
 parity = 2 ' Even parity
 option = 5 ' Host Link Slave
 SETCOM(baud_rate,data_bits,stop_bits,parity,2,option)

 ' Host Link Slave settings
 '------------------------------
 HLS_NODE = 3
 HLS_MODEL = $FE

 ' Host Link Master settings
 '------------------------------
 HLM_TIMEOUT = 1000

 RETURN

'Motion stop and initialisation
'-------------------------------
stop_all:
 'We store in those variable the cause of the error, if any, for diagnostics
 BASE(0)
 VR(alarm_mcw151)=AXISSTATUS
 VR(alarm_servodriver)=DRV_STATUS

 'Stops all programs
 STOP "application"
 '...

 'Stops all possible moves
 RAPIDSTOP
 WA(200)
 FOR i = 0 TO 2
 BASE(i)
 CANCEL(1)
 CANCEL
 WA(1)
 CANCEL(1)
 WAIT IDLE
 SERVO = OFF
 NEXT i
 BASE(0)

 'Disable the axis
 WDOG = OFF

 'Reset the possible following error
 DATUM(0)

248

Programming Examples Appendix C

 RETURN
'Motion error routine
'-------------------------------
m_error:
 ' Program status: Error or emergency stop
 VR(programstatus) = 3

 ' Stop all movements
 GOSUB stop_all

 ' If Servo Driver comm. error then
 IF AXISSTATUS AND 4 > 0 THEN
 ' Stop all programs (including master shell)
 HALT
 ENDIF

 ' A reset input can be defined to continue operation
 ' WAIT UNTIL IN(resetting)=ON

 ' If Servo Driver Alarm then
 ' IF AXISSTATUS AND 8 > 0 THEN
 ' Clear alarm
 ' DRV_CLEAR
 ' ENDIF

 ' GOTO start
 STOP

'Emergency stop
'-------------------------------
e_stop:
 ' Program status: Error or emergency stop
 VR(programstatus) = 3

 'Stop all movements
 GOSUB stop_all

 WAIT UNTIL IN(e_stop) = 1
 GOTO start

Servo Driver Parameter Setting program
The following program can be used to set the correct Servo Driver settings. Modify the parameters to those
required for the application.
 '##
 ' Servo Driver parameter setting program
 ' Tasks: Set-up Servo Driver parameters
 ' Inputs: None
 ' Outputs: VR(114) Force reset
 ' value = FALSE => power toggle or drv_reset not required
 ' value = TRUE => power toggle or drv_reset required
 '##

 force_reset = 114
 VR(force_reset)=FALSE

 ' Initialisation parameters I (re-start / reset required):

 ' Pn000 Function selection basic switch
 ' Pn000.1 = 0 : Speed Control (selected)
 ' Pn000.1 = 9 : Torque / Speed control
 IF DRV_READ($000) <> $0000 THEN
 DRV_WRITE($000,$0000)
 VR(force_reset) = TRUE
 ENDIF

 ' Pn002 Function selection application switch 2
 ' Pn002.0 = 0 : Torque Limit during speed control not used (selected)
 ' Pn002.0 = 1 : Torque Limit
 ' Pn002.1 = 0 : Speed Limit during torque control not used (selected)
 ' Pn002.1 = 1 : Speed Limit
 IF DRV_READ($002)<>$0000 THEN

249

Programming Examples Appendix C

 DRV_WRITE($002,$0000)
 VR(force_reset) = TRUE
 ENDIF

 ' Pn003 Function selection application switch 3
 ' Pn003.0 = 2 : Analog monitor1 Torque command
 ' Pn003.1 = 0 : Analog monitor1Servomotor rotation speed
 IF DRV_READ($003)<>$0002 THEN
 DRV_WRITE($003,$0002)
 VR(force_reset) = TRUE
 ENDIF

 ' Pn50A Input signal selection 1
 ' Pn50A.0 = 1 : Input Signal Allocation mode user-defined
 ' Pn50A.1 = 8 : RUN Signal Input always disabled
 ' Pn50A.2 = 8 : MING Signal Input always disabled
 ' Pn50A.3 = 2 : POT Signal Input allocated to CN1-42
 IF DRV_READ($50A)<>$2881 THEN
 DRV_WRITE($50A,$2881)
 VR(force_reset) = TRUE
 ENDIF

 ' Pn50B Input signal selection 2
 ' Pn50B.0 = 3 : NOT Signal Input allocated to CN1-43
 ' Pn50B.1 = 8 : RESET Signal Input always disabled
 ' Pn50B.2 = 8 : PCL Signal Input always disabled
 ' Pn50B.3 = 2 : NCL Signal Input always disabled
 IF DRV_READ($50B)<>$8883 THEN
 DRV_WRITE($50B,$8883)
 VR(force_reset) = TRUE
 ENDIF

