
W903-E2-02

������

C200HW-MC402-E
Motion Control Unit

Operation Manual

�����

C200HW-MC402-E
Motion Control Unit
Operation Manual
Produced June 2001

v

Notice:
OMRON products are manufactured for use according to proper procedures by a qualified operator
and only for the purposes described in this manual.
The following conventions are used to indicate and classify precautions in this manual. Always heed
the information provided with them. Failure to heed precautions can result in injury to people or dam-
age to property.

!DANGER Indicates an imminently hazardous situation which, if not avoided, will result in death or
serious injury.

!WARNING Indicates a potentially hazardous situation which, if not avoided, could result in death or
serious injury.

!Caution Indicates a potentially hazardous situation which, if not avoided, may result in minor or
moderate injury, or property damage.

OMRON Product References
All OMRON products are capitalized in this manual. The word “Unit” is also capitalized when it refers to
an OMRON product, regardless of whether or not it appears in the proper name of the product.
The abbreviation “Ch”, which appears in some displays and on some OMRON products, often means
“word” and is abbreviated “Wd” in documentation in this sense.
The abbreviation “PC” means Programmable Controller and is not used as an abbreviation for any-
thing else.

Visual Aids
The following headings appear in the left column of the manual to help you locate different types of
information.

Note Indicates information of particular interest for efficient and convenient opera-
tion of the product.

1,2,3... Indicates lists of one sort or another, such as procedures, checklists, etc.

 OMRON, 2001
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form, or by any means, mechanical, electronic, photocopying, recording, or otherwise, without the prior
written permission of OMRON.
No patent liability is assumed with respect to the use of the information contained herein. Moreover, because
OMRON is constantly striving to improve its high-quality products, the information contained in this manual is
subject to change without notice. Every precaution has been taken in the preparation of this manual. Neverthe-
less, OMRON assumes no responsibility for errors or omissions. Neither is any liability assumed for damages
resulting from the use of the information contained in this publication.

vii

TABLE OF CONTENTS
PRECAUTIONS . xi

1 Intended Audience . xii

2 General Precautions . xii

3 Safety Precautions. xii

4 Operating Environment Precautions . xiii

5 Application Precautions . xiii

6 Conformance to EC Directives . xv

SECTION 1
Features and System Configuration 1

1-1 Features . 2

1-2 System Configuration . 4

1-3 Motion Control Concepts . 5

1-4 Control System . 14

1-5 Specifications . 18

1-6 Comparison with C200HW-MC402-UK . 20

SECTION 2
Installation . 23

2-1 Components and Unit Settings . 24

2-2 Installation. 25

2-3 Wiring . 26

2-4 Servo System Precautions . 36

2-5 Wiring Precautions . 38

SECTION 3
PC Data Exchange . 41

3-1 IR/CIO Area Allocation . 42

3-2 Overview of Data Exchanges . 46

3-3 Details of the Data Exchange Methods. 48

SECTION 4
Multitasking BASIC Programming 57

4-1 Overview . 58

4-2 BASIC Programming . 58

4-3 Motion Control Application . 61

4-4 Command Line Interface. 65

4-5 BASIC Programs. 65

4-6 Error Processing . 68

viii

TABLE OF CONTENTS
SECTION 5
BASIC Motion Control Programming Language 71

5-1 Notation Used in this Section . 75

5-2 Classifications and Outlines . 75

5-3 Command, function and parameter description. 84

SECTION 6
Programming Environment . 157

6-1 Motion Perfect Features. 158

6-2 Motion Perfect Requirements . 158

6-3 Going Online with the MC Unit . 158

6-4 Motion Perfect Projects . 159

6-5 Motion Perfect Desktop . 161

6-6 Motion Perfect Tools . 164

6-7 Suggestions and Precautions in Using Motion Perfect . 177

SECTION 7
Troubleshooting. 179

7-1 Problems and Countermeasures. 180

7-2 Error Indicators . 184

7-3 Error Handling . 184

7-4 CPU Unit Error Flags and Control Bits . 187

SECTION 8
Maintenance and Inspection. 189

8-1 Routine Inspections . 190

8-2 Handling Precautions. 191

Appendix
Appendix A Upgrading from C200HW-MC402-UK. 193

Appendix B PC Interface Area Lists . 195

Appendix C Programming Examples. 197

Index . 205

Revision History . 211

ix

About this Manual:
This manual describes the installation and operation of the C200HW-MC402-E Motion Control Unit
(MC Unit) and includes the sections described below.
Please read this manual carefully and be sure you understand the information provided before
attempting to install or operate the MC Unit. Be sure to read the precautions provided in the following
section.
Precautions provides general precautions for using the MC Unit, Programmable Controller (PC), and
related devices.
Section 1 describes the function of the C200HW-MC402-E Motion Control Unit and concepts related
to its operation. Also the specifications and the comparison with previous C200HW-MC402-UK is
shown.
Section 2 describes information required for hardware setup and installation.
Section 3 describes the IR/CIO area allocation and presents the different methods of data exchange
between the MC Unit and the CPU Unit.
Section 4 gives an overview of the fundamentals of multitasking BASIC programs and the methods by
which programs are managed for the MC Unit.
Section 5 describes the commands and parameters required for programing the motion control appli-
cation using the MC Unit. All BASIC system, task and axis statements that determine the various
aspects of program execution and MC Unit operation are presented.
Section 6 provides an overview of software package Motion Perfect, which is used to program, moni-
tor and debug motion based applications for the MC Unit.
Section 7 provides procedures on troubleshooting problems that may arise with the MC Unit.
Section 8 explains the maintenance and inspection procedures that must be followed to keep the MC
Unit operating in optimum condition. It also includes proper procedures when replacing an MC Unit or
battery.
The Appendices provide a guide for upgrading from the C200HW-MC402-UK Unit and the PC Inter-
face Lists. Furthermore, some convenient programming examples are given for the user.

!WARNING Failure to read and understand the information provided in this manual may result in per-
sonal injury or death, damage to the product, or product failure. Please read each section
in its entirety and be sure you understand the information provided in the section and
related sections before attempting any of the procedures or operations given.

xi

PRECAUTIONS

This section provides general precautions for using the Motion Control Unit and related devices.

The information contained in this section is important for the safe and reliable application of the Motion Control
Unit. You must read this section and understand the information contained before attempting to set up or operate
a Motion Control Unit and PC system.

1 Intended Audience . xii
2 General Precautions . xii
3 Safety Precautions. xii
4 Operating Environment Precautions . xiii
5 Application Precautions . xiii
6 Conformance to EC Directives . xv

6-1-1 Concepts . xv
6-1-2 Conformance to EC Directives . xvi

xii

Intended Audience 1

1 Intended Audience
This manual is intended for the following personnel, who must also have
knowledge of electrical systems (an electrical engineer or the equivalent).

• Personnel in charge of installing FA systems.
• Personnel in charge of designing FA systems.
• Personnel in charge of managing FA systems and facilities.

2 General Precautions
The user must operate the product according to the performance specifica-
tions described in the operation manuals.
Before using the product under conditions which are not described in the
manual or applying the product to nuclear control systems, railroad systems,
aviation systems, vehicles, combustion systems, medical equipment, amuse-
ment machines, safety equipment, and other systems, machines, and equip-
ment that may have a serious influence on lives and property if used
improperly, consult your OMRON representative.
Make sure that the ratings and performance characteristics of the product are
sufficient for the systems, machines, and equipment, and be sure to provide
the systems, machines, and equipment with double safety mechanisms.
This manual provides information for installing and operating OMRON Motion
Control Units. Be sure to read this manual before operation and keep this
manual close at hand for reference during operation.

!WARNING It is extremely important that Motion Control Units and related devices be
used for the specified purpose and under the specified conditions, especially
in applications that can directly or indirectly affect human life. You must con-
sult with your OMRON representative before applying Motion Control Units
and related devices to the above mentioned applications.

3 Safety Precautions

!WARNING Never attempt to disassemble any Units while power is being supplied. Doing
so may result in serious electrical shock or electrocution.

!WARNING Never touch any of the terminals while power is being supplied. Doing so may
result in serious electrical shock or electrocution.

!WARNING Provide safety measures in external circuits (i.e., not in the Programmable
Controller or MC Unit) to ensure safety in the system if an abnormality occurs
due to malfunction of the PC, malfunction of the MC Unit, or external factors
affecting the operation of the PC or MC Unit. Not providing sufficient safety
measures may result in serious accidents.

• Emergency stop circuits, interlock circuits, limit circuits, and similar safety
measures must be provided in external control circuits.

• The PC or MC Unit outputs may remain ON or OFF due to deposits on or
burning of the output relays, or destruction of the output transistors. As a
counter-measure for such problems, external safety measures must be
provided to ensure safety in the system.

• When the 24-VDC output (service power supply to the PC) is overloaded
or short-circuited, the voltage may drop and result in the outputs being
turned OFF. As a countermeasure for such problems, external safety
measures must be provided to ensure safety in the system.

xiii

Operating Environment Precautions 4

• It is the nature of high speed motion control and motion control language
programming and multi-tasking systems, that it is not always possible for
the system to validate the inputs to the functions. It is the responsibility of
the programmer to ensure that various BASIC statements are called cor-
rectly with the correct number of inputs and that the values are correctly
validated prior to the actual calling of the various functions.

!Caution Connect the ENABLE output (drivers enable signal) to the Servo Drivers. Oth-
erwise, the motor may run when the power is turned ON or OFF or when an
error occurs in the Unit.

!Caution Do not save data into the flash memory during memory operation or while the
motor is running. Otherwise, unexpected operation may be caused.

!Caution Do not reverse the polarity of the 24-V power supply. The polarity must be
correct. Otherwise, the motor may start running unexpectedly and may not
stop.

4 Operating Environment Precautions
!Caution Do not operate the control system in the following locations:

• Locations subject to direct sunlight.
• Locations subject to temperatures or humidity outside the range specified

in the specifications.
• Locations subject to condensation due to radical temperature changes.
• Locations subject to corrosive or inflammable gases.
• Locations subject to dust (especially iron dust) or salts.
• Locations subject to vibration or shock.
• Locations subject to exposure to water, oil or chemicals.

!Caution Take appropriate and sufficient countermeasures when installing systems in
the following locations:

• Locations subject to static electricity or other sources of noise.
• Locations subject to strong electromagnetic fields.
• Locations subject to possible exposure to radiation.
• Locations near power supply lines.

!Caution The operating environment of the PC System can have a large effect on the
longevity and reliability of the system. Improper operating environments can
lead to malfunction, failure, and other unforeseeable problems with the PC
System. Be sure that the operating environment is within the specified condi-
tions at installation and remains within the specified conditions during the life
of the system.

5 Application Precautions
Observe the following precautions when using the Motion Control Unit or the
PC System.

!WARNING Failure to abide by the following precautions could lead to serious or possibly
fatal injury. Always heed these precautions.

• Always ground the system to 100 Ω or less when installing the system to
protect against electrical shock.

xiv

Application Precautions 5

• Always turn OFF the power supply to the PC before attempting any of the
following. Not turning OFF the power supply may result in malfunction or
electric shock.

• Mounting or dismounting the MC Unit or any other Units.
• Assembling the Units.
• Setting rotary switches.
• Connecting cables or wiring the system.
• Connecting or disconnecting the connectors.

!Caution Failure to abide by the following precautions could lead to faulty operation of
the PC, the MC Unit or the system, or could damage the PC or MC Unit.
Always heed these precautions.

• Maximum 12 of the digital inputs (I0 to I15) should be switched on at any
one time to ensure that the Unit remains within internal temperature spec-
ifications. Failure to meet this condition may lead to degradation of perfor-
mance or damage of components.

• After development of the application programs, be sure to save the pro-
gram data in flash memory within the MC Unit (using the EPROM com-
mand in BASIC). The program data will remain in the S-RAM during
operation and power down, but considering possible battery failure it is
advised to store the data in flash memory.

• It is strongly recommended to store dynamic application data, which can
not be initiated in program, in the PC Unit’s memory considering possible
battery failure.

• Do not turn OFF the power supply to the Unit while data is being written to
flash memory. Doing so may cause problems with the flash memory.

• Confirm that no adverse effect will occur in the system before attempting
any of the following. Not doing so may result in unexpected operation.

• Changing the operating mode of the PC.
• Changing the present value of any word or any set value in memory.
• Force-setting/force-resetting any bit in memory

• Install external breakers and take other safety measures against short-cir-
cuiting in external wiring. Insufficient safety measures against short-cir-
cuiting may result in burning.

• Be sure that all mounting screws, terminal screws, and cable connector
screws are tightened securely. Incorrect tightening may result in malfunc-
tion.

• Before touching the Unit, be sure to first touch a grounded metallic object
in order to discharge any static built-up. Not doing so may result in mal-
function or damage.

• Check the pin numbers before wiring the connectors.
• Be sure that the connectors, terminal blocks, I/O cables, cables between

drivers, and other items with locking devices are properly locked into
place. Improper locking may result in malfunction.

• Always use the power supply voltages specified in this manual. An incor-
rect voltage may result in malfunction or burning.

• Take appropriate measures to ensure that the specified power with the
rated voltage and frequency is supplied. Be particularly careful in places
where the power supply is unstable. An incorrect power supply may result
in malfunction.

• Use crimp terminals for wiring. Do not connect bare stranded wires
directly to terminals. Connection of bare stranded wires may result in
burning.

xv

Conformance to EC Directives 6

• Leave the label attached to the Unit when wiring. Removing the label may
result in malfunction if foreign matter enters the Unit.

• Remove the label after the completion of wiring to ensure proper heat dis-
sipation. Leaving the label attached may result in malfunction.

• Do not apply voltages to the Input Units in excess of the rated input volt-
age. Excess voltages may result in burning.

• Do not apply voltages or connect loads to the Output Units in excess of
the maximum switching capacity. Excess voltage or loads may result in
burning.

• Disconnect the functional ground terminal when performing withstand
voltage tests. Not disconnecting the functional ground terminal may result
in burning.

• Double-check all wiring and switch settings before turning ON the power
supply. Incorrect wiring may result in burning.

• Do not pull on the cables or bend the cables beyond their natural limit.
Doing either of these may break the cables.

• Do not place objects on top of the cables or other wiring lines. Doing so
may break the cables.

• Resume operation only after transferring to the new MC Unit the contents
of the parameters, position data, and other data required for resuming
operation. Not doing so may result in an unexpected operation.

• Resume operation only after transferring to the new CPU Unit the con-
tents of the DM Area, HR Area, and other data required for resuming
operation. Not doing so may result in an unexpected operation.

• Confirm that set parameters and data operate properly.
• Carefully check the user program before actually running it on the Unit.

Not checking the program may result in an unexpected operation.
• Do not attempt to take any Units apart, to repair any Units, or to modify

any Units in any way.
• Perform wiring according to specified procedures.

6 Conformance to EC Directives
6-1 Applicable Directives

• EMC Directives
• Low Voltage Directive

6-1-1 Concepts
EMC Directives
OMRON devices that comply with EC Directives also conform to the related
EMC standards so that they can be more easily built into other devices or ma-
chines. The actual products have been checked for conformity to EMC stan-
dards (see the following note). Whether the products conform to the stan-
dards in the system used by the customer, however, must be checked by the
customer. EMC-related performance of the OMRON devices that comply with
EC Directives will vary depending on the configuration, wiring, and other con-
ditions of the equipment or control panel in which the OMRON devices are
installed. The customer must, therefore, perform final checks to confirm that
devices and the over-all machine conform to EMC standards.

Note Applicable EMC (Electromagnetic Compatibility) standards are as follows:

EMS (Electromagnetic Susceptibility): EN61131-2
EMI (Electromagnetic Interference): EN50081-2

(Radiated emission: 10-m regulations)

xvi

Conformance to EC Directives 6

Low Voltage Directive
Always ensure that devices operating at voltages of 50 to 1,000 VAC or 75 to
1,500 VDC meet the required safety standards for the PC (EN61131-2).

6-1-2 Conformance to EC Directives
The C200HX/HG/HE series and CS1 series PCs comply with EC Directives.
To ensure that the machine or device in which a PC is used complies with EC
directives, the PC must be installed as follows:

1,2,3... 1. The PC must be installed within a control panel.
2. Reinforced insulation or double insulation must be used for the DC power

supplies used for the communications and I/O power supplies.
3. PCs complying with EC Directives also conform to the Common Emission

Standard (EN50081-2). When a PC is built into a machine, however, noise
can be generated by switching devices using relay outputs and cause the
overall machine to fail to meet the Standards. If this occurs, surge killers
must be connected or other measures taken external to the PC.
The following methods represent typical methods for reducing noise, and
may not be sufficient in all cases. Required countermeasures will vary de-
pending on the devices connected to the control panel, wiring, the config-
uration of the system, and other conditions.

1

SECTION 1
Features and System Configuration

This section describes the features and system configuration of the C200HW-MC402-E Motion Control Unit and concepts
related to its operation. It also indicates the difference with the previous C200HW-MC402-UK Unit.

1-1 Features . 2
1-1-1 Overview. 2
1-1-2 Description of Features. 3

1-2 System Configuration . 4
1-3 Motion Control Concepts . 5

1-3-1 PTP-control. 7
1-3-2 CP-control. 9
1-3-3 EG-Control . 11
1-3-4 Other Operations. 13

1-4 Control System . 14
1-4-1 Feedback Pulses . 14
1-4-2 Servo System Principles . 16

1-5 Specifications . 18
1-6 Comparison with C200HW-MC402-UK . 20

2

Features Section 1-1

1-1 Features

1-1-1 Overview
The C200HW-MC402-E Motion Control (MC) Unit is a Special I/O Unit that
can perform advanced MC operations on up to four axes simultaneously. The
Unit’s multi-tasking BASIC motion control language provides an easy to use
tool for programming advanced motion control applications.
Three types of motion control are possible: point-to-point, continuous path
and electronic gearing.

Point-to-point Control Point-to-point (PTP) control enables positioning independently for each axis.
Axis specific parameters and commands are used to determine the paths for
the axes.

Continuous Path Control Continuous path (CP) control enables the user not only to control the start and
end positions, but also the path between those points. Possible multi-axis
paths are linear interpolation, circular interpolation, helical interpolation. Also
user defined paths can be realized with the CAM control.

Electronic Gearing Electronic gearing (EG) enables controlling an axis as a direct link to another
axis. The MC Units supports electronic gear boxing, linked moves and CAM
movements and adding all movements of one axis to another.

The MC Unit can be used in many applications. The following areas have
been identified as applicable areas for the MC Unit.

• Packaging
• Automotive welding
• Coil winding
• Web control
• Cut to length
• Drilling
• Electronic component assembly
• Glue laying
• Flying shears
• Laser guidance
• Milling
• Palletisation
• Tension control

There are many other types of machines that can be controlled by the MC
Unit.

3

Features Section 1-1

1-1-2 Description of Features
The MC Unit provides the following features.

Easy Programming with
BASIC Motion Control
Language

A multi-task BASIC motion control language is used to program the MC Unit.
A total of 14 programs can be held in the Unit and up to 5 tasks can be run
simultaneously. Programs can read and write to the PC memory areas using
simple commands from BASIC or the IORD/IOWR instructions from the PC’s
ladder program.

Windows-based
Programming Software

The MC Unit is programmed using a Windows-based application called
1Motion Perfect. Motion Perfect allows extremely flexible programming and
debugging.

Virtual Axes The MC Unit contains a total of 8 axes, which consists of 4 servo axes and 4
virtual axes. The virtual axes acts as a perfect servo axes and are used for
computational purposes for creating profiles. They can be linked directly to
the servo axes.

PC Data Exchange The coordination of the MC Unit with the CPU Unit is largely improved by
modifying the PC Data Exchange interface. The PC Data Exchange interface
now even more allows a centralized control from the PC. The MC Unit uses
the full functionality of the C200HX/HG/HE or CS1 PC. It is now capable of
both exchanging fast control bits via the IR/CIO area as exchanging large
position profile data directly to the MC Unit’s Table array.

Hardware-based
Registration Inputs

There is a high-speed registration input for each axis. On the rising or falling
edge of a registration input, the MC Unit will store the current position in a reg-
ister. The registered position can then be used by the BASIC program as
required. The registered positions are captured in hardware.

General-purpose Input
and Output Signals

Starting, stopping, limit switching, origin searches and many other functions
can be controlled without the use of PC I/O. The time required to switch an
output or read an input is thus not dependant on the cycle time. The general
I/O are freely allocable to the different functions.

Reduced Machine Wear The traditional trapezoidal speed profile is provided to generate smooth start-
ing and stopping. The trapezoidal corners can be rounded off to S-curves.

1.Motion Perfect is a product of Trio Motion Technology Limited.

Trapezoidal Speed Profile
with Square Corners

Trapezoidal Speed Profile
with S-curve Corners

Time

SpeedSpeed

Time

4

System Configuration Section 1-2

1-2 System Configuration
Basic System
Configuration

The basic system configuration of the MC Unit is shown below. The diagram
shows the basic physical components of a coordinated motion control appli-
cation.

The equipment and models which can be used in the system configuration
are shown in the following table.

Device Model

Motion Control Unit C200HW-MC402-E

CPU Unit Possible models:
C200HX/HG/HE
C200HS
CS1H/CS1G

Power Supply Unit Possible models:
C200HW-PA204
C200HW-PA204S

CPU Backplane Possible models:
C200HW-BC031/BC051/BC81/BC101
CS1W-BC023/BC033/BC053/BC083/BC103

Terminal Block R88A-TC04-E

Computer running
• Motion Perfect
• CX-Programmer

or Syswin

General
Purpose
I/O

MC Unit

Terminal
Block

Power supply (5/24-V) for Axes

Power supply (24-V) for I/O

Axis CableI/O Cable

Servo Drivers

CPU Unit Power Supply Unit

5

Motion Control Concepts Section 1-3

Note 1. The MC Unit cannot be mounted to a C200H PC.
2. The C200HS CPU Units do not support the IORD/IOWR instructions. The

MC Unit can only communicate with a C200HS CPU Unit using the
PLC_READ and PLC_WRITE commands.

3. The MC Unit cannot be mounted to a SYSMAC BUS Slave Rack.
4. The MC Unit can be mounted next to the CPU Unit on the CPU Rack, but

care must be taken to first determine the mounting locations of certain
Communications Unit and other Units that require bus connections to the
CPU Unit.

Cables to be supplied by
the user

The following standard cables are available. A cable can also be prepared by
the user.

1-3 Motion Control Concepts
The MC Unit offers the following types positioning control operations.
1. Point-to-point control
2. Continuous Path control
3. Electronic Gearing
This section will introduce some of the commands and parameters as used in
the BASIC programming of the motion control application. Refer to
SECTION 5 BASIC Motion Control Programming Language for details.

Coordinate System Positioning operations performed by the MC Unit are based on an axis coordi-
nate system. The MC Unit converts the encoder edges and pulses from the
encoder into an internal absolute coordinate system.
The engineering unit which specifies the distances of travelling can be freely
defined for each axis separately. The conversion is performed through the
use of the unit conversion factor, which is defined by the UNITS axis parame-
ter. The origin point of the coordinate system can be determined using the
DEFPOS command. This command re-defines the current position to zero or
any other value.
A move is defined in either absolute or relative terms. An absolute move takes
the axis to a specific predefined position with respect to the origin point. A rel-
ative move takes the axis from the current position to a position that is defined
relative to this current position. The following diagram shows gives an exam-

Personal Computer (for
Motion Perfect)

IBM Personal Computer or 100% compatible

Motion Perfect Version 2.0 or later

Servo Driver R88D-UA, -UT, -W series

Servomotor R88M-UA, -UT, -W series

Inverter 3G3FV in Flux Vector Control

Device Model

Item Model

R88A-CMX001S-E I/O Connection Cable from MC Unit to Terminal Block (1m)

R88A-CMX001J1-E Axis Connection Cable from MC Unit to Terminal Block
(1m)

R88A-CMU001J2-E Connection from Terminal Block to UA Servo Driver (1m)

R88A-CMUK001J3-E Connection from Terminal Block to UT Servo Driver (1m)

R88A-CMUK001J3-E2 Connection from Terminal Block to UT/W Servo Driver (1m)

R88A-CCM002P4-E Connection Cable RS-232C from MC Unit to computer (2m)

6

Motion Control Concepts Section 1-3

ple of relative (command MOVE) and absolute (command MOVEABS) linear
moves.

Axis Types The MC Unit has 8 axes in total, which can be used for different motion con-
trol purposes depending on the application. The type of each axis is deter-
mined by the ATYPE axis parameter. The following table lists the different
available axis types.

Refer to 1-4 Control System for details on the servo system and encoder
feedback signals. Axes 0 to 3 are servo axes by default and axes 4 to 7 are
fixed as virtual axes.

0 50 100

MOVE(30)

MOVE(50)

MOVEABS(50)

MOVE(60)

MOVEABS(30)

Axis position

Axis
type

ATYPE
value

Description

Virtual 0 A virtual axis is used for computational purposes to cre-
ate a move profile without physical movement on any
actual Servo Driver. All move commands and axis
parameters available for the servo axis are also avail-
able for the virtual axis and the virtual axis behaves like
a perfect servo axis (demanded position is equal to the
actual position).
Possible application for the virtual axis is having a vir-
tual move profile added to a servo axis or to test a
developed application before controlling the actual
motors.
Axis range: [0, 7]

Servo 2 The servo axis controls the connected Servo Driver.
Based on the calculated movement profile and the
measured position feedback of the Servomotor the
proper speed reference is outputted to the Servo Driver.
Axis range: [0, 3]

Encoder 3 The encoder axis defines an axis which provides an
encoder input without the servo control speed reference
output to the system. An encoder can be connected for
measurement, registration and/or synchronization func-
tions.
Axis range: [0, 3]

7

Motion Control Concepts Section 1-3

1-3-1 PTP-control
In point-to-point positioning, each axis is moved independently of the other
axis. The MC Unit supports the following operations.

• Relative move
• Absolute move
• Continuous move forward
• Continuous move reverse

Relative and Absolute Moves
To move a single axis either the command MOVE for a relative move or the
command MOVEABS for an absolute move is used. Each axis has its own
move characteristics, which are defined by the axis parameters.
Suppose a control program is executed to move from the origin to an axis
no. 0 coordinate of 100 and axis no. 1 coordinate of 50. If the speed parame-
ter is set to be the same for both axes and the acceleration and deceleration
rate are set sufficiently high, the movements for axis 0 and axis 1 will be as
illustrated below.

At start, both the axis 0 and axis 1 will move to a coordinate of 50 over the
same duration of time. At this point, axis 1 will stop and the axis 0 will con-
tinue to move to a coordinate of 100.

Relevant Axis Parameters As mentioned before the move of a certain axis is determined by the axis
parameters. Some relevant parameters are given in the next table.

Defining moves The speed profile below shows a simple MOVE operation. The UNITS param-
eter for this axis has been defined for example as meters. The required maxi-
mum speed has been set to 10 m/s. In order to reach this speed in one
second and also to decelerate to zero speed again in one second, both the

acceleration as the deceleration rate have been set to 10 m/s2. The total dis-
tance travelled is the sum of distances travelled during the acceleration, con-
stant speed and deceleration segments. Suppose the distance moved by the

0 50 100

50

Axis 0

Axis 1 MOVEABS(100) AXIS(0)
MOVEABS(50) AXIS(1)

Parameter Description

UNITS Unit conversion factor

ACCEL Acceleration rate of an axis in units/s2.

DECEL Deceleration rate of an axis in units/s2.

SPEED Demand speed of an axis in units/s.

8

Motion Control Concepts Section 1-3

MOVE command is 40 m, the speed profile will be given by the following
graph.

The following two speed profiles show the same movement with an accelera-
tion time respectively a deceleration time of 2 seconds.

0

10

Time

Speed

1 2 3 4 5

ACCEL=10
DECEL=10
SPEED=10
MOVE(40)

6

0

10

Time

Speed

1 2 3 4 5

ACCEL=5
DECEL=10
SPEED=10
MOVE(40)

6

0

10

Time

Speed

1 2 3 4 5

ACCEL=10
DECEL=5
SPEED=10
MOVE(40)

6

9

Motion Control Concepts Section 1-3

Move Calculations The following equations are used to calculate the total time for the motion of
the axes. Consider the moved distance for the MOVE command as , the
demand speed as , the acceleration rate and deceleration rate .

Continuous Moves
The FORWARD and REVERSE commands can be used to start a continuous
movement with constant speed on a certain axis. The FORWARD command
will move the axis in positive direction and the REVERSE command in nega-
tive direction. For these commands also the axis parameters ACCEL and
SPEED apply to specify the acceleration rate and demand speed.
Both movements can be canceled by using either the CANCEL or RAPID-
STOP command. The CANCEL command will cancel the move for one axis
and RAPIDSTOP will cancel moves on all axes.

1-3-2 CP-control
Continuous Path control enables to control a specified path between the start
and end position of a movement for one or multiple axes. The MC Unit sup-
ports the following operations.

• Linear interpolation
• Circular interpolation
• Helical interpolation
• CAM control

Linear Interpolation
In applications it can be required for a set of motors to perform a move opera-
tion from one position to another in a straight line. Linearly interpolated moves
can take place among several axes. The commands MOVE and MOVEABS
are also used for the linear interpolation. In this case the commands will have

D
V a d

V
a
---=

V
2

2a
------=

V
d
---=

V
2

2d
------=

D= V
2

a d+()
2ad

-----------------------–

D
V
----= V a d+()

2ad
---------------------+

Acceleration time

Acceleration distance

Deceleration time

Deceleration distance

Constant speed distance

Total time

10

Motion Control Concepts Section 1-3

multiple arguments to specify the relative or absolute move for each axis.
Consider the following three axis move in a 3-dimensional plane.

The speed profile of the motion along the path is given in the diagram. The
three parameters SPEED, ACCEL and DECEL which determine the multi axis
movement are taken from the corresponding parameters of the base axis.
The MOVE command computes the various components of speed demand
per axis.

Circular Interpolation
It may be required that a tool travels from the starting point to the end point in
an arc of a circle. In this instance the motion of two axes is related via a circu-
lar interpolated move using the MOVECIRC command. Consider the following
diagram.

The centre point and desired end point of the trajectory relative to the start
point and the direction of movement are specified. The MOVECIRC command
computes the radius and the angle of rotation. Like the linearly interpolated
MOVE command, the ACCEL, DECEL and SPEED variables associated with
the base axis determine the speed profile along the circular move.

Helical Interpolation
Helical interpolation performs a helical movement on three axes. The motion
control command MHELICAL will perform a circular interpolation to two axis
and will add a linear move to the third axis. Positioning is performed by again
specifying the centre point, end point and direction for the circular distance

Axis 0

Axis 1

Axis 2 Speed

Time

MOVE(50,50,50)

0
Axis 0

Axis 1
MOVECIRC(-100,0,-50,0,0)

50

50

-50

11

Motion Control Concepts Section 1-3

and the distance for the third axis. The diagram shows helical interpolation in
a three dimensional plane for axes 0 to 2.

CAM Control
Additional to the standard move profiles the MC Unit also provides a way to
define a position profile for the axis to move. The CAM command will move an
axis according to position values stored in the MC Unit Table array. The
speed of travelling through the profile is determined by the axis parameters of
the axis.

1-3-3 EG-Control
Electronic Gearing control allows you to create a direct gearbox link or a
linked move between two axes. The MC Unit supports the following opera-
tions.
1. Electronic gearbox
2. Linked CAM
3. Linked move
4. Adding axes

Axis 0

Axis 1

Axis 2
MHELICAL(0,0,0,50,0,150)

Time

Position

CAM(0,99,100,20)

12

Motion Control Concepts Section 1-3

Electronic Gearbox
The MC Unit is able to have a gearbox link from one axis to another as if there
is a physical gearbox connecting them. This can be done using the CON-
NECT command in the program. In the command the ratio and the axis to link
to are specified.

Linked CAM control
Next to the standard CAM profiling tool the MC Unit also provides a tool to link
the CAM profile to another axis. The command to create the link is called
CAMBOX. The travelling speed through the profile is not determined by the
axis parameters of the axis but by the position of the linked axis. This is like
connecting two axes through a cam.

Axes Ratio CONNECT command

0 1

1:1 CONNECT(1,0) AXIS(1)

2:1 CONNECT(2,0) AXIS(1)

1:2 CONNECT(0.5,0) AXIS(1)

1:1

1:2

2:1

Master Axis

CONNECT Axis

Master Axis (0) Position

CAMBOX Axis (1) Position

CAMBOX(0,99,100,20,0) AXIS(1)

13

Motion Control Concepts Section 1-3

Linked Move
The MOVELINK command provides a way to link a specified move to a mas-
ter axis. The move is divided into an acceleration, deceleration and constant
speed part and they are specified in master link distances. This can be partic-
ularly useful for synchronizing two axes for a fixed period.

Adding Axes
It is very useful to be able to add all movements of one axis to another. One
possible application is for instance changing the offset between two axes
linked by an electronic gearbox. The MC Unit provides this possibility by using
the ADDAX command. The movements of the linked axis will consists of all
movements of the actual axis plus the additional movements of the master
axis.

1-3-4 Other Operations
Canceling Moves In normal operation or in case of emergency it can be necessary to cancel the

current movement from the buffers. When the CANCEL or RAPIDSTOP com-
mands are given, the selected axis respectively all axes will cancel their cur-
rent move.

Origin Search The encoder feedback for controlling the position of the motor is incremental.
This means that all movement must be defined with respect to an origin point.
The DATUM command is used to set up a procedure whereby the MC Unit

Speed

Time

Master Axis (0)

MOVELINK Axis (1)

Synchronized

MOVELINK(50,60,10,10,0) AXIS(1)

BASE(0)
ADDAX(2)
FORWARD
MOVE(100) AXIS(2)
MOVE(-60) AXIS(2)

Speed axis 0*

Speed axis 2

Speed axis 0

Time

Time

Time

+

=

14

Control System Section 1-4

goes through a sequence and searches for the origin based on digital inputs
and/or Z-marker from the encoder signal.

Print Registration The MC Unit can capture the position of an axis in a register when an event
occurs. The event is referred to as the print registration input. On the rising or
falling edge of an input signal, which is either the Z-marker or an input, the MC
Unit captures the position of an axis in hardware. This position can then be
used to correct possible error between the actual position and the desired
position. The print registration is set up by using the REGIST command.
The position is captured in hardware, and therefore there is no software over-
head and no interrupt service routines, eliminating the need to deal with the
associated timing issues. Each servo axis has one registration input.

Merging Moves If the MERGE axis parameter is set to 1, a movement will always be followed
by a subsequent movement without stopping. The following illustrations will
show the transitions of two moves with MERGE value 0 and value 1.

Jogging Jogging moves the axes at a constant speed forward or reverse by manual
operation of the digital inputs. Different speeds are also selectable by input.
Refer to the FWD_JOG, REV_JOG and FAST_JOG axis parameters.

1-4 Control System
1-4-1 Feedback Pulses

The MC Unit is designed to comply with the standard OMRON Servomotors
which have an incremental encoder output. In this section, the signals pro-
duced by an incremental optical quadrature encoder are discussed. Incre-
mental encoders are available in linear as well as the more common rotary
types.

Incremental Encoders
The incremental encoder are encoders for which the output position informa-
tion is relative to a starting position and only the distance moved is measured.
The main components of the rotary incremental encoder are an encoder disk,
light source and photodetectors, plus an amplification circuitry to “square-up”
the photodetector output. The encoder disk is imprinted with marks or slots
evenly spaced around its perimeter. As the disk rotates, light strikes the pho-
todetector at the passing of each slot or mark. Amplifiers then convert the
photodetector output to square wave form.
Quadrature signals are produced by using two photodetectors, one positioned
precisely one half a slot, or marker width, from the other. So quadrature refers
to two periodic functions separated by a quarter cycle or 90 .
With this arrangement, the direction of rotation can be easily detected by
monitoring the relative phase of both signals. For example, if channel A leads
channel B, then counterclockwise (CCW) movement could be indicated. Con-

Speed

Time
Speed

Time

MERGE=0

MERGE=1

°

15

Control System Section 1-4

versely, if channel B leads channel A, then clockwise (CW) movement would
be indicated.
Typically, rotary encoders also provide an additional Z-marker or slot on the
disk used to produce a reference pulse. By properly decoding and counting
these signals, the direction of motion, speed, and relative position of the
encoder can be determined.
The number of output pulses produced per revolution per channel is equiva-
lent to the number of marks around the disk. This position information is
decoded in encoder edges, which is actually the number of pulses multiplied
by four. The resolution is multiplied because the circuit generates a pulse at
any rising or falling edge of either of the two phase signals.

Decoding
Understanding how the signals generated by a quadrature encoder are
decoded will help considerably when applying the quadrature decoder feature
in an actual situation.
The basic task of the decoder is to provide two counter input lines: one that
produces clock pulses when CCW motion is detected and another that pro-
duces clock pulses when CW motion is detected. These clock pulses are sup-
plied to counters in the MC Unit, one for CW counts and one for CCW counts.
The contents of the counters can be compared with each other by software,
and the relative position of the rotary device can be determined from the dif-
ference.
One advantage of this approach is that the actual counting is done by hard-
ware devices, freeing the MC Unit for other operations. The MC Unit has only
to periodically read the counter values and to make a quick subtraction.

Decoder Theory of
Operation

A closer look at the quadrature signals will be helpful. In this example, the
direction of rotation is CCW if phase A leads phase B, and CW if phase A
leads phase B.
The decoder circuit detects a transition and generates a pulse on the appro-
priate counter input channel depending on whether the transition is in the CW
or CCW direction. Although time is plotted on the horizontal axis, it is not nec-
essarily linear. The mechanical device may be changing speed as well as
direction.

Forward Rotation

Reverse Rotation

Standard OMRON Servomotors are designed for an advanced A-phase for
forward rotation and an advanced B-phase for reverse rotation. The MC Unit
is designed to comply with this phase advancement, allowing OMRON Servo
Driver Connecting Cables to be used without modification.

Phase A

Phase B

Phase A

Phase B

16

Control System Section 1-4

For typical OMRON Servo Drivers, there are 1,000 pulses per revolution. This
implies that there are 4,000 edges per revolution. So there will be a Z pulse
every 4,000 edges.
The signals A, B and Z appear physically as A and /A, B and /B and Z and /Z.
These appear as differential signals on twisted-pair wire inputs, ensuring that
common modes are rejected and that the noise level is kept to a minimum.
When using Servomotors by other makers, check carefully the encoder spec-
ification for phase advancement. If the definition differs from the ones given
above, reverse the B-phase wiring between the MC Unit and the Servo Driver.
In most case, this should resolve the problem.

1-4-2 Servo System Principles
The servo system used by and the internal operation of the MC Unit are
briefly described below. Refer to 2-4 Servo System Precautions for precau-
tions related to servo system operation.

Inferred Closed Loop
System or Semi-closed
Loop System

The servo system of the MC Unit uses an inferred closed loop system. This
system detects actual machine movements by the rotation of the motor in
relation to a target value. It calculates the error between the target value and
actual movement, and reduces the error through feedback.

Internal Operation of the
MC Unit

Inferred closed loop systems occupy the mainstream in modern servo sys-
tems applied to positioning devices for industrial applications. Commands to
the MC Unit, speed control voltages to the Servo Drivers, and feedback sig-
nals from the encoder are described in the next few pages.

1,2,3... 1. The MC Unit performs actual position control. It receives encoder pulses
and calculates the required speed reference from the difference between
the actual position and the desired position.

2. The calculated desired speed is directly converted by the D/A converter
into an analogue speed reference voltage, which is provided to the Servo
Driver.

3. The Servo Driver controls the rotational speed of the Servomotor corre-
sponding to the speed reference input.

4. The rotary encoder will generate the feedback pulses for both the speed
feedback within the Servo Driver speed loop and the position feedback
within the MC Unit position loop.

Motion Control Algorithm The servo system controls the motor by continuously adjusting the voltage
output that serves as a speed reference to the Servo Driver. The speed refer-
ence is calculated by comparing the measured position of the axis from the
encoder with the demand position generated by the MC Unit.

Error
counter

D/A
Converter

Speed
Control Motor

Encoder

Speed
feedback

Position
feedback

Desired
position

Speed
reference
voltage

1 2 3

4

MC Unit Servo System

17

Control System Section 1-4

The axis parameters MPOS, DPOS and FE contain the value of respectively
the measured position, demand position and the following error. The following
error is the difference between the demanded and measured position. MC
Unit uses five gain values to control how the servo function generates the volt-
age output from the following error.
The control algorithm for the motion control system of the MC Unit is shown in
the diagram below. The five gains are described below.

Proportional Gain The proportional gain creates an output that is proportional to the
following error .

All practical systems use proportional gain. For many just using this gain
parameter alone is sufficient. The proportional gain axis parameter is called
P_GAIN.

Integral Gain The integral gain creates an output that is proportional to the sum of
the following errors that have occurred during the system operation.

Integral gain can cause overshoot and so is usually used only on systems
working at constant speed or with slow accelerations. The integral gain axis
parameter is called I_GAIN.