 ' Pn50C Input signal selection 3
 ' Pn50C.0 = 8 : RDIR Signal Input always disabled
 ' Pn50C.1 = 8 : SPD1 Signal Input always disabled
 ' Pn50C.2 = 8 : SPD2 Signal Input always disabled
 ' Pn50C.3 = 8 : TVSEL Signal Input always disabled
 IF DRV_READ($50C)<>$8888 THEN
 DRV_WRITE($50C,$8888)
 VR(force_reset) = TRUE
 ENDIF

 ' Pn511 Registration Input signal selection
 ' Pn511.0 = 8 : Always disabled
 ' Pn511.1 = 8 : Always disabled
 ' Pn511.2 = 8 : Always disabled
 ' Pn511.3 = 6 : EXT3 (Print Registration) Input allocated
 ' ----------- : to CN1-46 (rising edge) (selected)
 ' Pn511.3 = F : EXT3 (Print Registration) Input allocated
 ' ----------- : to CN1-46 (falling edge)
 IF DRV_READ($511)<>$8888 THEN
 DRV_WRITE($511,$8888)
 VR(force_reset) = TRUE
 ENDIF

 ' Initialisation parameters II (no re-start / reset required):

 ' Pn100 Speed loop gain
 IF DRV_READ($100)<>80 THEN
 DRV_WRITE($100,80)
 ENDIF

 ' Pn101 Speed loop integration constant
 IF DRV_READ($101)<>2000 THEN
 DRV_WRITE($101,2000)
 ENDIF

 ' Pn103 Inertia ratio
 IF DRV_READ($103)<>300 THEN
 DRV_WRITE($103,300)
 ENDIF

250

Programming Examples Appendix C

General Examples
Example 1: Turning an Output ON and OFF Every 100ms
The following code controls output 10 to go on and off every 100 ms.
loop:

OP(10, ON)
WA(100)
OP(10, OFF)
WA(100)
GOTO loop

Example 2: Flashing MC Unit Outputs
The following code will sequentially step through all available outputs on the MC Unit and flash them for 0.5
seconds each
start:

FOR a = 8 TO 13
OP(a, ON)
WA(500)
OP(a, OFF)

NEXT a
GOTO start

Example 3: Positioning a Rotary Table
A rotary table must stop at one of 8 equally spaced positions according to the value of a thumbwheel input
(inputs 4 to 7). The table will not move until a start button is pressed (input 10).
start:

WAIT UNTIL IN(10) = ON
WAIT UNTIL IN(10) = OFF
GOSUB get_tws

MOVEABS(45 * tw_value)
WAIT IDLE
GOTO start

get_tws:
tw_value = IN(4,7)
RETURN

Example 4: Positioning with Product Detection
A ballscrew is required to move forward at a creep speed until it reaches a product, at which point a
microswitch (IN(2)) is turned ON. The ballscrew is stopped immediately, the position at which the product was
sensed is indicated and the ballscrew is returned at a rapid speed back to the start position.
start:

IF (IN(1) = ON) THEN WAIT UNTIL IN(8) = OFF
WAIT UNTIL IN(1) = ON
SPEED = 10
FORWARD
WAIT UNTIL IN(2) = ON

prod_pos = MPOS
CANCEL
WAIT IDLE

PRINT "Product Position : "; prod_pos
SPEED = 100
MOVEABS(0)
WAIT IDLE
GOTO start

251

Programming Examples Appendix C

Example 5: Synchronising Cutter Movement
A flying shear cutter is required to synchronise with a continuously moving web and to cut a roll of paper every
5 m:

• The cutter (axis 0) can move a total of 600 mm. We use a maximum 500 mm of this travel.
• The blade is operated by a solenoid which is switched by digital output 8.
• The blade must be operated mid-way through the cutter motion.
• The cutter must synchronise to cut, and return to its start position all within not more than 80% of the

repeat cycle.
To ensure that speeds and positions of the cutter and paper match during the cut process, the arguments of
the MOVELINK command must be correct. It is normally easiest to consider the acceleration, constant speed
and deceleration phases separately and then combine them as required.
start:

UNITS AXIS(0) = 5000 ’Meters
UNITS AXIS(1) = 5000

loop:
BASE(0)
MOVELINK(0, 4, 0, 0, 1) ’Wait distance
MOVELINK(0.1, 0.2, 0.2, 0, 1) ’Accelerate
MOVELINK(0.3, 0.3, 0, 0, 1) ’Match speed
MOVELINK(0.1, 0.2, 0, 0.2, 1) ’Decelerate

MOVELINK(-0.5, 5, 3, 3, 1) ’Move back
GOTO loop

The middle MOVELINK commands can be done in one move using the following line.
MOVELINK(0.5, 0.7, 0.2, 0.2, 1)

Example 6: Generating Smooth High-speed Profiles
It is often desirable to generate a smooth profiled move for the maximum operational speed in high-speed
machines. An optimal profile for this is a sine squared:

y= mx - n(sin(x))
In this example we work in radians. The axis no. 1 is the master axis.
start:

GOSUB filltable
BASE(0)

loop:
CAMBOX(0,36,1,100,1)
WAIT IDLE
WA(1000)
GOTO loop

filltable:
num_p = 37
scale = 2000
FOR p=0 TO num_p

TABLE(p,((-SIN(PI*2*p/num_p)/(PI*2))+p/num_p)*scale)
NEXT p

RETURN

Example 7: Coordinating Two Moving Objects
Two conveyors run in parallel, conveyor A (axis 0) carries a product that must be transferred into boxes evenly
spaced on conveyor B (external encoder on axis 1). The transfer operation requires the products to be aligned
at the end of the conveyor.

252

Programming Examples Appendix C

A registration process checks the position of the product on the conveyor and calculates the amount that con-
veyor A must be advanced or retarded in order to align with conveyor B. Input 1 indicates that the registration
process has been completed and the correction amount loaded serially into VR(1).

setup:
BASE(0)
CONNECT(1,1)
ADDAX(2)
BASE(2)

loop:
IF IN(1) = ON THEN WAIT UNTIL IN(1) = OFF
WAIT UNTIL IN(1) = ON
correction = VR(1)
MOVE(correction)
WAIT IDLE
GOSUB do_transfer
GOTO loop

do_transfer:
OP(15,ON)
WA(500)
OP(15,OFF)
RETURN

Example 8: Coordinating Motion with Mark Detection
A cyclic cut-to-length operation requires a rolled product to be cut in relation to a printed mark.
The product is nominally 150 mm long and the printed registration mark appears 30 mm from the end of the
product. The product must be stationary when cut, but the draw motion should be one continuous move.
A high-speed optical sensor is connected to the registration input of the feed axis.
loop:

REGIST(3)
DEFPOS(0)
MOVE(150)
WAIT UNTIL MARK
MOVEMODIFY(REG_POS+30)
WAIT IDLE
GOSUB cut_operation
GOTO loop

cut_operation:
’Omitted from this example.
RETURN

Example 9: Host Link Master Program
The following program shows a possible implementation of the Host Link protocol. The user program should
contain a mechanism of error checking and possibly retries.

' Configure serial port 2:
SETCOM(9600,7,2,2,2,6)

' Set timeout time to 500 servo cycles
HLM_TIMEOUT=500

' Define attempt counter
attempt=1

loop:
' Read data (2 words) from the PC CIO/IR area (address 2)

253

Programming Examples Appendix C

' to VR memory (address 0). The PC has Host Link slave node 13.
HLM_READ(2,13,PLC_IR,2,2,MC_VR,0)
GOSUB check_status

PRINT VR(0)[0],VR(1)[0]
STOP

check_status:
VR(250)=HLM_STATUS PORT(2)

IF VR(250)=0 THEN
PRINT "Succeeded"
RETURN

ELSE
PRINT "Failure (";attempt[0];"): ";

IF READ_BIT(9,250) THEN
PRINT "Command not recognized by slave"

ELSE
IF READ_BIT(8,250) THEN

PRINT "Timeout error"
ELSE

PRINT "Received end code: ",HEX(VR(250))
ENDIF

ENDIF

IF attempt=3 THEN
PRINT "Read failed after 3 attempts"
STOP

ENDIF
attempt=attempt+1
GOTO loop

ENDIF

255

Index

A
absolute encoder, 54

absolute moves, 8

acceleration rate, 8

adding axes, 13

ASCII emulation, 205

axis
adding, 13
configuration, 44
demand position, 15
encoder input, 45
encoder output, 45
measured position, 15
repeat distance, 177
servo, 44
status, 121
types, 44
virtual, 45

axis types, 44

B
BASIC

commands, 86
data structures, 87
functions, 86
group structure, 102
I/O access, 50
labels, 88
parameters, 86
statements, 86
variables, 87

BASIC commands, functions and parameters
listed alphabetically, 111
ABS, 114
ACCEL, 8, 115
ACOS, 115
add operator, 111
ADD_DAC, 45, 115
ADDAX, 13, 117
ADDAX_AXIS, 116
AIN, 117
AND, 118
ASIN, 119
ATAN, 119
ATAN2, 119
ATYPE, 44, 119
AUTORUN, 120
AXIS, 86, 120
AXISSTATUS, 121, 208, 221
BASE, 86, 121
BASICERROR, 122, 223
CAM, 11, 123