Derivative Gain The derivative gain produces an output that is proportional to the
change in the following error and speeds up the response to changes in
error while maintaining the same relative stability.

Derivative gain may create a smoother response. High values may lead to
oscillation. The derivative gain axis parameter is called D_GAIN.

Output Speed Gain The output speed gain produces an output that is proportional to
the change in the measured position and increases system damping.

The output speed gain can be useful for smoothing motions but will generate
high following errors. The output speed gain axis parameter is called
OV_GAIN.

Demand
position

Kp

Following
error

KiΣ

Kd∆

Kvff∆

Kov∆
Measured
position

+

-

+ +
Output
signal

Kp Op
E

Op Kp E⋅=

Ki Oi
E

Oi Ki E�⋅=

Kd Od
E

Od Kd E∆⋅=

Kov Oov
Pm

Oov Kov Pm∆⋅=

18

Specifications Section 1-5

Speed Feedforward Gain The speed feedforward gain produces an output that is propor-
tional to the change in demand position and minimizes the following error
at high speed.

The parameter can be set to minimise the following error at a constant
machine speed after other gains have been set. The speed feed forward gain
axis parameter is called VFF_GAIN.

Default Values The default settings are given below along with the resulting profiles. Frac-
tional values are allowed for gain settings.

1-5 Specifications
General Specifications

General specifications other than those shown below conform to those for the
SYSMAC C200HS/C200HX/C200HG/C200HE PCs.

Functional Specifications

Kvff Ovff
Pd

Ovff Kvff Pd∆⋅=

Gain Default

Proportional Gain 1.0

Integral Gain 0.0

Derivative Gain 0.0

Output Speed Gain 0.0

Speed Feedforward Gain 0.0

Item Specifications

Power supply voltage 5 VDC (from Backplane)

24 VDC (from external power supply)

Voltage fluctuation tolerance 4.75 - 5.25 VDC (from Backplane)

21.6 - 26.4 VDC (from external power supply)

Internal current consumption 600 mA or less for 5 VDC

50 mA or less for 24 VDC

Weight (Connectors excluded) 500 g max.

External Dimensions 130.0 x 35 x 100.5 mm (H x W x D)

Item Contents

Type of Unit C200H Special I/O Unit

Applicable PC C200HX/HG/HE and CS1

Backplanes on which MC Unit can be
mounted

CPU Backplane

Method for data
transfer to CPU
Unit

Words allocated in
IR/CIO area

10 words per unit (See note 1.)

PC and MC Unit
instructions

Any number of words modified by ladder program or
BASIC program instruction

External connected devices Personal computer with Motion Perfect Programming
Software

Controlled Servo Drivers Analogue (speed) input Servo Drivers

Control Control method Inferred closed loop with incremental encoder and with
PID, output speed and speed feed forward gains

Maximum No. of axes 8

Maximum No. of
interpolated axes

8

Maximum No. of
servo axes

4

Maximum No. of vir-
tual axes

8

19

Specifications Section 1-5

Speed control Speed control of up to 4 axes

Measurement Units User definable

Positioning opera-
tions

Linear interpolation Linear interpolation for any number of axes

Circular interpolation Circular interpolation for any two axes

Helical interpolation Helical interpolation for any three axes

CAM profile CAM profile movement for any axis

Electronic gearbox Electronic gearbox link between any two axes

Linked CAM Linked CAM profile movement for any two axes

Linked move Linked move for any two axes

Adding axes Adding any two axes

Encoder interface Line receiver input; maximum response frequency:
250 kp/s (before multiplication)

1 M counts/s (after multiplication)

Acceleration/deceleration curves Trapezoidal or S-curve

External
I/O

Serial Communica-
tion ports

One RS-232C port for connection to computer with the
Motion Perfect software.

One RS-232C port for general purpose.

Encoder Line receive inputs:
For four axes (250 kp/s, before multiplication)

Servo Driver relation-
ship

The following signals are provided.

Inputs:
Driver Alarm Signal (each axis)

Outputs:
Driver Enable (all axes)

Speed Reference Voltage (each axis)

Driver Alarm Reset (all axes)

General Purpose I/O Up to 16 digital inputs and 8 outputs can be wired to
control MC Unit functions. These can include limit
switches, emergency stop switches and proximity
inputs.

Registration inputs Each servo axis has a registration input which capture
the position in hardware. Timing specification (see
note 2):

Digital Input (rising edge): 10 s (max.)
Digital Input (falling edge): 200 s (max.)
Z-marker (rising edge): 2 s (max.)
Z-marker (falling edge): 2 s (max.)

Power supply for general and axis I/O Provided externally

Task program man-
agement

Programming lan-
guage

BASIC

Number of tasks Up to 5 tasks running simultaneously plus the Com-
mand Line Interface task

Max. number of pro-
grams

14

Data storage capacity 251 (VR) + 16000 (Table) max.

Data transfer to PC
Unit

PLC_READ and PLC_WRITE command in BASIC pro-
gram, IORD and IOWR instructions in ladder program
in C200HX/HG/HE PCs

Item Contents

µ
µ

µ
µ

20

Comparison with C200HW-MC402-UK Section 1-6

Note 1. The number of MC Units that can be mounted under one CPU Unit must
be determined based on the maximum number of Special I/O Units that
can be allocated words in the CPU Units, the power supply capacity on the
CPU or Expansion Rack, and the current consumption of the Units mount-
ed to the Rack. Refer to the CPU Unit’s operation manual for details on cal-
culation methods.

2. This specification is the time between the edge in the input signal and the
capture of the position data.

3. The service life for the flash memory is 100,000 writing operations.

1-6 Comparison with C200HW-MC402-UK
The following table shows a comparison between the C200HW-MC402-E Unit
and the previously released C200HW-MC402-UK Unit.

!Caution The C200HW-MC402-E is not fully backward compatible with the C200HW-
MC402-UK. Please check Appendix A Upgrading from C200HW-MC402-UK
carefully before upgrading to the C200HW-MC402-E.

Saving program
data

MC Unit Battery-backed RAM with flash memory backup.
(See note 3.)

External devices Motion Perfect software manages a backup on the
hard disk of the personal computer.

Self diagnostic functions Detection of memory corruption via checksum

Detection of error counter overrun

Item Contents

Item C200HW-MC402-UK C200HW-MC402-E

Applicable PCs C200HS,C200HX/HG/HE
(HX up to CPU64)

C200HS,C200HX/HG/HE
and CS1

Supported axes 4 (4 servo) 8 (4 servo and 4 virtual)

Allocated IR/CIO area words 6 words (6 input) 10 words (8 input,
2 output).
- Transfer input and output
words
- General status bits shifted
- Modified origin search bits
- Added PC Transfer Error bit
See notes 1 and 2.

Compatible software Motion Perfect 1.24 and 2.0 Motion Perfect 2.0

Serial Port A Used for Motion Perfect con-
nection and user-defined
communication.

Dedicated to Motion Perfect
connection

Cyclic Servo Period Set by SERVO_PERIOD
parameter (default 1 ms)

Fixed to 1 ms

Commands and
instructions

PLC_READ/
PLC_WRITE

Yes Yes
Also reads/writes allocated
IR/CIO area words

IORD/ IOWR Yes
Read/write to MC Unit’s VR
array in one-word format

Yes
Read/write to MC Unit’s VR
and Table array and one-
word and three-word format
supported

CLEAR_BIT/
SET_BIT/
READ_BIT

No Yes
Enables bit operation for VR
variables

21

Comparison with C200HW-MC402-UK Section 1-6

Note 1. The allocation of the IR/CIO area bits has been modified in comparison
with the C200HW-MC402-UK. Please refer to 3-1 IR/CIO Area Allocation
and Appendix A Upgrading from C200HW-MC402-UK for more informa-
tion.

2. The names of some IR/CIO area bits have been modified. Unless other-
wise indicated, the functionality has not changed. The names of the con-
nection pins have been modified without any change in function.

Commands and
instructions

INPUT/ KEY/
LINPUT

No Yes
Added functionality for serial
communications

PROC No Yes.
Allows a process parameter
of a particular task to be
read/written

INDEVICE/
OUTDEVICE

Yes No
Port 0 is default port for serial
communication

CLEAR/ RESET No Yes
Commands to clear memory

APPENDPROG/
AXISVALUES/
EX/
INPUTS0/
INPUTS1/
LOADSYSTEM/
MPE/
STORE

Yes Commands reserved for
Motion Perfect: descriptions
have been removed from
manual

WAIT LOADED/
LIST

No Yes
Added functionality

Item C200HW-MC402-UK C200HW-MC402-E

23

SECTION 2
Installation

This section describes the MC Unit components and provides the information required for installing the MC Unit.

2-1 Components and Unit Settings . 24
2-2-1 Installation Method. 25
2-2-2 Dimensions . 26

2-2 Installation. 25
2-3-1 Connector Pin Assignments . 26
2-3-2 I/O Specifications . 29
2-3-3 Serial Port Connections . 31
2-3-4 Terminal Block . 32
2-3-5 Connection Examples . 34

2-3 Wiring . 26
2-4 Servo System Precautions . 36
2-5 Wiring Precautions . 38

24

Components and Unit Settings Section 2-1

2-1 Components and Unit Settings
The following diagram shows the main components of the MC Unit.

Indicators
The following table describes the indicators on the front of the MC Unit.

Unit No. Switch
Set the number the unit number between 0 and F.

!Caution Do not change the unit number while power is being supplied to the Unit.

MC402-E

TOOL

RUN DISABLE

7
6
5
4

3
2

0
1

DRV 0,1,2,3

I/O

MACHINE No.

Indicators

Axis Connector

I/O Connector

Communication
Ports: RS-232C

Unit No. switch

Indicator Color Status Meaning

RUN Green ON The MC Unit is operating normally.

OFF The MC Unit is not recognized by the PC at ini-
tialization or is malfunctioning.

Flashing alone The battery voltage is low.

Flashing with
DISABLE

An error occurred in the communication
between MC Unit and CPU Unit.

DISABLE Red ON The axes have been disabled. The Servo
Enable Output is not ON.

OFF The axes are enabled.

Flashing alone The following error has exceeded the limit. The
Servo Drives have been disabled.

Flashing with
RUN

An error occurred in the communication
between MC Unit and CPU Unit.

0 to 7 Orange ON These indicators can be controlled from the pro-
grams. Refer to 5-3-53 DISPLAY for details.OFF

CPU Unit Unit No. setting range

C200HS-CPU01-E/21-E/31-E/03-E/23-E/33-E
C200HE-CPU11-E/32-E/42-E/11-ZE/32-ZE/42-ZE,
C200HG-CPU33-E/43-E/33-ZE/43-ZE,
C200HX-CPU34-E/44-E/34-ZE/44-ZE

0 to 9

C200HG-CPU53-E/63-E/53-ZE/63-ZE,
C200HX-CPU54-E/64-E/54-ZE/64-ZE/85-ZE
CS1H-CPU66-E/65-E/64-E/63-E
CS1G-CPU45-E/44-E/43-E/42-E

0 to F

25

Installation Section 2-2

2-2 Installation
2-2-1 Installation Method

1,2,3... 1. Attach the hooks on the upper section of the MC Unit onto the Backplane.
2. Insert the MC Unit connector into the Backplane connector.

!Caution Do not mount the MC Unit while the power is turned ON to the Rack.

When removing the MC Unit, lift it out while pressing down on the lock lever
with a screwdriver, as shown in the following illustration.

26

Wiring Section 2-3

2-2-2 Dimensions
The basic dimensions of the MC Unit are shown below.

2-3 Wiring
2-3-1 Connector Pin Assignments

I/O Connector
The I/O Connector is used for wiring to external I/O. All I/O are general pur-
pose and functions like limit inputs and origin proximity inputs can be allo-
cated. Inputs I0 / R0 to I3 / R3 can also be used as the Registration Inputs for
axis 0 to 3. Refer to 2-3-2 I/O Specifications for electrical specifications.

Recommended Connector
and Cable

The 3M model numbers are listed below.

The IDC or soldered connectors can be used with various types of cables.
The following 3M cable is recommended for the MC Unit.

• Round-Jacketed, Shielded, Discrete Wire Cable 3444C-series, 28 AWG
Stranded, Twisted-pair, PVC/PVC.

Connector pin
arrangement

Connector IDC plug connectors with
metal backshells

Soldered connector with
plastic shells

26-pin MDR 10126-6000EC or
10126-6000EL
10326-A200-00

10126-3000VE or
10126-3000VC
10326-52F0-0086

14
26 25

15 1
2

12
13

27

Wiring Section 2-3

I/O Connector Pin
Functions

Axis Connector
The Axis Connector is used to connect the Servo Drivers for axes 0 to 3.
Refer to 2-3-2 I/O Specifications for electrical specifications.

Recommended Connector
and Cable

The 3M model numbers are listed below.

The IDC or soldered connectors can be used with various types of cables.
The following 3M cable is recommended for the MC Unit.

• Round-Jacketed, Shielded, Discrete Wire Cable 3444C-series, 28 AWG
Stranded, Twisted-pair, PVC/PVC.

Pin Signal

Name Function

1 24V_IO 24V supply for I/O circuits

2 O0 Output 0

3 O1 Output 1

4 O2 Output 2

5 O3 Output 3

6 O4 Output 4

7 O5 Output 5

8 O6 Output 6

9 O7 Output 7

10 I0 / R0 Input 0 or Registration input for axis 0

11 I1 / R1 Input 1 or Registration input for axis 1

12 I2 / R2 Input 2 or Registration input for axis 2

13 0V_IO 0V common for I/O circuits

14 I3 / R3 Input 3 or Registration input for axis 3

15 I4 Input 4

16 I5 Input 5

17 I6 Input 6

18 I7 Input 7

19 I8 Input 8

20 I9 Input 9

21 I10 Input 10

22 I11 Input 11

23 I12 Input 12

24 I13 Input 13

25 I14 Input 14

26 I15 Input 15

Connector IDC plug connectors with
metal backshells

Soldered connector with
plastic shells

40-pin MDR 10140-6000EC or
10140-6000EL
10340-A200-00

10140-3000VE or
10140-3000VC
10340-5500-008

28

Wiring Section 2-3

Connector pin
arrangement

Axis Connector Pin
Functions

21
4039

22
1

2
20

19

Pin Signal

Name Function

1 0V_DRV 0V common for control signals

2 /ALARM_0 Alarm input for axis 0

3 /ALARM_1 Alarm input for axis 1

4 /ALARM_2 Alarm input for axis 2

5 A_0 Encoder phase A axis 0

6 /A_0 Encoder phase /A axis 0

7 B_0 Encoder phase B axis 0

8 /B_0 Encoder phase /B axis 0

9 Z_0 Encoder phase Z axis 0

10 /Z_0 Encoder phase /Z axis 0

11 VREF_0 Speed reference signal axis 0

12 0V_ENC 0V common for encoder signals

13 A_1 Encoder phase A axis 1

14 /A_1 Encoder phase /A axis 1

15 B_1 Encoder phase B axis 1

16 /B_1 Encoder phase /B axis 1

17 Z_1 Encoder phase Z axis 1

18 /Z_1 Encoder phase /Z axis 1

19 VREF_1 Speed reference signal axis 1

20 0V_REF 0V common for reference signals

21 /ALARM_3 Alarm input for axis 3

22 ALARMRST Drivers alarm reset signal

23 ENABLE Drivers enable signal

24 24V_DRV 24V supply for driver control signals

25 A_2 Encoder phase A axis 2

26 /A_2 Encoder phase /A axis 2

27 B_2 Encoder phase B axis 2

28 /B_2 Encoder phase /B axis 2

29 Z_2 Encoder phase Z axis 2

30 /Z_2 Encoder phase /Z axis 2

31 VREF_2 Speed reference signal axis 2

32 0V_ENC Ground encoder signals

33 A_3 Encoder phase A axis 3

34 /A_3 Encoder phase /A axis 3

35 B_3 Encoder phase B axis 3

36 /B_3 Encoder phase /B axis 3

29

Wiring Section 2-3

Note The 0V_REF and 0V_ENC pins are connected inside the MC Unit.

2-3-2 I/O Specifications
The following tables provide specifications and circuits for the Axis and I/O
connections.

Digital Inputs

Note The given response time is the time between the change in the input voltage
and the corresponding change in the IN variable. This time includes the phys-
ical delays in the input circuit.

!Caution Maximum 12 of the digital inputs (I0 to I15) should be switched on at any one
time to ensure that the Unit remains within internal temperature specifications.
Failure to meet this condition may lead to degradation of performance or dam-
age of components.

Please refer to 1-5 Specifications for timing specification on print registration
using inputs I0/R0 to I3/R3.

37 Z_3 Encoder phase Z axis 3

38 /Z_3 Encoder phase /Z axis 3

39 VREF_3 Speed reference signal axis 3

40 0V_REF 0V common for speed reference signals

Pin Signal

Name Function

I/O inputs: I0 to I15

Item Specification Circuit Configuration

Type PNP

Maximum voltage 24 VDC + 10%

Input current 3.2 mA at 24 VDC

ON voltage 12 V min.

OFF voltage 5 V max.

ON response time
(see note)

1.8 ms (max.)

OFF response time
(see note)

2.1 ms (max.) 0V common for I/O circuits

0V_IO 13

I0/R0 10

Motion Control Unit

External power
supply 24V 910 Ω

6.8k Ω

30

Wiring Section 2-3

Note The given response time is the time between the change in the input voltage
and the corresponding change in the IN variable. This time includes the phys-
ical delays in the input circuit.

Digital Outputs.

Note The given response time is the time between a change in the OP or WDOG
variable and the corresponding change in the digital output signal. This time
includes the physical delays in the output circuit.

Axis inputs: ALARM (axis 0 to 3)

Item Specification Circuit Configuration

Type NPN

Maximum voltage 24 VDC + 10%

Input current 3.2 mA at 24 VDC

ON voltage 12 V min.

OFF voltage 5 V max.

ON response time
(see note)

1.8 ms (max.)

OFF response time
(see note)

2.1 ms (max.)

I/O outputs: O0 to O7

Item Specification Circuit Configuration

Type PNP

Current capacity 100 mA each output
(800 mA total for
group of 8)

Maximum voltage 24 V + 10%

ON response time
(see note)

1.3 ms (max.)

OFF response time
(see note)

1.4 ms (max.)

Protection Over current, over
temperature and 2 A
fuse on common

Axis outputs: ENABLE, ALARMRST

Item Specification Circuit Configuration

Type NPN

Current capacity 80 mA each output

Maximum voltage 24 V + 10%

ON response time
(see note)

1.3 ms (max.)

OFF response time
(see note)

1.4 ms (max.)

24V for Drive control signals

24V_DRV

2/ALARM_0

24

Motion Control Unit

External power
supply 24V 910Ω

6.8k Ω

To other output circuits

In
te

rn
al

 C
irc

ui
try

 (g
la

va
ni

ca
lly

is
ol

at
ed

 fr
om

 s
ys

te
m

)

Motion Control Unit

0V_IO

24V_IO

O0

2A Fuse

2

1

13

External power
supply 24V

LO
A

D

Equivalent
circuit

To other Drive
control circuits

In
te

rn
al

 C
irc

ui
try

 (g
la

va
ni

ca
lly

 is
ol

at
ed

fro
m

 s
ys

te
m

)

Motion Control Unit

0V_DRV

ALARMRST22

1

23 ENABLE

External power
supply 24V

LO
A

D

Equivalent
circuit

24 24V_DRV

31

Wiring Section 2-3

Encoder Input

Note Termination resistors can be mounted on the Terminal Block if required (see
section 2-5 Wiring Precautions).

Analogue Output

2-3-3 Serial Port Connections
The MC Unit has two serial RS-232C ports for communication with external
devices. Port A is the programming port of the unit, connect this port to the
computer to configure the Unit using the Motion Perfect software package.
Port B can be used for connection to other external devices.
The table below shows the connector on the MC Unit (8-pin mini-DIN) and the
pin allocation for both RS-232C ports.

Item Specification Circuit Configuration

Signal level EIA RS-422-A Stan-
dards

Input impedance 48 k min.

Response frequency 250 kp/s

Termination None
(see note)

Item Specification Circuit Configuration

Output Voltage 0 to ±10 V

Resolution 12-bit

Output impedance 100

Load impedance 10 k min.

A_0

6
/A_0

5

Phase A axis 0

120V_ENC

8
/B_0

7

Phase B axis 0

B_0

10
/C_0

9

Phase Z axis 0

C_0

System 0V

Line receiver

0V

+5V

0V

+5V

0V

+5V

Ω

Motion Control Unit

0V_REF

VREF_011

20

+12V

-12V

System 0V

Ω

Ω

Pin Layout Pin Symbol Name Port

1 - Not used -

2 - Not used -

3 SD-A Send data A

4 SG-A Signal ground A

5 RD-A Receive data A

6 SD-B Send data B

7 SG-B Signal ground B

8 RD-B Receive data B

6
7
8 5

4
3

1
2

32

Wiring Section 2-3

You can use the following connection cable for connection to the computer.

The connections to the computer are shown below.

2-3-4 Terminal Block
The Terminal Block (Quick Connect Kit) can be used to facilitate the connec-
tions to the Servo Drivers and other devices. The Terminal Block can be
mounted on a DIN rail.

The table below shows the various items on the unit.

Product Description

R88A-CCM002P4-E Connection cable RS-232C (2m)

2 RD

3 SD

5 GND

7 RTS

8 CTS

Shell FG

Personal Computer

3 SD-A

5 RD-A

4 SG-A

MC Unit

D-sub 9-pin mini-DIN 8-pin

Item Description Connection Type

1 Axis 0 encoder output 9-pin D-sub (female)

2 Axis 0 Servo Driver connection 15-pin D-sub (female)

3 Axis 1 Servo Driver connection 15-pin D-sub (female)

4 Axis 2 Servo Driver connection 15-pin D-sub (female)

5 Axis 3 Servo Driver connection 15-pin D-sub (female)

6 I/O connections Screw terminals

7 24V and 5V supply for Axis connections Screw terminals

8 Axis connection to MC Unit 40-pin MDR socket (female)

9 24V supply for I/O connections Screw terminals

10 I/O connection to MC Unit 26-pin MDR socket (female)

123456

10 9 8 7

80 mm

205 mm

33

Wiring Section 2-3

Dimensions The unit’s dimensions are 205mm x 80mm x 57 mm (L x H x D) without the
cables connected.

Cable and Connector
Parts

The available ready-made cables together with the Terminal Block are shown
in the next table.

Pin Allocations
Axis D-sub 15-Pin The pin layout of the15-pin D-sub connectors, which are used for item 2 to 5,

is shown in the next table.

Axis D-sub 9-Pin The Terminal Block has a second 9-pin D-sub connection for Axis 0 (item 1)
to enable the encoder signals of this axis to be outputted. This can be used to
cascade the signals through to another MC Unit with Terminal Block.

Product Description

R88A-TC04-E Terminal Block

R88A-CMX001S-E I/O connection cable from MC Unit to Terminal Block (1m)

R88A-CMX001J1-E Axis connection cable from MC Unit to Terminal Block (1m)

R88A-CMU001J2-E Connection from Terminal Block to UA Servo Driver (1m)

R88A-CMUK001J3-E Connection from Terminal Block to UT Servo Driver (1m)

R88A-CMUK001J3-E2 Connection from Terminal Block to UT/W Servo Driver (1m)

Pin Signal

Name Function

1 0V_DRV 0V common for control signals

2 /ALARM Alarm input for axis

3 ALARMRST Drive alarm reset signal

4 0V_ENC 0V common for encoder signals

5 A Encoder phase A

6 B Encoder phase B

7 Z Encoder phase Z

8 VREF Speed reference signal

9 24V_DRV 24V power supply for control signals

10 ENABLE Driver enable signal

11 5V_ENC 5V power supply for encoder

12 /A Encoder phase /A

13 /B Encoder phase /B

14 /Z Encoder phase /Z

15 0V_REF 0V common for reference signal

Pin Signal

Name Function

1 0V_DRV 0V common for control signals

2 A Encoder phase A

3 B Encoder phase B

4 Z Encoder phase Z

5 - -

6 /A Encoder phase /A

7 /B Encoder phase /B

8 /Z Encoder phase /Z

9 - -

34

Wiring Section 2-3

I/O Connections The order of the pins for the I/O connections (item 6) is as follows. Refer to
2-3-1 Connector Pin Assignments for the pin descriptions.

Power Supplies There are 2 sets of terminals for supplying power to the interface unit
1. The 24V and optional 5V supply for the Axes part (item 7).
2. The 24V supply for the I/O connections to the unit (item 9).
The 24V power supply to the Axis connection and the I/O connection should
in principle be separate. This will ensure 500V RMS galvanic isolation
between the two circuits.
The 5V power supply is used to supply power an Omron FV Driver or a stan-
dalone line driver encoder feedback is used.

Terminating resistors Immediately next to each item 1-5 there is a 6 pin through-hole connection
that allows placement of terminating resistors on the encoder A, B and Z sig-
nals. These resistors will have to be soldered onto the sites by competent per-
sonnel. The resistor pack recommended for this operation is the 220 Ω / 0.2
W resistors e.g. Bourns 4306R-102-221, which contains 6 isolated resistors in
one package.

2-3-5 Connection Examples

W Driver

I15 I13 I11 I9 I7 I5 R3 R1 O7 O5 O3 O1

I14 I12 I10 I8 I6 I4 R2 R0 O6 O4 O2 O0

Terminal Block

0V_DRV 1

/ALARM 2

ALARMRST 3

0V_ENC 4

A 5

/A 12

B 6

/B 13

Z 7

/Z 14

VREF 8

0V_REF 15

24V_DRV 9

ENABLE 10

5V_ENC 11

R88A-WT❏

32 ALMCOM

31 ALM

44 RESET

1 GND

33 +A

34 - A

36 +B

35 - B

19 +Z

20 - Z

5 REF

6 AGND

Shell

47 +24VIN

40 RUN

35

Wiring Section 2-3

3G3FV Inverter

Terminal Block

0V_DRV 1

/ALARM 2

ALARMRST 3

0V_ENC 4

24V_DRV 9

ENABLE 10

5V_ENC 11

VREF 8

0V_REF 15

A 5

/A 12

B 6

/B 13

Z 7

/Z 14

3G3FV

1 Forward / stop

4 Alarm reset

11 Seq. input common

19 Fault output (NC)

20 Fault output common

13 Freq. ref. input

17 Freq. ref. common

3G3FV-PPGX2 (TA2 Terminal)

1 A-phase +

2 A-phase -

3 B-phase +

4 B-phase -

5 Z-phase +

6 Z-phase -

MY4-24VDC (Reset Relay)

9/10/11/12 2A/2B/2C/2D

5/6/7/8 1A/1B/1C/1D

13 Coil -

14 Coil +

MY4-24VDC (Enable Relay)

9/10/11/12 2A/2B/2C/2D

5/6/7/8 1A/1B/1C/1D

13 Coil -

14 Coil +

36

Servo System Precautions Section 2-4

2-4 Servo System Precautions
The following precautions are directly related to the operation of the servo
system. Refer to 1-4-2 Servo System Principles for a description of servo sys-
tem operation.

Motor Runaway In a servo system employing a Servomotor, faulty or disconnected wiring may
cause the Servomotor to run out of control. Therefore, careful attention must
be paid to preventing faulty or disconnected wiring.
When the wiring is correct, the Servomotor will maintain the stopped position
through corrective operations as long as a position loop is formed and servo-
lock is in effect.
If the motor rotates in the CW direction due to a factor such as temperature
drift, it is detected by the encoder and the internal error counter of the MC Unit
is notified of the direction and amount of rotation by means of feedback sig-
nals output by the encoder.
The count of the error counter is ordinarily zero unless otherwise designated.
When the motor moves in the CW direction, the feedback signal transfers the
direction and amount of movement as a count to the error counter. In
response, the MC Unit outputs a control voltage to rotate the motor in the
CCW direction to zero the error count.
The control voltage is output to the Servo Driver, and the Servomotor rotates
in the CCW direction. If the motor rotates in this CCW direction, the encoder
detects the direction and amount of movement and notifies the error counter
in the MC Unit with feedback signals to subtract and zero the count again.
The position loop subtracts the count in the error counter to zero it.
The analogue ground is common among all axes, preventing the reversal of
axes by swapping the wires. The reversal can easily be achieved in software
inside the Servo Driver using the PP_STEP command.

Runaway Caused by
Faulty Wiring

If the phase-A and phase-B feedback input lines are wired in reverse (crossed
dotted lines at 1 in the figure), the servolock will not be effective and the motor
will run out of control.

1,2,3... 1. If the phase-A and phase-B feedback input lines are wired in reverse, the
error counter will receive the information as a rotation in the CCW direc-
tion.

2. If the motor rotates in the CW direction due to drift or some other cause,
the encoder will detect the direction and amount of movement and transmit
feedback signals to the error counter in the MC Unit.

Servo
driver

(1)

(2)

Servomotor

Encoder

AG

Phase A

Phase B

Servo
Control

Control voltage

MC Unit

0 V

37

Servo System Precautions Section 2-4

3. As a result, the error counter having a count in the CCW direction will at-
tempt to zero the count by outputting a control voltage to the Servo Driver
in the CW direction.

4. The Servomotor will rotate in the CW direction, repeating the above steps
1 to 3, causing the motor to run out of control.

Runaway can occur not only from reversed wiring of phases A and B of the
feedback inputs, but also from reversed wiring of the speed control voltage
and the ground lines (crossed dotted lines at 2 in the figure above).

Runaway Caused by
Disconnected Wiring

The Servomotor will run out of control not only when the position loop is not
correctly formed, but also when the position loop is interrupted due to discon-
nected wiring.

1,2,3... 1. Wire Breakage with Servomotor Rotating:
While the Servomotor is rotating, the speed control voltage is not 0 V be-
cause of the signal from the error counter. If the feedback line is broken,
no feedback signals will be given to the error counter and the speed control
voltage remains unchanged from the value that existed before the line
breakage, causing motor runaway.

2. Wire Breakage with Servomotor Stopped:
If the feedback line is broken while the Servomotor is stopped and correct
feedback signals cannot be returned, the speed control voltage will remain
at zero without changing. Therefore, the Servomotor will also remain
stopped. In fact, however, the motor may move in one direction without
stopping.

This is caused by a discrepancy between the 0 V of the MC Unit’s control volt-
age and the 0 V of the Servo Driver’s voltage input. When the two 0 voltages
do not match, an electric potential difference is generated, resulting in a false
control voltage. This in turn causes the Servomotor to move in one direction
without stopping.
To prevent this, repair the wiring or adjust the 0 V of either the MC Unit or the
Servo Driver so that the 0 V levels match.

Following Error Limit
Setting

While following a motion profile, the servo system will generally follow the set
profile but not exactly. There will be a following error. The following error limit
can be set according to operating conditions using the axis parameter
FE_LIMIT. If for any reason the following error exceeds this limit, the servo
enable output will reset and the Servo Driver will be disabled, causing the
motor to come to a sudden halt. The user must make sure that this does not
have an adverse effect on the machine. See 5-3-66 FE_LIMIT for details.

Servo
driver

Servomotor

Encoder

AG

Phase A

Phase B

Servo
Control

Control voltage

MC Unit

0 V

38

Wiring Precautions Section 2-5

External Limit Switches Another fail-safe condition must normally be set up using monitoring sensors
installed at the edges of the workpiece’s range of movement to detect abnor-
mal workpiece movement and stop operation if a runaway occurs. This can be
done by mapping the address of FWD_IN and REV_IN to the relevant digital
inputs. See 5-3-75 FWD_IN and 5-3-143 REV_IN for details.
Monitoring sensors are installed outside of the limit inputs. If the workpiece
reaches one of the sensors, the appropriate bit in the axis status will be turned
ON. The enable signal to the Servo Driver will be turned OFF and then the
dynamic brake will be applied to stop the motor.

2-5 Wiring Precautions
Electronically controlled equipment may malfunction because of noise gener-
ated by power supply lines or external loads. Such malfunctions are difficult to
reproduce, and determining the cause often requires a great deal of time. The
following precautions will aid in avoiding noise malfunctions and improving
system reliability.

• Use electrical wires and cables of the designated sizes as specified in the
operation manual for the Servo Driver. Use larger size cables for FG lines
of the PC or the Servo Driver and ground them over the shortest possible
distances.

• Separate power cables (AC power supply lines and motor power supply
lines) from control cables (pulse output lines and external input signal
lines). Do not group power cables and control cables together or place
them in the same conduit.

• Use shielded cables for control lines.
• Use the Terminal Block and the ready-made cables designed for MC Unit

to reduce connectivity problems.
• Connect a surge absorbing diode or surge absorber close to relays. Use a

surge-absorbing diode with a voltage tolerance of at least five times
greater than the circuit voltage.

• Noise may be generated on the power supply line if the same power sup-
ply line is used for an electric welder or electrical discharge unit. Connect

DC relay

RY
DC

+

-

Surge
absorbing
diode

AC relay

RY
AC Surge

absorber

Solenoid

Surge
absorberSOL

39

Wiring Precautions Section 2-5

an insulating transformer and a line filter in the power supply section to
remove such noise.

• Use twisted-pair cables for power supply lines. Use adequate grounds

(i.e., to 100 or less) with wire cross sections of 1.25 mm2 or greater.

• Use twisted-pair shielded cables for control voltage output signals, input
signals and feedback signals.

• Use wires of maximum 2 m between the MC Unit and the Servo Driver for
control voltage output signals.

• If the distance of the encoder from the MC Unit is more than 10 m, termi-
nating resistors should be placed on the Terminal Block. The maximum
distance for the encoder position signal from the encoder to the MC Unit
must not exceed 20 m.

• The input terminals that operate the 24 V system are isolated with optical
couplers to reduce external noise effects on the control system. Do not
connect the analogue voltage ground and the 24 V system ground.

Ω

41

SECTION 3
PC Data Exchange

This section describes the IR/CIO area allocation and presents the different methods of data exchange between the MC Unit
and the CPU Unit.

3-1 IR/CIO Area Allocation . 42
3-1-1 Overview. 42
3-1-2 Overview of IR/CIO Area Allocations . 43

3-2 Overview of Data Exchanges . 46
3-2-1 Data Exchange Methods . 46
3-2-2 Data formats . 47

3-3 Details of the Data Exchange Methods. 48
3-3-1 Data Words in IR/CIO Area . 48
3-3-2 Data Transfer by CPU Unit . 49
3-3-3 Data Transfer by MC Unit . 55

42

IR/CIO Area Allocation Section 3-1

3-1 IR/CIO Area Allocation
3-1-1 Overview

Each MC Unit is allocated 10 words in the Special I/O Unit Areas of the CPU
Unit’s IR or CIO area. The words that are allocated depend on the Unit No. set
on the rotary switch on the front panel of the MC Unit. The contents of the
allocated 10 words is exchanged automatically between the CPU Unit and the
MC Unit every time the CPU Unit refreshes I/O.

Input and Output Words The words allocated to the MC Unit are classified as input and output words.
The input and output directions are defined from the CPU Unit’s perspective.

Data Exchange for the C200HX/HG/HE, C200HS

Special I/O Area Allocation for C200HX/HG/HE, C200HS

Note For C200HG-CPU53-E/63-E/53-ZE/63-ZE and C200HX-
CPU54-E/64-E/54-ZE/64-ZE/65-ZE/85-ZE CPU Units only.

Unit no. Allocated words Unit no. Allocated words Unit no. Allocated words Unit no. Allocated words

0 IR 100 to IR 109 4 IR 140 to IR 149 8 IR 180 to IR 189 C IR 420 to IR 429
(See note.)

1 IR 110 to IR 119 5 IR 150 to IR 159 9 IR 190 to IR 199 D IR 430 to IR 439
(See note.)

2 IR 120 to IR 129 6 IR 160 to IR 169 A IR 400 to IR 409
(See note.)

E IR 440 to IR 449
(See note.)

3 IR 130 to IR 139 7 IR 170 to IR 179 B IR 410 to IR 419
(See note.)

F IR 450 to IR 459
(See note.)

CPU Unit MC Unit

IR 100
IR 101
IR 102

IR 109

Automatic data
exchange during
I/O Refresh

}Unit 0

}Unit 1

IR 110

IR 119

}

}
2 words

8 words

IR Area Unit 0

43

IR/CIO Area Allocation Section 3-1

Data Exchange for the CS1 Series

Special I/O Area Allocation for CS1 Series

3-1-2 Overview of IR/CIO Area Allocations
The following tables show the data which is automatically exchanged during
the I/O refresh period. The first word allocated to the MC Unit in the IR/CIO
area is specified as “n” (refer to the previous section). The value of “n” can be
calculated from the unit number using the following equation.

• C200HX/HG/HE, C200HS
Unit numbers 0 to 9: n = 100 + 10 x Unit number
Unit numbers A to F: n = 400 + 10 x (Unit number - 10)

• CS1 Series
Unit numbers 0 to F: n = 2000 + 10 x Unit number

Outputs The outputs consists of two transfer output words, which are used for data
exchange from the CPU Unit to the MC Unit. More details can be found in the
next section.

Inputs The inputs consists of the status flags of the MC Unit and transfer input
words. The transfer input data are two words, which are used for data
exchange from the MC Unit to the CPU Unit. More details can be found in the
next section.

Unit no. Allocated words Unit no. Allocated words Unit no. Allocated words Unit no. Allocated words

0 CIO 2000 to
CIO 2009

4 CIO 2040 to
CIO 2049

8 CIO 2080 to
CIO 2089

C CIO 2120 to
CIO 2129

1 CIO 2010 to
CIO 2019

5 CIO 2050 to
CIO 2059

9 CIO 2090 to
CIO 2099

D CIO 2130 to
CIO 2139

2 CIO 2020 to
CIO 2029

6 CIO 2060 to
CIO 2069

A CIO 2100 to
CIO 2109

E CIO 2140 to
CIO 2149

3 CIO 2030 to
CIO 2039

7 CIO 2070 to
CIO 2079

B CIO 2110 to
CIO 2119

F CIO 2150 to
CIO 2159

CPU Unit MC Unit

CIO 2000

Automatic data
exchange during
I/O Refresh

}Unit 0

}Unit 1

}

}
2 words

8 words

CIO Area Unit 0

CIO 2002

CIO 2009
CIO 2010

CIO 2019

CIO 2001

Output
word

Bit Name Function

n 00 to 15 Output Word 1 First transfer output word.

n + 1 00 to 15 Output Word 2 Second transfer output word.

44

IR/CIO Area Allocation Section 3-1

Input word Bit Name Function

n + 2 00 Unit Operating Flag OFF: MC Unit is not operating. ON: MC Unit is operating.

01 Motion Error Flag OFF: No error. ON: A motion error has occurred.

02 Task 1 Flag OFF: Task1 is inactive. ON: Task 1 is active.

03 Task 2 Flag OFF: Task 2 is inactive. ON: Task 2 is active.

04 Task 3 Flag OFF: Task 3 is inactive. ON: Task 3 is active.

05 Task 4 Flag OFF: Task 4 is inactive. ON: Task 4 is active.

06 Task 5 Flag OFF: Task 5 is inactive. ON: Task 5 is active.

07 PC Transfer Busy Flag ON: The MC Unit is exchanging data with the PC Unit.

08 to 15 Digital Input Status Flags Indicate the status of digital inputs 0 to 7.

n + 3 00 to 15 Digital Input Status Flags Indicate the status of the digital inputs 8 to 23.

n + 4 00 to 15 Digital Output Status
Flags

Indicate the status of digital outputs 8 to 23.

n + 5 00 Axis 0 Following Error
Warning Limit Flag

ON: The warning limit was exceeded for the following error for axis 0.

01 Axis 0 Forward Limit Flag ON: A forward limit is set for axis 0.

02 Axis 0 Reverse Limit Flag ON: A reverse limit is set for axis 0.

03 Axis 0 Origin Search Flag ON: An origin search is in progress for axis 0.

04 Axis 0 Feedhold Flag ON: A feedhold is set for axis 0.

05 Axis 0 Following Error
Limit Flag

ON: The limit was exceeded for the following error for axis 0.

06 Axis 0 Software Forward
Limit Flag

ON: The software forward limit was exceeded for axis 0.

07 Axis 0 Software Reverse
Limit Flag

ON: The software reverse limit was exceeded for axis 0.

08 Axis 1 Following Error
Warning Limit Flag

ON: The warning limit was exceeded for the following error for axis 1.

09 Axis 1 Forward Limit Flag ON: A forward limit is set for axis 1.

10 Axis 1 Reverse Limit Flag ON: A reverse limit is set for axis 1.

11 Axis 1 Origin Search Flag ON: An origin search is in progress for axis 1.

12 Axis 1 Feedhold Flag ON: A feedhold is set for axis 1.

13 Axis 1 Following Error
Limit Flag

ON: The limit was exceeded for the following error for axis 1.

14 Axis 1 Software Forward
Limit Flag

ON: The software forward limit was exceeded for axis 1.

15 Axis 1 Software Reverse
Limit Flag

ON: The software reverse limit was exceeded for axis 1.

45

IR/CIO Area Allocation Section 3-1

n + 6 00 Axis 2 Following Error
Warning Limit Flag

ON: The warning limit was exceeded for the following error for axis 2.

01 Axis 2 Forward Limit Flag ON: A forward limit is set for axis 2.

02 Axis 2 Reverse Limit Flag ON: A reverse limit is set for axis 2.

03 Axis 2 Origin Search Flag ON: An origin search is in progress for axis 2.

04 Axis 2 Feedhold Flag ON: A feedhold is set for axis 2.

05 Axis 2 Following Error
Limit Flag

ON: The limit was exceeded for the following error for axis 2.

06 Axis 2 Software Forward
Limit Flag

ON: The software forward limit was exceeded for axis 2.

07 Axis 2 Software Reverse
Limit Flag

ON: The software reverse limit was exceeded for axis 2.

08 Axis 3 Following Error
Warning Limit Flag

ON: The warning limit was exceeded for the following error for axis 3.

09 Axis 3 Forward Limit Flag ON: A forward limit is set for axis 3.

10 Axis 3 Reverse Limit Flag ON: A reverse limit is set for axis 3.

11 Axis 3 Origin Search Flag ON: An origin search is in progress for axis 3.

12 Axis 3 Feedhold Flag ON: A feedhold is set for axis 3.

13 Axis 3 Following Error
Limit Flag

ON: The limit was exceeded for the following error for axis 3.

14 Axis 3 Software Forward
Limit Flag

ON: The software forward limit was exceeded for axis 3.

15 Axis 3 Software Reverse
Limit Flag

ON: The software reverse limit was exceeded for axis 3.

n + 7 00 Task 1 BASIC Error Flag ON: An error occurred in the BASIC program in task 1.

01 Task 2 BASIC Error Flag ON: An error occurred in the BASIC program in task 2.

02 Task 3 BASIC Error Flag ON: An error occurred in the BASIC program in task 3.

03 Task 4 BASIC Error Flag ON: An error occurred in the BASIC program in task 4.

04 Task 5 BASIC Error Flag ON: An error occurred in the BASIC program in task 5.

05 Low Battery Flag ON: The voltage of the backup battery is low.

06 Not used ---

07 PC Transfer Error Flag ON: An error has occurred during data transfer between MC Unit and
PC Unit.

08 to 15 Indicator Mode Contains the value of the DISPLAY system parameter, which deter-
mines the display mode of the bank of the 8 LED indicators on the
front panel. Refer to 5-3-53 DISPLAY for details.

n + 8 00 to 15 Input Word 1 First transfer input word.

n + 9 00 to 15 Input Word 2 Second transfer input word.

Input word Bit Name Function

46

Overview of Data Exchanges Section 3-2

3-2 Overview of Data Exchanges
3-2-1 Data Exchange Methods

The MC Unit is able to exchange data with the CPU Unit the following three
ways.

Data Words in IR/CIO Area The MC Unit and the CPU Unit both have access to their own allocated words
in memory. These transfer I/O words allocated in the MC Unit memory and in
the CPU Unit’s IR/CIO Area are exchanged during the I/O refresh period. The
MC Unit accesses the words by using the BASIC commands PLC_READ and
PLC_WRITE.

Data Transfer by CPU Unit The CPU Unit is able to read/write directly into both the VR and Table mem-
ory areas of the MC Unit by using the ladder instructions IORD and IOWR.
BASIC programming in the MC Unit is not required.

CPU Unit MC Unit

No program
required

Allocated Words

PLC_READ
PLC_WRITE

Allocated Words

VR Array

 I/O Refresh

CPU Unit MC Unit

IORD
IOWR

I/O Memory

No program
required

Table/VR Array

47

Overview of Data Exchanges Section 3-2

Data Transfer by MC Unit The MC Unit can initiate data transfer to and from the CPU Unit using the
PLC_READ and PLC_WRITE commands. The CPU Unit’s user program is
not required and the transfer will be executed at the next I/O refresh.

3-2-2 Data formats
The data transfers commands of the PC Unit and the MC Unit support two
data format types.

One-word format The data is transferred word by word from each PC memory location to each
variable in the MC unit and vice versa. The value in the MC Unit is always the
integer equivalent of the hexadecimal value in the PC (no 2's complement).
From the floating-point data in the MC unit only the integer part will be trans-
ferred. The valid range is [0,65535].

Three-word format The data in the PC is represented by three memory elements, in total three
words. The following is the configuration of a BCD position data item.

Example 1: The three-word format of value 56143 is given by

Example 2: The three-word format of value -48.89 is given by

One data item uses three words. Therefore the total words for data transfers
should be the amount of data transferred multiplied by three.

CPU Unit MC Unit

No program
required

I/O Memory

PLC_WRITE
PLC_READ

VR Array
Next I/O
refresh

j+0 0 0 0 0

j+1 6 1 4 3

j+2 0 0 0 5

j+0 0 0 0 2

j+1 4 8 8 9

j+2 8 0 0 0

j+0 0 0 0 A

j+1 x103 x102 x101 x100

j+2 x107 x106 x105 x104

Decimal point A = 0 (Indicates 1)
1 (Indicates 0.1)
2 (Indicates 0.01)
3 (Indicates 0.001)
4 (Indicates 0.0001)

Position data

Sign bit (s)
0: positive
1: negative

3 2 1 0 bit

s x107

48

Details of the Data Exchange Methods Section 3-3

3-3 Details of the Data Exchange Methods
3-3-1 Data Words in IR/CIO Area

Data is read/written during the I/O refresh from either the MC Unit or the CPU
Unit.

• The amount of data is two words output and two words input.
• The data is copied between the VR area and the allocated words in the

MC Unit by using the PLC_READ and PLC_WRITE commands.

Transfer Output
The two words output data present in the CPU Unit is copied at every I/O
refresh to the allocated words within the MC Unit. When a PLC_READ com-
mand is given, the contents of the allocated words (n, n+1) will be copied to
the specified VR variables in the MC Unit.
The following example is for a C200HX/HG/HE PC.

Transfer Input
After the PLC_WRITE command is given, the content of the specified VR vari-
ables will be copied to the allocated words in the MC Unit. On the next I/O
refresh, this data will be copied to the allocated words (n+8, n+9) in the IR/
CIO area of the CPU Unit.
The following example is for a C200HX/HG/HE PC.

CPU Unit MC Unit

PLC_READ(PLC_REFRESH, 0, 2, 0)

 I/O Refresh

None

VR(0) 27279

VR(1) 15

n 0110101010001111

n+1 0000000000001111

IR Area

n 0110101010001111

n+1 0000000000001111

At PLC_READ

CPU Unit MC Unit

PLC_WRITE(PLC_REFRESH, 0, 2, 10)

 I/O Refresh

None

VR(10) 45

VR(11) 333

n+8 0000000000101101

n+9 0000000101001101

IR Area

n+8 0000000000101101

n+9 0000000101001101

At PLC_WRITE

49

Details of the Data Exchange Methods Section 3-3

3-3-2 Data Transfer by CPU Unit
The CPU Unit is able to independently read and write to the MC Unit’s Table
and VR array.

• The maximum amount of data transferred is 128 words.
• The data transfer is synchronous with the ladder program.

IORD Instruction
The IORD instruction can be used in the following way to read data from the
MC Unit. Refer to the Operation Manual of your PC Unit for further details on
using this instruction.

C:

C200HX/HG/HE
S:

CS1 Series S: left most 4 digits
S+1: right most 4 digits

S:

S+1:

D: First destination word in CPU Unit’s memory.

IORD

C C: Control code

S S: Source Information

D D: First destination word

Value (hex) Details

#A❏❏❏ VR (one-word format): Data is transferred from
the first VR variable as specified by ❏❏❏ .
Range (BCD): 000 to 250.

#B❏❏❏ VR (three-word format): Data is transferred from
the first VR variable as specified by ❏❏❏ .
Range (BCD): 000 to 250.

#❏❏❏❏ Table (three-word format): Data is transferred
from the first Table variable as specified by
❏❏❏❏ multiplied by factor 10.
Range (BCD): 0000 to 1599.

Value (hex) Details

#n❏❏❏ Value n is the unit number of the MC Unit.
Range: 0 to F.

The amount of data is specified by ❏❏❏ .
Range: (BCD): 001 to 128.

Value (hex) Details

#000n Value n is the unit number of the MC Unit.
Range: 0 to F.

Value (hex) Details

#❏❏❏❏ The no. of transfer words is specified by ❏❏❏❏ .
Range: 0000 to 0080 Hex.

50

Details of the Data Exchange Methods Section 3-3

Data

Data

Item Detail

PC C200HX/HG/HE

Operand D

IR Area 1 IR 000 to IR 235

SR Area 1 SR 236 to SR 252

SR Area 2 SR 256 to SR 299

IR Area 2 IR 300 to IR 511

HR Area HR 00 to HR 99

AR Area AR 00 to AR 27

LR Area LR 00 to LR 63

TC Area TC 000 to TC 511

TR Area ---

DM Area DM 0000 to DM 6143

EM Area ---

Indirect DM
addresses

*DM 0000 to DM 6655

Constants ---

Item Detail

PC CS1

Operand D

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A000 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without
bank

E00000 to E32767

EM Area with bank En_00000 to En_32767 (n = 0 to C)

Indirect DM/EM
addresses in binary

@D00000 to @D32767
@E00000 to @E32767
@En_00000 to @En_32767 (n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767 (n = 0 to C)

Constants ---

Data Registers ---

Directly addressing
Index Registers

Indirect addressing
using Index Regis-
ters

,IR0 to ,IR15
-2048 to +2047 ,IR0 to ,IR15
DR0 to 15, IR0 to IR15
,IR0 to ,IR15+(++)
-(--) IR0 to IR15

51

Details of the Data Exchange Methods Section 3-3

Flags

Note SR Area addresses for the C200HX/HG/HE, C200H, and C200HS are given
in parentheses.

Note The user should be aware that the MC Unit does not check if the MC Unit data
is in the range of the three-word format.

Value
(see note)

ON OFF

Instruction Execu-
tion Error Flag
(ER) (25503)

• The number of transfer
words is not in BCD, or it is
0 words or is greater than
128 words.

• The indirectly addressed
DM address is greater than
6656 or not BCD.

• The destination Unit No. is
outside the range 0 to F, or
is on a SYSMAC BUS
slave rack.

• The number of transfer
words is not BCD.

C., S., and D. settings are cor-
rect.

Carry Flag
(CY) (25504)

--- ---

Greater Than Flag
(GR) (25505)

--- ---

Equals Flag
(EQ) (25506)

Reading was correctly com-
pleted.

Reading was not correctly
completed.

Less Than Flag
(LE) (25507)

--- ---

Overflow Flag
(OF) (25404)

--- ---

Underflow Flag
(UF) (25405)

--- ---

Negative Flag
(N) (25402)

--- ---

Value ON OFF

PC Transfer Error
Flag
(IR n+7 bit 07)

• The control code is not
valid for the MC Unit.

• The amount of words is not
a multiple of three for
three-word format transfer.

• The MC Unit’s Table or VR
address in combination
with the amount of data is
invalid.

• There is an overflow of
IORD/IOWR and
PLC_READ/PLC_WRITE
transfers.

None of the errors has
occurred.

52

Details of the Data Exchange Methods Section 3-3

Transfer example for
C200HX/HG/HE PC

In the following example, 20 words from VR(123) to VR(142) is transferred
from the MC Unit with unit number set to 0 to addresses DM0000 to DM0019
in one-word format.

IOWR Instruction
The IOWR instruction can be used in the following way to write data to the MC
Unit. Refer to the Operation Manual of your PC Unit for further details on
using this instruction.

C:

S: First source word in CPU Unit’s memory.

C200HX/HG/HE
D:

CS1 Series D: left most 4 digits
D+1: right most 4 digits

D:

D+1:

IORD

#A123

#0020

DM0000

001.00

IOWR

C C: Control code

S S: First source word

D D: Destination information

Value (hex) Details

#A❏❏❏ VR (one-word format): Data is transferred to the
first VR variable as specified by ❏❏❏ . Range
(BCD): 000 to 250.

#B❏❏❏ VR (three-word format): Data is transferred to
the first VR variable as specified by ❏❏❏ .
Range (BCD): 000 to 250.

#❏❏❏❏ Table (three-word format): Data is transferred to
the first Table variable as specified by ❏❏❏❏
multiplied by factor 10. Range (BCD): 0000 to
1599.

Value (hex) Details

#n❏❏❏ Value n is the unit number of the MC Unit.
Range: 0 to F.
The amount of data is specified by ❏❏❏ .
Range: (BCD): 001 to 128.

Value (hex) Details

#000n Value n is the unit number of the MC Unit.
Range: 0 to F.

Value (hex) Details

#❏❏❏❏ The no. of transfer words is specified by ❏❏❏❏ .
Range: 0000 to 0080 Hex.

53

Details of the Data Exchange Methods Section 3-3

Data

Data

Item Detail

PC C200HX/HG/HE

Operand S

IR Area 1 IR 000 to IR 235

SR Area 1 SR 236 to SR 255

SR Area 2 SR 256 to SR 299

IR Area 2 IR 300 to IR 511

HR Area HR 00 to HR 99

AR Area AR 00 to AR 27

LR Area LR 00 to LR 63

TC Area TC 000 to TC 511

TR Area ---

DM Area DM 0000 to DM 6655

EM Area ---

Indirect DM
addresses

*DM 0000 to DM 6655

Constants ---

Item Detail

PC CS1

Operand S

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A000 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without
bank

E00000 to E32767

EM Area with bank En_00000 to En_32767 (n = 0 to C)

Indirect DM/EM
addresses in binary

@D00000 to @D32767
@E00000 to @E32767
@En_00000 to @En_32767 (n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767 (n = 0 to C)

Constants #0000 to #FFFF (binary)

Data Registers ---

Directly addressing
Index Registers

Indirect addressing
using Index Regis-
ters

,IR0 to ,IR15
-2048 to +2047 ,IR0 to ,IR15
DR0 to 15, IR0 to IR15
,IR0 to ,IR15+(++)
-(--) IR0 to IR15

54

Details of the Data Exchange Methods Section 3-3

Clearing PC Transfer Error
in MC Unit

C:

S: Use any source address

C200HX/HG/HE
D:

CS1 Series
D:

D+1:

Flags

Value (hex) Details

#EC00 The PC transfer error flag in IR/CIO area is
cleared.

Value (hex) Details

#n001 Value n is the unit number of the MC Unit. The
amount of data should always be 001.

Value (hex) Details

#000n Value n is the unit number of the MC Unit.
Range: 0 to F.

Value (hex) Details

#0001 The amount of data should always be 0001.

Value
(see note)

ON OFF

Instruction Execu-
tion Error Flag
(ER) (25503)

• The number of transfer
words is not in BCD, or it is
0 words or is greater than
128 words.

• The indirectly addressed
DM address is greater than
6656 or not BCD.

• The Unit No. of the MC
Unit is outside the range
0 to F, or is on a SYSMAC
BUS slave rack.

• The number of transfer
words is not BCD.

• The instruction was not
correctly completed.

C., S., and D. settings are cor-
rect.

Carry Flag
(CY) (25504)

--- ---

Greater Than Flag
(GR) (25505)

--- ---

Equals Flag
(EQ) (25506)

Writing was correctly com-
pleted.

Writing was not correctly com-
pleted.

Less Than Flag
(LE) (25507)

--- ---

Overflow Flag
(OF) (25404)

--- ---

Underflow Flag
(UF) (25405)

--- ---

Negative Flag
(N) (25402)

--- ---

55

Details of the Data Exchange Methods Section 3-3

Note SR Area addresses for the C200HX/HG/HE, C200H, and C200HS are given
in parentheses.

Note The user should be aware that the MC Unit does not check if the PC memory
data complies to the three-word format.

Transfer example In the following example, 60 words from DM0100 to DM0159 is transferred in
three words format from the PLC Unit to TABLE(10100) to TABLE(10119) of
the MC Unit with unit number set to 5.

3-3-3 Data Transfer by MC Unit
The MC Unit is able to independently read and write from the MC Unit’s VR
array to the CPU Unit’s I/O memory by using the PLC_READ and
PLC_WRITE commands.

• The maximum amount of data transferred is 127 words.
• The commands only support the one-word format.
• The data is transferred at the end of the CPU scan cycle during I/O

refresh.
• The BASIC program will be paused until completion of the transfer.

Refer to the 5-3-122 PLC_READ and 5-3-124 PLC_WRITE for more details
on the commands.

PLC_READ Command
The following BASIC program will read 50 words from the CPU Unit’s DM 0 to
DM 49 to VR variables 100 to 149 in one-word format. A PC user program is
not required.
BASIC program:

PLC_READ(PLC_DM,0,50,100)

PLC_WRITE Command
The following BASIC program will write 50 words from the MC Unit’s VR vari-
ables 0 to 99 from the CPU Unit’s EM 200 to EM 299 to in one-word format. A
PC user program is not required.
BASIC program:

PLC_WRITE(PLC_EM,200,100,0)

Value ON OFF

PC Transfer Error
Flag
(IR n+7 bit 07)

• The control code is not
valid for the MC Unit.

• The amount of words is not
a multiple of three for
three-word format transfer.

• The MC Unit’s Table or VR
address in combination
with the amount of data is
invalid.

• There is an overflow of
IORD/IOWR and
PLC_READ/PLC_WRITE
transfers.

None of the errors has
occurred.

IOWR

#1010

DM0100

#5060

001.00

56

Details of the Data Exchange Methods Section 3-3

Restrictions for CS1-series PCs
When the MC Unit is used with a CS1-series PC, there are some addressing
restrictions for the data transfer using the PLC_READ and PLC_WRITE com-
mands. Note that the other two methods do not have these restrictions and
should be used for accessing data outside this range.
The addresses shown in the following table can be specified for PLC_READ
and PLC_WRITE.

Area CS1 address Designation method

PC_area First word address

DM area D00000 to D06655 PLC_DM 0 to 6655

CIO area CIO 0000 to CIO 0511 PLC_IR 0 to 511

Data Link area (in
CIO area)

CIO 1000 to CIO 1063 PLC_LR 0 to 63

Holding Bit area,
part 1

H000 to H099 PLC_HR 0 to 99

Holding Bit area,
part 2

H100 to H127 (except
H101)

PLC_AR 0 to 27

Timer area T0000 to T0511 PLC_TC 0 to 511

EM area, bank 0 E0_00000 to E0_06143 PLC_EM 0 to 6143

57

SECTION 4
Multitasking BASIC Programming

This section gives an overview of the fundamentals of multitasking BASIC programs and the methods by which programs
are managed for the MC Unit.

4-1 Overview . 58
4-2 BASIC Programming . 58

4-2-1 Axis, System and Task Statements . 58
4-2-2 Data Structures and Variables . 59
4-2-3 Mathematical Specifications. 60

4-3 Motion Control Application . 61
4-4 Command Line Interface. 65
4-5 BASIC Programs. 65

4-5-1 Managing Programs . 65
4-5-2 Program Compilation . 66
4-5-3 Program Execution . 66

4-6 Error Processing . 68

58

Overview Section 4-1

4-1 Overview
The C200HW-MC402 Motion Control Unit features a multitasking version of
the BASIC programming language. The motion control language is largely
based upon a tokenised BASIC and the programs are compiled into the toke-
nised form prior to their execution.
Multitasking is simple to set up and use and allows very complex machines to
be programmed. Multitasking gives the MC Unit a significant advantage over
equivalent single task systems. It allows modular applications where the logi-
cally connected processes can be grouped together in the same task pro-
gram, thus simplifying the code architecture and design.
The MC Unit can hold up to 14 programs if memory size permits. A total of 5
tasks can be allocated to the programs. The execution of the programs is user
controlled using BASIC.
The BASIC commands, functions and parameters presented here can be
found in SECTION 5 BASIC Motion Control Programming Language.

4-2 BASIC Programming
The BASIC language consists among others of commands, functions and
parameters. These BASIC statements are the building blocks provided to
control the MC Unit operation.

Commands Commands are words recognized by the processor that perform a certain
action but do not return a value. For example, PRINT is a recognized word
that will cause the value of the following functions or variables to be printed on
a certain output device.

Functions Functions are words recognized by the processor that perform a certain
action and return a value related to that action. For example, ABS will take the
value of its parameter and return the absolute value of it to be used by some
other function or command. For example ABS(-1) will return the value 1,
which can be used by the PRINT command, for example, to generate a string
to be output to a certain device.

Parameters Parameters are words recognized by the processor that contain a certain
value. This value can be read and, if not read only, written. Parameters are
used to determine and monitor the behavior of the system. For example,
ACCEL determines the acceleration rate of a movement for a certain axis.

4-2-1 Axis, System and Task Statements
The commands, functions and parameters apply either to (one of) the axes,
the tasks running or the general system.

Axis Statements The motion control commands and the axis parameters apply to one or more
axes. Axis parameters determine and monitor how an axis reacts on com-
mands given and how it reacts to the outside world. Every axis has a set of
parameters, so that all axes can work independently of each other. The
motion control commands are able to control one or more of the axes simulta-
neously, while every axis has its own behavior.
The axis parameters are reset to their default values either when the power to
the MC Unit is turned ON, the MC Unit is restarted from Motion Perfect, the
MC Unit is restarted using the Restart Bit in the CPU Unit or the INITIALISE
command is executed.
The commands and parameters work on some base axis or group of axes,
specified by the BASE command. The BASE command is used to change this
base axis group and every task has its own group which can be changed at
any time. The default base axis is 0.

59

BASIC Programming Section 4-2

Individual axis dependent commands or parameters can also be programmed
to work on a temporary base axis by including the AXIS function as a modifier
in the axis dependent command. A temporary base axis is effective only for
the command or parameter after which AXIS appears.

Task Statements The task parameters apply to a single task. The task parameters monitor the
task for example for error handling. The PROC modifier allows the user to
access a parameter of a certain task. Without PROC the current task is
assumed. The BASE command (see above) is task specific and can be used
with the PROC modifier.

System Statements These statements govern the overall system features, which are basically all
statements which do not belong to the first two groups.

4-2-2 Data Structures and Variables
BASIC programs can store numerical data in various types of variables. Some
variables have predefined functions, such as the axis parameters and system
parameters; other variables are available for the programmer to define as
required in programming. The MC Unit’s Table, global and local variables are
explained in this section. Furthermore also the use of labels will be specified.

Table
The Table is an array structure that contains a series of numbers. These num-
bers are used for instance to specify positions in the profile for a CAM or
CAMBOX command. They can also be used to store data for later use, for
example to store the parameters used to define a workpiece to be processed.
The Table is common to all tasks on the MC Unit, i.e., the values written to the
Table from one task can be read from other tasks. The Table is backed up by
a battery and will maintain its contents when power is turned OFF.
Table values can be written and read using the TABLE command. The maxi-
mum length of the array is 16000 elements, from TABLE(0) to TABLE(15999).
The Table array is initialized up to the highest defined element.

Global Variables
The global variables, also called VR variables, are common to all tasks on the
MC Unit. This means that if a program running on task 2 sets VR(25) to a cer-
tain value, then any other program running on a different task can read that
same value from VR(25). This is very useful for synchronizing two or more
tasks, but care must be taken to avoid more than one program writing to the
same variable at the same time. The controller has 251 global variables,
VR(0) to VR(250). The variables are read and written using the VR command.
The VR variables maintain their values when power is turned OFF to the MC
Unit. They are stored in RAM backed up by battery in the MC Unit.

!Caution If the voltage of the backup battery drops, Table and global data will be lost.
This can happen when the power to the MC Unit is turned OFF for a long
period of time. The user should be very aware of this and should take the fol-
lowing precautions:

• Initialize variables from a program at power up as much as possible.
• Store dynamic application data, which can not be defined in programs, in

the PC Unit’s memory as much as possible.
• Update the data from the PC Unit at each power up before operation.

The Low Battery flag will turn ON when the voltage of the backup battery has
dropped. Also the BATTERY_LOW system parameter will become TRUE. For
detailed information, refer to 3-1-2 Overview of IR/CIO Area Allocations and
5-3-28 BATTERY_LOW.

60

BASIC Programming Section 4-2

Local Variables
Named variables or local variables can be declared in programming and are
local to the task. This means that two or more programs running on different
tasks can use the same variable name, but their values can be different. Local
variables cannot be read from any task except for the one in which they are
declared. Local variables are always cleared when a program is started. The
local variables can be cleared by using either the CLEAR or the RESET com-
mand. Undefined local variables will return zero. Local variables cannot be
declared on the command line.
A maximum of 255 local variables can be declared. Only the first 16 charac-
ters of the name are significant.

Labels
BASIC programs are normally executed in descending order through the
lines. Labels can be used to alter this execution flow using the BASIC com-
mands GOTO and GOSUB. To define a label it must appear as the first state-
ment on a line and it must be ended by a colon (:). Labels can be character
strings of any length, but only the first 15 characters are significant.

Using Variables and Labels
Each task has its own local labels and local variables. For example, consider
the two programs shown below:

These two programs when run simultaneously in different tasks and have
their own version of variable “a” and label “start”. Note that undefined local
variables will also return zero and not generate an error message.
If you need to hold data in common between two or more programs, VR vari-
ables should be used, or alternatively, if a large amount of data is to be held,
the Table can be used.
To make a program more readable when using a VR variable, a named local
variable can be used as a constant in the VR variable. The constant, however,
must be declared in each program using the variable. In the example below,
VR(3) is used to hold a length parameter.

4-2-3 Mathematical Specifications
Number format The MC Unit has two main formats for numeric values: single precision float-

ing point and single precision integer.

start:
FOR a = 1 to 100

MOVE(a)

WAIT IDLE
NEXT a
GOTO start

start:
a=0
REPEAT

a = a + 1
PRINT a

UNTIL a = 300
GOTO start

start:

GOSUB initial
VR(length) = x

...Body of program

initial:
length = 3

RETURN

start:

GOSUB initial
MOVE(VR(length))
PRINT VR(length)

...Body of program

initial:
length = 3
RETURN

61

Motion Control Application Section 4-3

The single precision floating point format is internally a 32 bit value. It has an
8 bit exponent field, a sign bit and 23 bit fraction field with an implicit 1 as the
24th bit. Floating point numbers have a valid range of to

.
Integers are essentially floating point numbers with a zero exponent. This
implies that the integers are 24 bits wide. The integer range is therefore given
from -16777216 to 16777215. Numeric values outside this range will be float-
ing point.

!WARNING All mathematical calculations are done in floating point format. This implies
that for calculations of/with larger values the results may have limited accu-
racy. The user should be aware of this when developing the motion control
application.

Positioning For positioning, the Unit will round up if the fractional encoder edge distance
calculated exceeds 0.9. Otherwise the fractional value will be rounded down.

Floating point comparison The comparison functions considers small difference between values as
equal to avoid unexpected comparison results. Therefore any two values for
which the difference is less than are considered equal.

Precedence The precedence of the operators is given below:
Unary Minus, NOT
^
/ *
MOD
+ -
= <> > >= <= <
AND OR XOR
Left to Right

The best way to ensure the precedence of various operators is through the
use of parentheses.

4-3 Motion Control Application
Initialisation

For setting up a motion application with the MC Unit, the following parameters
need to be considered.

5.9± 10
39–⋅

3.4± 10
38⋅

1.19 10
6–⋅

Parameter Description

WDOG The WDOG parameter contains the software switch used to con-
trol the enable relay contact, which enables all drivers.

SERVO The SERVO parameter determines whether the base axis runs
under servo control (ON) or open loop (OFF). When in open loop
the output speed reference voltage is determined by the DAC
parameter.

DAC The DAC parameter contains the voltage value which is applied
directly to the Servo Driver when the base axis is in open loop.

P_GAIN The P_GAIN parameter contains the proportional gain for the
axis.

I_GAIN The I_GAIN parameter contains the integral gain for the axis.

D_GAIN The D_GAIN parameter contains the derivative gain for the axis.

VFF_GAIN The VFF_GAIN parameter contains the speed feed forward gain
for the axis.

OV_GAIN The OV_GAIN parameter contains the output speed gain for the
axis.

62

Motion Control Application Section 4-3

In the following example a simple motion application including initialisation for
a single axis is shown.
init:

BASE(0)
P_GAIN=.5: I_GAIN=0: D_GAIN=0
VFF_GAIN=0: OV_GAIN=0
ACCEL=1000
DECEL=1000
SPEED=500
WDOG=ON
SERVO=ON

loop:
MOVE(500)
WAIT IDLE
WA(250)
MOVE(-500)
WAIT IDLE
WA(250)
GOTO loop

Move Execution
Every task on the MC Unit has a set of buffers that holds the information from
the motion commands given. The motion commands include MOVE, MOVE-
ABS, MOVEMODIFY, MOVECIRC, MHELICAL, FORWARD, REVERSE,
MOVELINK, CONNECT, CAM and CAMBOX. Refer to 5-2-1 Motion Control
Commands for details on specific commands.

Motion Generator The motion generator, a background process that prepares and runs moves,
has a set of two motion buffers for each axis. One buffer holds the Actual
Move, which is the move currently executing on the axis. The MTYPE axis
parameter contains the identity number of this move. For example the MTYPE
will have value 10 if currently the FORWARD move is executed. The other
buffer holds the Next Move, which is executed after the Actual Move has fin-
ished. The NTYPE axis parameter contains the identity number of this next
move.
The BASIC programs are separate from the motion generator program, which
controls moves for the axes. The motion generator has separate functions for
each axis, so each axis is capable of being programmed with its own axis
parameters (for example speed, acceleration) and moving independently and
simultaneously or they can be linked together using special commands.
When a move command is processed, the motion generator waits until the
move buffers for the required axes are empty and then loads these buffers
with the move information.

Note If the task buffers are full, the program execution is paused until buffers are
available again. This also applies to the command line task and no com-
mands can be given for that period. Motion Perfect will disconnect in such a

63

Motion Control Application Section 4-3

case. The PMOVE task parameter will be set to TRUE when the task buffers
are full and will be reset to FALSE when the task buffers are available again.

Sequencing On each servo interrupt every millisecond (see 4-5-3 Program Execution), the
motion generator examines the NTYPE buffers to see if any of them are avail-
able. If there are any available then it checks the task buffers to see if there is
a move waiting to be loaded. If a move can be loaded, then the data for all the
specified axes is loaded from the task buffers into the NTYPE buffers and the
corresponding task buffers are marked as idle. This process is called
sequencing.

Move Loading Once sequencing has been completed, the MTYPE buffers are checked to
see if any moves can be loaded. If the required MTYPE buffers are available,
then the move is loaded from the NTYPE buffers to the MTYPE buffers and
the NTYPE buffers are marked as idle. This process is called move loading.
If there is a valid move in the MTYPE buffers, then it is processed. When the
move has been completed, the MTYPE buffers are marked as idle.

Accessing I/O
The MC Unit has three different types of I/O. These are the physical I/O, the
driver I/O and the virtual I/O. The inputs and outputs are accessible by using
the IN and OP commands in BASIC and within Motion Perfect using the I/O
status window. Refer to 5-3-83 IN, 5-3-115 OP and 6-6-6 I/O Status Window
for further details.

Task buffers

Task 1
 MOVECIRC(..) AXIS(0)
 FORWARD AXIS(1)

Task 2

Task 3

Task 4
 MOVE(..) AXIS(0)

Task 5

Motion
Generator

Move buffers
Axis 0 1 2 .. 7

Next Move (NTYPE) MOVE (1) FORWARD (10) IDLE (0) .. IDLE (0)

Actual Move (MTYPE) MOVECIRC (4) MOVECIRC (4) IDLE (0) .. IDLE (0)

Sequencing

Move
Loading

64

Motion Control Application Section 4-3

The different types of inputs are explained here.

The different types of outputs are explained here.

Input type Range
(amount)

Description

Physical 0 - 15 (16) The physical inputs are freely allocable to the dif-
ferent functions. Some of the functions are origin
search, limit switches, jog inputs and so on. The
MC Unit uses axis parameters to allocate a certain
function to an input.
The first four inputs R0 to R3 are used as registra-
tion inputs for axis 0 to 3. These inputs can also be
used for any other purpose.
The related BASIC command and axis parameters
are
REGIST Registration Command
DATUM_IN Selection of origin switch input
FAST_JOG Selection of fast jog input
FHOLD_IN Selection of feedhold input
FWD_IN Selection of forward limit input
FWD_JOG Selection of forward jog input
REV_IN Selection of reverse limit input
REV_JOG Selection of reverse jog input

Driver 16 - 19 (4) The four driver inputs nr. 16 to 19 correspond to
the four alarm inputs from the drivers of axis 0 to 3.

Virtual 20 - 31
(12)

The virtual inputs are only present inside the MC
Unit and are used for computational purposes only.
The virtual inputs and outputs are bi-directional.
The inputs are controlled by the outputs. All func-
tions which can be used on physical inputs can
also by these used for these virtual inputs.

Output
type

Range
(amount)

Description

Physical 8 - 15 (8) The physical outputs are freely allocable to any
user defined functions. An output can be set and
reset depending on the current axis position by
using the command PSWITCH.
Note that the physical output connections O0 to O7
are corresponding to the internal outputs 8 to 15.

Driver 16 (1) The single driver output is the driver alarm reset for
all drivers.

Virtual 20 - 31
(12)

The virtual outputs are only present inside the MC
Unit and are used for computational purposes only.
The virtual inputs and outputs are bi-directional.
The inputs are controlled by the outputs.

65

Command Line Interface Section 4-4

4-4 Command Line Interface
The Command Line Interface provides a direct interface for the user to give
commands and access parameters on the system. There are two options to
use the command line interface:

• Use the Terminal Window within Motion Perfect and the MC Unit con-
nected. See SECTION 6 Programming Environment for details.

• Use a VT100 Terminal to connect to the MC Unit. This is similar to using
the Terminal Window within Motion Perfect when the MC Unit is discon-
nected.

The MC Unit puts the last 10 commands given on the command line in a
buffer. Pressing the Up and Down Cursor Key will cycle through the buffer to
execute the command again.

4-5 BASIC Programs
The MC Unit can store up to 14 programs in memory, provided the capacity of
memory is not exceeded. The MC Unit supports simple file-handling instruc-
tions for managing these program files rather like the DOS filing system on a
computer.
The Motion Perfect software package is used to store and load programs to
and from a computer for archiving, printing and editing. It also has several
controller monitor and debugging facilities. Refer to SECTION 6 Programming
Environment for details on Motion Perfect.

4-5-1 Managing Programs
Motion Perfect automatically creates a project which contains the programs to
be used for an application. The programs of the project are kept both in the
controller as on the computer. Whenever a program is created or edited,
Motion Perfect edits both copies in order to always have an accurate backup
outside the controller at any time. Motion Perfect checks that the two versions
of the project are identical using a cyclic redundancy check. If the two differ,
Motion Perfect allows copying the MC Unit version to disk or vice versa.
Programs on the computer are stored in ASCII text files. They may therefore
be printed, edited and copied using a simple text editor. The source programs
are held in the MC Unit in a tokenised form and as a result, the sizes of the
programs will be less on the MC Unit compared to the same programs on the
computer.

Storing Programs Programs on the MC Unit are held in battery-backed RAM or flash EPROM
when power is turned OFF. At start-up before operation either the programs
present in RAM are used or the programs in flash EPROM will be copied first
to RAM. These two options are selectable by using the POWER_UP system
parameter.
The current programs in RAM can be copied to flash EPROM by using the
EPROM command. Both the POWER_UP parameter as the EPROM com-
mand are also provided by Motion Perfect with buttons on the control panel
and commands under the Program and Controller menus.

Note After development of the application programs, be sure to save the data in
flash memory within the MC Unit. The data will remain in the S-RAM during
operation and power down, but considering possible battery failure it is
advised to store the data in flash memory.

66

BASIC Programs Section 4-5

Program Commands The MC Unit has a number of BASIC commands to allow creation, manipula-
tion and deletion of programs. Motion Perfect provides buttons which also
perform these operations.

4-5-2 Program Compilation
The MC Unit system compiles programs automatically when required. It is not
normally required to force the MC Unit to compile programs, but programs
can be compiled under the Program Menu in Motion Perfect.
The MC Unit automatically compiles programs at the following times.

• The selected program is compiled before it is executed if it has been
edited.

• The selected program is compiled if it has been edited before switching
the selected program to another program.

• The selected program is compiled by using the COMPILE command.
The program syntax and structure are checked during compilation. If compila-
tion is unsuccessful, a message will be provided and no program code will be
generated. A red cross will appear in the Motion Perfect directory box.
Programs cannot be run when compilation errors occur. The errors should be
corrected and the program recompiled.
The compilation process also includes the following:

• Removing comments.
• Compiling numbers into the internal processor format.
• Converting expressions into reverse Polish Notation format for execution.
• Precalculating variable locations.
• Calculating and embedding loop structure destinations.

4-5-3 Program Execution
The timing of the execution for the different tasks and the refreshing of the I/O
of the Unit revolves around the servo period of the system. For the MC Unit
the servo period is set to 1 ms. The servo period is not synchronised with the
PC scan time.

I/O Refresh The I/O status of the MC Unit is refreshed at the beginning of every servo
cycle.

• The captured status of the digital inputs is transferred to the IN system
input variable. Note that this is the status captured in the previous servo
cycle.

• The analogue outputs for the speed references are updated.
• The digital outputs are updated conform the status of the OP system out-

put variable.
• The status of the digital inputs is captured.

Command Function

SELECT Selects a program for editing, deleting etc.

NEW Deletes the current selected program, a specified
program or all programs.

DIR Lists the directory of all programs.

COPY Duplicates a specified program.

RENAME Renames a specified program.

DEL Deletes the current selected program or a specified
program.

LIST Lists the current selected program or a specified
program.

67

BASIC Programs Section 4-5

Note that no automatic processing of the I/O signals is taking place, except for
registration. This implies that all actions must be programmed in the BASIC
programs.

Program Tasks This servo period is split into three equal segments. These three slots are
partly taken up by respectively servo control, the background communications
and the basic house keeping tasks. The remaining period in each of the time
slots is available for the BASIC tasks.
The multi-tasking executive operates as follows. There are 6 tasks available
for execution. Tasks 1 to 5 are user tasks, which are used to run BASIC pro-
grams simultaneously, one program per task. Each program can be allocated
to a specific task or priority, which implies more or less execution time (see
Program Execution Priority below). It is important to know that the BASIC pro-
gram execution is not synchronised with the servo cycle. The command line
always uses the system task 0. This task is used for the raw terminal commu-
nications and Motion Perfect communications.

Relevant commands Motion Perfect provides several ways of executing, pausing and stopping the
programs using buttons on the control panel and the editing windows. The fol-
lowing commands can be given on the command line to control the execution.

The user can explicitly allocate the task priority on which the BASIC program
is expected to run. When a user program is run without explicit task allocation,
it is assigned the highest available task priority. Tasks 5 and 4 have high pri-
ority and tasks 3,2 and 1 have low priority.

Setting Programs to Run
at Start-up

Programs can be set to run automatically at different priorities when power is
turned ON. If required, the computer can be left connected as an operator
interface or may be removed and the programs run “stand-alone”.
Programs are set in Motion Perfect to run automatically at start-up using the
Set Power Up Mode… selection under the Program Menu. This operation
sets which program to run automatically and at which priority. This can also
be accomplished by the RUNTYPE parameter. The current status can be
seen with the DIR command.

Program Execution
Priority

The programs given task no. 5 and 4 have high priority and programs given
task 3, 2 and 1 have low priority. Task 0, which is the command line task, has
also low priority. When both high and low priority tasks are running, the high
priority tasks are divided over two slot and the low priority task are divided
over one slot. If all tasks have the same priority the tasks will be divided
equally over the three slots. Tasks with the same priority will be allocated to
the slots in such a way that over multiple servo periods that they will have
equal execution time.
Consider the following examples:
Example 1: Tasks 1 & 2 and command line running.

Command Function
RUN Run the current selected program or a specified pro-

gram, optionally on a specified task number.

STOP Stop the current selected program or a specified
program.

HALT Stop all programs on the system

PROCESS Displays all running tasks.

Servo Cycle (n)

Servo Control House Keeping Communications

Task 0 Task 1 Task 2

68

Error Processing Section 4-6

The real-time executive operates in a round-robin schedule.
Example 2: Tasks 1, 2 & 3 and command line task 0 running

The real-time executive allocates the time slots to tasks 0, 1, 2 & 3 in turn.
Example 3: Tasks 1 & 4 and command line task 0 running

The real-time executive invokes task 4 as a high priority task every servo
cycle. The remaining tasks fit in the remaining slot in turn.
Example 4: Tasks 1, 2, 4 & 5 and command line task 0 running

The real-time executive invokes task 5 and task 4 as a high priority tasks
every servo cycle. Note that the high priority tasks take up both high priority
slots. The remaining tasks fit in the remaining slot in turn. If task 3 was also
added to above scenario it will be executed in the third slot alongside tasks 0,
1 & 2.