CAMBOX, 12, 124
CANCEL, 13, 125
CHECKSUM, 126
CHR, 170
CLEAR, 87, 126
CLEAR_BIT, 126
CLOSE_WIN, 126
CLUTCH_RATE, 126
comment field, 114
COMMSERROR, 127
COMPILE, 127
CONNECT, 12, 127
CONTROL, 128
COPY, 128
COS, 128
CREEP, 129
D_GAIN, 16, 47, 129
DAC, 182
DATUM, 13, 129
DATUM_IN, 50, 130
DECEL, 8, 131
DEFPOS, 7, 131
DEL, 131
DEMAND_EDGES, 132
DIR, 132
divide operator, 112
DPOS, 15, 132
DRV_CLEAR, 133
DRV_READ, 133
DRV_RESET, 134
DRV_STATUS, 134
DRV_WRITE, 135
EDIT, 135
ENCODER, 136
ENDMOVE, 136
EPROM, 91, 136
equal operator, 113
ERROR_AXIS, 136, 221
ERROR_LINE, 136, 223
ERRORMASK, 137, 221
EXP, 137
FALSE, 137
FAST_JOG, 50, 137
FB_SET, 71, 138
FB_STATUS, 138
FE, 15, 138
FE_LIMIT, 39, 138
FE_RANGE, 139
FHOLD_IN, 50, 139
FHSPEED, 139
FLASHVR, 139
FOR, 140
FORWARD, 10, 141
FRAC, 141
FREE, 141
FS_LIMIT, 142
FWD_IN, 40, 50, 142

256

Index

FWD_JOG, 50, 142
GET, 142
GOSUB, 88, 143
GOTO, 88, 143
greater than operator, 113
greater than or equal operator, 113
HALT, 144
HEX, 170
hexadecimal input, 114
HLM_COMMAND, 144
HLM_READ, 146
HLM_STATUS, 147
HLM_TIMEOUT, 147
HLM_WRITE, 148
HLS_MODEL, 149
HLS_NODE, 149
I_GAIN, 16, 47, 150
IF, 150
IN, 151
INDEVICE, 151
INPUT, 152
INT, 152
JOGSPEED, 153
KEY, 153
LAST_AXIS, 153
less than operator, 112
less than or equal operator, 112
LINK_AXIS, 154
LINPUT, 154
LIST, 154
LN, 155
LOCK, 155
MARK, 155
MARKB, 156
MERGE, 156
MOD, 156
MOTION_ERROR, 156, 221
MOVE, 8, 10, 157
MOVEABS, 8, 10, 158
MOVECIRC, 11, 159
MOVELINK, 12, 160
MOVEMODIFY, 163
MPOS, 15, 163
MSPEED, 163
MTYPE, 89, 163
multiply operator, 111
NEW, 164
NIO, 164
NOT, 164
not equal operator, 113
NTYPE, 89, 165
OFF, 165
OFFPOS, 165
ON, 165–166
OP, 166
OPEN_WIN, 167
OR, 167

OUTDEVICE, 168
OUTLIMIT, 168
OV_GAIN, 16, 47, 168
P_GAIN, 16, 47, 169
PI, 169
PMOVE, 90, 169
power operator, 111
PP_STEP, 169
PRINT, 170
PROC, 87, 171
PROC_LINE, 171
PROC_STATUS, 172
PROCESS, 172
PROCNUMBER, 172
PSWITCH, 172
RAPIDSTOP, 13, 173
READ_BIT, 174
REG_POS, 174
REG_POSB, 174
REGIST, 14, 174
REMAIN, 177
RENAME, 177
REP_DIST, 177
REP_OPTION, 178
REPEAT, 178
RESET, 87, 179
RETURN, 143
REV_IN, 40, 50, 179
REV_JOG, 50, 179
REVERSE, 10, 179
RS_LIMIT, 180
RUN, 180
RUN_ERROR, 180, 223
RUNTYPE, 93, 181
S_RATE, 181
S_REF, 47, 182
S_REF_OUT, 182
SCOPE, 182
SCOPE_POS, 183
SELECT, 184
SERVO, 47, 184
SERVO_PERIOD, 184
SET_BIT, 185
SETCOM, 185
SGN, 185
SIN, 186
SPEED, 8, 186
SQR, 186
SRAMP, 186
statement separator, 114
STEPLINE, 186
STOP, 187
subtract operator, 112
SWITCH_STATUS, 187
T_RATE, 188
T_REF, 188
TABLE, 87, 188

Index

257

TAN, 189
TICKS, 189
TRIGGER, 190
TROFF, 190
TRON, 190
TRUE, 191
TSIZE, 191
UNITS, 7–8, 191
UNLOCK, 155
VERSION, 191
VFF_GAIN, 16, 47, 192
VP_SPEED, 192
VR, 87, 192
WA, 193
WAIT IDLE, 193
WAIT LOADED, 194
WAIT UNTIL, 194
WDOG, 47, 195, 221
WHILE, 195
XOR, 195