4-6 Error Processing
For the safety of the application it is very important that proper safety mea-
sures are taken for the different problems which may occur in the system. For
safe operation at all times the user must make use of the several options to
check for these errors in both the MC Unit or in the PC Unit.
It is advisable to have the master control of the application within the PC Unit,
not the MC Unit. The PC Unit can monitor the status of the MC Unit and of the
other Units, manage emergency shut-downs for the application, control the
data flows from and to the MC Unit, and so on.
As for the MC Unit, the BASIC programming language provide the program-
mer with the freedom to include a lot of safety measures or not. This requires
a sensible solution, which covers all possible behaviour of the system.
This section will present the possible errors that may occur and suggest the
way to detect them. For a full description of the error handling refer to section
7-3 Error Handling and for the IR/CIO area description section 3-1-2 Overview
of IR/CIO Area Allocations.

!Caution The PC or MC Unit outputs may have undefined status due to deposits on or
burning of the output relays, or destruction of the output transistors. As a
counter-measure for such problems, external safety measures must be pro-
vided to ensure safety in the system.

Servo Cycle (n) Servo Cycle (n+1)

Servo
Control

House
Keeping

Comms Servo
Control

House
Keeping

Comms

Task 0 Task 1 Task 2 Task 3 Task 0 Task 1

Servo Cycle (n) Servo Cycle (n+1)

Servo
Control

House
Keeping

Comms Servo
Control

House
Keeping

Comms

Task 4 Task 4 Task 0 Task 4 Task 4 Task 1

Servo Cycle (n) Servo Cycle (n+1)

Servo
Control

House
Keeping

Comms Servo
Control

House
Keeping

Comms

Task 5 Task 4 Task 0 Task 5 Task 4 Task 1

Servo Cycle (n+2)

Servo
Control

House
Keeping

Comms

Task 5 Task 4 Task 2

69

Error Processing Section 4-6

BASIC Errors If a BASIC error is generated during the execution of a BASIC command in
some task, the program will be halted immediately or the user can define a
specific error routine structure to stop the system. The error routine can stop
the driver, put the digital I/O in a safe status and notify the PC Unit of the
error. Please refer to section 5-3-27 BASICERROR on the way to include an
error subroutine in a BASIC program. The BASIC error is also indicated in the
PC’s IR/CIO area.

Motion Error In case a motion error occurs, the MC Unit will disable the control of the driver
automatically. The user has the ability to decide for each axis which motion
errors will disable the driver by using the ERRORMASK parameter (see sec-
tion 5-3-61 ERRORMASK). After detection of the motion error the user is free
to program the necessary countermeasures for the other axes and the com-
plete system. The PC’s IR/CIO area also indicates the axis on which the error
has occurred and the type of error.

PC Interface Error In case of an error in the PC transfer using IORD and IOWR instruction, the
PC Interface Error flag (n+7 bit 07) in the IR/CIO area will be set. This bit can
be checked in the PC program to deal with any unforeseen event for PC
transfers.

Please refer to Appendix C Programming Examples to find an example of
implementing the control of the application including error checking. Example
no. 12 shows a master program which is dedicated to the control of the appli-
cation by running the appropriate programs and is continuously checking for
any error event which may occur. This program should be set to run at start-
up of the MC Unit. It is strongly recommended to use this program or a similar
program within every application.

71

SECTION 5
BASIC Motion Control Programming Language

This section describes the commands and parameters required for programing the motion control application using the MC
Unit. All BASIC system, task and axis statements that determine the various aspects of program execution and MC Unit
operation are presented.

5-1 Notation Used in this Section . 75
5-2 Classifications and Outlines . 75

5-2-1 Motion Control Commands . 76
5-2-2 I/O Commands and Functions . 77
5-2-3 Loop and Conditional Structures . 77
5-2-4 Program Commands and Functions . 78
5-2-5 System Commands and Parameters . 78
5-2-6 Mathematical and Logical Functions . 80
5-2-7 Constants. 81
5-2-8 Motion Perfect Commands, Functions and Parameters 81
5-2-9 Axis Parameters . 81
5-2-10 Task Commands and Parameters . 83
5-2-11 PC Data Exchange Commands . 83

5-3 Command, function and parameter description . 84
5-3-1 Multiply: * . 84
5-3-2 Power: ^ . 84
5-3-3 Add: + . 84
5-3-4 Subtract: – . 85
5-3-5 Divide: / . 85
5-3-6 Is Less Than: < . 85
5-3-7 Is Less Than Or Equal To: <=. 85
5-3-8 Is Not Equal To: <> . 86
5-3-9 Is Equal To: = . 86
5-3-10 Is Greater Than: > . 86
5-3-11 Is Greater Than or Equal To: >=. 86
5-3-12 Statement separator: “:” . 87
5-3-13 Comment field: ‘ . 87
5-3-14 ABS. 87
5-3-15 ACCEL . 87
5-3-16 ACOS . 87
5-3-17 ADDAX . 88
5-3-18 AND . 88
5-3-19 ASIN . 89
5-3-20 ATAN . 89
5-3-21 ATAN2 . 89
5-3-22 ATYPE . 90
5-3-23 AUTORUN . 90
5-3-24 AXIS . 90
5-3-25 AXISSTATUS. 91
5-3-26 BASE . 91
5-3-27 BASICERROR . 92
5-3-28 BATTERY_LOW . 93
5-3-29 CAM . 93
5-3-30 CAMBOX . 94
5-3-31 CANCEL . 95

72

5-3-32 CHECKSUM. 96
5-3-33 CLEAR . 96
5-3-34 CLEAR_BIT . 96
5-3-35 CLOSE_WIN . 96
5-3-36 COMMSERROR. 97
5-3-37 COMPILE . 97
5-3-38 CONNECT . 97
5-3-39 CONTROL . 98
5-3-40 COPY . 98
5-3-41 COS . 98
5-3-42 CREEP . 99
5-3-43 D_GAIN . 99
5-3-44 DAC. 99
5-3-45 DAC_OUT. 100
5-3-46 DATUM. 100
5-3-47 DATUM_IN. 101
5-3-48 DECEL . 101
5-3-49 DEFPOS . 101
5-3-50 DEL . 102
5-3-51 DEMAND_EDGES . 102
5-3-52 DIR . 103
5-3-53 DISPLAY . 103
5-3-54 DPOS. 103
5-3-55 EDIT . 104
5-3-56 ENCODER . 104
5-3-57 ENDMOVE . 104
5-3-58 EPROM . 104
5-3-59 ERROR_AXIS . 104
5-3-60 ERROR_LINE. 105
5-3-61 ERRORMASK . 105
5-3-62 EXP . 105
5-3-63 FALSE. 106
5-3-64 FAST_JOG . 106
5-3-65 FE . 106
5-3-66 FE_LIMIT . 106
5-3-67 FE_RANGE . 106
5-3-68 FHOLD_IN . 107
5-3-69 FHSPEED . 107
5-3-70 FOR TO STEP NEXT. 107
5-3-71 FORWARD . 108
5-3-72 FRAC. 108
5-3-73 FREE . 109
5-3-74 FS_LIMIT . 109
5-3-75 FWD_IN . 109
5-3-76 FWD_JOG. 109
5-3-77 GET . 109
5-3-78 GOSUB RETURN . 110
5-3-79 GOTO . 110
5-3-80 HALT. 111
5-3-81 I_GAIN . 111
5-3-82 IF THEN ELSE ENDIF . 111
5-3-83 IN. 112
5-3-84 INITIALISE . 113

73

5-3-85 INPUT. 113
5-3-86 INT . 113
5-3-87 JOGSPEED. 114
5-3-88 KEY . 114
5-3-89 LAST_AXIS . 114
5-3-90 LINPUT . 115
5-3-91 LIST . 115
5-3-92 LN . 116
5-3-93 LOCK . 116
5-3-94 MARK . 116
5-3-95 MERGE . 116
5-3-96 MHELICAL . 117
5-3-97 MOD . 118
5-3-98 MOTION_ERROR . 118
5-3-99 MOVE. 119
5-3-100 MOVEABS . 120
5-3-101 MOVECIRC . 121
5-3-102 MOVELINK . 122
5-3-103 MOVEMODIFY . 125
5-3-104 MPOS . 125
5-3-105 MSPEED. 125
5-3-106 MTYPE. 125
5-3-107 NEW . 126
5-3-108 NIO . 126
5-3-109 NOT . 126
5-3-110 NTYPE . 127
5-3-111 OFF . 127
5-3-112 OFFPOS . 127
5-3-113 ON. 127
5-3-114 ON. 127
5-3-115 OP . 128
5-3-116 OPEN_WIN . 129
5-3-117 OR. 129
5-3-118 OUTLIMIT . 130
5-3-119 OV_GAIN. 130
5-3-120 P_GAIN . 130
5-3-121 PI. 130
5-3-122 PLC_READ . 131
5-3-123 PLC_TYPE . 132
5-3-124 PLC_WRITE . 132
5-3-125 PMOVE . 133
5-3-126 POWER_UP . 134
5-3-127 PP_STEP. 134
5-3-128 PRINT. 134
5-3-129 PROC . 136
5-3-130 PROCESS . 136
5-3-131 PROCNUMBER . 136
5-3-132 PSWITCH. 136
5-3-133 RAPIDSTOP. 137
5-3-134 READ_BIT . 138
5-3-135 REG_POS . 138
5-3-136 REGIST . 138

74

5-3-137 REMAIN . 139
5-3-138 RENAME . 140
5-3-139 REP_DIST. 140
5-3-140 REP_OPTION. 140
5-3-141 REPEAT UNTIL . 141
5-3-142 RESET. 141
5-3-143 REV_IN. 142
5-3-144 REV_JOG . 142
5-3-145 REVERSE . 142
5-3-146 RS_LIMIT. 142
5-3-147 RUN. 142
5-3-148 RUN_ERROR . 143
5-3-149 RUNTYPE. 143
5-3-150 SCOPE . 144
5-3-151 SCOPE_POS . 145
5-3-152 SELECT . 145
5-3-153 SERVO . 145
5-3-154 SET_BIT . 146
5-3-155 SETCOM. 146
5-3-156 SGN . 146
5-3-157 SIN . 147
5-3-158 SPEED. 147
5-3-159 SQR . 147
5-3-160 SRAMP . 147
5-3-161 STEPLINE . 148
5-3-162 STOP . 148
5-3-163 TABLE . 148
5-3-164 TAN . 149
5-3-165 TICKS . 150
5-3-166 TRIGGER . 150
5-3-167 TROFF. 150
5-3-168 TRON . 150
5-3-169 TRUE. 151
5-3-170 TSIZE . 151
5-3-171 UNITS . 151
5-3-172 VERSION . 152
5-3-173 VFF_GAIN . 152
5-3-174 VP_SPEED . 152
5-3-175 VR . 152
5-3-176 WA. 153
5-3-177 WAIT IDLE. 154
5-3-178 WAIT LOADED . 154
5-3-179 WAIT UNTIL . 154
5-3-180 WDOG . 155
5-3-181 WHILE WEND . 155
5-3-182 XOR . 156

75

Notation Used in this Section Section 5-1

5-1 Notation Used in this Section
This section describes the notation used in describing commands, functions,
and parameters. The section name gives the name of the command, function
or parameter. The descriptions within the section are divided into the following
parts. Individual parts are omitted when they are not applicable.

Type: The classification is given for command, function or parameter.

Syntax: Standard BASIC notation is used to show command or function syntax.
Text that must be typed exactly as given is in typewriter font.
The names of arguments are given in italic font with underscores_for_spaces.
Replace these with the actual arguments.
Items in square brackets “[]” in the syntax notation are optional and can be
omitted. Repetition is denoted by “{ }” brackets. Items enclosed in these
brackets are repeated zero or more times.

Alternative: Any alternative form of a command, function or parameter is given.

Description: This field describes the purpose and application of the command, function or
parameter.

Precautions: Specific precautions related to programming are provided.

Arguments: The name of each argument is given in bold italic font followed by a descrip-
tion of the argument.

See also: In this field the related commands, functions and parameters are given.

Example: One or more application examples is given for most commands, functions,
and parameters.

5-2 Classifications and Outlines
The table below describes the groups into which commands, functions, and
parameters are divided.

The rest of the tables in the following sections outline the commands, func-
tions and parameters used for the MC Unit.

Groups

Motion Control Commands

I/O Commands and Functions

Loop and Conditional Structures

Program Commands and Functions

System Commands and Parameters

Mathematical Functions

Constants

Motion Perfect Commands and Parameters

Axis Parameters

Task Functions and Parameters

PC Data Exchange Commands

76

Classifications and Outlines Section 5-2

5-2-1 Motion Control Commands
The table below outlines the motion control commands. Refer to the specified
pages for details.

Name Syntax Description Page

ADDAX ADDAX(axis) ADDAX sets a link to a superimposed axis. All
demand position movements for the superimposed
axis will be added to any moves that are currently
being executed.

88

BASE BASE(axis_1[,axis_2[,]])
BA(axis_1[,axis_2[,]])

BASE is used to set the base axis to the axis speci-
fied with axis.

91

CAM CAM(start_point,end_point,
table_multiplier,distance)

CAM moves an axis according to values of a move-
ment profile stored in the Table array.

93

CAMBOX CAMBOX(start_point,end_point,
table_multiplier,link_distance,
link_axis[,link_option
[,link_position]])

CAMBOX moves an axis according to values of a
movement profile stored in the Table array. The
motion is linked to the measured motion of another
axis to form a continuously variable software gear-
box.

94

CANCEL CANCEL[(1)]
CA[(1)]

CANCEL cancels the move on an axis. 95

CONNECT CONNECT(ratio,driving_axis)
CO(ratio,driving_axis)

CONNECT connects the demand position of an axis
to the measured movements of the axis specified for
driving_axis to produce an electronic gearbox.

97

DATUM DATUM(sequence) DATUM performs one of 7 origin search sequences
to position an axis to an absolute position or DATUM
reset following errors.

100

DEFPOS DEFPOS(pos_1[,pos_2[,]])
DP(pos_1[,pos_2[,]])

DEFPOS defines the current position as a new abso-
lute position.

101

FORWARD FORWARD
FO

FORWARD moves an axis continuously forward at
the speed set in the SPEED parameter.

108

MHELICAL MHELICAL(end_1,end_2,
centre_1,centre_2,direction,
distance_3)
MH(end_1,end_2,centre_1,
centre_2,direction,distance_3)

MHELICAL performs an interpolated helical move by
moving 2 orthogonal axes in a circular arc with a
simultaneous linear move on a third axis.

117

MOVE MOVE(dist_1[,dist_2[,]])
MO(dist_1[,dist_2[,]])

MOVE moves one or more axes at the demand
speed, acceleration and deceleration to the position
specified as increment from the current position.

119

MOVEABS MOVEABS(pos_1[,pos_2[,]])
MA(pos_1[,pos_2[,]])

MOVEABS moves one or more axes at the demand
speed, acceleration and deceleration to the position
specified as absolute position, i.e., in reference to the
origin.

120

MOVECIRC MOVECIRC(end_1,end_2,
centre_1,centre_2,direction)
MC(end_1,end_2,centre_1,
centre_2,direction)

MOVECIRC interpolates 2 orthogonal axes in a cir-
cular arc.

121

MOVELINK MOVELINK(distance,
link_distance,link_acceleration,
link_deceleration,link_axis
[,link_option[,link_position]])
ML(distance,link_distance,
link_acceration,link_deceleration,
link_axis[,link_option
[,link_position]])

MOVELINK creates a linear move on the base axis
linked via a software gearbox to the measured posi-
tion of a link axis.

122

MOVEMODIFY MOVEMODIFY(position)
MM(position)

MOVEMODIFY changes the absolute end position of
the current single-axis linear move (MOVE or MOVE-
ABS).

125

77

Classifications and Outlines Section 5-2

5-2-2 I/O Commands and Functions
The table below outlines the I/O commands and functions. Refer to the speci-
fied pages for details.

5-2-3 Loop and Conditional Structures
The table below outlines the loop and conditional structure commands. Refer
to the specified pages for details.

RAPIDSTOP RAPIDSTOP
RS

RAPIDSTOP cancels the current move on all axes. 137

REVERSE REVERSE REVERSE moves an axis continuously in reverse at
the speed set in the SPEED parameter.

142

Name Syntax Description Page

Name Syntax Description Page

GET GET#n, variable GET waits for the arrival of a single character and
assigns the ASCII code of the character to variable.

109

IN IN(input_number
[,final_input_number])

IN returns the value of digital inputs. 112

INPUT INPUT#n, variable{, } INPUT waits for a string to be received and assigns
the numerical value to variable.

113

KEY KEY#n KEY returns TRUE/FALSE depending on character
received.

114

LINPUT LINPUT#n, vr_variable LINPUT waits for a string and puts it in VR variables. 115

OP OP(output_number,value)
OP(binary_pattern)
OP

OP sets one or more outputs or returns the state of
the first 24 outputs.

128

PRINT PRINT[#n], expression{, }
?[#n], expression{, }

PRINT outputs a series of characters to a serial port. 134

PSWITCH PSWITCH(switch,enable[,axis,
output_number,output_state,
set_position,reset_position])

PSWITCH turns ON an output when a predefined
position is reached, and turns OFF the output when a
second position is reached.

136

REGIST REGIST(mode) REGIST captures an axis position when a registra-
tion input or the Z mark on the encoder is detected.

138

SETCOM SETCOM(baud_rate,data_bits,
stop_bits,parity[,port_number
[,XON/XOFF_switch]])

SETCOM sets the serial communications. 146

Name Syntax Description Page

FOR TO STEP
NEXT

FOR variable = start TO end [STEP
increment]
 <commands>
NEXT variable

FOR ... NEXT loop allows a program segment to be
repeated with increasing/decreasing variable.

107

GOSUB RETURN GOSUB label ... RETURN GOSUB jumps to a subroutine at the line just after
label. The program execution returns to the next
instruction after a RETURN is given.

110

GOTO GOTO label GOTO jumps to the line containing the label. 110

IF THEN ELSE
ENDIF

IF condition THEN
<commands>

[ELSE
<commands>]

ENDIF
IF condition THEN <commands>

IF controls the flow of the program base on the
results of the condition.

111

ON GOSUB or
GOTO

ON expression GOSUB label{, label}
ON expression GOTO label{, label}

ON GOSUB or ON GOTO enables a conditional
jump to one of several labels.

127

78

Classifications and Outlines Section 5-2

5-2-4 Program Commands and Functions
The table below outlines commands used for general programming purposes.
Refer to the specified pages for details.

5-2-5 System Commands and Parameters
The table below outlines the system commands and parameters. Refer to the
specified pages for details.

REPEAT UNTIL REPEAT
<commands>

UNTIL condition

The REPEAT ... UNTIL loop allows the program seg-
ment to be repeated until the condition becomes
TRUE.

141

WHILE WEND WHILE condition
<commands>

WEND

The WHILE ... WEND loop allows the program seg-
ment to be repeated until the condition becomes
FALSE.

155

Name Syntax Description Page

Name Syntax Description Page

Statement separator <statement>:<statement> The statement separator enables more statements
on one line.

87

Comment field ‘ [<Comment field>] The single quote enables a line not to be executed. 87

AUTORUN AUTORUN AUTORUN starts all the programs that have been
set to run at start-up.

90

COMPILE COMPILE COMPILE compiles the current program. 97

COPY COPY “program_name”
“new_program_name”

COPY copies an existing program in memory to a
new program.

98

DEL DEL [“program_name”]
RM [“program_name”]

DEL deletes a program from memory. 102

DIR DIR DIR displays a list of the programs held in memory,
their size and their RUNTYPE.

103

EDIT EDIT[line_number]
ED[line_number]

EDIT allows a program to be modified using a VT100
Terminal.

104

EPROM EPROM EPROM stores the BASIC programs in the MC Unit
in the flash EPROM.

104

FREE FREE FREE returns the amount of available memory. 109

HALT HALT HALT stops execution of all programs currently run-
ning.

111

LIST LIST LIST prints the lines of a program. 115

NEW NEW NEW deletes all the program lines in MC Unit mem-
ory.

126

PROCESS PROCESS PROCESS returns the running status and task num-
ber for each current task.

136

RENAME RENAME “old_program_name“
“new_program_name“

RENAME changes the name of a program in the MC
Unit directory.

140

RUN RUN [“program_name“
[,task_number]]

RUN executes a program. 142

RUNTYPE RUNTYPE “program_name“,
auto_run[,step_number]

RUNTYPE determines if a program is run at start-up,
and which task it is to run on.

143

SELECT SELECT “program_name“ SELECT specifies the current program. 145

STEPLINE STEPLINE [“program_name”
[, task_number]]

STEPLINE executes a single line in a program. 148

STOP STOP [“program_name”
[, task_number]

STOP halts program execution. 148

TROFF TROFF [“program_name”] TROFF suspends a trace at the current line and
resumes normal program execution.

150

TRON TRON TRON creates a breakpoint in a program. 150

79

Classifications and Outlines Section 5-2

Name Syntax Description Page

AXIS AXIS(axis_number) AXIS sets the axis for a command, axis parameter
read, or assignment to a particular axis.

90

BASICERROR BASICERROR Used to run a routine when an error occurs in a a
BASIC command.

92

BATTERY_LOW BATTERY_LOW BATTERY_LOW returns the status of the battery. 93

CHECKSUM CHECKSUM CHECKSUM contains the checksum for the RAM. 96

CLEAR CLEAR CLEAR clears all global variables and the local vari-
ables on the current task.

96

CLEAR_BIT CLEAR_BIT(bit_number,
vr_number)

CLEAR_BIT clears the specified bit of the specified
VR variable.

96

COMMSERROR COMMSERROR COMMSERROR contains all the communications
errors that have occurred since the last time that it
was initialised.

97

CONTROL CONTROL CONTROL contains the type of MC Unit in the sys-
tem.

98

DISPLAY DISPLAY DISPLAY contains a code indicating the application
of the bank of 8 indicators on the front panel of the
MC Unit.

103

ERROR_AXIS ERROR_AXIS ERROR_AXIS contains the number of the axis which
caused the enable WDOG relay to open when a fol-
lowing error exceeded its limit.

104

INITIALISE INITIALISE INITIALISE set all axis parameters to their default
values

113

LAST_AXIS LAST_AXIS LAST_AXIS contains the number of the last axis pro-
cessed by the system.

114

LOCK LOCK(code)
UNLOCK(code)

LOCK prevents the programs from being viewed or
modified.

116

MOTION_ERROR MOTION_ERROR MOTION_ERROR contains an error flag for axis
motion errors.

118

NIO NIO NIO contains the number of inputs and outputs con-
nected to the system.

126

PLC_TYPE PLC_TYPE PLC_TYPE contains the PC CPU Unit model that the
MC402-E is connected to on the backplane.

132

POWER_UP POWER_UP POWER_UP contains the location of programs to be
used at start-up.

134

READ_BIT READ_BIT(bit_number,
vr_number)

READ_BIT returns the value of the specified bit in
the specified VR variable.

138

RESET RESET RESET resets all local variables on a task. 141

SET_BIT SET_BIT(bit_number,
vr_number)

SET_BIT command sets the specified bit in the spec-
ified VR variable to one.

146

TABLE TABLE(address, value{, value})
TABLE(address)

TABLE loads and reads data to the Table array. 148

TSIZE TSIZE TSIZE returns the size of the currently defined table. 151

VERSION VERSION VERSION returns the version number of the BASIC
language installed in the MC Unit.

152

VR VR(expression) VR calls the value of or assigns a value to a global
numbered variable.

152

WA WA(time) WA holds program execution for the number of milli-
seconds specified.

153

WAIT IDLE WAIT IDLE WAIT IDLE suspends program execution until the
base axis has finished executing its current move
and any buffered move.

154

WAIT LOADED WAIT LOADED WAIT LOADED suspends program execution until
the base axis has no moves buffered ahead other
than the currently executing move.

154

80

Classifications and Outlines Section 5-2

5-2-6 Mathematical and Logical Functions
The table below outlines the mathematical and logical functions. Refer to the
specified pages for details.

WAIT UNTIL WAIT UNTIL condition WAIT UNTIL repeatedly evaluates the condition until
TRUE.

154

WDOG WDOG WDOG contains a software switch used to control
the enable relay contact used to enable all drivers.

155

Name Syntax Description Page

Multiply: * expression_1 * expression_2 * multiplies any two valid expressions. 84

Power: ^ expression_1 ^ expression_2 ^ takes the power of any two valid expressions 84

Add: + expression_1 + expression_2 + adds any two valid expressions. 84

Subtract: – expression_1 - expression_2 – subtracts any two valid expressions. 85

Divide: / expression_1 / expression_2 / divides any two valid expressions. 85

Is Less Than: < expression_1 < expression_2 < returns TRUE if expression_1 is less than
expression_2, otherwise FALSE.

85

Is Less Than Or
Equal To: <=

expression_1 <= expression_2 <= returns TRUE if expression_1 is less than or
equal to expression_2, otherwise FALSE.

85

Is Not Equal To: <> expression_1 <> expression_2 <> returns TRUE if expression_1 is not equal to
expression_2, otherwise FALSE.

86

Is Equal To: = expression_1 = expression_2 = returns TRUE if expression_1 is equal to
expression_2, otherwise FALSE.

86

Is Greater Than: > expression_1 > expression_2 > returns TRUE if expression_1 is greater than
expression_2, otherwise FALSE.

86

Is Greater Than or
Equal To: >=

expression_1 >= expression_2 >= returns TRUE if expression_1 is greater than or
equal to expression_2, otherwise FALSE.

86

ABS ABS(expression) ABS returns the absolute value of expression. 87

ACOS ACOS(expression) ACOS returns the arc-cosine of expression. 87

AND expression_1 AND expression_2 AND performs an AND operation on corresponding
bits of the integer parts of two valid BASIC expres-
sions.

88

ASIN ASIN(expression) ASIN returns the arc-sine of expression. 89

ATAN ATAN(expression) ATAN returns the arc-tangent of expression. 89

ATAN2 ATAN2(expression_1,
expression_2)

ATAN2 returns the arc-tangent of the ratio
expression_1 / expression_2.

89

COS COS(expression) COS returns the cosine of expression. 98

EXP EXP(expression) EXP returns the exponential value of expression. 105

FRAC FRAC(expression) FRAC returns the fractional part of expression. 108

INT INT(expression) INT returns the integer part of expression. 113

LN LN(expression) LN returns the natural logarithm of expression. 116

MOD expression_1 MOD expression_2 MOD returns the expression_2 modulus of an
expression_1.

118

NOT NOT(expression) NOT performs an NOT operation on corresponding
bits of the integer part of the expression.

126

OR expression_1 OR expression_2 OR performs an OR operation between correspond-
ing bits of the integer parts of two valid BASIC
expressions.

129

SGN SGN(expression) SGN returns the sign of expression. 146

SIN SIN(expression) SIN returns the sine of expression. 147

SQR SQR(expression) SQR returns the square root of expression. 147

TAN TAN(expression) TAN returns the tangent of expression. 149

XOR expression_1 XOR expression_2 XOR performs an XOR function between corre-
sponding bits of the integer parts of two valid BASIC
expressions.

156

81

Classifications and Outlines Section 5-2

5-2-7 Constants
The table below outlines the constants. Refer to the specified pages for
details.

5-2-8 Motion Perfect Commands, Functions and Parameters
The table below outlines the Motion Perfect commands, functions, and
parameters. Refer to the specified pages for details.

5-2-9 Axis Parameters
The table below outlines the axis parameters. Refer to the specified pages for
details.

Name Description Page

FALSE FALSE returns the numerical value 0. 106

OFF OFF returns the numerical value 0. 127

ON ON returns the numerical value 1. 127

PI PI returns the numerical value 3.1416. 130

TRUE TRUE returns the numerical value -1. 151

Name Syntax Description Page

SCOPE SCOPE(ON/OFF_control, period,
table_start, table_stop, P0[, P1
[, P2[, P3]]])

SCOPE programs the system to automatically store
up to 4 parameters every sample period.

144

SCOPE_POS SCOPE_POS SCOPE_POS contains the current Table position at
which the SCOPE command is currently storing its
first parameter.

145

TRIGGER TRIGGER TRIGGER starts a previously set SCOPE command. 150

Name Description Page

ACCEL ACCEL contains the axis acceleration rate. The rate
is in units/s2.

87

ATYPE ATYPE contains the axis type. 90

AXISSTATUS AXISSTATUS contains the axis status. 91

CLOSE_WIN CLOSE_WIN defines the end of the window in which
a registration mark is expected.

96

CREEP CREEP contains the creep speed on the current
base axis.

99

D_GAIN D_GAIN contains the derivative gain for the axis. 99

DAC DAC contains a voltage applied directly to a servo
axis.

99

DAC_OUT DAC_OUT contains the voltage being applied to the
servo.

100

DATUM_IN DATUM_IN contains the input number to be used as
the origin input. The number can be between 0 and
15.

101

DECEL DECEL contains the axis deceleration rate in
units/s2.

101

DEMAND_EDGES DEMAND_EDGES contains the current value of the
DPOS axis parameter in edge units.

102

DPOS DPOS contains the demand position, in user units,
generated by the move commands.

103

ENCODER ENCODER contains a raw copy of the encoder or
resolver hardware register.

104

ENDMOVE ENDMOVE holds the position of the end of the cur-
rent move in user units.

104

82

Classifications and Outlines Section 5-2

ERRORMASK ERRORMASK contains a mask value that is ANDed
bit by bit with the AXISSTATUS axis parameter on
every servo cycle to determine if a runtime error
should turn OFF the enable (WDOG) relay.

105

FAST_JOG FAST_JOG contains the input number to be used as
the fast jog input. The number can be between 0 and
15.

106

FE FE is the position error in user units, and is equal to
the demand position in the DPOS axis parameter
minus the measured position in the MPOS axis
parameter.

106

FE_LIMIT FE_LIMIT contains the maximum allowable following
error in user units.

106

FE_RANGE FE_RANGE contains the following error report
range.

106

FHOLD_IN FHOLD_IN contains the input number to be used as
the feedhold input. The number can be between 0
and 31.

106

FHSPEED FHSPEED contains the feedhold speed. 107

FS_LIMIT FS_LIMIT contains the absolute position of the for-
ward software limit in user units.

109

FWD_IN FWD_IN contains the input number to be used as a
forward limit input. The number can be between 0
and 31.

109

FWD_JOG FWD_JOG contains the input number to be used as
a jog forward input. The number can be between 0
and 31.

109

I_GAIN I_GAIN contains the integral gain. 111

JOGSPEED JOGSPEED sets the slow jog speed in user units for
an axis to run at when performing a slow jog.

114

MARK MARK contains TRUE when a registration event has
occurred to indicate that the value in the REG_POS
axis parameter is valid.

116

MERGE MERGE is a software switch that can be used to
enable or disable the merging of consecutive moves.

116

MPOS MPOS is the position of the axis in user units as
measured by the encoder or resolver.

125

MSPEED MSPEED represents the change in the measured
position in user units/s in the last servo period.

125

MTYPE MTYPE contains the type of move currently being
executed.

125

NTYPE NTYPE contains the type of the move in the Next
Move buffer.

127

OFFPOS OFFPOS contains an offset that will be applied to the
demand position without affecting the move in any
other way.

127

OPEN_WIN OPEN_WIN defines the positions for the REGIST
command.

129

OUTLIMIT OUTLIMIT contains an output limit that restricts the
voltage output from the MC Unit.

130

OV_GAIN OV_GAIN contains the output velocity gain. 130

P_GAIN P_GAIN contains the proportional gain. 130

PP_STEP PP_STEP contains an integer value that scales the
incoming raw encoder count.

134

REG_POS REG_POS stores the position in user units at which
a registration event occurred.

138

Name Description Page

83

Classifications and Outlines Section 5-2

5-2-10 Task Commands and Parameters
The table below outlines the task commands and parameters. Refer to the
specified pages for details.

5-2-11 PC Data Exchange Commands
The table below outlines the PC Data Exchange Commands. Refer to the
specified pages for details.

REMAIN REMAIN is the distance remaining to the end of the
current move.

139

REP_DIST REP_DIST contains the repeat distance, which is the
allowable range of movement for an axis before the
demand position and measured position are cor-
rected.

140

REP_OPTION REP_OPTION controls the application of the
REP_DIST axis parameter.

140

REV_IN REV_IN contains the input number to be used as a
reverse limit input. The number can be between 0
and 31.

142

REV_JOG REV_JOG contains the input number to be used as a
jog reverse input. The input can be between 0 and
31.

142

RS_LIMIT RS_LIMIT contains the absolute position of the
reverse software limit in user units.

142

SERVO SERVO determines whether the axis runs under
servo control or open loop.

145

SPEED SPEED contains the demand speed in units/s. 147

SRAMP SRAMP contains the S-curve factor. 147

UNITS UNITS contains the unit conversion factor. 151

VFF_GAIN VFF_GAIN contains the speed feed forward gain. 152

VP_SPEED VP_SPEED contains the speed profile speed in user
units/s.

152

Name Description Page

Name Description Page

ERROR_LINE ERROR_LINE contains the number of the line which
caused the last BASIC program error.

105

PMOVE PMOVE will contain 1 if the task buffers are occu-
pied, and 0 if they are empty.

133

PROC PROC allows a process parameter from a particular
process to be read or set.

136

PROCNUMBER PROCNUMBER contains the number of the task in
which the currently selected program is running.

136

RUN_ERROR RUN_ERROR contains the number of the last
BASIC error that occurred on the specified task.

143

TICKS TICKS contains the current count of the task clock
pulses.

150

Name Syntax Description Page

PLC_READ PLC_READ(PC_area,offset,
length,vr_number)

PLC_READ requests a data transfer from the CPU
Unit of the PC to the MC Unit at the end of the next
CPU Unit execution cycle.

131

PLC_WRITE PLC_WRITE(PC_Area,offset,
length,vr_number)

PLC_WRITE requests a data transfer from the MC
Unit to the CPU Unit of the PC at the end of the next
CPU Unit execution cycle.

132

84

Command, function and parameter description Section 5-3

5-3 Command, function and parameter description
This section describes the commands, functions and parameters which are
used in the BASIC programming language.

!WARNING It is the responsibility of the programmer to ensure that the motion func-
tions are invoked correctly, with the correct number of parameters and
values. Failure to do so may result in unexpected behavior, loss or dam-
age to the machinery.

5-3-1 Multiply: *
Type: Arithmetic Operation

Syntax: expression_1 * expression_2

Description: The multiply operator “*” multiplies any two valid expressions.

Arguments: expression_1
Any valid BASIC expression.
expression_2
Any valid BASIC expression.

Example: factor = 10*(2.1+9)
The parentheses are evaluated first, and then the result, 11.1, is multiplied by
10. Therefore, factor would contain the value 111

5-3-2 Power: ^
Type: Arithmetic Operation

Syntax: expression_1 ^ expression_2

Description: The power operator “^” raises expression_1 to the power of expression_2.

!WARNING This operation uses floating point algorithms and may give small deviations
for integer calculations.

Arguments: expression_1
Any valid BASIC expression.
expression_2
Any valid BASIC expression.

Example: thirtytwo = 2^5
This sets the variable thirtytwo to 32.

5-3-3 Add: +
Type: Arithmetic Operation

Syntax: expression_1 + expression_2

Description: The add operator “+” adds any two valid expressions.

Arguments: expression_1
Any valid BASIC expression.
expression_2
Any valid BASIC expression.

Example: result = 10+(2.1*9)
The parentheses are evaluated first, and the result, 18.9, is added to 10.
Therefore, result would contain the value 28.9.

85

Command, function and parameter description Section 5-3

5-3-4 Subtract: –
Type: Arithmetic Operation

Syntax: expression_1 - expression_2

Description: The subtract operator “–” subtracts any two valid expressions.

Arguments: expression_1
Any valid BASIC expression.
expression_2
Any valid BASIC expression.

Example: VR(0) = 10-(2.1*9)
The parentheses are evaluated first, and the result, 18.9, is subtracted from
10. Therefore, VR(0) would contain the value –8.9.

5-3-5 Divide: /
Type: Arithmetic Operation

Syntax: expression_1 / expression_2

Description: The divide operator “/” divides any two valid expressions.

Arguments: expression_1
Any valid BASIC expression.
expression_2
Any valid BASIC expression.

Example: a = 10/(2.1+9)
The parentheses are evaluated first, and then 10 is divided by the result, 11.1.
Therefore, a would contain the value 0.9009

5-3-6 Is Less Than: <
Type: Logical Operation

Syntax: expression_1 < expression_2

Description: The less than operator “<“ returns TRUE if expression_1 is less than
expression_2, otherwise it returns FALSE.

Arguments: expression_1
Any valid BASIC expression.
expression_2
Any valid BASIC expression.

Example: IF VR(1) < 10 THEN GOSUB rollup
If the value returned from VR(1) is less than 10, then subroutine ”rollup” would
be executed.

5-3-7 Is Less Than Or Equal To: <=
Type: Logical Operation

Syntax: expression_1 <= expression_2

Description: The less than or equal to operator “<=” returns TRUE if expression_1 is less
than or equal to expression_2, otherwise it returns FALSE.

Arguments: expression_1
Any valid BASIC expression.
expression_2
Any valid BASIC expression.

Example: maybe = 1 <= 0

86

Command, function and parameter description Section 5-3

In the above line, 1 is not less than or equal to 0 and, therefore, variable
maybe would contain the value 0 (FALSE).

5-3-8 Is Not Equal To: <>
Type: Logical Operation

Syntax: expression_1 <> expression_2

Description: The not equal to operator “<>” returns TRUE if expression_1 is not equal to
expression_2, otherwise it returns FALSE.

Arguments: expression_1
Any valid BASIC expression.
expression_2
Any valid BASIC expression.

Example: IF MTYPE <> 0 THEN GOTO 3000
If the base axis is not idle (MTYPE=0 indicates an axis idle), then a jump
would be made to label 3000.

5-3-9 Is Equal To: =
Type: Logical Operation

Syntax: expression_1 = expression_2

Description: The equal to operator “=” returns TRUE if expression_1 is equal to
expression_2, otherwise it returns FALSE.

Arguments: expression_1
Any valid BASIC expression.
expression_2
Any valid BASIC expression.

Example: IF IN(7) = ON THEN GOTO label
If input 7 is ON, then program execution will continue at line starting “label:”.

5-3-10 Is Greater Than: >
Type: Logical Operation

Syntax: expression_1 > expression_2

Description: The greater than operator “>” returns TRUE if expression_1 is greater than
expression_2, otherwise it returns FALSE.

Arguments: expression_1
Any valid BASIC expression.
expression_2
Any valid BASIC expression.

Examples: Example 1
VR(0) = 1 > 0
In the above line, 1 is greater than 0 and, therefore, VR(0) would contain the
value –1
Example 2
WAIT UNTIL MPOS > 200
Program execution will wait until the measured position is greater than 200.

5-3-11 Is Greater Than or Equal To: >=
Type: Logical Operation

Syntax: expression_1 >= expression_2

87

Command, function and parameter description Section 5-3

Description: The greater than or equal to operator “>=” returns TRUE if expression_1 is
greater than or equal to expression_2, otherwise it returns FALSE.

Arguments: expression_1
Any valid BASIC expression.
expression_2
Any valid BASIC expression.

Example: IF target >= 120 THEN MOVEABS(0)
If the variable target holds a value greater than or equal to 120, then the base
axis will move to an absolute position of 0.

5-3-12 Statement separator: “:”
Type: Program command

Syntax: <statement>:<statement>

Description: The statement separator, represented by the colon “:”, can be used to sepa-
rate BASIC statements on a multi-statement line. This separator can be used
both on the command line as in programs.

Example: PRINT "THIS LINE": GET low : PRINT "DOES THREE THINGS"

5-3-13 Comment field: ‘
Type: Program command

Syntax: ‘ [<Comment field>]

Description: The single quote “ ‘ “ can be used in a program to mark a line as being com-
ment which will not be executed. The single quote can be put at the beginning
of a line or after any valid statement.

Example: ‘ This line will not be printed.
PRINT "Start"

5-3-14 ABS
Type: Mathematical Function

Syntax: ABS(expression)

Description: ABS converts a negative number into its positive equal. Positive numbers are
unaltered.

Arguments: expression
Any valid BASIC expression.

Example: IF ABS(VR(0)) > 100 THEN PRINT "VR(0) Outside ±100"

5-3-15 ACCEL
Type: Axis parameter

Description: ACCEL contains the axis acceleration rate. The rate is in units/s2. The param-
eter can have any positive value including zero.

See also: AXIS, DECEL, UNITS

Example: BASE(0)
ACCEL = 100 ‘Set acceleration rate
PRINT "Acceleration rate: ";ACCEL;" mm/s/s"
ACCEL AXIS(2) = 100 ‘Sets acceleration rate for axis (2)

5-3-16 ACOS
Type: Mathematical Function

88

Command, function and parameter description Section 5-3

Syntax: ACOS(expression)

Description: ACOS returns the arc-cosine of the expression. The expression value must
be between –1 and 1. The result in radians will be between 0 and PI. Input
values outside the range will return zero.