BASIC programs
compile description, 91
debugging, 190, 207
editing, 205
error processing, 94
managing, 91
multitasking, 86
priority, 92
run at start-up, 92
stepping, 186
storing, 91
tasks, 92
trace function, 190
trace function (TRON/TROFF), 190

BASIC statement groups
axis parameters, 107
constants, 107
DeviceNet commands and parameters, 110
Host Link commands and parameters, 110
I/O commands and functions, 103
loop and conditional structure commands, 104
mathematical and logical functions, 106
motion control commands, 103
Motion Perfect statements, 107
program commands and functions, 104
Servo Driver commands and parameters, 110
system commands and parameters, 105
task commands and parameters, 109

buffer
actual move, 89
next move, 89
task, 89

C
CAM control, 11

cancelling moves, 13

circular interpolation, 11

clearing following error, 129

command line interface, 90, 204

comparison between firmware versions, 21

components, 24

connection examples
encoder I/O, 38
serial ports, 33

continuous moves, 10

continuous path control, 10

control
speed, 47
torque, 49

control system, 14

coordinate system
description, 7
scaling, 169

CP control. See continuous path control

D
data format, 72

datuming. See origin search

debugging. See BASIC programs, debugging

deceleration rate, 8

demand position, 15

demand speed, 8

derivative gain, 16

DeviceNet
communication, 68
explicit messages, 72
remote I/O communications, 68

DeviceNet connector, 36

DeviceNet specifications, 21

dimensions, 29

E
EG control. See electronic gearing

electronic gearbox, 12

electronic gearing, 11

encoder
absolute, 54
input axis, 45

258

Index

output axis, 45

encoder signals
definition, 17
input, 17
output, 18

error processing, 94

errors
BASIC error code list, 223
BASIC run-time errors, 223
Host Link Master, 224
indicators, 220
motion error, 221
Servo Driver communication error, 223

explicit messages
error response, 74
FINS command, 73
one-word format, 72
programming example, 81
RESET, 80
TABLE DATA READ (THREE-WORD FORMAT), 75
TABLE DATA WRITE (THREE-WORD FORMAT), 77
three-word format, 73
VR DATA READ (ONE-WORD FORMAT), 76
VR DATA READ (THREE-WORD FORMAT), 76
VR DATA WRITE (ONE-WORD FORMAT), 79
VR DATA WRITE (THREE-WORD FORMAT), 78

F
features, 2

feedhold
input, 139
speed, 139

floating point
comparison, 89
definition, 88

following error
limit, 138
limit setting, 39
range, 139

functional specifications, 19

G-I
gain

derivative, 16
integral, 16
output speed, 16
proportional, 16
speed feedforward, 16

general specifications, 19

general-purpose protocol
commands, 67

programming example, 67

global variables, 87

Host Link Master
commands, 60
end codes, 62
precautions, 63
programming examples, 64, 252
set-up, 62
status, 63
timeout, 63

Host Link Slave
commands, 65
end codes, 66
programming example, 67
set-up, 66

I/O
mapping, 50
print registration

I/O connector, 30

I/O specifications, 36

indicators, 24

installation
conditions, 28
method, 28

integer, definition, 88

integral gain, 16

interpolation
circular, 11
linear, 10

J-L
jogging

forward input, 142
Motion Perfect jog screen, 211
reverse input, 179
speed, 153

labels, definition, 87

LED indicators, 24

limit switches
description, 39
forward input, 142
reverse input, 179
Servo Driver, 51

linear interpolation, 10

linked CAM control, 12

linked move, 12

local variables, 87

Index

259

M
master shell program, 245

mathematical specifications, 88

measured position, 15

monitoring data
Servo Driver analog input, 52
Servo Driver torque command, 53
Servo Driver torque monitor, 54
Servomotor rotation speed, 53

motion control
algorithm, 15
concepts, 7–14
types, 2

motion generator, 89

Motion Perfect
axis parameters window, 208
connecting to MC Unit, 198
control panel, 202
controller configuration window, 209
debugging, 207
desktop, 201
features, 198
firmware download, 218
full controller directory window, 211
I/O status window, 210
jog screen, 211
oscilloscope, 212
program editor, 205
project backup, 217
requirements, 198
retrieving backup, 218
simple examples, 203
Table editor, 209
terminal window, 204
tools, 204
VR editor, 209

Motion Perfect projects
backup, 199
consistency check, 200
description, 199
manager, 199

motor runaway, 39

move loading, 90

moves
absolute, 8
calculations, 9
cancelling, 13
continuous, 10
defining, 9
execution, 89
merging, 156
relative, 8

multitasking, 86

N-O
number format, 88

one-word format, 72

origin search, 13

output speed gain, 16

P
point-to-point control, 8

positioning
continuous path, 10
electronic gearing, 11
point-to-point, 8

power connector, 31

precautions
general, xii
Motion Perfect, 217
safety, xii
servo system, 39
using parameter unit, 45
wiring, 40

precedence, 89

print registration
delay times, 36
description

programming example
Host Link Master, 252

programming examples
controlling I/O, 250
coordinating two moving objects, 251
coordinating with mark detection, 252
high-speed profiles, 251
master shell program, 245
product detection, 250
rotary table, 250
Servo Driver parameter setting program, 248
synchronising cutter, 251

proportional gain, 16

protocol
general-purpose, 67
Host Link Master, 60
Host Link Slave, 65

PTP control. See point-to-point control

Q-R
registration. See print registration

relative moves, 8

remote I/O communications, 68

260

Index

S
S-curve factor, 186

semi-closed loop system, 14

sequencing, 90

serial communication protocols, 60

serial port connectors, 31

servo axis, 44

Servo Driver
alarm, 225
enable switch, 195
limit switches, 51
parameter access, 57
required settings, 46
software reset, 57

servo period, 46, 92

servo system, 14
precautions, 39

software limit
forward, 142
reverse, 180

software reset, 217

specifications
DeviceNet, 21
functional, 19
general, 19
I/O, 36
mathematical, 88
RS-232C interface, 31
RS-422A/485 interface, 32

speed control, 47

speed feedforward gain, 16

statements
axis, 86
description, 86
system, 87
task, 87

system configuration
basic, 5
DeviceNet, 6

T-U
table variables, 87

task
buffer, 89
clock pulses, 189
priority, 92

terminal window, 90, 204

three-word format, 73

torque control, 49

troubleshooting BASIC programs, 207

unit conversion factor, 7–8

unit settings, 24

V-Z
variables

global, 87, 192
local, 87
table, 87, 188

virtual axis, 45

VR variables. See variables, global

VT100 Emulation, 205

wiring
DeviceNet connector, 36
I/O connector, 30
power connector, 31
precautions, 40
serial port connectors, 31

261

Revision History

A manual revision code appears as a suffix to the catalog number on the front cover of the manual.

The following table outlines the changes made to the manual during each revision. Page numbers refer to the
previous version.

Revision code Date Revised content

1 June 2002 Original production

2 March 2003 Revisions and additions as follows:
• Added comparison section for firmware update (FW 1.61, FW 1.62).
• Added description for dual feedback control command ADD_DAC and

related functionality.
• Updated DeviceNet data according to FW 1.62.

Cat. No. I203-E2-02

Revision code

	Title
	Table of Contents
	PRECAUTIONS
	1 Intended Audience
	2 General Precautions
	3 General Warnings and Safety Precautions
	4 Storage and Transportation Precautions
	5 Installation and Wiring Precautions
	6 Operation and Adjustment Precautions
	7 Maintenance and Inspection Precautions
	8 Conformance to EC Directives
	8-1 Concepts

	SECTION 1 Features and System Configuration
	1-1 Features
	1-1-1 Overview
	1-1-2 Description of Features

	1-2 System Configuration
	1-3 Motion Control Concepts
	1-3-1 PTP-control
	1-3-2 CP-control
	1-3-3 EG-Control
	1-3-4 Other Operations

	1-4 Control System Configuration
	1-4-1 Servo System Principles
	1-4-2 Encoder Signals

	1-5 Specifications
	1-5-1 General Specifications
	1-5-2 Functional Specifications
	1-5-3 DeviceNet Specifications (MCW151-DRT-E only)

	1-6 Comparison between Firmware Versions

	SECTION 2 Installation
	2-1 Components and Unit Settings
	2-2 Installation
	2-2-1 Installation Conditions
	2-2-2 Installation Method
	2-2-3 Dimensions

	2-3 Wiring
	2-3-1 Control Connections
	2-3-2 Serial Port Connections
	2-3-3 DeviceNet Connection
	2-3-4 I/O Specifications
	2-3-5 Connection examples

	2-4 Servo System Precautions
	2-5 Wiring Precautions

	SECTION 3 Motion Control Functions
	3-1 Overview
	3-2 System Set-up
	3-3 System Functions
	3-3-1 Servo Driver Control
	3-3-2 Digital I/O
	3-3-3 Monitoring Data
	3-3-4 Absolute Encoder
	3-3-5 Other Servo Driver Commands

	SECTION 4 Communication Interfaces
	4-1 Serial Communications
	4-1-1 Host Link Master
	4-1-2 Host Link Slave
	4-1-3 General-purpose

	4-2 DeviceNet (MCW151-DRT-E only)
	4-2-1 Remote I/O Communications
	4-2-2 Explicit DeviceNet Messages

	SECTION 5 Multitasking BASIC Programming
	5-1 Overview
	5-2 BASIC Programming
	5-2-1 Axis, System and Task Statements
	5-2-2 Data Structures and Variables
	5-2-3 Mathematical Specifications