Arguments: expression
Any valid BASIC expression.

Example: >> PRINT ACOS(-1)
3.1416

5-3-17 ADDAX
Type: Motion Control Command

Syntax: ADDAX(axis)

Description: The ADDAX command takes the demand position changes from the superim-
posed axis as specified by the axis argument and adds them to any move-
ment running on the axis to which the command is issued. After the ADDAX
command has been issued the link between the two axes remains until bro-
ken. Use ADDAX(-1) to cancel the axis link.
ADDAX works on the default basis axis (set with BASE) unless AXIS is used
to specify a temporary base axis.
ADDAX allows an axis to perform the moves specified for 2 axes added
together. Combinations of more than two axes can be made by applying
ADDAX to the superimposed axis as well.

!WARNING Beware that giving several ADDAX commands in a system can create a dan-
gerous loop when for instance one axis is linked to another and vice versa.
This may cause instability in the system.

Arguments: axis
The axis to be set as a superimposed axis. Set the argument to –1 to cancel
the link and return to normal operation.

See also: AXIS

Example: Pieces are placed onto a continuously moving belt and further along the line
are picked up. A detection system gives an indication as to whether a piece is
in front of or behind its nominal position, and how far.
In the example below, axis 0 is assumed to be the base axis and it executes a
continuous forward movement and a superimposed move on axis 2 is used to
apply offsets according to the offset calculated in a subroutine.
FORWARD ’Set continuous move
ADDAX(4) ’Add axis 4 for correction
REPEAT

GOSUB getoffset ’Get offset to apply
MOVE(offset) AXIS(2)

UNTIL IN(2) = ON ’Until correction is done

5-3-18 AND
Type: Logical Operator

Syntax: expression_1 AND expression_2

Description: AND performs an AND operation on the corresponding bits of the integer
parts of two valid BASIC expressions.
The AND operation between two bits is defined as follows:

89

Command, function and parameter description Section 5-3

Arguments: expression_1
Any valid BASIC expression.
expression_2
Any valid BASIC expression.

Examples: Example 1
VR(0) = 10 AND (2.1*9)
The parentheses are evaluated first, but only the integer part of the result, 18,
is used for the AND operation. Therefore, this expression is equivalent to the
following:
VR(0) = 10 AND 18
The AND is a bit operator and so the binary action is as follows:
Therefore, VR(0) will contain the value 2.

Example 2
IF MPOS AXIS(0) > 0 AND MPOS AXIS(1) > 0 THEN GOTO cycle1

5-3-19 ASIN
Type: Mathematical Function

Syntax: ASIN(expression)

Description: ASIN returns the arc-sine of the expression. The expression value must be
between –1 and 1. The result in radians will be between –PI/2 and PI/2. Input
values outside the range will return zero.

Arguments: expression
Any valid BASIC expression.

Example: >> PRINT ASIN(-1)
-1.5708

5-3-20 ATAN
Type: Mathematical Function

Syntax: ATAN(expression)

Description: ATAN returns the arc-tangent of the expression. ATAN can have any value
and the result will be in radians.

Arguments: expression
Any valid BASIC expression.

Example: >> PRINT ATAN(1)
0.7854

5-3-21 ATAN2
Type: Mathematical Function

Syntax: ATAN2(expression_1,expression_2)

Bit 1 Bit 2 Result

0 0 0

0 1 0

1 0 0

1 1 1

01010

AND 10010

00010

90

Command, function and parameter description Section 5-3

Description: ATAN2 returns the arc-tangent of the nonzero complex number
(expression_2, expression_1), which is equivalent to the angle between a
point with coordinate (expression_1, expression_2) and the x-axis. If
expression_2 >= 0, the result is equal to the value of ATAN (expression_1 /
expression_2). The result in radians will be between –PI and PI.

Arguments: expression_1
Any valid BASIC expression.
expression_2
Any valid BASIC expression.

Example: >> PRINT ATAN2(0,1)
0.0000

5-3-22 ATYPE
Type: Axis parameter

Description: ATYPE contains the axis type. The following values can be set:
0 Virtual axis
2 Servo axis
3 Encoder axis
The ATYPE parameters are set by the system at start-up to the default value
of the axis. The user is able to change the type of the axis at any time. The
default for axes 0 to 3 are 2 (servo axis) and for axes 4 to 7 are 0 (virtual axis).
Refer to 1-3 Motion Control Concepts for more details on the different axis
types.

Note Only the axes with the supported hardware, which are axis 0 to 3 can be oper-
ating as servo axis or a encoder axis.

See also: AXIS

Example: >> PRINT ATYPE AXIS(2)
2.0000
The above command line and response show that axis 2 is operating as a
servo axis.

5-3-23 AUTORUN
Type: Program Command

Syntax: AUTORUN

Description: AUTORUN starts all the programs that have been set to run at start-up.

See also: RUNTYPE

5-3-24 AXIS
Type: System Command

Syntax: AXIS(axis_number)

Description: The AXIS modifier sets the axis for a single motion command or a single axis
parameter read/write to a particular axis. AXIS is effective only for the com-
mand line in which it is programmed. Use the BASE command to change the
base axis for all following command lines.

Arguments: axis_number
Any valid BASIC expression specifying the axis number.

Precautions: The AXIS command can be used to modify any axis parameter expression
and the following axis dependent commands: ADDAX, CAM, CAMBOX, CAN-
CEL, CONNECT, DATUM, DEFPOS, FORWARD, MOVEABS, MOVECIRC,

91

Command, function and parameter description Section 5-3

MHELICAL, MOVELINK, MOVE, MOVEMODIFY and REVERSE. Other com-
mands for which AXIS is used are: REGIST, WAIT IDLE and WAIT LOADED.

See also: BASE

Examples: Example 1
PRINT MPOS AXIS(3)
Example 2
MOVE(300) AXIS(2)
Example 3
REPDIST AXIS(3) = 100

5-3-25 AXISSTATUS
Type: Axis Parameter

Description: AXISSTATUS contains the axis status. The meaning of each bit is as follows:

Note This parameter is read-only.

See also: AXIS, ERRORMASK

Example: IF (AXISSTATUS AND 16)>0 THEN PRINT "In forward limit"

5-3-26 BASE
Type: Motion Control Command

Syntax: BASE(axis_1[,axis_2[, axis_3[, axis_4[, axis_5[, axis_6[, axis_7[, axis_8]]]]]]])
BASE

Alternative: BA(axis_1[, axis_2[, axis_3[, axis_4[, axis_5[, axis_6[, axis_7[, axis_8]]]]]]])
BA

Description: BASE is used to set the default base axis or to set a specified axis sequence
group. All subsequent motion commands and axis parameters will apply to
the base axis or the specified axis group unless the AXIS command is used to
specify a temporary base axis. The base axis is effective until it is changed
again with BASE.
Each BASIC process can have its own axis group and each program can set
its own axis group independently. Use the PROC modifier to access the
parameter for a certain task.
The BASE order grouping can be set by explicitly assigning the order of axes.
This order is used for interpolation purposes in multi-axes linear, circular and
helical moves. The default for the base axis group is (0,1,2,3,4,5,6,7) at start-
up or when a program starts running on a task.

Bit Description Value

0 Unused 1

1 Following Error Exceeds Warning Range 2

2 Unused 4

3 Unused 8

4 In Forward Limit 16

5 In Reverse Limit 32

6 Origin Search (DATUM) in progress 64

7 Feedhold 128

8 Following Error Exceeds Limit 256

9 In Forward Software Limit 512

10 In Reverse Software Limit 1024

11 Cancelling Move 2048

92

Command, function and parameter description Section 5-3

The BASE command without any arguments returns the current base order
grouping.

Arguments: axis_i
The number of the axis set as the base axis and any subsequent axes in the
group order for multi-axis moves.

See also: AXIS

Examples: Example 1
It is possible to program each axis with its own speed, acceleration and other
parameters.
BASE(1)
UNITS = 2000 ’Set unit conversion factor for axis 1
SPEED = 100 ’Set speed for axis 1
ACCEL = 5000 ’Set acceleration rate for axis 1
BASE(2)
UNITS = 2000 ’Set unit conversion factor for axis 2
SPEED = 125 ’Set speed for axis 2
ACCEL = 10000 ’Set acceleration rate for axis 2
Example 2
In the example below, axes 0, 1 and 2 will move to the specified positions at
the speed and acceleration set for axis 0. BASE(0) sets the base axis to
axis 0, which determines the three axes used by MOVE and the speed and
acceleration rate.
BASE(0)
MOVE(100,-23.1,1250)
Example 3
Assume that we want to do a linearly interpolated move between axes 0,2
and 3. The following BASE command should be used to assign the grouping
of axes. This will set the internal base group order to (0,2,3,4,5,6,7,1).
BASE(0,2,3)
MOVE(100,200,30)
Example 4
On the command line the base group order can be shown by typing BASE.
>> BASE(0,2,3)
>> BASE
(0,2,3,4,5,6,7,1)
Example 5
Use the PROC modifier to show the base group order of a certain task.
>> RUN "PROGRAM",5
>> BASE PROC(5)
(0,1,2,3,4,5,6,7)

5-3-27 BASICERROR
Type: System Command

Description: The BASICERROR command can be used to run a routine when a run-time
error occurs in a program. BASICERROR can only be used as part of an ON
... GOSUB or ON ... GOTO command. This command is required to be exe-
cuted once in the BASIC program. If several commands are used only the one
executed last is effective.

See also: ERROR_LINE, ON, RUN_ERROR

Example: If an error occurs in a BASIC command in the following example, then the
error routine will be executed.

ON BASICERROR GOTO error_routine
....
no_error = 1

93

Command, function and parameter description Section 5-3

STOP
error_routine:

IF no_error = 0 THEN
PRINT "The error ";RUN_ERROR[0];
PRINT " occurred in line ";ERROR_LINE[0]

ENDIF
STOP

The IF statement is present to prevent the program going into error routine
when it is stopped normally.

5-3-28 BATTERY_LOW
Type: System Parameter

Description: This parameter monitors the status of the internal RAM
backup battery. When the battery is too low the status of the parameter
changes to TRUE, otherwise it will be FALSE.

Note This parameter is read-only.

5-3-29 CAM
Type: Motion Control Command

Syntax: CAM(start_point, end_point, table_multiplier, distance)

Description: The CAM command is used to generate movement of an axis following a
position profile which is stored in the Table array. The table values are abso-
lute positions relative to the starting point and are specified in encoder edges.
The table of values is specified with the TABLE command. The movement
can be defined with any number of points from 2 to 16,000. The MC Unit
moves continuously between the values in the table to allow a number of
points to define a smooth profile. Two or more CAM commands can be exe-
cuted simultaneously using the same or overlapping values in the Table array.
The Table profile is traversed once.
CAM requires that the start element in the Table array has value zero. The
distance argument together with the SPEED and ACCEL parameters deter-
mine the speed moving through the Table array. Note that in order to follow
the CAM profile exactly the ACCEL parameter of the axis must be at least
1000 times larger than the SPEED parameter.
CAM works on the default basis axis (set with BASE) unless AXIS is used to
specify a temporary base axis.

Arguments: start_point
The address of the first element in the Table array to be used.
Being able to specify the start point allows the Table array to hold more than
one profile and/or other information.
end_point
The address of the end element in the Table array.
table_multiplier
A value used to scale the values stored in the table.
The table values are specified in encoder edges. The table multiplier is set to
1 in this case but can be set to any non-zero value to alter the values set in
the Table array.
distance
A factor given in user units that controls the speed of movement through the
table. The time taken to execute CAM depends on the current axis speed and
this distance. For example, assume the system is being programmed in mm
and the speed is set to 10mm/s and the acceleration sufficiently high. If a dis-
tance of 100mm is specified, CAM will take 10 seconds to execute.

94

Command, function and parameter description Section 5-3

The SPEED parameter in the base axis allows modification of the speed of
movement when using the CAM move.

See also: ACCEL, AXIS, CAMBOX, SPEED, TABLE

Example: Assume that a motion is required to follow the following position equation:
t(x) = x*25 + 10000(1–cos(x))

Here, x is in degrees. This example is for a table that provides a simple oscil-
lation superimposed with a constant speed. To load the table and cycle it con-
tinuously the following code would be used.

GOSUB camtable
loop:

CAM(1,19,1,200)
GOTO loop

Note The subroutine camtable would load the data below into the Table array.

5-3-30 CAMBOX
Type: Motion Control Command

Syntax: CAMBOX(start_point, end_point, table_multiplier, link_distance, link_axis
[, link_option[, link_position]])

Description: The CAMBOX command is used to generate movement of an axis following a
position profile in the Table array. The motion is linked to the measured
motion of another axis to form a continuously variable software gearbox. The
table values are absolute position relative to the starting point and are speci-
fied in encoder edges.
The table of values is specified with the TABLE command. The movement
can be defined with any number of points from 2 to 16,000. Being able to
specify the start point allows the Table array to be used to hold more than one
profile and/or other information. The MC Unit moves continuously between
the values in the table to allow a number of points to define a smooth profile.
Two or more CAMBOX commands can be executed simultaneously using the
same or overlapping values in the Table array.

Table
position

Degree Value

1 0 0

2 20 1103

3 40 3340

4 60 6500

5 80 10263

6 100 14236

7 120 18000

8 140 21160

9 160 23396

10 180 24500

11 200 24396

12 220 23160

13 240 21000

14 260 18236

15 280 15263

16 300 12500

17 320 10340

18 340 9103

19 360 9000

95

Command, function and parameter description Section 5-3

The CAMBOX command requires the start element of the table to have
value zero. Note also that CAMBOX command allows traversing the table
backwards as well as forwards depending on the master axis direction.
The link_option argument can be used to specify different options to start the
command and to specify a continuous CAM. For example, if the link_option is
set to 4 then the CAMBOX operates like a “physical” CAM.
CAMBOX works on the default basis axis (set with BASE) unless AXIS is
used to specify a temporary base axis.

Arguments: start_point
The address of the first element in the Table array to be used.
end_point
The address of the end element in the Table array.
table_multiplier
A value used to scale the values stored in the table.
The table values are normally specified in encoder edges. The table multiplier
is set to 1 in this case but can be set to another value to alter the values set in
the Table array.
link_distance
The distance in user units the link axis must move to complete the specified
output movement. The link distance must be specified as a positive distance.
link_axis
The axis to link to.

link_option

link_position
The absolute position where CAMBOX will start when link_option is set to 2.

Precautions: While CAMBOX is being executed, the ENDMOVE parameter will be set to
the end of the previous move. The REMAIN axis parameter will hold the
remainder of the distance on the link axis.

See also: AXIS, CAM, REP_OPTION, TABLE

5-3-31 CANCEL
Type: Motion Control Command

Syntax: CANCEL[(1)]

Alternative: CA[(1)]

Description: CANCEL cancels the current move on an axis. Speed-profiled moves (FOR-
WARD, REVERSE, MOVE, MOVEABS, MOVECIRC and MHELICAL) will be
decelerated at the programmed deceleration rate and then stopped. Other
moves will be immediately stopped.
CANCEL command cancels the contents of the current move buffer
(MTYPE). The command CANCEL(1) command cancels the contents of the
next move buffer (NTYPE) without affecting the current move in the MTYPE
buffer.

1 Link starts when registration event occurs on link axis.
2 Link starts at an absolute position on link axis (see link_position).
4 CAMBOX repeats automatically and bi-directionally. This option is

canceled by setting bit 1 of REP_OPTION parameter (i.e.
REP_OPTION = REP_OPTION OR 2).

5 Combination of options 1 and 4.
6 Combination of options 2 and 4.

96

Command, function and parameter description Section 5-3

CANCEL works on the default basis axis (set with BASE) unless AXIS is used
to specify a temporary base axis.

Precautions: • CANCEL cancels only the presently executing move. If further moves are
buffered they will then be loaded.

• During the deceleration of the current move additional CANCELs will be
ignored.

• CANCEL(1) cancels only the presently buffered move. Any moves stored
in the task buffers indicated by the PMOVE variable can be loaded into
the buffer as soon as the buffered move is cancelled.

See also: AXIS, MTYPE, NTYPE, PMOVE, RAPIDSTOP

Examples: Example 1
FORWARD
WA(10000)
CANCEL
Example 2
MOVE(1000)
MOVEABS(3000)
CANCEL ’Cancel the move to 3000 and move to 4000 instead.
MOVEABS(4000)
Note that the command MOVEMODIFY is a better solution for modifying end-
points of moves in this case.

5-3-32 CHECKSUM
Type: System Parameter

Description: CHECKSUM contains the checksum for the RAM. At start-up, the checksum
is recalculated and compared with the previously held value.

Note This parameter is read-only.

5-3-33 CLEAR
Type: System Command

Syntax: CLEAR

Description: CLEAR resets all global VR variables to zero and when used in program will
also reset the local variables on the current task to zero.

See also: RESET, VR

5-3-34 CLEAR_BIT
Type: System Command

Syntax: CLEAR_BIT(bit_number, vr_number)

Description: The CLEAR_BIT command resets the specified bit in the specified VR vari-
able to zero. Other bits in the variable will keep their values.

Arguments: bit_number
The number of the bit to be reset. Range: [0, 23].
vr_number
The number of the VR variable for which the bit will be reset. Range: [0, 250]

See also: READ_BIT, SET_BIT, VR

5-3-35 CLOSE_WIN
Type: Axis Parameter

Alternative: CW

97

Command, function and parameter description Section 5-3

Description: CLOSE_WIN defines the end of the window inside or outside which a regis-
tration mark is expected. The value is in user units.

See also: AXIS, OPEN_WIN, REGIST, UNITS

5-3-36 COMMSERROR
Type: System Parameter

Description: COMMSERROR contains the serial communication errors that have occurred
since the last time that it was initialized. The bits in COMMSERROR are
defined as follows:
Bit Value
0 Receive buffer overrun on Network channel
1 Retransmit buffer overrun on Network channel
2 Receive structure error on Network channel
3 Transmit structure error on Network channel
4 Error RS-232C programming port A
5 Error RS-232C programming port A
6 Error RS-232C programming port A
7 Error RS-232C programming port A
8 NA
9 NA
10 NA
11 NA
12 Error RS-232C port B
13 Error RS-232C port B
14 Error RS-232C port B
15 Error RS-232C port B
16 NA
17 NA
18 NA
19 NA

Note This parameter is read-only.

5-3-37 COMPILE
Type: Program Command

Syntax: COMPILE

Description: COMPILE compiles the current program to intermediate code.
Program are compiled automatically by the system software prior to program
execution or when another program is selected.

5-3-38 CONNECT
Type: Motion Control Command

Syntax: CONNECT(ratio,driving_axis)

Alternative: CO(ratio,driving_axis)

Description: CONNECT connects the demand position of an axis to the measured move-
ments of the axis specified by driving_axis to produce an electronic gearbox.
The ratio can be changed at any time by executing another CONNECT com-
mand on the same axis. To change the driving axis the CONNECT command
needs to be cancelled first. CONNECT with different driving axis will be
ignored. The CONNECT command can be cancelled with a CANCEL or RAP-
IDSTOP command.

98

Command, function and parameter description Section 5-3

CONNECT works on the default basis axis (set with BASE) unless AXIS is
used to specify a temporary base axis.

Arguments: ratio
Holds the number of edges the base axis is required to move per edge incre-
ment of the driving axis. The ratio value can be either positive or negative and
has sixteen bit fractional resolution. Note that the ratio is specified as an
encoder edge ratio.
driving_axis
Defines the axis that will drive the other axis.

See also: AXIS, CANCEL, RAPIDSTOP

Example: In a press feed, a roller is required to rotate at a speed one quarter of the
measured rate from an encoder mounted on the incoming conveyor. The
roller is wired to axis 0. An input channel monitors the encoder pulses from
the conveyor and forms axis 1. The following code can be used.
BASE(1)
SERVO = OFF ’This axis is used to monitor the conveyor
BASE(0)
SERVO = ON
CONNECT(0.25,1)

5-3-39 CONTROL
Type: System Parameter

Description: CONTROL contains the type of MC Unit in the system. For the MC402-E the
CONTROL parameter returns value 251.

Note This parameter is read-only.

5-3-40 COPY
Type: Program Command

Syntax: COPY “program_name” “new_program_name”

Description: COPY copies an existing program in memory to a new program with the spec-
ified name. The program names can also be specified without quotes.

Precautions: This command is implemented for an offline (VT100) terminal. Within Motion
Perfect users can select the command from the Program menu.

Arguments: program_name
Name of the program to be copied.
new_program_name
Name to use for the new program.

See also: DEL, NEW, RENAME

Example: >> COPY "prog" "newprog"

5-3-41 COS
Type: Mathematical Function

Syntax: COS(expression)

Description: COS returns the cosine of the expression. Input values are in radians and
may have any value. The result value will be in the range from -1 to 1.

Arguments: expression
Any valid BASIC expression.

Example: >> PRINT COS(0)
1.0

99

Command, function and parameter description Section 5-3

5-3-42 CREEP
Type: Axis Parameter

Description: The CREEP parameter contains the creep speed on the axis. The creep
speed is used for the slow part of an origin search sequence. CREEP is
allowed to have any positive value (including zero).
The creep speed is entered in units/s using the unit conversion factor UNITS.
For example, if the unit conversion factor is set to the number of encoder
edges/inch, the speed is set in inches/s.

See also: AXIS, DATUM, UNITS

Example: BASE(2)
CREEP = 10
SPEED = 500
DATUM(4)
CREEP AXIS(1) = 10
SPEED AXIS(1) = 500
DATUM(4) AXIS(1)

5-3-43 D_GAIN
Type: Axis Parameter

Description: D_GAIN contains the derivative gain for the axis. The derivative output contri-
bution is calculated by multiplying the change in following error with D_GAIN.
The default value is zero.
Adding derivative gain to a system is likely to produce a smoother response
and allow the use of a higher proportional gain than could otherwise be used.
High values may cause oscillation.
See section 1-4-2 Servo System Principles for more details.

See also: AXIS, I_GAIN, OV_GAIN, P_GAIN, VFF_GAIN

Precautions: In order to avoid any instability the servo gains should be changed only when
the SERVO is OFF.

5-3-44 DAC
Type: Axis Parameter

Description: DAC contains the voltage value which is applied directly to the Servo Driver
when the base axis is in open loop (SERVO=OFF). The range of the DAC
parameter depends on the OUTLIMIT parameter and is by default from -2048
to 2047. This corresponds to putting - 10 V to 10 V on the output.
The value currently being applied to the drive is read using the DAC_OUT
axis parameter.

See also: AXIS, DAC_OUT, OUTLIMIT, SERVO

Example: The following lines can be used to force a square wave of amplitude ±5V and
period of approximately 500ms on axis 0.

WDOG = ON
SERVO = OFF

square:
DAC AXIS(0) = 1024
WA(250)
DAC AXIS(0) = -1024
WA(250)
GOTO square

100

Command, function and parameter description Section 5-3

5-3-45 DAC_OUT
Type: Axis Parameter

Description: DAC_OUT contains the voltage being applied to the servo.
The voltage being applied to the servo comes from one of two sources. If the
SERVO axis parameter is OFF, then the value set in DAC axis parameter is
written to the axis hardware. If the SERVO parameter is ON, then a value cal-
culated using the servo algorithm is written to the axis hardware. Either way,
the voltage can be read back using DAC_OUT.
The return value will be between –2048 and 2047 and will indicate voltages
between 10V and -10V.

See also: AXIS, DAC, OUTLIMIT, SERVO

Example: >> PRINT DAC_OUT AXIS(3)
288.0000

5-3-46 DATUM
Type: Motion Control Command

Syntax: DATUM(sequence)

Description: DATUM performs one of 6 origin search sequences to position an axis to an
absolute position and also can be used to reset the following errors. DATUM
uses both the creep speed and the demand speed for the origin searches.
The creep speed in the sequences is set using the CREEP axis parameter
and the demand speed is set using the SPEED axis parameter. The datum
switch input number, which is used for sequences 3 to 7, is selected by the
DATUM_IN parameter.
DATUM works on the default basis axis (set with BASE) unless AXIS is used
to specify a temporary base axis.

Arguments: sequence

0 The currently measured position is set as the demand position for all
axes. DATUM(0) will also reset a following error in the AXISSTATUS
registers for the axes.

1 The axis moves at creep speed forward until the Z marker is encoun-
tered. The demand position is then reset to zero and the measured
position is corrected to maintain the following error.

2 The axis moves at creep speed reverse until the Z marker is encoun-
tered. The demand position is then reset to zero and the measured
position is corrected to maintain the following error.

3 The axis moves at the demand speed forward until the datum switch
is reached. The axis then moves reverse at creep speed until the
datum switch is reset. The demand position is then reset to zero and
the measured position corrected so as to maintain the following
error.

4 The axis moves at the demand speed reverse until the datum switch
is reached. The axis then moves forward at creep speed until the
datum switch is reset. The demand position is then reset to zero and
the measured position corrected so as to maintain the following
error.

101

Command, function and parameter description Section 5-3

Precautions: The origin input set with the DATUM_IN parameter is active low, i.e., the ori-
gin switch is set when the input is OFF. The feedhold, reverse jog, forward
jog, forward and reverse limit inputs are also active low. Active low inputs are
used to enable fail-safe wiring.

See also: ACCEL, AXIS, CREEP, DATUM_IN, DECEL, SPEED

5-3-47 DATUM_IN
Type: Axis Parameter

Alternative: DAT_IN

Description: The DATUM_IN parameter contains the input number to be used as the
datum switch input for the DATUM command. The input number is valid from
0 to 15 and from 20 to 31. If DATUM_IN is set to –1, then no input is used as
the datum switch input.

Precautions: The origin input is active low, i.e., the origin switch is set when the input is
OFF. The feedhold, reverse jog, forward jog, forward and reverse limit inputs
are also active low. Active low inputs are used to enable fail-safe wiring.

See also: AXIS, DATUM

Example: DATUM_IN AXIS(0) = 12

5-3-48 DECEL
Type: Axis Parameter

Description: DECEL contains the axis deceleration rate. The rate is in units/s2. The param-
eter can have any positive value including zero.

See also: ACCEL, AXIS, UNITS

Example: DECEL = 100 ’Set deceleration rate
PRINT " Deceleration rate is ";DECEL;" mm/s/s"

5-3-49 DEFPOS
Type: Motion Control Command

Syntax: DEFPOS(pos_1[, pos_2[, pos_3[, pos_4[, pos_5[, pos_6[, pos_7[, pos_8]]]]]]])

Alternative: DP(pos_1[, pos_2[, pos_3,[pos_4[, pos_5[, pos_6[, pos_7[, pos_8]]]]]]])

Description: DEFPOS defines the current demand position (DPOS) as a new absolute
position. The measured position (MPOS) will be changed accordingly in order
to keep the following error. DEFPOS is typically used after an origin search
sequence (see DATUM command), as these set the current position to zero.
DEFPOS can be used at any time. See also OFFPOS which can be used to
perform a relative adjustment of the current position.
DEFPOS works on the default basis axis (set with BASE) unless AXIS is used
to specify a temporary base axis.

5 The axis moves at demand speed forward until the datum switch is
reached. The axis then reverses at creep speed until the
Z marker is encountered. The demand position is then reset to zero
and the measured position corrected so as to maintain the following
error.

6 The axis moves at demand speed reverse until the datum switch is
reached. The axis then moves forward at creep speed until the Z
marker is encountered. The demand position is then reset to zero
and the measured position corrected so as to maintain the following
error.

102

Command, function and parameter description Section 5-3

Precautions: Changes to the axis positions made via DEFPOS are made on the next servo
update. This can potentially cause problems when a move is initiated in the
same servo period as the DEFPOS. OFFPOS can be used to avoid this prob-
lem.
For example, the following sequence could easily fail to move to the correct
position because DEFPOS will not have been completed when MOVEABS is
loaded.
DEFPOS(100)
MOVEABS(0)
DEFPOS statements are internally converted into OFFPOS position offsets,
which provides an easy way to avoid the problem by programming as follows:
DEFPOS(100)
WAIT UNTIL OFFPOS = 0
MOVEABS(0)

Arguments: pos_i
The absolute position for (base+i) axis in user units. Refer to the BASE com-
mand for the grouping of the axes.

See also: AXIS, DATUM, DPOS, OFFPOS, MPOS, UNITS

Example: The last line defines the current position to (–1000,–3500) in user units. The
current position would have been reset to (0,0) by the two DATUM com-
mands.
BASE(2)
DATUM(5)
BASE(1)
DATUM(4)
WAIT IDLE
DEFPOS(-1000,-3500)

5-3-50 DEL
Type: Program Command

Syntax: DEL [“program_name”]

Alternative: RM [“program_name”]

Description: DEL deletes a program from memory. DEL without a program name can be
used to delete the currently selected program (using SELECT). The program
name can also be specified without quotes. DEL ALL will delete all programs.
DEL can also be used to delete the Table as follows:

DEL “TABLE”
The name “TABLE” must be in quotes.

Precautions: This command is implemented for an offline (VT100) terminal. Within Motion
Perfect users can select the command from the Program menu.

Arguments: program_name
Name of the program to be deleted.

See also: COPY, NEW, RENAME, SELECT, TABLE

Example: >> DEL oldprog

5-3-51 DEMAND_EDGES
Type: Axis Parameter

Description: DEMAND_EDGES contains the current value of the DPOS axis parameter in
encoder edge units.

See also: AXIS, DPOS

Note This parameter is read-only.

103

Command, function and parameter description Section 5-3

5-3-52 DIR
Type: Program Command

Syntax: DIR

Alternative: LS

Description: DIR displays a list of the programs held in memory, their memory size and
their RUNTYPE. Furthermore the controller’s available memory size, power
up mode and current selected program is displayed.

See also: FREE, POWER_UP, PROCESS, RUNTYPE, SELECT

5-3-53 DISPLAY
Type: System Parameter

Description: DISPLAY selects the bank of 8 in- or outputs which is displayed by the IO sta-
tus LED indicators on the front panel of the MC Unit. The following values are
valid:

See also: IN, OP

Example: The first line in the following example sets the indicators to show status of the
physical outputs. The second line will cause the top left indicator to light.
DISPLAY = 5
OP(8,ON)

5-3-54 DPOS
Type: Axis Parameter

Description: DPOS contains the demand position in user units, which is generated by the
move commands in servo control. When the controller is in open loop
(SERVO=OFF), the measured position (MPOS) will be copied to the DPOS in
order to maintain a zero following error.
The range of the demand position is controlled with the REP_DIST and
REP_OPTION axis parameters. The value can be adjusted without doing a
move by using the DEFPOS command or OFFPOS axis parameter. DPOS is
reset to zero at start-up.

Note This parameter is read-only.

See also: AXIS, DEFPOS, DEMAND_EDGES, FE, MPOS, REP_DIST, REP_OPTION,
OFFPOS, UNITS

Example: >> PRINT DPOS AXIS(0)
34.0000
The above line will return the demand position in user units.

0 Inputs 0 to 7 First bank of 8 physical inputs.

1 Inputs 8 to 15 Second bank of 8 physical inputs.

2 Inputs 16 to 23 Inputs16 to 19 are driver error inputs for
axes 0 to 3.
Inputs 20 to 23 are virtual inputs.

3 Inputs 24 to 31 Virtual inputs.

4 Outputs 0 to 7 Not existing on C200HW-MC402-E.

5 Outputs 8 to 15 Bank of 8 physical outputs.

6 Outputs 16 to 23 Output 16 is driver error reset for all drivers.
Outputs 17 to 19 do not exist.
Outputs 20 to 23 are virtual outputs.

7 Outputs 24 to 31 Virtual outputs.

104

Command, function and parameter description Section 5-3

5-3-55 EDIT
Type: Program Command

Syntax: EDIT [line_number]

Alternative: ED [line_number]

Description: EDIT starts the built in screen editor allowing a program in the MC Unit mem-
ory to be modified using a VT100 Terminal. The currently selected program
will be edited.
The editor commands are as follows:

Quit Editor [CTRL] K and D
Delete Line [CTRL] Y

Precautions: This command is implemented for an offline (VT100) terminal. Within Motion
Perfect users can select the command from the Program menu.

Arguments: line_number
The number of the line at which to start editing.

See also: SELECT

5-3-56 ENCODER
Type: Axis Parameter

Description: ENCODER contains a raw copy of the encoder. For the servo axis a 12-bit
(modulo 4095) number is used.
The MPOS axis parameter contains the measured position calculated from
the ENCODER value automatically, allowing for overflows and offsets.

Note This parameter is read-only.

See also: AXIS, MPOS

5-3-57 ENDMOVE
Type: Axis Parameter

Description: ENDMOVE holds the position of the end of the current move in user units. If
the SERVO axis parameter is ON, the ENDMOVE parameter can be written
to produce a step change in the demand position (DPOS).

Note As the measured position is not changed initially, the following error limit
(FE_LIMIT) should be considered. If the change of demanded position is too
big, the limit will be exceeded.

See also: AXIS, DPOS, FE_LIMIT, UNITS

5-3-58 EPROM
Type: Program Command

Syntax: EPROM

Description: EPROM stores the BASIC programs in the MC Unit in the flash EPROM. This
information is retrieved at start-up if the POWER_UP parameter has been set
to 1.

Precautions: Motion Perfect offers this command as a button on the control panel.

See also: POWER_UP, RUNTYPE

5-3-59 ERROR_AXIS
Type: System Parameter

105

Command, function and parameter description Section 5-3

Description: ERROR_AXIS contains the number of the axis which has caused a motion
error.
A motion error occurs when the AXISSTATUS state for one of the axes
matches the ERRORMASK setting. In this case the enable relay (WDOG) will
be turned OFF, the MOTION_ERROR parameter will have value 1 and the
ERROR_AXIS parameter will contain the number of the first axis to have the
error.

Note This parameter is read-only.

See also: AXISSTATUS, ERRORMASK, MOTION_ERROR, WDOG

5-3-60 ERROR_LINE
Type: Task Parameter

Description: The ERROR_LINE parameter contains the number of the line which caused
the last BASIC run-time error in the program task. This value is only valid
when the BASICERROR parameter is TRUE.
Each task has its own ERROR_LINE parameter. Use the PROC modifier to
access the parameter for a certain task. Without PROC the current task will
be assumed.

Note This parameter is read-only.

See also: BASICERROR, PROC, RUN_ERROR

Example: >> PRINT ERROR_LINE PROC(4)
23

5-3-61 ERRORMASK
Type: Axis Parameter

Description: ERRORMASK contains a mask value that is ANDed bit by bit with the AXIS-
STATUS axis parameter on every servo cycle to determine if a motion error
has occurred.
When a motion error occurs the enable relay (WDOG) will be turned OFF, the
MOTION_ERROR parameter will have value 1 and the ERROR_AXIS param-
eter will contain the number of the first axis to have the error.
Check the AXISVALUES parameter for the status bit allocations. The default
setting of ERRORMASK is 256. The enable relay will only be turned OFF if
the following error exceeds its limits.

!Caution It is up to the user to define in which cases the enable relay needs to be dis-
abled. For safe operation it is strongly suggested to disable the enable relay
when the following error has exceed its limit in all cases. This is done by set-
ting bit 8 of ERRORMASK (ERRORMASK=ERRORMASK OR 256).

See also: AXIS, AXISSTATUS, ERROR_AXIS, MOTION_ERROR, WDOG

5-3-62 EXP
Type: Mathematical Function

Syntax: EXP(expression)

Description: EXP returns the exponential value of the expression.

Arguments: expression
Any valid BASIC expression.

Example: >> print exp(1.0)
2.7183

106

Command, function and parameter description Section 5-3

5-3-63 FALSE
Type: Constant

Description: FALSE returns the numerical value 0.

Note A constant is read-only.

Example: test:
res = IN(0) OR IN(2)
IF res = FALSE THEN

PRINT "Inputs are off"
ENDIF

5-3-64 FAST_JOG
Type: Axis Parameter

Description: FAST_JOG contains the input number to be used as the fast jog input. The
number can be from 0 to 15 and from 20 to 31. If FAST_JOG is set to –1, then
no input is used for the fast jog.
The fast jog input controls the jog speed between two speeds. If the fast jog
input is set, the speed as given by the SPEED axis parameter will be used for
jogging. If the input is not set, the speed given by the JOGSPEED axis param-
eter will be used.

Note This input is active low.

See also: AXIS, FWD_JOG, JOGSPEED, REV_JOG, SPEED

5-3-65 FE
Type: Axis Parameter

Description: FE is the position error in user units, and is equal to the demand position in
the DPOS axis parameter minus the measured position in the MPOS axis
parameter. The value of the following error can be monitored by using the axis
parameters FE_LIMIT and FE_RANGE.

Note This parameter is read-only.

See also: AXIS, DPOS, FE_LIMIT, FE_RANGE, MPOS, UNITS

5-3-66 FE_LIMIT
Type: Axis Parameter

Alternative: FELIMIT

Description: FE_LIMIT contains the maximum allowable following error in user units.
When exceeded, bit 8 of the AXISSTATUS parameter of the axis will be set.
Depending on the value of ERRORMASK, the MC Unit will generate a motion
error and reset the enable relay (WDOG).
This limit can be used to guard against fault conditions, such as mechanical
lock-up, loss of encoder feedback, etc.

See also: AXIS, AXISSTATUS, ERRORMASK, FE, FE_RANGE, UNITS

5-3-67 FE_RANGE
Type: Axis Parameter

Alternative: FERANGE

Description: FE_RANGE contains the following error report range in user units. When the
following error exceeds this value on a servo axis, bit 1 in the AXISSTATUS
axis parameter will be turned ON.

See also: AXIS, AXISSTATUS, ERRORMASK, FE, FE_LIMIT, UNITS

107

Command, function and parameter description Section 5-3

5-3-68 FHOLD_IN
Type: Axis Parameter

Alternative: FH_IN

Description: FHOLD_IN contains the input number to be used as the feedhold input. The
number can be from 0 to 15 and from 20 to 31. If FHOLD_IN is set to –1, then
no input is used as a feedhold input.
If an input number is set and the feedhold input turns ON, the speed of the
move on the axis is changed to the value set in the FH_SPEED axis parame-
ter. The current move is NOT cancelled. Furthermore, bit 7 of the AXISSTA-
TUS parameter is set. When the input turns OFF again, any move in progress
when the input was set will return to the programmed speed.

Precautions: This feature only works on speed controlled moves. Moves which are not
speed controlled (CAMBOX, CONNECT and MOVELINK) are not affected.

Note This input is active low.

See also: AXIS, AXISSTATUS, FHSPEED

5-3-69 FHSPEED
Type: Axis Parameter

Description: FHSPEED contains the feedhold speed. This parameter can be set to a value
in user units/s at which speed the axis will move when the feed-hold input
turns on. The current move is not cancelled. FHSPEED can have any positive
value including zero. The default value is zero.

Precautions: This feature only works on speed controlled moves. Moves which are not
speed controlled (CAMBOX, CONNECT and MOVELINK) are not affected.

See also: AXIS, FHOLD_IN, UNITS

5-3-70 FOR TO STEP NEXT
Type: Structural Command

Syntax: FOR variable = start TO end [STEP increment]
<commands>

NEXT variable

Description: The FOR ... NEXT loop allows the program segment between the FOR and
the NEXT statement to be repeated a number of times.
On entering this loop, the variable is initialized to the value of start and the
block of commands is then executed. Upon reaching the NEXT command, the
variable is increased by the increment specified after STEP. The STEP value
can be positive or negative, if omitted the value is assumed to be 1.
If variable is less than or equal to end, then the block of commands is repeat-
edly executed until variable is greater than end, at which time the command
after NEXT is executed.

Precautions: FOR ... NEXT statements can be nested up to 8 levels deep in a BASIC pro-
gram.

Arguments: variable
Any valid BASIC expression.
start
Any valid BASIC expression.
end
Any valid BASIC expression.

108

Command, function and parameter description Section 5-3

increment
Any valid BASIC expression.

See also: REPEAT, WHILE

Examples: Example 1
The following loop turns ON outputs 0 to 10.
FOR opnum = 0 TO 10

OP(opnum,ON)
NEXT opnum
Example 2
The STEP increment can be positive or negative.
loop:

FOR dist = 5 TO -5 STEP -0.25
MOVEABS(dist)
GOSUB pick_up

NEXT dist
Example 3
FOR...NEXT statements can be nested (up to 8 levels deep) provided the
inner FOR and NEXT commands are both within the outer FOR...NEXT loop:
loop1:

FOR l1 = 1 TO 8
loop2:

FOR l2 = 1 TO 6
MOVEABS(l1*100,l2*100)
GOSUB 1000

NEXT l2
NEXT l1

5-3-71 FORWARD
Type: Motion Control Command

Syntax: FORWARD

Alternative: FO

Description: FORWARD moves an axis continuously forward at the speed set in the
SPEED parameter.
FORWARD works on the default basis axis (set with BASE) unless AXIS is
used to specify a temporary base axis.

Precautions: The forward motion can be stopped by executing the CANCEL or RAPID-
STOP command, or by reaching the forward, inhibit, or origin return limit.