	5-3 Motion Execution
	5-4 Command Line Interface
	5-5 BASIC Programs
	5-5-1 Managing Programs
	5-5-2 Program Compilation
	5-5-3 Program Execution

	5-6 Task Operation Sequence
	5-7 Error Processing

	SECTION 6 BASIC Motion Control Programming Language
	6-1 Overview
	6-2 Command Reference List
	6-2-1 Motion Control Commands
	6-2-2 I/O Commands and Functions
	6-2-3 Loop and Conditional Structures
	6-2-4 Program Commands and Functions
	6-2-5 System Commands and Parameters
	6-2-6 Mathematical and Logical Functions
	6-2-7 Constants
	6-2-8 Motion Perfect Commands, Functions and Parameters
	6-2-9 Axis Parameters
	6-2-10 Task Commands and Parameters
	6-2-11 Servo Driver Commands and Parameters
	6-2-12 Host Link Commands and Parameters
	6-2-13 DeviceNet Commands and Parameters

	6-3 Command, function and parameter description
	6-3-1 Multiply: *
	6-3-2 Power: ^
	6-3-3 Add: +
	6-3-4 Subtract: –
	6-3-5 Divide: /
	6-3-6 Is Less Than: <
	6-3-7 Is Less Than Or Equal To: <=
	6-3-8 Is Not Equal To: <>
	6-3-9 Is Equal To: =
	6-3-10 Is Greater Than: >
	6-3-11 Is Greater Than or Equal To: >=
	6-3-12 Hexadecimal input: $
	6-3-13 Statement separator: “:”
	6-3-14 Comment field: ‘
	6-3-15 ABS
	6-3-16 ACCEL
	6-3-17 ACOS
	6-3-18 ADD_DAC
	6-3-19 ADDAX_AXIS
	6-3-20 ADDAX
	6-3-21 AIN
	6-3-22 AND
	6-3-23 ASIN
	6-3-24 ATAN
	6-3-25 ATAN2
	6-3-26 ATYPE
	6-3-27 AUTORUN
	6-3-28 AXIS
	6-3-29 AXISSTATUS
	6-3-30 BASE
	6-3-31 BASICERROR
	6-3-32 CAM
	6-3-33 CAMBOX
	6-3-34 CANCEL
	6-3-35 CHECKSUM
	6-3-36 CLEAR
	6-3-37 CLEAR_BIT
	6-3-38 CLOSE_WIN
	6-3-39 CLUTCH_RATE
	6-3-40 COMMSERROR
	6-3-41 COMPILE
	6-3-42 CONNECT
	6-3-43 CONTROL
	6-3-44 COPY
	6-3-45 COS
	6-3-46 CREEP
	6-3-47 D_GAIN
	6-3-48 DATUM
	6-3-49 DATUM_IN
	6-3-50 DECEL
	6-3-51 DEFPOS
	6-3-52 DEL
	6-3-53 DEMAND_EDGES
	6-3-54 DIR
	6-3-55 DPOS
	6-3-56 DRV_CLEAR
	6-3-57 DRV_READ
	6-3-58 DRV_RESET
	6-3-59 DRV_STATUS
	6-3-60 DRV_WRITE
	6-3-61 EDIT
	6-3-62 ENCODER
	6-3-63 ENDMOVE
	6-3-64 EPROM
	6-3-65 ERROR_AXIS
	6-3-66 ERROR_LINE
	6-3-67 ERRORMASK
	6-3-68 EXP
	6-3-69 FALSE
	6-3-70 FAST_JOG
	6-3-71 FB_SET
	6-3-72 FB_STATUS
	6-3-73 FE
	6-3-74 FE_LIMIT
	6-3-75 FE_RANGE
	6-3-76 FHOLD_IN
	6-3-77 FHSPEED
	6-3-78 FLASHVR
	6-3-79 FOR TO STEP NEXT
	6-3-80 FORWARD
	6-3-81 FRAC
	6-3-82 FREE
	6-3-83 FS_LIMIT
	6-3-84 FWD_IN
	6-3-85 FWD_JOG
	6-3-86 GET
	6-3-87 GOSUB RETURN
	6-3-88 GOTO
	6-3-89 HALT
	6-3-90 HLM_COMMAND
	6-3-91 HLM_READ
	6-3-92 HLM_STATUS
	6-3-93 HLM_TIMEOUT
	6-3-94 HLM_WRITE
	6-3-95 HLS_MODEL
	6-3-96 HLS_NODE
	6-3-97 I_GAIN
	6-3-98 IF THEN ELSE ENDIF
	6-3-99 IN
	6-3-100 INDEVICE
	6-3-101 INPUT
	6-3-102 INT
	6-3-103 JOGSPEED
	6-3-104 KEY
	6-3-105 LAST_AXIS
	6-3-106 LINK_AXIS
	6-3-107 LINPUT
	6-3-108 LIST
	6-3-109 LN
	6-3-110 LOCK
	6-3-111 MARK
	6-3-112 MARKB
	6-3-113 MERGE
	6-3-114 MOD
	6-3-115 MOTION_ERROR
	6-3-116 MOVE
	6-3-117 MOVEABS
	6-3-118 MOVECIRC
	6-3-119 MOVELINK
	6-3-120 MOVEMODIFY
	6-3-121 MPOS
	6-3-122 MSPEED
	6-3-123 MTYPE
	6-3-124 NEW
	6-3-125 NIO
	6-3-126 NOT
	6-3-127 NTYPE
	6-3-128 OFF
	6-3-129 OFFPOS
	6-3-130 ON
	6-3-131 ON
	6-3-132 OP
	6-3-133 OPEN_WIN
	6-3-134 OR
	6-3-135 OUTDEVICE
	6-3-136 OUTLIMIT
	6-3-137 OV_GAIN
	6-3-138 P_GAIN
	6-3-139 PI
	6-3-140 PMOVE
	6-3-141 PP_STEP
	6-3-142 PRINT
	6-3-143 PROC
	6-3-144 PROC_LINE
	6-3-145 PROC_STATUS
	6-3-146 PROCESS
	6-3-147 PROCNUMBER
	6-3-148 PSWITCH
	6-3-149 RAPIDSTOP
	6-3-150 READ_BIT
	6-3-151 REG_POS
	6-3-152 REG_POSB
	6-3-153 REGIST
	6-3-154 REMAIN
	6-3-155 RENAME
	6-3-156 REP_DIST
	6-3-157 REP_OPTION
	6-3-158 REPEAT UNTIL
	6-3-159 RESET
	6-3-160 REV_IN
	6-3-161 REV_JOG
	6-3-162 REVERSE
	6-3-163 RS_LIMIT
	6-3-164 RUN
	6-3-165 RUN_ERROR
	6-3-166 RUNTYPE
	6-3-167 S_RATE
	6-3-168 S_REF
	6-3-169 S_REF_OUT
	6-3-170 SCOPE
	6-3-171 SCOPE_POS
	6-3-172 SELECT
	6-3-173 SERVO
	6-3-174 SERVO_PERIOD
	6-3-175 SET_BIT
	6-3-176 SETCOM
	6-3-177 SGN
	6-3-178 SIN
	6-3-179 SPEED
	6-3-180 SQR
	6-3-181 SRAMP
	6-3-182 STEPLINE
	6-3-183 STOP
	6-3-184 SWITCH_STATUS
	6-3-185 T_RATE
	6-3-186 T_REF
	6-3-187 TABLE
	6-3-188 TAN
	6-3-189 TICKS
	6-3-190 TRIGGER
	6-3-191 TROFF
	6-3-192 TRON
	6-3-193 TRUE
	6-3-194 TSIZE
	6-3-195 UNITS
	6-3-196 VERSION
	6-3-197 VFF_GAIN
	6-3-198 VP_SPEED
	6-3-199 VR
	6-3-200 WA
	6-3-201 WAIT IDLE
	6-3-202 WAIT LOADED
	6-3-203 WAIT UNTIL
	6-3-204 WDOG
	6-3-205 WHILE WEND
	6-3-206 XOR