See also: AXIS, CANCEL, RAPIDSTOP, REVERSE, UNITS

Example: start:
FORWARD
WAIT UNTIL IN(0) = ON ’Wait for stop signal
CANCEL

5-3-72 FRAC
Type: Mathematical Function

Syntax: FRAC(expression)

Description: FRAC returns the fractional part of the expression.

Arguments: expression
Any valid BASIC expression.

Example: >> PRINT FRAC(1.234)
0.2340

109

Command, function and parameter description Section 5-3

5-3-73 FREE
Type: System Function

Syntax: FREE

Description: FREE returns the remaining amount of memory available for user programs
and Table array elements.

Precautions: Each line takes a minimum of 4 characters (bytes) in memory. This is for the
length of this line, the length of the previous line, number of spaces at the
beginning of the line and a single command token. Additional commands
need one byte per token; most other data is held as ASCII.
The MC Unit compiles programs before they are executed, this means that
twice the memory is required to be able to execute a program.

Example: >> PRINT FREE
47104.0000

5-3-74 FS_LIMIT
Type: Axis Parameter

Alternative: FSLIMIT

Description: FS_LIMIT contains the absolute position of the forward software limit in user
units.
A software limit for forward travel can be set from the program to control the
working envelope of the machine. When the limit is reached, the MC Unit will
decelerate to zero, and then cancel the move. Bit 9 of the AXISSTATUS axis
parameter will be turned ON when the axis position is greater than FS_LIMIT.

See also: AXIS, AXISSTATUS, RS_LIMIT, UNITS

5-3-75 FWD_IN
Type: Axis Parameter

Description: FWD_IN contains the input number to be used as a forward limit input. The
number can be from 0 to 15 and from 20 to 31. If FWD_IN is set to –1, then no
input is used as a forward limit.
If an input number is set and the limit is reached, any forward motion on that
axis will be stopped. Bit 4 of the AXISSTATUS will also be set.

Note This input is active low.

See also: AXIS, AXISSTATUS, REV_IN

5-3-76 FWD_JOG
Type: Axis Parameter

Description: FWD_JOG contains the input number to be used as a jog forward input. The
input can be from 0 to 15 and from 20 to 31. If FWD_JOG is set to –1
(default), then no input is used as a forward jog input.

Note This input is active low.

See also: AXIS, FAST_JOG, JOGSPEED, REV_JOG

5-3-77 GET
Type: I/O Function

Syntax: GET#n, variable

Description: GET waits for the arrival of a single character and assigns the ASCII code of
the character to a variable. The BASIC program will wait until a character is

110

Command, function and parameter description Section 5-3

available. Channels 5 to 7 are logical channels that are superimposed on the
RS-232C programming port when using Motion Perfect.

Arguments: n
The specified input device.

variable
The name of the variable to receive the ASCII code.

Precautions: Channel 0 is particularly used for the connection to Motion Perfect and/or the
command line interface. Please be aware that this channel may give prob-
lems for this function.

See also: INPUT, KEY, LINPUT

Example: The following line can be used to store the ASCII character received on the
Motion Perfect port channel 5 in k.
GET#5, k

5-3-78 GOSUB RETURN
Type: Structural Command

Syntax: GOSUB label ... RETURN

Description: GOSUB enables a subroutine jump. GOSUB stores the position of the line
after the GOSUB command and then jumps to the specified label. Upon
reaching the RETURN statement, program execution is returned to the stored
position.

Precautions: Subroutines on each task can be nested up to 8 levels deep.

Arguments: label
A valid label that occurs in the program. If the label does not exist, an error
message will be displayed during structure checking at the beginning of exe-
cution and program execution will be halted.

See also: GOTO

Example: main:
GOSUB routine
GOTO main

routine:
PRINT "Measured position=";MPOS;CHR(13);
RETURN

5-3-79 GOTO
Type: Structural Command

Syntax: GOTO label

Description: GOTO enables jump of program execution. GOTO jumps program execution
to the line of the program containing the label.

Arguments: label
A valid label that occurs in the program. If the label does not exist, an error
message will be displayed during structure checking at the beginning of exe-
cution and program execution will be halted.

0 RS-232C programming port A

1 RS-232C serial port B

5 Motion Perfect port A user channel 5

6 Motion Perfect port A user channel 6

7 Motion Perfect port A user channel 7

111

Command, function and parameter description Section 5-3

See also: GOSUB

Example: loop:
PRINT "Measured position = ";MPOS;CHR(13);
GOTO loop

5-3-80 HALT
Type: System Command

Syntax: HALT

Description: HALT stops execution of all programs currently running. The command can
be used both on command line as in programs. Refer to the STOP command
to stop a single program.

See also: PROCESS, STOP

5-3-81 I_GAIN
Type: Axis Parameter

Description: I_GAIN contains the integral gain for the axis. The integral output contribution
is calculated by multiplying the sums of the following errors with I_GAIN. The
default value is zero.
Adding integral gain to a servo system reduces positioning error when at rest
or moving steadily. It can produce or increase overshooting and oscillation
and is therefore only suitable for systems working on constant speed and with
slow accelerations.
See section 1-4-2 Servo System Principles for more details.

Precautions: In order to avoid any instability the servo gains should be changed only when
the SERVO is OFF.

See also: D_GAIN, OV_GAIN, P_GAIN, VFF_GAIN

5-3-82 IF THEN ELSE ENDIF
Type: Structural Command

Syntax: IF condition THEN
<commands>

[ELSE
<commands>]

ENDIF

IF condition THEN <commands>

Description: IF controls the flow of the program based on the results of the condition. If the
condition is TRUE the commands following THEN up to ELSE (or ENDIF if not
included) will be executed. If the condition is FALSE the commands following
ELSE will be executed or the program will resume at the line after ENDIF in
case no ELSE is included. The ENDIF is used to mark the end of the condi-
tional block.

IF evaluates the condition. If it is true, the commands following it will be exe-
cuted. If it is not true, the commands are skipped. If condition is FALSE and
an ELSE command sequence is specified, then the ELSE command
sequence is executed.

Precautions: IF...THEN [ELSE] ENDIF sequences can be nested without limit. For a multi-
line IF...THEN construction, there must not be any statement after THEN. A
single-line construction must not use ENDIF.

112

Command, function and parameter description Section 5-3

Arguments: condition
Any logical expression.
commands
Any valid BASIC commands.

Examples: Example 1
IF MPOS > (0.22 * VR(0)) THEN GOTO exceeds_length
Example 2
IF IN(0) = ON THEN

count = count + 1
PRINT "COUNTS = ";VR(1)
fail = 0

ELSE
fail = fail + 1

ENDIF

5-3-83 IN
Type: I/O Function

Syntax: IN(input_number[,final_input_number])
IN

Description: The IN function returns the value of digital inputs.
• IN(input_number, final_input_number) will return the binary sum of the

group of inputs. The two arguments must be less than 24 apart.
• IN(input_number) with the value for input_number less than 32 will return

the value of the particular channel.
• IN (without arguments) will return the binary sum of the first 24 inputs (as

IN(0,23)).
Check 4-3 Motion Control Application for a description of the various input
types.

Arguments: input_number.
The number of the input for which to return a value. Value: An integer
between 0 and 31.
final_ input_number.
The number of the last input for which to return a value. Value: An integer
between 0 and 31.

See also: DISPLAY, OP

Examples: Example 1
The following lines can be used to move to the position set on a thumbwheel
multiplied by a factor. The thumbwheel is connected to inputs 4, 5, 6 and 7,
and gives output in BCD.
moveloop:

MOVEABS(IN(4,7)*1.5467)
WAIT IDLE
GOTO moveloop

The MOVEABS command is constructed as follows:
Step 1: IN(4,7) will get a number between 0 and 15.
Step 2: The number is multiplied by 1.5467 to get required distance.
Step 3: An absolute move is made to this position.
Example 2
In this example a single input is tested:
test:

WAIT UNTIL IN(4)=ON ‘Conveyor is in position when ON
GOSUB place

113

Command, function and parameter description Section 5-3

5-3-84 INITIALISE
Type: System Command

Syntax: INITIALISE

Description: INITIALISE sets all axis parameters to their default values for all axes. The
parameters are also reset each time the MC Unit is started.

See also: EX

5-3-85 INPUT
Type: I/O Command

Syntax: INPUT#n, variable{, variable}

Description: The INPUT command will wait for a string to be received and will take the
numerical value of this string which is terminated with a carriage return <CR>.
The value of a valid string is assigned to the specified variable. If the string is
invalid, the user will be prompted with an error message and the task will be
repeated. Multiple inputs may be requested on one line, separated by com-
mas, or on multiple lines, separated by carriage return. The maximum amount
of inputs on one line has no limit other than the line length.
Channels 5 to 7 are logical channels that are superimposed on the RS-232C
programming port when using Motion Perfect.

Arguments: n

The specified input device.

variable
The variable to write to.

Precautions: Channel 0 is particularly used for the connection to Motion Perfect and/or the
command line interface. Please be aware that this channel may give prob-
lems for this function.

See also: GET, LINPUT

Example: Consider the following program to receive data from the terminal.
INPUT#5, num
PRINT#5, "BATCH COUNT=";num[0]
A possible response on the terminal could be:
123<CR>
BATCH COUNT=123

5-3-86 INT
Type: Mathematical Function

Syntax: INT(expression)

Description: INT returns the integer part of the expression.

Note To round a positive number to the nearest integer value take the INT function
of the value added by 0.5. Similarly, to round for a negative value subtract 0.5
to the value before applying INT.

0 RS-232C programming port A

1 RS-232C serial port B

5 Motion Perfect port A user channel 5

6 Motion Perfect port A user channel 6

7 Motion Perfect port A user channel 7

114

Command, function and parameter description Section 5-3

Arguments: expression
Any valid BASIC expression.

Example: >> PRINT INT(1.79)
1.0000

5-3-87 JOGSPEED
Type: Axis Parameter

Description: JOGSPEED sets the jog speed in user units for an axis. A jog will be per-
formed when a jog input for an axis has been declared and that input is low. A
forward jog input and a reverse jog input are available for each axis, respec-
tively set by FWD_JOG and REV_JOG. The speed of the jog can be con-
trolled with the FAST_JOG input.

See also: AXIS, FAST_JOG, FWD_JOG, REV_JOG, UNITS

5-3-88 KEY
Type: I/O Parameter

Syntax: KEY#n

Description: The KEY command returns TRUE or FALSE depending on if a character has
been received on an input device or not. This command does not read the
character but allows the program to test if any character has arrived. A TRUE
result will reset when the character is read with GET.
Channels 5 to 7 are logical channels that are superimposed on the RS-232C
programming port when using Motion Perfect.

Argument: n

The specified input device.

Precautions: Channel 0 is reserved for the connection to Motion Perfect and/or the com-
mand line interface. Please be aware that this channel may give problems for
this function.

See also: GET

Example: WAIT UNTIL KEY#1
GET#1, k
Beware that for using KEY#1 in an equation may require parentheses in the
statement, in this case: WAIT UNTIL (KEY#1)=TRUE.

5-3-89 LAST_AXIS
Type: System Parameter

Description: LAST_AXIS contains the number of the last axis processed by the system.
Most systems do not use all the available axes. It would therefore be a waste
of time to task the idle moves on all axes that are not in use. To avoid this to
some extent, the MC Unit will task moves on the axes from 0 to LAST_AXIS,
where LAST_AXIS is the number of the highest axis for which an AXIS or
BASE command has been processed, whichever of the two is larger.

Note This parameter is read-only.

See also: AXIS, BASE

0 RS-232C programming port A

1 RS-232C serial port B

5 Motion Perfect port A user channel 5

6 Motion Perfect port A user channel 6

7 Motion Perfect port A user channel 7

115

Command, function and parameter description Section 5-3

5-3-90 LINPUT
Type: I/O Command

Syntax: LINPUT#n, vr_variable

Description: The LINPUT command waits for an input string and stores the ASCII values of
the string in an array of variables starting at the specified VR variable. The
string must be terminated with a carriage return <CR>, which is also stored.
The string is not echoed by the controller.
Channels 5 to 7 are logical channels that are superimposed on the RS-232C
programming port when using Motion Perfect.

Arguments: n

The specified input device.

vr_variable
The first VR-variable to write to.

Precautions: Channel 0 is particularly used for the connection to Motion Perfect and/or the
command line interface. Please be aware that this channel may give prob-
lems for this function.

See also: GET, INPUT,VR

Example: Consider the following line in a program.
LINPUT#5, VR(0)
Entering START<CR> will give
VR(0)=83 S
VR(1)=84 T
VR(2)=65 A
VR(3)=82 R
VR(4)=84 T
VR(5)=13 <CR>

5-3-91 LIST
Type: Program Command

Syntax: LIST [“program_name”]

Alternative: TYPE [“program_name”]

Description: The LIST command prints the current selected program or the program spec-
ified by program_name. The program name can also be specified without
quotes. If the program name is omitted, the current selected program will be
listed.

Precautions: This command is implemented for an offline (VT100) terminal. Within Motion
Perfect users can use the Program Editor.

Arguments: program_name
The program to be printed.

See also: SELECT

0 RS-232C programming port A

1 RS-232C serial port B

5 Motion Perfect port A user channel 5

6 Motion Perfect port A user channel 6

7 Motion Perfect port A user channel 7

116

Command, function and parameter description Section 5-3

5-3-92 LN
Type: Mathematical Function

Syntax: LN(expression)

Description: LN returns the natural logarithm of the expression. The input expression value
must be greater than zero.

Arguments: expression
Any valid BASIC expression.

Example: >> PRINT LN(10)
2.3026

5-3-93 LOCK
Type: System Command

Syntax: LOCK(code)
UNLOCK(code)

Description: The LOCK command prevents the program from being viewed, modified or
deleted by personnel unaware of the security code. The UNLOCK command
allows the locked state to be unlocked. The code number can be any integer
and is held in encoded form. LOCK is always an immediate command and
can be issued only when the system is UNLOCKED.

!WARNING The security code must be remembered; it will be required to unlock the sys-
tem. Without the security code the system can not be recovered.

Arguments: code
Any valid integer with maximum 7 digits.

Example: >> LOCK(561234)
The programs cannot be modified or seen.
>> UNLOCK(561234)
The system is now unlocked.

5-3-94 MARK
Type: Axis Parameter

Description: MARK contains TRUE when a registration event has occurred to indicate that
the value in the REG_POS axis parameter is valid. MARK is set to FALSE
when REGIST command has been executed and is set to TRUE when the
register event occurs.

Note This parameter is read-only.

See also: AXIS, REG_POS, REGIST

5-3-95 MERGE
Type: Axis Parameter

Description: MERGE is a software switch that can be used to enable or disable the merg-
ing of consecutive moves. With MERGE is ON and the next move already in
the next move buffer (NTYPE), the axis will not ramp down to zero speed but
will load up the following move enabling a seamless merge. All non-zero val-
ues for MERGE are also considered ON.

!Caution It is up to the programmer to ensure that merging is sensible. For example,
merging a forward move with a reverse move will cause an attempted instan-
taneous change of direction.

117

Command, function and parameter description Section 5-3

MERGE will only function if the following are all true.
1. Only the speed profiled moves MOVE, MOVEABS, MOVECIRC, MHELI-

CAL and MOVEMODIFY can be merged with each other.
2. There is a move in the next move buffer (NTYPE).
3. The axis group does not change for multi-axis moves.
When merging multi-axis moves, only the base axis MERGE axis parameter
needs to be set.

Precautions: If the moves are short, a high deceleration rate must be set to avoid the MC
Unit decelerating in anticipation of the end of the buffered move.

See also: AXIS

Example: MERGE = OFF ‘Decelerate at the end of each move
MERGE = ON ‘Moves will be merged if possible

5-3-96 MHELICAL
Type: Motion Control Command

Syntax: MHELICAL(end_1, end_2, centre_1, centre_2, direction, distance_3)

Alternative: MH(end_1, end_2, centre_1, centre_2, direction, distance_3)

Description: MHELICAL performs an interpolated helical move by moving two orthogonal
axes in a circular arc with a simultaneous linear move on a third axis. The
path of the movement is determined by the 6 arguments, which are incremen-
tal from the starting position.
The first 5 arguments are the same as those of the MOVECIRC command.
The arguments end_1 and centre_1 apply to the base axis and end_2 and
centre_2 apply to the following axis. The linear mode is defined by
distance_3. All arguments are given in user units of each axis. The speed of
the movement along the circular arc is set by the SPEED, ACCEL and
DECEL parameters of the base axis.
MHELICAL works on the default basis axis group (set with BASE) unless
AXIS is used to specify a temporary base axis.

Precautions: Both MHELICAL and MOVECIRC compute the nominal radius and the angle
of movement from the centre and end point. If the endpoint does not lie on the
calculated path, the move simply ends at the computed end and not the spec-
ified end point. It is the responsibility of the programmer to ensure that the two
points correspond to correct points on a helix.
For MOVECIRC to be correctly executed, the two axes moving in the circular
arc must have the same number of encoder pulses per linear axis distance. If
they do not, it is possible to adjust the encoder scales in many cases by
adjusting with PP_STEP axis parameters for the axis.

Arguments: end_1
The end position for the base axis.
end_2
The end position for the next axis.
centre_1
The centre position around which the base axis is to move.
centre_2
The centre position around which the next axis is to move.

118

Command, function and parameter description Section 5-3

direction
A software switch that determines whether the arc is interpolated in a clock-
wise or counterclockwise direction. Value: 0 or 1.

If the two axes involved in the movement form a right-hand axis, set direction
to 0 to produce positive motion about the third (possibly imaginary) orthogonal
axis.
If the two axes involved in the movement form a left-hand axis, set direction to
0 to produce negative motion about the third (possibly imaginary) orthogonal
axis.

distance_3
The distance to move on the third axis.

See also: AXIS, MOVECIRC, PP_STEP, UNITS

5-3-97 MOD
Type: Mathematical Function

Syntax: expression_1 MOD expression_2

Description: MOD returns the expression_2 modulus of expression_1. This function will
take the integer part of any non-integer input.

Arguments: expression_1
Any valid BASIC expression.
expression_2
Any valid BASIC expression.

Example: >> PRINT 122 MOD 13
5.0000

5-3-98 MOTION_ERROR
Type: System Parameter

Description: MOTION_ERROR contains an error flag for axis motion errors. The parame-
ter will have value 1 when a motion error has occurred.
A motion error occurs when the AXISSTATUS state for one of the axes
matches the ERRORMASK setting. In this case the enable relay (WDOG) will
be turned OFF, the MOTION_ERROR parameter will have value 1 and the
ERROR_AXIS parameter will contain the number of the first axis to have the
error.
A motion error can be cleared executing a DATUM(0) command.

Note This parameter is read-only.

See also: AXISSTATUS, DATUM, ERROR_AXIS, ERRORMASK, WDOG

Direction Right-hand axis Left-hand axis

0 Positive Negative

1 Negative Positive

Direction=0 Direction=1

1

2

1

2

119

Command, function and parameter description Section 5-3

5-3-99 MOVE
Type: Motion Control Command

Syntax: MOVE(dist_1[, dist_2[, dist_3[, dist_4[, dist_5[, dist_6[, dist_7, dist_8]]]]]]])

Alternative: MO(dist_1[, dist_2[, dist_3[, dist_4[, dist_5[, dist_6[, dist_7, dist_8]]]]]]])

Description: MOVE moves with one or more axes at the demand speed and acceleration
and deceleration to a position specified as increment from the current posi-
tion. In multi-axis moves the movement is interpolated and the speed, accel-
eration and deceleration are taken from the base axis.
The specified distances are scaled using the unit conversion factor in the
UNITS axis parameter. If, for example, an axis has 4,000 encoder edges/mm,
then the number of units for that axis would be set to 4000, and MOVE(12.5)
would move 12.5 mm.
MOVE works on the default basis axis group (set with BASE) unless AXIS is
used to specify a temporary base axis. Argument dist_1 is applied to the base
axis, dist_2 is applied to the next axis, etc. By changing the axis between indi-
vidual MOVE commands, uninterpolated, unsynchronised multi-axis motion
can be achieved. Incremental moves can be merged for profiled continuous
path movements by turning ON the MERGE axis parameter.
Considering a 4-axis movement, the individual speeds are calculated using
the equations below. Given command MOVE() and the profiled
speed as calculated from the SPEED, ACCEL and DECEL parameters
from the base axis and the total multi-axes distance .

The individual speed for axis at any time of the movement is calculated
as

Arguments: dist_i
The distance to move for every axis i in user units starting with the base axis.

See also: AXIS, MOVEABS, UNITS

Examples: Example 1
A system is working with a unit conversion factor of 1 and has a 1000-line
encoder. It is, therefore, necessary to use the following command to move 10
turns on the motor. (A 1000 line encoder gives 4000 edges/turn).
MOVE(40000)
Example 2
In this example, axes 1, 2 and 3 are moved independently (without interpola-
tion). Each axis will move at its programmed speed and other axis parame-
ters.
MOVE(10) AXIS(1)
MOVE(10) AXIS(2)
MOVE(10) AXIS(3)
Example 3
An X-Y plotter can write text at any position within its working envelope. Indi-
vidual characters are defined as a sequence of moves relative to a start point
so that the same commands can be used no matter what the plot position.
The command subroutine for the letter “m” might be as follows:
m:
MOVE(0,12) ’move A -> B
MOVE(3,-6) ’move B -> C

x1 x2 x3 x4, , ,
vp

L

L x1
2

x2
2

x3
2

x4
2

+ + + .=

vi i

vi

xi vp⋅
L

-------------.=

120

Command, function and parameter description Section 5-3

MOVE(3,6) ’move C -> D
MOVE(0,-12) ’move D -> E

5-3-100 MOVEABS
Type: Motion Control Command

Syntax: MOVEABS(pos_1[,pos_2[,pos_3[,pos_4[,pos_5[,pos_6[,pos_7[,pos_8]]]]]]])

Alternative: MA(pos_1[,pos_2[,pos_3[,pos_4[,pos_5[,pos_6[,pos_7[,pos_8]]]]]]])

Description: MOVEABS moves one or more axes at the demand speed, acceleration and
deceleration to a position specified as absolute position, i.e., in reference to
the origin. In multi-axis moves the movement is interpolated and the speed,
acceleration and deceleration are taken from the base axis.
The specified distances are scaled using the unit conversion factor in the
UNITS axis parameter. If, for example, an axis has 4,000 encoder edges/mm,
then the number of units for that axis would be set to 4000, and MOVE-
ABS(12.5) would move to a position 12.5 mm from the origin.
MOVEABS works on the default basis axis group (set with BASE) unless
AXIS is used to specify a temporary base axis. Argument pos_1 is applied to
the base axis, pos_2 is applied to the next axis, etc. By changing the axis
between individual MOVE commands, uninterpolated, unsynchronised multi-
axis motion can be achieved. Absolute moves can be merged for profiled con-
tinuous path movements by turning ON the MERGE axis parameter.
Considering a 4-axis movement, the individual speeds are calculated using
the equations below. Given command MOVE(), the cur-
rent position () and the profiled speed as calculated
from the SPEED, ACCEL and DECEL parameters from the base axis and the
total multi-axes distance

 where .

The individual speed for axis at any time of the movement is calculated
as

Arguments: pos_i
The position to move every axis i to in user units starting with the base axis.

See also: AXIS, MOVE, UNITS

Examples: Example 1
An X-Y plotter has a pen carousel whose position is fixed relative to the plotter
origin. To change pen, an absolute move to the carousel position will find the
target irrespective of the plot position when the command is executed.
MOVEABS(20,350)
Example 2
A pallet consists of a 6 by 8 grid in which gas canisters are inserted 85mm
apart by a packaging machine. The canisters are picked up from a fixed point.

B

EA

D

C

ax1 ax2 ax3 ax4, , ,
ay1 ay2 ay3 ay4, , , vp

L x1
2

x2
2

x3
2

x4
2

+ + += xi axi ayi–=

vi i

vi

xi vp⋅
L

-------------.=

121

Command, function and parameter description Section 5-3

The first position in the pallet is defined as position (0,0) using the DEFPOS
command. The part of the program to position the canisters in the pallet is as
follows:
xloop:
FOR x = 0 TO 5
yloop:

FOR y = 0 TO 7
MOVEABS(-340,-516.5) ’Move to pick up point
GOSUB pick ’Go to pick up subroutine
PRINT "MOVE TO POSITION: ";x*6+y+1
MOVEABS(x*85,y*85)
GOSUB place ’Go to place down subroutine

NEXT y
NEXT x

5-3-101 MOVECIRC
Type: Motion Control Command

Syntax: MOVECIRC(end_1,end_2,centre_1,centre_2,direction)

Alternative: MC(end_1,end_2,centre_1,centre_2,direction)

Description: MOVECIRC interpolates 2 orthogonal axes in a circular arc. The path of the
movement is determined by the 5 arguments, which are incremental from the
current position.
The arguments end_1 and centre_1 apply to the base axis and end_2 and
centre_2 apply to the following axis. All arguments are given in user units of
each axis. The speed of movement along the circular arc is set by the
SPEED, ACCEL and DECEL parameters of the base axis.
MOVECIRC works on the default basis axis group (set with BASE) unless
AXIS is used to specify a temporary base axis.

Precautions: The MOVECIRC computes the radius and the total angle of rotation from the
centre, and end-point. If the endpoint does not lie on the calculated path, the
move simply ends at the computed end and not the specified end point. It is
the responsibility of the programmer to ensure that the two points correspond
to correct points on a circle.
For MOVECIRC to be correctly executed, the two axes moving in the circular
arc must have the same number of encoder pulses per linear axis distance. If
they do not, it is possible to adjust the encoder scales in many cases by
adjusting with PP_STEP axis parameters for the axis.

Arguments: end_1
The end position for the base axis.
end_2
The end position for the next axis.
centre_1
The position around which the base axis is to move.
centre_2
The position around which the next axis is to move.

122

Command, function and parameter description Section 5-3

direction
A software switch that determines whether the arc is interpolated in a clock-
wise or counterclockwise direction. Value: 0 or 1

If the two axes involved in the movement form a right-hand axis, set direction
to 0 to produce positive motion about the third (possibly imaginary) orthogonal
axis.
If the two axes involved in the movement form a left-hand axis. set direction to
0 to produce negative motion about the third (possibly imaginary) orthogonal
axis.

See also: AXIS, MHELICAL, PP_STEP, UNITS

Example: The command sequence to plot the letter 0 might be as follows:
MOVE(0,6) ’Move A -> B
MOVECIRC(3,3,3,0,1) ’Move B -> C
MOVE(2,0) ’Move C -> D
MOVECIRC(3,-3,0,-3,1) ’Move D -> E
MOVE(O,-6) ’Move E -> F
MOVECIRC(-3,-3,-3,0,1) ’Move F -> G
MOVE(-2,0) ’Move G -> H
MOVECIRC(-3,3,0,3,1) ’Move H -> A

5-3-102 MOVELINK
Type: Motion Control Command

Syntax: MOVELINK(distance, link_distance, link_acceleration, link_deceleration,
link_axis[, link_option[, link_position]])

Alternative: ML(distance, link_distance, link_acceleration, link_deceleration, link_axis
[, link_option[, link_position]])

Description: MOVELINK creates a linear move on the base axis linked via a software gear-
box to the measured position of a link axis. The link axis can move in either
direction to drive the output motion.
The parameters indicate what distance the base axis will move for a certain
distance of the link axis (link_distance). The link axis distance is divided into
three phases which apply to the movement of the base axis. These parts are
the acceleration part, the constant speed part and the deceleration part. The
link acceleration and deceleration distances are specified by the

Direction Right-hand axis Left-hand axis

1 Negative Positive

0 Positive Negative

Direction=0 Direction=1

1

2

1

2

A

B

C D

E

F

GH

123

Command, function and parameter description Section 5-3

link_acceleration and link_deceleration parameters. The constant speed link
distance is derived from the total link distance and these two parameters.
The three phases can be divided into separate MOVELINK commands or can
be added up together into one. Consider the following two rules when setting
up the MOVELINK command.

Rule 1
In an acceleration and deceleration phase with matching speed, the
link_distance must be twice the distance.

Rule 2
In a constant speed phase with matching speeds, the two axes travel the
same distance so the distance to move must equal the link_distance.

MOVELINK works on the default basis axis group (set with BASE) unless
AXIS is used to specify a temporary base axis. The axis set for link_axis
drives the base axis.

Note If the sum of link_acceleration and link_deceleration is greater than
link_distance, they are both reduced in proportion in order to equal the sum to
link_distance.

Arguments: distance
The incremental distance in user units to move the base axis, as a result of
the measured link_distance movement on the link axis.
link_distance
The positive incremental distance in user units that is required to be mea-
sured on the link axis to result in the distance motion on the base axis.
link_acceleration
The positive incremental distance in user units on the link axis over which the
base axis will accelerate.
link_deceleration
The positive incremental distance in user units on the link axis over which the
base axis will decelerate.
link_axis
The axis to link to.

Speed

Time

link
speed

link
distance

distance

Acceleration

Speed

Time

link
speed

link
distance

distance

Deceleration

124

Command, function and parameter description Section 5-3

link_option

link_position
The absolute position where MOVELINK will start when link_option is set to 2

See also: AXIS, REP_OPTION, UNITS

Example: A flying shear cuts a roll of paper every 160 m while moving at the speed of
the paper. The shear is able to travel up to 1.2 m of which 1 m is used in this
example. The paper distance is measured by an encoder, the unit conversion
factor being set to give units of metres on both axes. Axis 3 is the link axis.
MOVELINK(0,150,0,0,3) ‘wait distance
MOVELINK(0.4,0.8,0.8,0,3) ‘accelerate
MOVELINK(0.6,1.0,0,0.8,3) ‘match speed then decelerate
WAIT UNTIL NTYPE=0 ‘wait till last move started
OP(8,ON) ‘activate cutter
MOVELINK(-1,8.2,0.5,0.5,3) ‘move back

In this program, the MC Unit waits for the roll to feed out 150m in the first line.
After this distance, the shear accelerates to match the speed of the paper,
coasts at the same speed, then decelerates to a stop within a 1m stroke. This
movement is specified using two separate MOVELINK commands. The pro-
gram then waits for the next move buffer to be clear NTYPE=0. This indicates
that the acceleration phase is complete. The distances on the link axis
(link_distance) in the MOVELINK commands are 150, 0.8, 1.0, and 8.2, which
add up to 160m.
To ensure that the speeds and positions of the cutter and paper match during
the cut task, the arguments of the MOVELINK command must be correct.
Therefore it is easiest to first consider the acceleration, constant speed and
deceleration phases separately. As mentioned before the acceleration and
deceleration phases require the link_distance to be twice the distance. Both
phases can therefore be specified as:
MOVELINK(0.4,0.8,0.8,0,1) ’This move is all accel

MOVELINK(0.4,0.8,0,0.8,1) ’This move is all decel

In a constant speed phase with matching speeds, the two axes travel the
same distance so the distance to move must equal the link distance. The con-
stant speed phase could, therefore, be specified as follows:
MOVELINK(0.2,0.2,0,0,1) ’This is all constant speed

The MOVELINK command allows the three sections to be added by summing
the distance, link_distance, link_acceleration and link_deceleration for each
phase, producing the following command.
MOVELINK(1,1.8,0.8,0.8,1)

In the program above, the acceleration phase is programmed separately. This
is done to be able to perform some action at the end of the acceleration
phase.
MOVELINK(0.4,0.8,0.8,0,1)

1 Link starts when registration event occurs on link axis.
2 Link starts at an absolute position on link axis (see link_position).
4 MOVELINK repeats automatically and bi-directionally. This option is

canceled by setting bit 1 of REP_OPTION parameter (i.e.
REP_OPTION = REP_OPTION OR 2).

5 Combination of options 1 and 4.
6 Combination of options 2 and 4.

125

Command, function and parameter description Section 5-3

MOVELINK(0.6,1.0,0,0.8,1)

5-3-103 MOVEMODIFY
Type: Motion Control Command

Syntax: MOVEMODIFY(position)

Alternative: MM(position)

Description: MOVEMODIFY changes the absolute end position of the current single-axis
linear move (MOVE or MOVEABS). If there is no current move or the current
move is not a linear move, then MOVEMODIFY is treated as a MOVEABS
command. The ENDMOVE parameter will contain the position of the end of
the current move in user units.
MOVEMODIFY works on the default basis axis (set with BASE) unless AXIS
is used to specify a temporary base axis.

Arguments: position
The absolute position to be set as the new end of move.

See also: AXIS, MOVE, MOVEABS, UNITS

5-3-104 MPOS
Type: Axis Parameter

Description: MPOS is the measured position of the axis in user units as derived from the
encoder. This parameter can be set using the DEFPOS command. The OFF-
POS axis parameter can also be used to shift the origin point. MPOS is reset
to zero at start-up.
The range of the measured position is controlled with the REP_DIST and
REP_OPTION axis parameters.

Note This parameter is read-only.

See also: AXIS, DEFPOS, DPOS, ENCODER, FE, OFFPOS, REP_DIST,
REP_OPTION, UNITS

Example: WAIT UNTIL MPOS >= 1250
SPEED = 2.5

5-3-105 MSPEED
Type: Axis Parameter

Description: MSPEED represents the change in the measured position in 10-3 user units/s
in the last servo period. The servo period defaults to 1 ms. Therefore, the
MSPEED parameter can be used to represent the speed measured in units/s.
MSPEED represents a snapshot of the speed and significant fluctuations,
which can occur, particularly at low speeds. It can be worthwhile to average
several readings if a stable value is required at low speeds.

See also: AXIS, VP_SPEED, UNITS

5-3-106 MTYPE
Type: Axis Parameter

Description: MTYPE contains the type of move currently being executed. The possible val-
ues are given below.
Move No. Move Type
0 IDLE (no move)
1 MOVE
2 MOVEABS

126

Command, function and parameter description Section 5-3

3 MHELICAL
4 MOVECIRC
5 MOVEMODIFY
10 FORWARD
11 REVERSE
12 DATUM
13 CAM
14 JOG_FORWARD
15 JOG_REVERSE
20 CAMBOX
21 CONNECT
22 MOVELINK
MTYPE can be used to determine whether a move has finished or if a transi-
tion from one move type to another has taken place.
A non-idle move type does not necessarily mean that the axis is actually mov-
ing. It can be at zero speed part way along a move or interpolating with
another axis without moving itself.

Note This parameter is read-only.

See also: AXIS, NTYPE

5-3-107 NEW
Type: Program Command

Syntax: NEW [“program_name”]

Description: NEW deletes all program lines of the program from memory. NEW without a
program name can be used to delete the currently selected program (using
SELECT). The program name can also be specified without quotes. NEW
ALL will delete all programs.
NEW can also be used to delete the Table as follows:

NEW “TABLE”
The name “TABLE” must be in quotes.

Precautions: This command is implemented for an offline (VT100) terminal. Within Motion
Perfect users can select the command from the Program menu.

See also: COPY, DEL, RENAME, SELECT, TABLE

5-3-108 NIO
Type: System Parameter

Description: NIO contains the total number of inputs and outputs of the system.

5-3-109 NOT
Type: Logical Operator

Syntax: NOT expression

Description: NOT performs a NOT operation on all bits of the integer part of the expres-
sion.
The NOT operation is defined as follows:

Arguments: expression
Any valid BASIC expression.

Bit Result

0 1

1 0

127

Command, function and parameter description Section 5-3

Example: >> PRINT 7 AND NOT 1
6.0000

5-3-110 NTYPE
Type: Axis Parameter

Description: NTYPE contains the type of the move in the next move buffer. Once the cur-
rent move has finished, the move present in the NTYPE buffer will be exe-
cuted. The values are the same as those for the MTYPE axis parameter.
NTYPE is cleared by the CANCEL(1) command.

Note This parameter is read-only.

See also: AXIS, MTYPE

5-3-111 OFF
Type: Constant

Description: OFF returns the numerical value 0.

Note A constant is read-only.

Example: OP (lever,OFF)
The above line sets the output named lever to OFF.

5-3-112 OFFPOS
Type: Axis Parameter

Description: OFFPOS contains an offset that will be applied to the demand position
(DPOS) without affecting the move in any other way. The measured position
will be changed accordingly in order to keep the following error. OFFPOS
effectively adjusts the zero position of the axis. The value set in OFFPOS will
be reset to zero by the system as the offset is loaded.

Precautions: The offset is applied on the next servo period. Other commands may be exe-
cuted prior to the next servo period. Be sure that these commands do not
assume the position shift has occurred. This can be done by using the WAIT
UNTIL statement (see example).

See also: AXIS, DEFPOS, DPOS, MPOSUNITS

Example: The following lines define the current demand position as zero.
OFFPOS = -DPOS
WAIT UNTIL OFFPOS = 0 ’Wait until applied
This example is equivalent to DEFPOS(0).

5-3-113 ON
Type: Constant

Description: ON returns the numerical value 1.

Note A constant is read-only.

Example: OP (lever,ON)
The above line sets the output named lever to ON.

5-3-114 ON
Type: Structural Command

Syntax: ON expression GOSUB label{, label}
ON expression GOTO label{, label}

128

Command, function and parameter description Section 5-3

Description: ON enables a conditional jump. The integer expression is used to select a
label from the list. If the expression has value 1 the first label is used, for
value 2 then the second label is used, and so on. Depending on the GOSUB
or GOTO command the subroutine or normal jump is performed.

Precautions: If the expression is not valid, no jump is performed.

Arguments: expression
Any valid BASIC expression.
label
Any valid label in the program.

See also: GOSUB, GOTO

Example: REPEAT
GET#5,char

UNTIL 1<=char and char<=3
ON char GOSUB mover, stopper, change

5-3-115 OP
Type: I/O Function/Command

Syntax: OP(output_number, value)
OP(binary_pattern)
OP

Description: OP sets one or more outputs or returns the state of the first 24 outputs. OP
has three different forms depending on the number of arguments.

• Command OP(output_number,value) sets a single output channel. The
range of output_number is between 8 and 31 and value is the value to be
output, either 0 or 1.

• Command OP(binary_pattern) sets the binary pattern to the 24 outputs
according to the value set by binary_pattern.

• Function OP (without arguments) returns the status of the first 24 outputs.
This allows multiple outputs to be set without corrupting others which are
not to be changed.

Use the DISPLAY parameter to show the appropriate bank of 8 outputs or
inputs on the uncommitted LEDs on the MC Unit. Refer to 4-3 Motion Control
Application for a description of the various types of output and inputs.

Precautions: The first 8 outputs (0 to 7) do not physically exist on the MC Unit. They can
not be written to and will always return 0.

Arguments: output_number
The number of the output to be set.
value
The value to be output, either OFF or ON. All non-zero values are considered
as ON.
binary_pattern
The integer equivalent of the binary pattern is to be output.

See also: DISPLAY, IN

Examples: Example 1
The following two lines are equivalent.
OP(12,1)
OP(12,ON)
Example 2
This following line sets the bit pattern 10010 on the first 5 physical outputs,
outputs 13 to 31 would be cleared. The bit pattern is shifted 8 bits by multiply-
ing by 256 to set the first available outputs as outputs 0 to 7 do not exist.

129

Command, function and parameter description Section 5-3

OP(18*256)
Example 3
This routine sets outputs 8 to 15 ON and all others OFF.
VR(0) = OP
VR(0) = VR(0) AND 65280
OP(VR(0))
The above programming can also be written as follows:
OP(OP AND 65280)
Example 4
This routine sets value val to outputs 8 to 11 without affecting the other out-
puts by using masking.

val = 8 ‘The value to set
mask = OP AND NOT(15*256) ‘Get current status and mask
OP(mask OR val*256) ‘Set val to OP(8) to OP(11)

5-3-116 OPEN_WIN
Type: Axis Parameter

Alternative: OW

Description: OPEN_WIN defines the beginning of the window inside or outside which a
registration event is expected. The value is in user units.

See also: CLOSE_WIN, REGIST, UNITS

5-3-117 OR
Type: Logical Operator

Syntax: expression_1 OR expression_2

Description: OR performs an OR operation between corresponding bits of the integer parts
of two valid BASIC expressions.
The OR operation between two bits is defined as follows:

Arguments: expression_1
Any valid BASIC expression.
expression_2
Any valid BASIC expression.

Examples: Example 1
result = 10 OR (2.1*9)
The parentheses are evaluated first, but only the integer part of the result, 18,
is used for the operation. Therefore, this expression is equivalent to the fol-
lowing:
result = 10 OR 18

The OR is a bit operator and so the binary action taking place is:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

val

Bit 1 Bit 2 Result

0 0 0

0 1 1

1 0 1

1 1 1

01010

OR 10010

11010

130

Command, function and parameter description Section 5-3

Therefore, result will contain the value 26.
Example 2
IF KEY OR VR(0) = 2 THEN GOTO label

5-3-118 OUTLIMIT
Type: Axis Parameter

Description: OUTLIMIT contains an output limit that restricts the voltage output from the
MC Unit for both servo loop (SERVO=ON) and open loop (SERVO=OFF).
The default is the maximum voltage output generated by a 12-bit DAC, which
is value 2047. Therefore, the output values are normally limited to -2048 to
2047 (–10 V to 10 V). Although the OUTLIMIT can be given values higher
than 2047, the output voltage can never be outside the -10 V to 10 V range.

See also: AXIS, SERVO, DAC_OUT

Example: OUTLIMIT AXIS(0) = 1023
The above line will limit the voltage output to a 5 V limit output (-5 V to 5 V).

5-3-119 OV_GAIN
Type: Axis Parameter

Description: OV_GAIN contains the output velocity gain. The output velocity output contri-
bution is calculated by multiplying the change in measured position with
OV_GAIN. The default value is 0.
Adding output velocity gain to a system is mechanically equivalent to adding
damping. It is likely to produce a smoother response and allow the use of a
higher proportional gain than could otherwise be used, but at the expense of
higher following errors. High values may cause oscillation and produce high
following errors.
See section 1-4-2 Servo System Principles for more details.

Precautions: In order to avoid any instability the servo gains should be changed only when
the SERVO is OFF.

See also: AXIS, D_GAIN, I_GAIN, P_GAIN, VFF_GAIN

5-3-120 P_GAIN
Type: Axis Parameter

Description: P_GAIN contains the proportional gain. The proportional output contribution is
calculated by multiplying the following error with P_GAIN. The default value is
1.0.
The proportional gain sets the ’stiffness’ of the servo response. Values that
are too high will cause oscillation. Values that are too low will cause large fol-
lowing errors.
See section 1-4-2 Servo System Principles for more details.

Precautions: In order to avoid any instability the servo gains should be changed only when
the SERVO is OFF.

See also: AXIS, D_GAIN, I_GAIN, OV_GAIN, VFF_GAIN

5-3-121 PI
Type: Constant

Description: PI returns the numerical value 3.1416.

Note A constant is read-only.

Example: circum = 100
PRINT "Radius = ";circum/(2*PI)

131

Command, function and parameter description Section 5-3

5-3-122 PLC_READ
Type: Command

Syntax: PLC_READ(PC_area,offset,length,vr_number)

Description: The PLC_READ command is used to read data from the PC using one of the
PC Data Exchange methods and write it to the VR variables. The PLC_READ
enables the user to access PC data either by reading directly from the PC
memory or by reading the two PC output words in IR/CIO area. Refer to 3-2
Overview of Data Exchanges for more details on PC Data Exchange.

Direct data transfer
PLC_READ requests a data transfer from the CPU Unit to the MC Unit at the
end of the next CPU Unit I/O refresh. The transfer of data takes place trans-
parently to the PC program. The PC area to read from is specified by the
PC_area argument. The input is given by PLC_xx, where xx is the specified
memory area. The maximum amount of data to be transferred is 127 words.
Data words in IR/CIO area
The two word output data within the PC area is updated every I/O refresh to
the allocated words in the MC Unit. These allocated words can be copied to
VR variables by specifying the PC_area argument as PLC_REFRESH.

The other arguments specify the amount of data to be read and the source
and destination addresses. The program execution will pause until the data is
transferred.

Arguments: PC_area
The memory area in the CPU Unit from which the data is to be transferred.
The valid areas are as follows:

offset
The address offset into the specified memory area in the CPU Unit.
length
The number of words of data to be transferred starting from, and including,
the specified address offset in the CPU Unit.
vr_number
The first VR variable into which word data is to be stored. Consecutive VR
variables will be used for any subsequent words that are transferred.
Care must be taken when specifying vr_number to ensure that the specified
VR variables are not outside the VR variable range. A parameter out-of-range
error will occur if this restriction is not met.

PC_area Data area Address range

PLC_DM (0) DM area 0 to 1999 - C200H
0 to 6143 - C200HS/HE/HG/HX, CS1

PLC_IR (1) IR(SR) area 0 to 255 - C200H
0 to 299 - C200HS
0 to 511 - C200HE/HG/HX, CS1

PLC_LR (2) LR area 0 to 63 - C200H/HS/HE/HG/HX, CS1

PLC_HR (3) HR area 0 to 99 - C200H/HS/HE/HG/HX, CS1

PLC_AR (4) AR area 0 to 27 - C200H/HS/HE/HG/HX, CS1

PLC_TC (5) TC area 0 to 511 - C200H/HS/HE/HG/HX, CS1

PLC_EM (6) EM area 0 to 6143 - C200HE/HG/HX, CS1

PLC_REFRESH (7) - -

132

Command, function and parameter description Section 5-3

Examples: Example 1
To read the contents of DM 500 to DM 599 from the CPU Unit into the
VR(100) to VR(199) on the MC Unit, the following command must be exe-
cuted.
PLC_READ(PLC_DM,500,100,100)
Example 2
The following command is used to read the word data from the CPU Unit’s IR
area from the allocated words in the MC Unit to VR(10) and VR(11).
PLC_READ(PLC_REFRESH,0,2,10)

5-3-123 PLC_TYPE
Type: System Parameter

Description: PLC_TYPE gives the PC CPU Unit model that the MC402 is connected to on
the Backplane. The possible values are as follows:

Note This parameter is read-only.

Example: Assuming the connected CPU Unit model is a C200HG, the following line will
return give this result.
>> PRINT PLC_TYPE[0]
5

5-3-124 PLC_WRITE
Type: Command

Syntax: PLC_WRITE(PC_area,offset,length,vr_number)

Description: The PLC_WRITE command is used to and read data from the VR variables
and write the data to the PC using one of the PC Data Exchange methods.
The PLC_WRITE enables the user to access PC data either by writing directly
to the PC memory or by writing to the two PC input words in IR/CIO area.
Refer to 3-2 Overview of Data Exchanges for more details on PC Data
Exchange.

Direct data transfer
PLC_WRITE requests a data transfer from the MC Unit to the CPU Unit at the
end of the next CPU Unit I/O refresh. The transfer of data takes place trans-
parently to the PC program. The PC area to write to is specified by the
PC_area argument. The input is given by PLC_xx, where xx is the specified
memory area. The maximum amount of data to be transferred is 127 words.
Data words in IR/CIO area
The two word input data within allocated words in the MC Unit are updated
every I/O refresh to the IR/CIO area of the CPU Unit. These allocated words
can be written from the VR variables by specifying the PC_area argument as
PLC_REFRESH.

0 Unknown PC

1 C200H

2 C200HS

3 C200HE (CPU11)

4 C200HE (not CPU11)

5 C200HG

6 C200HX (up to CPU85-Z)

7 C200HX (CPU85-Z and up)
CS1

133

Command, function and parameter description Section 5-3

The other arguments specify the amount of data to be written and the source
and destination addresses. The program execution will pause until the data is
transferred.

Arguments: PC_Area
The memory area in the CPU Unit from which the data is to be transferred.
The valid areas are as follows:

offset
The address offset into the specified memory area in the CPU Unit.
length
The number of words of data to be transferred starting from, and including,
the specified address offset in the CPU Unit.
vr_number
The first VR variable from which word data is to be read. Consecutive VR vari-
ables will be used for any subsequent words that are transferred.
Care must be taken when specifying vr_number to ensure that the specified
VR variables are not outside the VR variable range. A parameter out-of-range
error will occur if this restriction is not met.

Example: To write the contents of variables VR(100) to VR(199) on the MC Unit to DM
500 to DM 599 in the CPU Unit, the following command must be executed.
PLC_WRITE(PLC_DM,500,100,100)

5-3-125 PMOVE
Type: Task Parameter

Description: PMOVE will contain TRUE if the task buffers are occupied, and FALSE if they
are empty.
When the task executes a movement command, the task loads the movement
information into the task move buffers. The buffers can hold one movement
instruction for any group of axes. PMOVE will be set to TRUE when loading of
the buffers has been completed. When the next servo interrupt occurs, the
motion generator will load the movement into the next move (NTYPE) buffers
of the required axes if they are available. When this second transfer has been
completed, PMOVE will be cleared to zero until another move is executed in
the task.
Each task has its own PMOVE parameter. Use the PROC modifier to access
the parameter for a certain task. Without PROC the current task will be
assumed.

Note This parameter is read-only.

See also: NTYPE, PROC

PC_area Data area Address range

PLC_DM (0) DM area 0 to 1999 - C200H
0 to 6143 - C200HS/HE/HG/HX, CS1

PLC_IR (1) IR(SR) area 0 to 255 - C200H
0 to 299 - C200HS
0 to 511 - C200HE/HG/HX, CS1

PLC_LR (2) LR area 0 to 63 - C200H/HS/HE/HG/HX, CS1

PLC_HR (3) HR area 0 to 99 - C200H/HS/HE/HG/HX, CS1

PLC_AR (4) AR area 0 to 27 - C200H/HS/HE/HG/HX, CS1

PLC_TC (5) TC area 0 to 511 - C200H/HS/HE/HG/HX, CS1

PLC_EM (6) EM area 0 to 6143 - C200HE/HG/HX, CS1

PLC_REFRESH (7) - -

134

Command, function and parameter description Section 5-3

5-3-126 POWER_UP
Type: System Parameter

Description: POWER_UP contains the location of programs to be used at start-up, either
in RAM or in flash EPROM. The POWER_UP parameter is stored in flash
EPROM.
The following values are valid:

Precautions: • Programs are individually set to be run at start-up with the RUNTYPE
command.

• POWER_UP cannot be included in BASIC programs.

See also: EPROM, RUNTYPE

5-3-127 PP_STEP
Type: Axis Parameter

Description: PP_STEP contains an integer value that scales the incoming raw encoder
count. The incoming raw encoder count will be multiplied by PP_STEP before
being applied. Scaling can be used to match encoders to high-resolution
motors for position verification or for moving along circular arcs on machines
where the number of encoder edges/distance is not the same on the axes.
The valid range is [-1023, -1] and [1, 1023]. Default is value 1.

See also: AXIS, MHELICAL, MOVECIRC, UNITS

Examples: Example 1
A motor has 20,000 steps/rev. The MC Unit will thus internally process 40,000
counts/rev. A 2,500-pulse encoder is to be connected. This will generate
10,000 edge counts/rev. A multiplication factor of 4 is therefore required to
convert the 10,000 counts/rev to match the 40,000 counts/rev of the motor.
The following line would be used for axis 3.
PP_STEP AXIS(3) = 4
Example 2
An X-Y machine has encoders which input 50 edges/mm in the X axis (axis 0)
and 75 edges/mm in the Y axis (axis 1). Circular arc interpolation is required
between the axes. This requires that the interpolating axes have the same
number of encoder counts/distance. It is not possible to multiply the X axis
counts by 1.5, because PP_STEP must be an integer. Both X and Y axes
must, therefore, be set to give 150 edges/mm. The settings would be as fol-
lows:
PP_STEP AXIS(0) = 3
PP_STEP AXIS(1) = 2
UNITS AXIS(0) = 150
UNITS AXIS(1) = 150

5-3-128 PRINT
Type: I/O Command

Syntax: PRINT[#n,] expression{, expression}
?[#n,] expression{, expression}

Description: PRINT outputs a series of characters to the serial ports. PRINT can output
parameters, fixed ASCII strings, and single ASCII characters. By using
PRINT#n, any port can be selected to output the information to. The default
port is the RS-232C programming port A.

0 Use programs in RAM

1 Copy programs from flash EPROM into RAM before using program in
RAM

135

Command, function and parameter description Section 5-3

Multiple items to be printed can be put on the same line separated by a
comma “,” or a semi-colon “;”. A comma separator in the print command
places a tab between the printed items. The semi-colon separator prints the
next item without any spaces between printed items.
The width of the field in which a number is printed can be set with the use of
[w,x] after the number to be printed. The width of the column is given by w and
the number of decimal places is given by x. Using only one parameter [x]
takes the default width and specifies the number of decimal places to be
printed. The numbers are right aligned in the field with any unused leading
characters being filled with spaces. If the number is too long, then the field will
be filled with asterisks to signify that there was not sufficient space to display
the number. The maximum field width allowable is 127 characters.
CHR(x)
The CHR(x) command is used to send individual ASCII characters using their
ASCII codes. The semi-colon on the end of the print line suppresses the car-
riage return normally sent at the end of a print line. ASCII(13) generates CR
without a linefeed so the line above would be printed on top of itself if it were
the only print statement in a program. PRINT CHR(x); is equivalent to PUT(x)
in some forms of BASIC.

Arguments: n
The specified output device. If omitted, the RS-232C programming port will be
used.

expression
The expression to be printed.

Examples: Example 1
PRINT "CAPITALS and lower case CAN BE PRINTED"
Example 2
Consider VR(1) = 6 and variab = 1.5, the print output will be as follows:
PRINT 123.45,VR(1)-variab
123.4500 4.5000
Example 3
In this example, the semi-colon separator is used. This does not tab into the
next column, allowing the programmer more freedom in where the print items
are placed.
length:

PRINT "DISTANCE = ";mpos
DISTANCE = 123.0000

Example 4
PRINT VR(1)[4,1];variab[6,2]
6.0 1.50
Example 5
params:

PRINT "DISTANCE = ";mpos[0];" SPEED = ";v[2];
DISTANCE = 123 SPEED = 12.34

Example 6
PRINT "ITEM ";total" OF ";limit;CHR(13);

0 RS-232C programming port A (default)

1 RS-232C serial port B

5 Motion Perfect port A user channel 5

6 Motion Perfect port A user channel 6

7 Motion Perfect port A user channel 7

136

Command, function and parameter description Section 5-3

5-3-129 PROC
Type: Task Command

Syntax: PROC(task_number)

Description: The PROC modifier allows a process parameter from a particular process to
be read or written. If omitted, the current task will be assumed.

Argument: task_number
The number of the task to access.

Example: WAIT UNTIL PMOVE PROC(3)=0

5-3-130 PROCESS
Type: Program Function

Syntax: PROCESS

Description: PROCESS returns the running status and task number for each current task.

See also: HALT, RUN, STOP

5-3-131 PROCNUMBER
Type: Task Parameter

Description: The PROCNUMBER parameter contains the number of the task in which the
currently selected program is running. PROCNUMBER is often required when
multiple copies of a program are running on different tasks.

Note This parameter is read-only.

Example: MOVE(length) AXIS(PROCNUMBER)

5-3-132 PSWITCH
Type: I/O Command

Syntax: PSWITCH(switch, enable[, axis, output_number, output_state, set_position,
reset_position])

Description: PSWITCH turns ON an output when a predefined position is reached, and
turns OFF the output when a second position is reached. The positions are
specified as the measured absolute positions.
There are 16 position switches each of which can be assigned to any axis.
Each switch is assigned its own ON and OFF positions and output number.
The command can be used with 2 or all 7 arguments. With only 2 arguments a
given switch can be disabled.
PSWITCHs are calculated on each servo cycle and the output result applied
to the hardware. The response time is therefore 1 servo cycle (1 ms) approxi-
mately.

Precautions: An output may remain ON if it was ON when the PSWITCH was turned OFF.
The OP command can be used to turn OFF an output as follows:
PSWITCH(2,OFF)
OP(14,OFF) ’Turn OFF pswitch controlling OP 14

Arguments: switch
The switch number. Range: [0,15].
enable
The switch enable. Range: [ON, OFF].
axis
The number of the axis providing the position input.
output_number
The physical output to set. Range: [8,15] and [20,31].

137

Command, function and parameter description Section 5-3

output_state
The state to output. Range: [ON, OFF].
set_position
The absolute position in user units at which output is set.
reset_position
The absolute position in user units at which output is reset.

See also: OP, UNITS

Example: A rotating shaft has a cam operated switch which has to be changed for differ-
ent size work pieces. There is also a proximity switch on the shaft to indicate
the TDC of the machine. With a mechanical cam, the change from job to job is
time consuming. This can be eased by using PSWITCH as a software cam
switch. The proximity switch is wired to input 7 and the output is output 11.
The shaft is controlled by axis 0 of a 3-axis system. The motor has a 900ppr
encoder. The output must be on from 80 units.
PSWITCH uses the unit conversion factor to allow the positions to be set in
convenient units. First the unit conversion factor must be calculated and set.
Each pulse on an encoder gives four edges for the MC Unit to count. There
are thus 3,600 edges/rev or 10 edges/degree. If we set the unit conversion
factor to 10, we can work in degrees.
Next we have to determine a value for all the PSWITCH arguments.

This can all be put together in the following lines of BASIC code:
switch:

UNITS AXIS(0) = 10 ’Set unit conversion factor
REPDIST = 360
REP_OPTION = ON
PSWITCH(0,ON,0,11,ON,80,200)

This program uses the repeat distance set to 360 degrees and the repeat
option ON so that the axis position will be maintained between 0 and 360
degrees.

5-3-133 RAPIDSTOP
Type: Motion Control Command

Syntax: RAPIDSTOP

Alternative: RS

Description: RAPIDSTOP cancels the current move on all axes from the current move
buffer (MTYPE). Moves for speed profiled move commands (MOVE, MOVE-
ABS, MOVEMODIFY, FORWARD, REVERSE, MOVECIRC, and MHELICAL)
will decelerate to a stop. Moves for other commands will be immediately
stopped.

Precautions: • RAPIDSTOP cancels only the presently executing moves. If further
moves are buffered in the next move buffers (NTYPE) or the task buffers
they will then be loaded.

sw The switch number can be any switch that is not in use. In
this example, we will use number 0.

en The switch must be enabled to work; set the enable to 1.

axis The shaft is controlled by axis 0.

opno The output being controlled is output 11.

opst The output must be on so set to 1.

setpos The output is to produced at 80 units.

rspos The output is to be on for a period of 120 units.

138

Command, function and parameter description Section 5-3

• During the deceleration of the current moves additional RAPIDSTOPs will
be ignored.

See also: CANCEL, MTYPE, NTYPE

5-3-134 READ_BIT
Type: System Command

Syntax: READ_BIT(bit_number, vr_number)

Description: The READ_BIT command returns the value of the specified bit in the speci-
fied VR variable, either 0 or 1.

Arguments: bit_number
The number of the bit to be read. Range: [0,23].
vr_number
The number of the VR variable for which the bit is read. Range: [0,250].

See also: CLEAR_BIT, SET_BIT, VR

5-3-135 REG_POS
Type: Axis Parameter

Alternative: RPOS

Description: REG_POS stores the position in user units at which a registration event
occurred.

Note This parameter is read-only.

See also: AXIS, MARK, REGIST, UNITS

5-3-136 REGIST
Type: Axis Command

Syntax: REGIST(mode)

Description: REGIST captures an axis position when a registration input or the Z marker
on the encoder is detected.
The capture is carried out by hardware, so software delays do not affect the
accuracy of the position captured. If the registration input or Z marker is
detected as specified within the specified window, the MARK axis parameter
will be set to TRUE and the position will stored in the REG_POS axis parame-
ter.
The inputs R0 to R3 correspond to registration inputs for servo axes 0 to 3.
These registration inputs are fixed, but other functions like datum switch input
and limit switch inputs can also be allocated to inputs R0 to R3. Refer to 1-5
Specifications for the time delay on the inputs.
REGIST works on the default basis axis (set with BASE) unless AXIS is used
to specify a temporary base axis.

Inclusive windowing
Add 256 to the mode argument value to apply inclusive windowing. When
inclusive windowing is applied, signals will be ignored if the axis measured
position is not greater than the OPEN_WIN parameter and less than the
CLOSE_WIN parameter.
Exclusive windowing
Add 768 to the mode argument value to apply exclusive windowing. When
exclusive windowing is applied, signals will be ignored if the axis measured
position is not less than the OPEN_WIN parameter or greater than the
CLOSE_WIN parameter.

139

Command, function and parameter description Section 5-3

Precautions: REGIST must be executed once for each position capture.

Arguments: mode
Specifies the type of capture to make.

See also: AXIS, CLOSE_WIN, MARK, OPEN_WIN, REG_POS

Examples: Example 1
catch:

REGIST(3)
WAIT UNTIL MARK
PRINT "Registration input at:";REG_POS

Example 2
A paper cutting machine uses a CAM profile to quickly draw paper through
servo-driven rollers and then stop it while it is cut. The paper is printed with a
registration mark. This mark is detected and the length of the next sheet is
adjusted by scaling the CAM profile with the third argument (table_multiplier)
of the CAM command:

‘Set window open and close
length = 200
OPEN_WIN = 10
CLOSE_WIN = length-10

GOSUB Initial

loop:
TICKS = 0 ’Set servo cycle counter to 0
IF MARK THEN

offset = REG_POS
 ’Next line makes offset -ve if at end of sheet

IF ABS(offset-length) < offset THEN
offset=offset - length

ENDIF
PRINT "Mark seen at:"offset[5.1]

ELSE
offset = 0
PRINT "Mark not seen"

ENDIF

‘Reset registration prior to each move
DEFPOS(0)
REGIST(3+768)

’Allow mark at first 10 mm or last 10 mm of sheet
CAM(0,50,(length+offset*0.5)*cf,1000)
WAIT UNTIL TICKS > 500
GOTO loop

The variable cf is a constant which would be calculated depending on the
machine draw length per encoder edge.

5-3-137 REMAIN
Type: Axis Parameter

1 Capture absolute position on rising edge of Z marker

2 Capture absolute position on falling edge of Z marker

3 Capture absolute position on rising edge of registration input

4 Capture absolute position on falling edge of registration input

140

Command, function and parameter description Section 5-3

Description: The REMAIN axis parameter is the distance remaining to the end of the cur-
rent move. It can be tested to see how much of the move has been com-
pleted. REMAIN is defined in user units.

Note This parameter is read-only.

See also: AXIS, UNITS

Example: To change the speed to a slower value 5mm from the end of a move.
start:

SPEED = 10
MOVE(45)
WAIT UNTIL REMAIN < 5
SPEED = 1
WAIT IDLE

5-3-138 RENAME
Type: Program Command

Syntax: RENAME “old_program_name” “new_program_name”

Description: RENAME changes the name of a program in the MC Unit directory. The pro-
gram names can also be specified without quotes.

Precautions: This command is implemented for an offline (VT100) terminal. Within Motion
Perfect users can select the command from the Program menu.

Arguments: old_program_name
Current name of the program.
new_program_name
New name of the program.

See also: COPY, DEL, NEW

Example: RENAME "car" "voiture"

5-3-139 REP_DIST
Type: Axis Parameter

Description: REP_DIST contains the repeat distance, which is the allowable range of
movement for an axis before the demand position (DPOS) and measured
position (MPOS) are corrected. REP_DIST is defined in user units. The exact
range is controlled by REP_OPTION. The REP_DIST can have any non-zero
positive value.
When the measured position has reached its limit, the MC unit will adjust the
absolute positions without affecting the move in progress or the servo algo-
rithm. Not that the demand position can be outside the range because the
measured position is used to trigger the adjustment.
For every occurrence (DEFPOS, OFFPOS, MOVEABS, MOVEMODIFY)
which defines a position outside the range, the end position will be redefined
within the range.

See also: AXIS, DPOS, MPOS, REP_OPTION, UNITS

5-3-140 REP_OPTION
Type: Axis Parameter

141

Command, function and parameter description Section 5-3

Description: REP_OPTION controls the application of the REP_DIST axis parameter and
the repeat option of the CAMBOX and MOVELINK motion control commands.

See also: AXIS, CAMBOX, MOVELINK, REP_DIST

5-3-141 REPEAT UNTIL
Type: Structural Command

Syntax: REPEAT

<commands>
UNTIL condition

Description: The REPEAT ... UNTIL loop allows the program segment between the
REPEAT and the UNTIL statement to be repeated a number of times until the
condition becomes TRUE.

Precautions: REPEAT ... UNTIL construct can be nested indefinitely.

Arguments: commands
Any valid set of BASIC commands
condition
Any valid BASIC logical expression

See also: FOR, WHILE

Example: A conveyor is to index 100mm at a speed of 1000mm/s, wait for 0.5s and then
repeat the cycle until an external counter signals to stop by turning ON
input 4.
cycle:

SPEED = 1000
REPEAT

MOVE(100)
WAIT IDLE
WA(500)

UNTIL IN(4) = ON

5-3-142 RESET
Type: System Command

Syntax: RESET

Description: The RESET command sets the value of all local variables of the current
BASIC task to zero.

See also: CLEAR

Bit Description

0 The repeated distance range is controlled by bit 0 of the
REP_OPTION parameter.

• If REP_OPTION bit 0 is OFF, the range of the demanded and
measured positions will be between -REP_DIST and
REP_DIST.

• If REP_OPTION bit 0 is ON, the range of the demanded and
measured positions will be between 0 and REP_DIST.

1 The automatic repeat option of the CAMBOX and MOVELINK com-
mands are controlled by bit 1 of the REP_OPTION parameter. The
bit is set ON to request the system software to end the automatic
repeat option. When the system software has set the option OFF it
automatically clears bit 1 of REP_OPTION.

142

Command, function and parameter description Section 5-3

5-3-143 REV_IN
Type: Axis Parameter

Description: REV_IN contains the input number to be used as a reverse limit input. The
number can be from 0 to 15 and from 20 to 31. If REV_IN is set to –1, then no
input is used as a reverse limit.
If an input number is set and the limit is reached, any reverse motion on that
axis will be stopped. Bit 5 of the AXISSTATUS axis parameter will also be set.

Note This input is active low.

See also: AXIS, AXISSTATUS, FWD_IN

5-3-144 REV_JOG
Type: Axis Parameter

Description: REV_JOG contains the input number to be used as a jog reverse input. The
input can be from 0 to 15 and from 20 to 31. If REV_JOG is set to –1 (default),
then no input is used as a reverse jog input.

Note This input is active low.

See also: AXIS, FAST_JOG, FWD_JOG, JOGSPEED

5-3-145 REVERSE
Type: Motion Control Command

Syntax: REVERSE

Alternative: RE

Description: REVERSE moves an axis continuously in reverse at the speed set in the
SPEED parameter.
REVERSE works on the default basis axis (set with BASE) unless AXIS is
used to specify a temporary base axis.

Precautions: The reverse motion can be stopped by executing the CANCEL or RAPID-
STOP command, or by reaching the reverse limit, inhibit, or origin return limit.

See also: AXIS, CANCEL, FORWARD, RAPIDSTOP

Example: back:
REVERSE
WAIT UNTIL IN(0) = ON ’Wait for stop signal
CANCEL

5-3-146 RS_LIMIT
Type: Axis Parameter

Alternative: RSLIMIT

Description: RS_LIMIT contains the absolute position of the reverse software limit in user
units.
A software limit for reverse travel can be set from the program to control the
working envelope of the machine. When the limit is reached, the MC Unit will
decelerate to zero, and then cancel the move. Bit 10 of the AXISSTATUS axis
parameter will be turned ON when the axis position is smaller than / below
RS_LIMIT.

See also: AXIS, FS_LIMIT, UNITS

5-3-147 RUN
Type: Program Command

143

Command, function and parameter description Section 5-3

Syntax: RUN [“program_name”[, task_number]]

Description: RUN executes the program in the MC Unit as specified with program_name.
RUN with the program name specification will run the current selected pro-
gram. The program name can also be specified without quotes.
The task number specifies the task number on which the program will be run.
If the task number is omitted, the program will run on the highest available
task. RUN can be included in a program to run another program.

Precautions: Execution continues until one of the following occurs:
• There are no more lines to execute.
• HALT is typed at the command line to stop all programs.
• STOP is typed at the command line to stop a single program.
• A run-time error is encountered.

Arguments: program_name
Any valid program name.
task_number
Any valid task number. Range: [1,5].

See also: HALT, STOP

Examples: Example 1
The following example executes the currently selected program.
>> SELECT "PROGRAM"
PROGRAM selected
>> RUN
Example 2
The following example executes the program named “sausage”.
RUN "sausage"
Example 3
The following example executes the program named “sausage” on task 3.
RUN "sausage",3

5-3-148 RUN_ERROR
Type: Task Parameter

Description: RUN_ERROR contains the number of the last BASIC run-time error that
occurred on the specified task.
Each task has its own RUN_ERROR parameter. Use the PROC modifier to
access the parameter for a certain task. Without PROC the current task will
be assumed.

Note This parameter is read-only.

See also: BASICERROR, ERROR_LINE, PROC

Example: >> PRINT RUN_ERROR PROC(5)
9.0000

5-3-149 RUNTYPE
Type: Program Command

Syntax: RUNTYPE “program_name”, auto_run[, task_number]

Description: RUNTYPE determines whether the program, specified by program_name, is
run automatically at start-up or not and which task it is to run on. The task
number is optional, if omitted the program will run at the highest available
task.

144

Command, function and parameter description Section 5-3

The current RUNTYPE status of each programs is displayed when a DIR
command is executed. If one program has compilation errors no programs will
be started at power up.

Precautions: To set the RUNTYPE using Motion Perfect, select "Set Power-up mode" from
the Program Menu. RUNTYPE information is stored into the flash EPROM
only when the EPROM command is executed after.

Arguments: program_name
The name of the program whose RUNTYPE is being set.

autorun

task_number
The number of the step on which to execute the program. Range: [1,5].

See also: AUTORUN, EPROM, EX

Example: >> RUNTYPE progname,1,5
The above line sets the program "progname" to run automatically at start-up
on task 5.
>> RUNTYPE progname,0
The above line sets the program "progname" to manual running.

5-3-150 SCOPE
Type: Motion Perfect Command

Syntax: SCOPE(ON/OFF_control, period, table_start, table_stop, P0[, P1[, P2[, P3]]])

Description: SCOPE programs the system to automatically store up to 4 parameters every
sample period. The storing of data will start as soon as the TRIGGER com-
mand has been executed.
The sample period can be any multiple of the servo period. The parameters
are stored in the Table array and can then be read back to a computer and
displayed on the Motion Perfect Oscilloscope or written to a file for further
analysis using the "Create Table file" option on the File Menu.
The current Table position for the first parameter which is written by SCOPE
can be read from the SCOPE_POS parameter.

Note Motion Perfect uses SCOPE when running the Oscilloscope function.

Precautions: Applications like the CAM command, CAMBOX command and the SCOPE
command all use the same Table as the data area. Do not use the same data
area for different applications.

Arguments: ON/OFF_control
Set ON or OFF to control SCOPE execution. If turned ON the SCOPE is
ready to run as soon as the TRIGGER command is executed.
period
The number of servo periods between data samples.
table_start
The address of the first element in the Table array to start storing data.
table_stop
The address of the last element in the Table array to be used.
P0
First parameter to store.
P1
Optional second parameter to store.

0 Running manually on command.

1 Automatically execute on power up. All non-zero values are consid-
ered as 1.

145

Command, function and parameter description Section 5-3

P2
Optional third parameter to store.
P3
Optional fourth parameter to store.

See also: SCOPE_POS, TABLE, TRIGGER

Examples: Example 1
SCOPE(ON,10,0,1000,MPOS AXIS(4),DPOS AXIS(4))
This example programs the SCOPE function to store the MPOS parameter for
axis 4 and the DPOS parameter for axis 4 every 10 ms. The MPOS parameter
will be stored in table locations 0 to 499; the DPOS parameters, in table loca-
tions 500 to 999. The SCOPE function will wrap and start storing at the begin-
ning again unless stopped. Sampling will not start until the TRIGGER
command is executed.
Example 2
SCOPE(OFF)
This above line turns the scope function off.

5-3-151 SCOPE_POS
Type: Motion Perfect Parameter

Description: SCOPE_POS contains the current Table position at which the SCOPE com-
mand is currently storing its first parameter.

Note This parameter is read-only.

See also: SCOPE

5-3-152 SELECT
Type: Program Command

Syntax: SELECT “program_name“

Description: SELECT specifies the current program for editing, running, listing, etc.,
SELECT makes a new program if the name entered does not exist. The pro-
gram name can also be specified without quotes.
When a program is selected, the commands COMPILE, DEL, EDIT, LIST,
NEW, RUN, STEPLINE, STOP and TROFF will apply to the currently selected
program unless a program is specified in the command line. When another
program is selected, the previously selected program will be compiled. The
selected program cannot be changed when a program is running.

Precautions: This command is implemented for an offline (VT100) terminal. Motion Perfect
automatically selects programs when you click on their entry in the list in the
control panel.

See also: COMPILE, DEL, EDIT, LIST, NEW, RUN, STEPLINE, STOP, TROFF

Example: >> SELECT "PROGRAM"
PROGRAM selected
>> RUN

5-3-153 SERVO
Type: Axis Parameter

Description: SERVO determines whether the base axis runs under servo control or open
loop. When SERVO is ON, the axis hardware will output a voltage depending
on the gain settings and the following error.

146

Command, function and parameter description Section 5-3

When SERVO is OFF, the axis hardware will output a voltage dependent on
the DAC axis parameter. All non-zero values for SERVO is also considered
as ON.

See also: AXIS, DAC, FE_LIMIT, WDOG

Example: SERVO AXIS(0) = ON ’Axis 0 is under servo control
SERVO AXIS(1) = OFF ’Axis 1 is run open loop

5-3-154 SET_BIT
Type: System Command

Syntax: SET_BIT(bit_number, vr_number)

Description: The SET_BIT command sets the specified bit in the specified VR variable to
one. Other bits in the variable will keep their values.

Arguments: bit_number
The number of the bit to be set. Range: [0,23].
vr_number
The number of the VR variable for which the bit is set. Range: [0,250].

See also: CLEAR_BIT, READ_BIT, VR

5-3-155 SETCOM
Type: I/O Command

Syntax: SETCOM(baud_rate, data_bits, stop_bits, parity[, port_number
[, XON/XOFF_switch]])

Description: SETCOM sets the serial communications. By default, the RS-232C port set-
tings are 9,600 baud, 7 data bits, 2 stop bits and even parity. These default
settings are recovered at start-up.

Arguments: baud_rate

data_bits

stop_bits

parity

port_number

XON/ XOFF_switch

This switch is available only on serial port B.

5-3-156 SGN
Type: Mathematical Function

Syntax: SGN(expression)

1200, 2400,4800, 9600,19200, 38400

7, 8

1, 2

0 None

1 Odd

2 Even

0 RS-232C programming port A (default)

1 RS-232C serial port B

0 OFF

1 ON

147

Command, function and parameter description Section 5-3

Description: SGN returns the sign of a number. It returns value 1 for positive values
(including zero) and value -1 for negative values.

Arguments: expression
Any valid BASIC expression.

Example: >> PRINT SGN(-1.2)
-1.0000

5-3-157 SIN
Type: Mathematical Function

Syntax: SIN(expression)

Description: SIN returns the sine of the expression. Input values are in radians and may
have any value. The result value will be in the range from -1 to 1.

Arguments: expression
Any valid BASIC expression.

Example: >> PRINT SIN(PI/2)
1.0000

5-3-158 SPEED
Type: Axis Parameter

Description: The SPEED parameter contains the demand speed in units/s. It can have any
positive value (including zero). The demand speed is the maximum speed for
the speed profiled motion commands.

See also: ACCEL, AXIS, DATUM, DECEL, FORWARD, MHELICAL, MOVE, MOVE-
ABS, MOVECIRC, MOVEMODIFY, REVERSE, UNITS

Example: SPEED = 1000
PRINT "Set speed = ";SPEED

5-3-159 SQR
Type: Mathematical Function

Syntax: SQR(expression)

Description: SQR returns the square root of the expression. The expression must have
positive (including zero) value.

Arguments: expression
Any valid BASIC expression.

Example: >> PRINT SQR(4)
2.0000

5-3-160 SRAMP
Type: Axis Parameter

Description: SRAMP contains the S-curve factor. The S-curve factor controls the amount
of rounding applied to the trapezoidal profiles. A value of 0 sets no rounding.
A value of 10 sets maximum rounding.
Using S-curves increases the time required for the movement to complete.
SRAMP is applied to the FORWARD, MHELICAL, MOVE, MOVEABS,
MOVECIRC and REVERSE commands.

Precautions: The S-curve factor must not be changed while a move is in progress.

See also: AXIS

148

Command, function and parameter description Section 5-3

5-3-161 STEPLINE
Type: Program Command

Syntax: STEPLINE [“program_name”[, task_number]]

Description: STEPLINE executes one line (i.e., “steps”) in the program specified by
program_name. The program name can also be specified without quotes. If
STEPLINE is executed without program name on the command line the cur-
rent selected program will be stepped. If STEPLINE is executed without pro-
gram name in a program this program will be stepped.
If the program is specified then all occurrences of this program will be
stepped. If there is no copy of the program running, then one will be started on
the next available task. If the task is specified as well then only the copy of the
program running on the specified task will be stepped. If there is no copy of
the program running on the specified task then one will be started on it.

Arguments: program_name
The name of the program to be stepped.
task_number
The number of the task with the program to be stepped. Range: [1,5].

See also: RUN, SELECT, STOP, TROFF, TRON

Examples: Example 1
>> STEPLINE "conveyor"
Example 2
>> STEPLINE "maths",2

5-3-162 STOP
Type: Program Command

Syntax: STOP [“program_name”[, task_number]

Description: STOP halts execution of one program specified with program_name. The pro-
gram name can also be specified without quotes. If the program name is omit-
ted, then the currently selected program will be halted.
In case of multiple executions of a single program on different tasks the
task_number can be used to specify the specific task to be stopped.

Arguments: program_name
The name of the program to be stopped.
task_number
The number of the task with the program to be stepped. Range: [1,5].

See also: HALT, RUN, SELECT

Examples: Example 1
>> STOP progname
Example 2
The lines from label on will not be executed in this example.

STOP
label:

PRINT var
RETURN

5-3-163 TABLE
Type: System Command

Syntax: TABLE(address, value{, value})
TABLE(address)

149

Command, function and parameter description Section 5-3

Description: TABLE loads data to and reads data from the Table array. The Table has a
maximum length of 16,000 elements. The table values are floating-point num-
bers with fractions. The table can also be used to hold information, as an
alternative to variables. The TABLE command has two forms.

• TABLE(address, value{, value}) writes a sequence of values to the Table
array. The location of the element is specified by address. The sequence
can have a maximum length of 20 elements.

• TABLE(address) returns the table value at that entry.
A value in the table can be read only if a value of that number or higher has
been previously written to the table. For example, printing TABLE(1001) will
produce an error message if the highest table location previously written to
the table is location 1000. The total Table size is indicated by the TSIZE
parameter. Note that this value is one more than the highest defined element
address.
The table entries are backed up by a battery. The table can be deleted with by
using DEL “TABLE” or NEW “TABLE” on the command line.

Precautions: Applications like the CAM command, CAMBOX command and the SCOPE
command in Motion Perfect all use the same Table as the data area. Do not
use the same data area range for different purposes.

!Caution If the voltage of the backup battery drops, Table and VR data will be lost. This
can happen when the power to the MC Unit is turned OFF for a long period of
time. You must rewrite table data, e.g., from a program, whenever the backup
battery has been drained. The Low Battery Flag will turn ON when the voltage
of the backup battery has dropped. Also the BATTERY_LOW system param-
eter will become TRUE. Refer to 3-1-2 Overview of IR/CIO Area Allocations
and 5-3-28 BATTERY_LOW for detailed information.

Arguments: address
The first location in the Table to read or write. Range: [0,15999]
value
The value to write at the given location and at subsequent locations.

See also: BATTERY_LOW, CAM, CAMBOX, DEL, NEW, SCOPE, TSIZE, VR

Examples: Example 1
TABLE(100,0,120,250,370,470,530,550)
The above line loads the following internal table:
Table Entry Value
100 0
101 120
102 250
103 370
104 470
105 530
106 550
Example 2
The following line will print the value at location 1000.
>> PRINT TABLE(1000)

5-3-164 TAN
Type: Mathematical Function

Syntax: TAN(expression)

150

Command, function and parameter description Section 5-3

Description: TAN returns the tangent of the expression. The expression is assumed to be
in radians.

Arguments: expression
Any valid BASIC expression.

Example: >> print TAN(PI/4)
1.0000

5-3-165 TICKS
Type: Task Parameter

Description: TICKS contains the current count of the task clock pulses. TICKS is a 32-bit
counter that is decremented on each servo cycle. TICKS can be written and
read. It can be used to measure cycles times, add time delays, etc.
Each task has its own TICKS parameter. Use the PROC modifier to access
the parameter for a certain task. Without PROC the current task will be
assumed.

Example: delay:
TICKS = 3000
OP(9,ON)

test:
IF TICKS< = 0 THEN

OP(9,OFF)
ELSE

GOTO test
ENDIF

5-3-166 TRIGGER
Type: Motion Perfect Command

Syntax: TRIGGER

Description: TRIGGER starts a previously set up SCOPE command.

Note Motion Perfect uses TRIGGER automatically for its oscilloscope function.

See also: SCOPE

5-3-167 TROFF
Type: Program Command

Syntax: TROFF [“program_name”]

Description: TROFF suspends a trace at the current line and resumes normal program
execution for the program specified with program_name. The program name
can also be specified without quotes. If the program name is omitted, the
selected program will be assumed.

Arguments: program_name
The name of the program for which to suspend tracing.

See also: SELECT, TRON

Example: >> TROFF "lines"

5-3-168 TRON
Type: Program Command

Syntax: TRON

Description: TRON creates a breakpoint in a program that will suspend program execution
at the line following the TRON command. The program can then for example
be executed one line at a time using the STEPLINE command.