	SECTION 7 Motion Perfect Software Package
	7-1 Features and Requirements
	7-2 Connecting to the MC Unit
	7-3 Motion Perfect Projects
	7-3-1 Project Manager
	7-3-2 Creating a Project for the First Time

	7-4 Desktop Appearance
	7-4-1 Control Panel
	7-4-2 Editing and Running Simple Programs

	7-5 Motion Perfect Tools
	7-5-1 Terminal
	7-5-2 Editor
	7-5-3 Axis Parameters
	7-5-4 Controller Configuration
	7-5-5 VR and Table Editors
	7-5-6 I/O Status Window
	7-5-7 Full Controller Directory
	7-5-8 Jog Screen
	7-5-9 Oscilloscope

	7-6 Suggestions and Precautions

	SECTION 8 Troubleshooting
	8-1 Error Indicators
	8-2 Error Handling
	8-2-1 MC Unit Error Handling
	8-2-2 Servo Driver Alarms

	8-3 Problems and Countermeasures
	8-3-1 General Problem Solving
	8-3-2 DeviceNet Slave Problem Solving

	SECTION 9 Maintenance and Inspection
	9-1 Routine Inspections
	9-2 Replacing a MC Unit

	Appendix A Servo Driver Parameter List
	Appendix B Device Protocol (MCW151-DRT-E only)
	Appendix C Programming Examples
	Index
	Revision History