151

Command, function and parameter description Section 5-3

• Program execution can be resumed without using the STEPLINE com-
mand by executing the TROFF command.

• The trace mode can be stopped by issuing a STOP or HALT command.
• Motion Perfect highlights lines containing TRON in the Edit and Debug

Windows.

See also: TROFF

Example: TRON
MOVE(0,10)
MOVE(10,0)
TRON
MOVE(0,-10)
MOVE(-10,0)

5-3-169 TRUE
Type: Constant

Description: TRUE returns the numerical value -1.

Note A constant is read-only.

Example: test:
t = IN(0) AND IN(2)
IF t = TRUE THEN

PRINT "Inputs are ON"
ENDIF

5-3-170 TSIZE
Type: System Parameter

Description: TSIZE returns the size of the Table array, which is one more than the cur-
rently highest defined table element.
TSIZE is reset to zero when the Table array is deleted using DEL “TABLE” or
NEW “TABLE” on the command line.

Note This parameter is read-only.

See also: DEL, NEW, TABLE

Example: The following example assumes that no location higher than 1000 has been
written to the Table array.
>> TABLE(1000,3400)
>> PRINT TSIZE
1001.0000

5-3-171 UNITS
Type: Axis Parameter

Description: The UNITS axis parameter contains the unit conversion factor. The unit con-
version factor enables the user to define a more convenient user unit like m,
mm or motor revolutions by specifying the amount of encoder edges to
include a user unit.
Axis parameters like speed, acceleration, deceleration and the motion control
commands are specified in these user units.

Precautions: UNITS can be any non-zero value, but it is recommended to design systems
with an integer number of encoder pulses per user unit. Changing UNITS will
affect all axis parameters which are dependent on UNITS in order to keep the
same dynamics for the system.

See also: AXIS, PP_STEP

152

Command, function and parameter description Section 5-3

Example: A leadscrew arrangement has a 5mm pitch and a 1,000-pulse/rev encoder.
The units must be set to allow moves to be specified in mm.
The 1,000 pulses/rev will generate 1,000 x 4 = 4,000 edges/rev. One rev is
equal to 5mm. Therefore, there are 4,000/5 = 800 edges/mm. UNITS is thus
set as following.
>> UNITS = 1000*4/5

5-3-172 VERSION
Type: System Parameter

Description: VERSION returns the version number of the BASIC language installed in the
MC Unit.

Note This parameter is read-only.

Example: >> PRINT VERSION
1.5000

5-3-173 VFF_GAIN
Type: Axis Parameter

Description: VFF_GAIN contains the speed feed forward gain. The speed feed forward
output contribution is calculated by multiplying the change in demand position
with VFF_GAIN. The default value is zero.
Adding speed feed forward gain to a system decreases the following error
during a move by increasing the output proportionally with the speed.
See section 1-4-2 Servo System Principles for more details.

Precautions: In order to avoid any instability the servo gains should be changed only when
the SERVO is OFF.

See also: AXIS, D_GAIN, I_GAIN, OV_GAIN, P_GAIN

5-3-174 VP_SPEED
Type: Axis Parameter

Description: VP_SPEED contains the speed profile speed in user units/s. The speed pro-
file speed is an internal speed which is accelerated and decelerated as the
movement is profiled.

Note This parameter is read-only.

See also: AXIS, MSPEED, UNITS

Example: ’Wait until at command speed
MOVE(100)
WAIT UNTIL SPEED = VP_SPEED

5-3-175 VR
Type: System Command

Syntax: VR(expression)

Description: The VR command calls the value of or assigns a value to a global variable.
These VR variables hold real numbers and can be easily used as an element
or as an array of elements. The MC Unit has in total 251 VR variables. The
variables are accessed as variables 0 to 250.
The VR variables can be used for several purposes in BASIC programming.

• The VR variables are backed up by a battery and are not cleared between
start-ups.

153

Command, function and parameter description Section 5-3

• The VR variables are globally shared between tasks and can be used for
communications between tasks. The programs must be written so that
only one program writes to the same global variable at the same time.

!Caution If the voltage of the backup battery drops, Table and VR data will be lost. This
can happen when the power to the MC Unit is turned OFF for a long period of
time. You must rewrite table data, e.g., from a program, whenever the backup
battery has been drained. The Low Battery Flag will turn ON when the voltage
of the backup battery has dropped. Also the BATTERY_LOW system param-
eter will become TRUE. Refer to 3-1-2 Overview of IR/CIO Area Allocations
and 5-3-28 BATTERY_LOW for detailed information.

Arguments: expression
Any valid BASIC expression. Range: [0,250].

See also: BATTERY_LOW, CLEAR_BIT, READ_BIT, SET_BIT, TABLE

Examples: Example 1
In the following example, the value 1.2555 is placed into VR variable 15. The
local variable val is used to name the global variable locally:
val = 15
VR(val) = 1.2555
Example 2
A transfer gantry has 10 put down positions in a row. Each position may at
any time be full or empty. VR(101) to VR(110) are used to hold an array of ten
1’s and 0’s to signal that the positions are full (1) or empty (0). The gantry puts
the load down in the first free position. Part of the program to achieve this
would be as follows:
movep:

MOVEABS(115) ‘Move to first put down position
FOR VR(0) = 101 TO 110

IF (VR(VR(0)) = 0) THEN GOSUB load
MOVE(200) ‘200 is spacing between positions

NEXT VR(0)
PRINT "All positions are full"
WAIT UNTIL IN(3) = ON
GOTO movep

load: ’Put load in position and mark array
OP(15,OFF)
VR(VR(0)) = 1
RETURN

The variables are backed up by a battery so the program here could be
designed to store the state of the machine when the power is OFF. It would of
course be necessary to provide a means of resetting completely following
manual intervention.
Example 3
loop: ‘Assign VR(65) to VR(0) multiplied by

‘axis 1 measured position
VR(65) = VR(0)*MPOS AXIS(1)
PRINT VR(65)
GOTO loop

5-3-176 WA
Type: System Command

Syntax: WA(time)

154

Command, function and parameter description Section 5-3

Description: WA holds program execution for the number of milliseconds specified for
time. The command can only be used in a program.

Arguments: time
The number of milliseconds to hold program execution.

Example: The following lines would turn ON output 7 two seconds after turning OFF out-
put 1.
OP(1,OFF)
WA(2000)
OP(7,ON)

5-3-177 WAIT IDLE
Type: System Command

Syntax: WAIT IDLE

Description: WAIT IDLE suspends program execution until the base axis has finished exe-
cuting its current move and any buffered move. The command can only be
used in a program.
WAIT IDLE works on the default basis axis (set with BASE) unless AXIS is
used to specify a temporary base axis.

Precautions: The execution of WAIT IDLE does not necessarily mean that the axis will be
stationary in a servo motor system.

See also: AXIS, WAIT LOADED

Example: MOVE(100)
WAIT IDLE
PRINT "Move Done"

5-3-178 WAIT LOADED
Type: System Command

Syntax: WAIT LOADED

Description: WAIT LOADED suspends program execution until the base axis has no
moves buffered ahead other than the currently executing move. The com-
mand can only be used in a program.
This is useful for activating events at the beginning of a move, or at the end
when multiple moves are buffered together.
WAIT LOADED works on the default basis axis (set with BASE) unless AXIS
is used to specify a temporary base axis.

See also: AXIS, WAIT IDLE

Example: ‘Switch output 8 ON at start of start of MOVE(500)
‘and OFF at end
MOVE(800)
MOVE(500)
WAIT LOADED
OP(8,ON)
MOVE(400)
WAIT LOADED
OP(8,OFF)

5-3-179 WAIT UNTIL
Type: System Command

Syntax: WAIT UNTIL condition

155

Command, function and parameter description Section 5-3

Description: WAIT UNTIL repeatedly evaluates the condition until it is TRUE. After this
program execution will continue. The command can only be used in a pro-
gram.

Arguments: condition
Any valid BASIC logical expression.

Examples: Example 1
In this example, the program waits until the measured position on axis 0
exceeds 150, and then starts a movement on axis 7
WAIT UNTIL MPOS AXIS(0)>150
MOVE(100) AXIS(7)
Example 2
The expressions evaluated can be as complex as you like provided they fol-
low BASIC syntax, for example:
WAIT UNTIL DPOS AXIS(2)< = 0 OR IN(1) = ON
The above line would wait until the demand position of axis 2 is less than or
equal to 0 or input 1 is ON.

5-3-180 WDOG
Type: System Parameter

Description: The WDOG parameter contains the software switch used to control the
enable relay contact, which is used to enable all drivers. This parameter
should be turned ON before executing moves. WDOG can be turned ON and
OFF under program control and on command line. All non-zero values are
considered ON. The analogue outputs of the axis will always be zero when
the WDOG is OFF.
The enable relay will automatically turn OFF when a MOTION_ERROR
occurs. A motion error occurs when the AXISSTATUS state for one of the
axes matches the ERRORMASK setting. In this case the enable relay
(WDOG) will be turned OFF, the MOTION_ERROR parameter will have
value 1 and the ERROR_AXIS parameter will contain the number of the first
axis to have the error.

Precautions: The WDOG parameter can be executed automatically by Motion Perfect
when the Drives Enable Button is clicked on the control panel.

See also: AXISSTATUS, ERROR_AXIS, ERRORMASK, MOTION_ERROR, SERVO

5-3-181 WHILE WEND
Type: Structural Command

Syntax: WHILE condition
<commands>

WEND

Description: The WHILE ... WEND loop allows the program segment between the WHILE
and the WEND statement to be repeated a number of times until the condition
becomes FALSE. In that case program execution will continue after WEND.

Precautions: WHILE ... WEND loops can be nested without limit.

Arguments: condition
Any valid logical BASIC expression.

See also: FOR, REPEAT

Example: WHILE IN(12) = OFF
MOVE(200)
WAIT IDLE

156

Command, function and parameter description Section 5-3

OP(10,OFF)
MOVE(-200)
WAIT IDLE
OP(10,ON)

WEND

5-3-182 XOR
Type: Logical Operator

Syntax: expression_1 XOR expression_2

Description: XOR performs an XOR function between corresponding bits of the integer
parts of two valid BASIC expressions.
The XOR function between two bits is defined as follows:

Arguments: expression_1
Any valid BASIC expression.
expression_2
Any valid BASIC expression.

Example: a = 10 XOR (2.1*9)
The parentheses are evaluated first, but only the integer part of the result, 18,
is used for the operation. Therefore, this expression is equivalent to the fol-
lowing:
VR(0)=10 XOR 18

The XOR is a bit operator and so the binary action taking place is as follows:

The result is, therefore, 24.

Bit 1 Bit 2 Result

0 0 0

0 1 1

1 0 1

1 1 0

01010

XOR 10010

11000

157

SECTION 6
Programming Environment

The MC Unit is programmed using the Motion Perfect programming software. The Motion Perfect package is Microsoft
Windows based and provides the user to program, monitor and debug motion based applications.

6-1 Motion Perfect Features . 158
6-2 Motion Perfect Requirements . 158
6-3 Going Online with the MC Unit . 158
6-4 Motion Perfect Projects. 159

6-4-1 Motion Perfect Project Manager. 159
6-4-2 Using Motion Perfect on a MC Unit for the First Time 161

6-5 Motion Perfect Desktop . 161
6-5-1 Control Panel . 162
6-5-2 Editing and Running Simple Programs . 163

6-6 Motion Perfect Tools . 164
6-6-1 Terminal . 164
6-6-2 Editor . 165
6-6-3 Axis Parameters . 168
6-6-4 Controller Configuration . 169
6-6-5 VR and Table Editors . 169
6-6-6 I/O Status Window . 170
6-6-7 Full Controller Directory . 171
6-6-8 Jog Screen . 171
6-6-9 Oscilloscope . 172

6-7 Suggestions and Precautions in Using Motion Perfect 177

158

Motion Perfect Features Section 6-1

6-1 Motion Perfect Features
Motion Perfect provides the following features.

• Using the Project Manager to maintain a consistent copy of application
programs on the computer.

• Creating, copying, renaming, deleting, editing, running and debugging
programs on the MC Unit.

• Using the Control Panel, Full Controller Directory, Axis Parameters Win-
dow, and I/O status to monitor the MC Unit and to control its status.

• Using the Program Debugger, Axis Parameters Window, Software Oscil-
loscope Window and Jog Axes Window to adjust the servo system.

It is possible to open several windows on the Motion Perfect desktop and run
them simultaneously. A user could be stepping through a program displayed
in an Editor Window, while checking the program’s output and entering input
characters via a separate terminal Window, and while also monitoring and
updating the axis parameters and I/O status in their Windows.

Note Refer also to the Motion Perfect Help files for further details on this software
package.

6-2 Motion Perfect Requirements
The C200HW-MC402E requires Motion Perfect version 2.0 or later. Please
note that previous versions of the package will not work with this MC Unit.
The following are required to run Motion Perfect version 2.0.
1. IBM Personal Computer or 100% compatible.
2. Microsoft Windows 95, 98, 2000 or NT 4.0.
3. 66 MHz 486 based processor (133 MHz Pentium recommended).
4. 16 MB RAM (32 MB recommended).
5. 10 MB of hard disk space.
6. Enhanced serial communications port (UART 16550).
7. 800 x 600 pixel display or higher resolution with at least 256 colors.
8. Mouse or tracker ball.

6-3 Going Online with the MC Unit
Motion Perfect can be connected to the MC Unit once the MC Unit is pow-
ered-up and running in order to use all features. After installation Motion Per-
fect can be started by using the Start Button.

Note The computer must be connected to the MC Unit using a RS-232C Serial
Cable (by OMRON) between a COM port on the computer and the MC Units
RS-232C Programming Port. Refer to 2-3-3 Serial Port Connections for
details.

When started, Motion Perfect will display its introductory splash screen whilst
looking for any controllers connected to the computer.

159

Motion Perfect Projects Section 6-4

The status of the connection to the controller is displayed on the screen. The
statements indicate at which COM port Motion Perfect is currently checking
for a Motion Controller and which settings are used. The screen will confirm if
Motion Perfect has found a controller or will indicate that no controller is
found.
Motion Perfect will be disconnected when no suitable controllers have been
found. The offline terminal will be shown. Refer to SECTION 7 Troubleshoot-
ing.

6-4 Motion Perfect Projects
Motion Perfect facilitates the works with MC Unit applications by using
projects, which are a valuable aid in efficient application design and develop-
ment. Projects are stored on the computer and each project contains the MC
Unit programs, parameters and data required for one motion application.
Managing each application as one project enables effective version control
and provides a mechanism for verifying the application programs on the MC
Unit.

6-4-1 Motion Perfect Project Manager
The project manager is a background process that automatically maintains
consistency between the programs on the MC Unit and the project on the
computer. When you edit a program in the Motion Perfect editor, it changes
both copies of the program. This avoids the slow process of uploading and
downloading programs and ensures that there is always a backup of changes
you make. As programs are created, copied or erased on the MC Unit using
the Motion Perfect tools, the project is updated so that the files and programs
are always consistent.

Project Backups A backup copy of the project is stored on the computer after on-line operation
has been successfully started. The backup copy can be loaded if the MC Unit
version of the programs become corrupted for any reason by selecting Revert
to backup from the File Menu.
The backup file will be overwritten each time a project is opened. If you open
a new project during a development session, the new projects backup copy
will overwrite the previous backup.

160

Motion Perfect Projects Section 6-4

Consistency Check When Motion Perfect starts, it always performs a consistency check between
any programs on the MC Unit and the current project files on the computer. It
will only enable its tool site when it has successfully verified that the programs
in the controller matches the project on the computer. The CRC values of the
programs are compared to perform the check. The Check Project Window
shows the status of the check. When both projects are consistent, the state-
ment “Project check OK” is shown in the message field.
If both projects differ, the window will display the options for the user to deter-
mine how to resolve this inconsistency. The Check Project Window is shown
here:

The window enables the user to select the required option to resolve the dis-
crepancy. The options available include:

You can force Motion Perfect to verify that the two copies are identical at any
time by selecting Check project from the File Menu.

Function Purpose

Save Save controller programs to new project. Create a new project
on the computer and save the programs to this project.

Load Load a different project. Select a new project on the computer
and load this project into the controller.

Change Change project for comparison. Select a different project on the
computer with which to perform the programs consistency
check.

New Erase controller programs and create a new project. Create a
new empty project on the computer and delete all programs on
the controller.

Resolve Resolve project and controller mismatches. Continue to check
the project, enabling the user to resolve each individual program
inconsistency by either saving the project version into the con-
troller or loading the controller version into the project.

Cancel Run Motion Perfect without connection to the controller.

161

Motion Perfect Desktop Section 6-5

6-4-2 Using Motion Perfect on a MC Unit for the First Time
If this is the first time the MC Unit has been used with Motion Perfect and you
do not have any programs on the MC Unit, click the New Button in the Check
Project Options Window and then click the Yes Button when asked.

New Project Window The New Project Window will open enabling you to enter the required name of
the new project and specify the directory on your computer in which to store
the project.

1,2,3... 1. Type a suitable project name in the Project Name text box, and then use
the Disk Directory box to move to the directory in which to store the project.

2. If you wish to create a new directory on your computer, then move to the
parent directory and click on the Create Directory button. Type the name
of the new directory in the New Directory Window.

3. After selecting the required directory and entering the new project name,
click the Create Button.

4. If the project path and name already exist, a window will appear asking
whether to overwrite the existing project. If you confirm, the previous
project will be overwritten and lost.

5. When a new project has been created, the Check Project Window will be
displayed, with empty MC Unit Program and Project Program List Boxes
and a ‘Project check OK’ message. Click the Ok Button to continue.

You have now created a new project on your computer, the Motion Perfect
desktop will open, and all its facilities will be available.

6-5 Motion Perfect Desktop
Once Motion Perfect has verified that the contents of the controller and the
project on the computer are consistent, the Motion Perfect Desktop will
appear. The desktop work area of Motion Perfect is where you will open up
the windows to use when editing programs and using the Motion Perfect
tools. The general look of the desktop is displayed below.

Control Panel

Toolbar Editor Window Terminal Window

Controller
Messages
Window

162

Motion Perfect Desktop Section 6-5

6-5-1 Control Panel
Motion Perfect is equipped with a Control Panel that is used to control pro-
gram execution and the MC Unit while editing and debugging the programs.
The Control Panel will appear after the initial opening window on the left of the
main Motion Perfect Window:

Controller Status The Fixed/Editable buttons determine to fix the programs from RAM into
flash EPROM. When the project is fixed, the programs cannot be modified
with Motion Perfect. To continue editing the programs, click Editable.
The Drives enabled button toggles the state of the enable (watchdog) relay
on the controller, which controls the drivers. See 5-3-180 WDOG for details.
The Axis status error button monitors the Motion errors of the MC Unit. This
button is normally greyed out, unless a motion error occurs on the controller.
When an error does occur, you can use this button to clear the error condition.
This is equivalent to using the DATUM(0) command. See 5-3-46 DATUM for
details.

Program List Box The Program List Box in the middle of the Control Panel will show a list of the
programs in the project. There are two buttons next to each program name to
control the execution of this program.
The Run/Stop button (red) shows that the program is stopped and can be
clicked to start program execution.
When a program is being executed, the program name in the Program List
Box will appear in italics, the MC Unit task number on which the program is
running will appear alongside the program name, and the color of the Run/
Stop button will change into green.
To stop the program click the Run/Stop button again to stop the program. A
program cannot be edited while it is being executed.
The Step button (yellow) can be used to step through the program. The Run/
Stop Button will turn yellow and one line of the program will be executed each
time the Run/Stop button is clicked. When the Step button is clicked again,
the program will be run normally.
When a program is being stepped, a green bar will appear in the Editor Win-
dow, highlighting the line of the program about to be executed.

163

Motion Perfect Desktop Section 6-5

Programs are compiled before execution. If there are any compilation errors
in the program, a window will appear briefly describing the error and giving the
number of the line containing the error. You can correct the error and repeat
the process.

Shortcut Buttons Underneath the Program List Box you can find four shortcut buttons which are
used for (from left to right):

• Controller configuration
• Full controller directory
• Create new program
• Halt all programs

Selected Program Box The Select Program box displays the current selected program and the avail-
able buttons, which can be performed on the selected program. These five
available functions are (from left to right):

• Run
• Step
• Stop
• Edit
• Set power up mode

Refer to 4-5-3 Program Execution and 5-3-149 RUNTYPE for details on set-
ting the power up mode.

Free Memory The Free Memory field indicates the remaining free memory available on the
controller.

Motion Stop The Motion Stop button stops all programs and cancels all moves in case of
emergency.

6-5-2 Editing and Running Simple Programs
This section provides a couple of typical examples of a simple programming
session using Motion Perfect. The following procedure assumes that the MC
Unit is already on-line with Motion Perfect and a new project has been cre-
ated.

Example 1
1,2,3... 1. Create a new program in the new project by selecting New from the Pro-

gram Menu or by clicking on the Control Panel’s shortcut button “Create
New Program”.

2. Name your program ‘LED1’ and click the OK Button.
3. Using the editor, enter a simple program to flash the indicator connected

to output 8. Type the program in lower case. When you press the Return
Key, Motion Perfect will update the program on the computer and in the
MC Unit, and will replace the BASIC keywords with their tokenised ver-
sions in upper case.

DISPLAY = 5
loop:

OP(8,ON)
WA(1000)
OP(8,OFF)
WA(1000)
GOTO loop

The program can now be run, stepped and stopped without closing the Editor
Window. The Program Menu can be used, but it is easier to use the Control
Panel as described in the previous section. The Editor Window has similar
buttons itself to do the same.
When the program is executed, the LED indicator for output 8 will flash.

164

Motion Perfect Tools Section 6-6

Note The command line will also remain available for immediate commands if the
task 0 Terminal Window is open.

Compilation The system will compile and link the program before running it. If the compiler
detects errors in the program, it will not run, but will print the line number at
which the error occurred. The line can be located by looking at the current line
number displayed in the bottom right of the Editor Window’s status bar or by
selecting Goto from the Edit Menu.

Example 2
A similar second program can be made based on the first program. This can
be done quickly by copying the LED1 program and then editing it.

1,2,3... 1. Select Copy program from the Program Menu and copy the LED1 pro-
gram, calling the new program ‘LED2’.

2. Select the LED2 program and press the Edit Button to open it.
3. Change the LED2 program to control a different OP with a different period.

Refer to for SECTION 5 BASIC Motion Control Programming Language
details on programming.

4. Executed the programs together.
The Run and Step Buttons on the Control Panel will control only the currently
selected program Use the Run/Stop and Step Button or the menus to control
other programs at the same time.

6-6 Motion Perfect Tools
This section describes the main Motion Perfect tools.

1. Terminal

2. Editor

3. Axis Parameters

4. Controller Configuration

5. VR and Table Editors

6. I/O Status

7. Full Controller Directory

8. Jog Axes

9. Oscilloscope

6-6-1 Terminal
The Terminal Window provides a direct connection to the MC Unit. Most com-
mands, functions and parameter read/writes can be issued directly on the
command line.
Most of the functions that must be performed during the installation, program-
ming and final setup of a system with a MC Unit have been automated by the

165

Motion Perfect Tools Section 6-6

options available in the Motion Perfect Menus. A Terminal Window is shown
in the following display.

Up to four Terminal Windows can be opened simultaneously over the single
serial port. Channel 0 must be used to issue commands. Channels 5, 6 and 7
can be used to provide I/O windows to programs running on the MC Unit.
Channel Number
The Channel Number Combo Box can be used to select one of the valid
async communications channels.
VT100 Emulation
The MC Unit expects to talk to a terminal that accepts the DEC VT100 termi-
nal protocol. This setting can be used for the Terminal Window to emulate a
VT100 terminal.
ASCII Emulation
This mode will echo the ASCII description for the non-printing characters
received. Also, CR and LF will cause the corresponding action.

6-6-2 Editor
This section describes the Editor used to edit BASIC programs for the MC
Unit. The Editor is a fully featured Windows-based tool. An Editor Window will
be opened when a new program is created or an existing program is selected
for editing.
When the cursor is moved off the current line, any changes made to this line
are sent to the MC Unit, which performs syntax checking, tokenises the line
(all recognized BASIC keywords are converted to upper case), and returns
the tokenised result to the window. When an Editor Window is closed, the
project file is updated with the modified program.

Note It is not possible to open a new Editor Window while any program is running
on the MC Unit.

166

Motion Perfect Tools Section 6-6

Creating and Opening Programs
There are several ways that programs can be opened or created.

Opening Programs
Existing programs can be edited by opening an Editor Window using one of
the following methods.

• Select Edit from the Program Menu and then selecting the required pro-
gram.

• Click the Edit Button on the Control Panel to open an Editor Window for
the selected program.

• Double-click a program in the Program List Box on the Control Panel.

Creating Programs
New programs can be created using one of the following methods.

• Select New from the Program Menu. The default name can be changed
before opening the Editor Window. Click into the Program Name Text
Box, enter the new name and then press the Edit Button.

• Click the Create New program button on the Control Panel.
When opening an Editor Window, Motion Perfect performs a CRC check
between the program on the MC Unit and the program in the project. If the
CRCs are different, the user will be advised to perform a project check to
obtain further information on the differences.

Basic Editing Operations
The basic editing operations that can be used in an Editor Window are out-
lined below. The operation can be accessed by selecting the corresponding
button on the top of the Editor Window or can be selected from one of the
menu's of the window.The operations correspond to the buttons displayed in
the picture below (from left to right).

Saving Program This enables the user to force the program to be saved on the computer hard-
disk. Motion Perfect saves the file automatically when the Editor Window is
closed or the program is compiled.

Printing Program This will print the code of the program.

Cut, Copy and Paste Windows-style cut, copy paste operation can be performed using the mouse
and/or the keyboard. Use the following procedure to cut or copy text.
Select the text, and cut or copy it to the clipboard.

167

Motion Perfect Tools Section 6-6

Move the cursor to the insert point, and paste the text on the clipboard.

Listing and Jumping to
Labels

A list of all labels in the program in the current Editor Window will be dis-
played. To jump to a specific label, click the desired label in the display to
enter it in the text box at the bottom of the window and press the OK button.
The cursor will move to the specified label in the program. Alternatively, a
specific line number can be selected by entering the value of the line number
text box at the bottom of the window, and the pressing the OK button.

Finding Text The program in the current Editor Window can be searched for a specific text
string. One can specify the search to be case sensitive and the search direc-
tion. The user can continue the program while the Find Window is displayed,
by simply clicking back to the Editor Window. The Find Window will remain on
the display until the Cancel Button is clicked.

Replacing Text Text found in an Editor Window can be replaced with a specified text string.
Enter both strings in the appropriate fields. The following buttons are available
in the Find and Replace Window:

Run, Step and Stop These operations are used to run the program, run a single line in the pro-
gram and stop the program. These operations can also be found on the con-
trol panel (same buttons).

Add breakpoint In the Editor Window breakpoints can be added to enable easy debugging.
Debugging is explained in the Debugging part of this section below.

Compiling This operation forces the program to be compiled.

Debugging
The Motion Perfect debugger allows you to run a program directly from the
Editor Window in a special trace mode, executing one line at a time (known as
stepping) whilst viewing the line in the window. It is also possible to set break-
points in the program, and run it at normal speed until it reached the break-
poin.
Any open Editor Windows will automatically enter the 'Debug Mode - Read
Only' when programs are running on the Motion Controller. Hence, break-
points are set in the Editor Window, and the code viewed in the same window
in debug mode when the program is running.

Stepping Through a
Program

The next line in a program can be executed by doing one of the following:
• Use the Step button (yellow) alongside the required program name in the

Program List box on the Control Panel.
• If the required program is currently selected, see Selected Program box

of the Control Panel, then push the Step button of this box.
• Push the Step button of the Editor Window toolbar.
• Selecting Start Stepping... from the Program menu. If one program is exe-

cuting on several tasks, then the task number can also be specified.
The next program line to be executed will be highlighted in the Editor Window
with a green background. The operation can be repeated to step multiple
lines.

Breakpoints Breakpoints are special place markers in the code which allow us to identify a
particular section (or sections) of the program when debugging the code. At

Button Function
FindNext A simple search will be made for the specified string.

Replace A specified search string will be replaced with a replace string.

ReplaceAll All occurrences of the search string will be replaced from the
current cursor position to the beginning or end of the program,
depending upon the search direction.

168

Motion Perfect Tools Section 6-6

the point on which the breakpoint is inserted, the program will pause and
return control to Motion Perfect. This is enabling to check the current state of
the controller or single step through the code of the program. Breakpoints are
indicated in the program using the TRON command.
Breakpoints can be set by moving the cursor to the required line, and then
either

• Typing command TRON on this line.
• Pushing the Add Breakpoint button on the Editor Window toolbar.
• Selecting Toggle Breakpoint from the Program Menu.
• Pressing Ctrl–B from the keyboard.

A TRON command will be inserted at the current line in the program, indi-
cated by highlighting. The breakpoint can be removed to selecting the same
operation again or to just by removing the line manually. All breakpoints can
be removed from a program by selecting Clear All Breakpoints from the
Debug Menu.

6-6-3 Axis Parameters
The Axis Parameters Window allows the user to set and read the axis param-
eter settings. This window works like a Windows-based spread sheet. The
Axis Parameter Window is shown below.

The Axis Parameters Window is made up of a table of cells separated into two
banks, bank 1 at the top and bank 2 at the bottom.

• Bank 1 contains the values of parameters that can be changed by the
user. The values can be changed by clicking on it and entering the new
value.

• Bank 2 is read-only and contains the values which are set by the system
software of the MC Unit as it processes the BASIC commands and moni-
tors the status. These values are updated continuously at a specified rate.

The following operations are possible on the Axis Parameters Window.
• The user is able to change the size of the window. The black dividing bar

can be repositioned to change the space occupied by the two banks.
• When the user changes the UNITS parameter for an axis, all the parame-

ters given in user units for that axis will be adjusted by the new factor.
These new values will loaded automatically in the screen.

169

Motion Perfect Tools Section 6-6

• The AXISSTATUS parameter displays status bits. The characters indicat-
ing each bit will turn red and capital if the bit is ON and green if the bit is
OFF. The ‘frdhexy’ characters correspond to

• The Axes Button at the bottom of the window can be pressed to access a
Window to select the axes that are displayed. By default, the axes set for
the last modified start-up program from the File Menu, Jog Axes Window
or Axes Parameters Window will be displayed.

• The parameters in the bank 1 section are only read when the screen is
first displayed or the parameter is edited by the user. It is possible that if a
parameter is changed in the controller then the value displayed may be
incorrect. The refresh button will force Motion Perfect to read the whole
selection again.

6-6-4 Controller Configuration
The Controller Configuration Window shows the hardware and software con-
figuration of the MC Unit. The MC Unit configuration can be checked by
selecting Controller Configuration from the Controller Menu or the appropriate
button of the Control Panel.

6-6-5 VR and Table Editors
The VR and Table Editor tools provide a spreadsheet style interface to view
and modify a range of values in memory. To modify a value, click on the exist-
ing value with the mouse and type in the new value and press return. The

f Forward limit
r Reverse limit
d Datuming
h Feed hold
e Following error exceed limit
x Forward software limit
y Reverse software limit

170

Motion Perfect Tools Section 6-6

change will be immediate and can be made whilst programs are running.
Push the refresh button to reload the values.

Range Both in the VR and Table Editor you can select the range of the view by giving
the begin and end element. The range of the Table Editor is limited to the
highest element, which is specified by the TSIZE system parameter. Both edi-
tor show up to a maximum of 100 elements. Use the scroll bar to scroll
through the data.

Refresh Button The editors do not update the shown values automatically. Push the Refresh
Button to update the values of the elements or when you have changed the
range of elements.

6-6-6 I/O Status Window
The I/O Status Window allows the user to view the status of all the I/O points
and toggle the status of the output points. The I/O Status Window is shown in
the centre of the screen below. Refer to Accessing I/O for a description of the
different types of I/O.

Digital Inputs This shows the total range of input channels on the current Motion Controller.

Digital Outputs This shows the total range of output channels on the current Motion Control-
ler.

Inputs This field the status of the inputs of the Motion Controller. The banks contain 8
indicators which show the status of the inputs.

• Physical inputs (0-15): The indicator is green when the input is ON and
white when the input is OFF.

• Driver alarms axes 0 to 3 (16-19): The indicator is red when the input is
ON and white when the input is OFF.

171

Motion Perfect Tools Section 6-6

• Virtual inputs (20-31): The indicator is turquoise when the input is ON and
white when the input is OFF.

Outputs This field the status of the outputs of the Motion Controller. The banks contain
8 indicators which show the status of the outputs. These output points can be
put ON or OFF by clicking on the indicators.

• Physical outputs (8-15): The indicator is yellow when the output is ON and
white when the output is OFF.

• Driver alarm reset (16): The indicator is red when the output is ON and
white when the output is OFF.

• Virtual outputs (20-31): The indicator is turquoise when the output is ON
and white when the output is OFF.

Note that the virtual in- and outputs are bi-directional and are controlled by
toggling the output indicators. The in- and outputs can be accessed by using
controller commands IN and OP. Refer to 5-3-83 IN and 5-3-115 OP.

6-6-7 Full Controller Directory
The Full Controller Directory Window dynamically shows details of all pro-
grams on the MC Unit, and details of all running tasks or processes. The win-
dow can be opened by selecting Full Directory from the Program Menu or
the appropriate button on the Control Panel.

6-6-8 Jog Screen
The Jog Screen can be used to set-up and operate the jogging operation of
the motion controller with the bi-directional virtual I/O. The screen sets the
axis parameters corresponding to jogging (FWD_JOG, REV_JOG and
JOGSPEED) and controls the virtual inputs which are set to jogging. This tool
will not use the Fast Jog feature of the controller and therefore the
FAST_JOG parameter is assumed to be -1.

Note The jogging inputs which are connected are considered to be active low (nor-
mally closed). This implies that jogging is enabled when the input is low and is
disabled when the input is high.

172

Motion Perfect Tools Section 6-6

The Jog Screen is shown below.

Jog Inputs The jog inputs must be between 20 and 31, i.e., the virtual bi-directional I/O
channels. There are separate inputs for forward and reverse jogging of each
axis. When a jog input is set to a valid input number, the corresponding output
will be turned ON and then the corresponding FWD_JOG or REV_JOG axis
parameter will be set.

Jog Speed Settings This is the speed at which the jog will be performed, which is given by the
JOGSPEED parameter. The value of the speed is limited to the range from 0
to the demand speed given by the SPEED parameter for this axis. This value
can be changed by writing directly to this field or by using the jog speed con-
trol (up/down) buttons.

Jog Buttons The screen provides Forward and Reverse Jog Buttons for each axis. When
the button is pushed the jogging is activated and the corresponding virtual
input will be OFF. Prior to the activation the value of the Jog Speed field will
be written to the JOGSPEED parameter. When released this input is ON and
the jogging will be stopped.

Warnings Area The Warnings Area shows the status of the last jog request.
When a Jog Button is pressed, a warning will be given for any of the following:

• The axis is a SERVO axis and the servo is OFF
• The jog speed is 0.
• The acceleration or deceleration rate for this axis is 0
• The forward or reverse jog input is out of range
• There is already a move other than a jog being performed on this axis

6-6-9 Oscilloscope
The software oscilloscope can be used to trace axis and motion parameters,
which is a helpful tool for program development and system setup. The oscil-
loscope provides four channels, each capable of recording at up to 1,000
samples/s, with manual cycling or program-linked triggering.
The MC Unit records the data at the selected frequency, and then uploads the
information to the scope to be displayed. If a larger time base value is used,
the data is retrieved in sections, and the trace is seen to be plotted in sections
across the display. The positions and other axis parameters are displayed in
encoder edges.
Exactly when the MC Unit starts to record the required data depends upon
whether it is in Manual or Program Trigger Mode.

• In Program Trigger Mode, it starts recording data when it encounters a
TRIGGER command in a program running on the MC Unit.

• In Manual Mode, it starts recording data immediately.

173

Motion Perfect Tools Section 6-6

The Trigger Button can be used to start the scope as soon as the required
settings have been made. The scope controls are divided into the two parts:
the general controls and the channel specific controls.

General Controls The oscilloscope general control appear at the bottom left of the oscilloscope
window. From here you can control the time base, triggering modes, Table
range used and others.

The general controls are explained here:

Time base The required time base is selected using the up/down scale but-
tons either side of the current time base scale text box (left hand
side button decreases the scale, and the right hand side button
increases the scale value.) The value selected is the time per grid
division on the display.
If the time base is greater than a predefined value, then the data is
retrieved from the controller in sections (as opposed to retrieving a
compete trace of data at one time.) These sections of data are
plotted on the display as they are received, and the last point plot-
ted is seen as a white spot.
After the scope has finished running and a trace has been dis-
played, the time base scale can be changed to view the trace with
respect to different horizontal time scales. If the time base scale is
reduced, a section of the trace can be viewed in greater detail, with
access provided to the complete trace by moving the horizontal
scroll bar.

Horizontal Scroll
Bar

Once the scope has finished running and displayed the trace of the
recorded data, only part of the trace will be displayed if the time
base is changed to a faster value. The remainder can be viewed
by moving the thumb box on the horizontal scroll bar.
Additionally, If the scope is configured to record both motion
parameters and plot table data, then the number of points plotted
across the display can be determined by the motion parameter. If
there are additional table points not visible, these can be brought
into view by scrolling the table trace using the horizontal scroll bar.
The motion parameter trace will not move.

174

Motion Perfect Tools Section 6-6

Channel-specific Controls Each scope channel has the following channel-specific controls organized in
each of four channel control blocks surrounded by a colored border. The color
of the border is the same as the color for the channel trace on the display.

Each channel has the following:

One-shot/ Con-
tinuous Trigger
Mode

The One-shot/Continuous Trigger Mode Button toggles between
these two modes:
One Shot Trigger Mode (Button raised)
In One-shot Mode, the scope runs until it has been triggered and
one set of data recorded by the MC Unit, retrieved and displayed.
Continuous Trigger Mode (Button pressed)
In Continuous Mode the scope continues running, retrieving data
from the MC Unit each time it is re-triggered and new data is
recorded. The scope continues to run until the Trigger Button is
pressed for a second time to stop the scope.

Manual/Pro-
gram Trigger
Mode

The Manual/Program Trigger Mode Button toggles between these
two modes.
Manual Mode (Button raised, pointing hand)
In Manual Mode, the MC Unit is triggered and starts to record data
immediately after the Trigger Button is pressed.
Program Mode (Button pressed, program listing)
In Program Trigger Mode, the scope starts running when the Trig-
ger Button is pressed. The MC Unit will start recording data when a
TRIGGER command is executed in a program running on the MC
Unit.
After the TRIGGER command is executed by the program and the
MC Unit has recorded the required data, the required data is
retrieved by the scope and displayed. The scope stops running if in
One-shot Trigger Mode, or it waits for the next trigger on the MC
Unit if in Continuous Trigger Mode.

Trigger Button When the Trigger Button is pressed, the scope will be started. If
the scope is Manual Mode then the MC Unit immediately starts
recording data. If it is in Program Trigger Mode then the MC Unit
waits until it encounters a TRIGGER command in a running pro-
gram.
After the Trigger Button has been pressed, the text on the Button
changes to ‘Halt’ while the scope is running. If the scope is in the
One-shot Mode, then after the data has been recorded and plotted
on the display, the Trigger Button text will return to ‘Trigger’, indi-
cating that the operation has been completed.
The scope can be halted at any time when it is running by pressing
the trigger button (the 'Halt' text is displayed).

Reset Scope
Configuration

The current scope configuration and all settings will be saved
when the scope window is closed, and retrieved when the scope
window is next opened. This removes the need to set each individ-
ual control again every time the scope window is opened.
The Reset Scope Configuration Button can be pressed to reset the
scope configuration, clearing all controls to their default values.

Status Indicator The Status Indicator is located between the Options Button and
the Reset Scope Configuration Button. This indicator changes
color according to the current status of the scope as follows:
Red Scope stopped.
Black Waiting for MC Unit to complete recording data.
Yellow Retrieving data from the MC Unit.

175

Motion Perfect Tools Section 6-6

Parameter Box The parameters which the scope can record and display are
selected using a pull-down list box in the upper left corner of each
channel control block.
Depending upon the parameter chosen, the next label will switch
between axis or channel.
It is also possible to plot the points held in the MC Unit Table array
directly by selecting the Table parameter, followed by the number
of a channel whose first/last points have been configured using the
Advanced Options Window, which is described later in this section.
If the scope channel is not required then ‘NONE’ should be
selected in the parameter list box.

Axis/Channel
List Box

The Axis/Channel List Box allows the user to select the required
axis for a motion parameter, or channel for a digital input/output.
The list box label will switch according to the setting in the Param-
eter List Box.

Vertical Scale The scope vertical scale in units per grid division on the display
can be set to either Automatic or Manual Mode.
In Automatic Mode, the scope calculates the most appropriate
scale when it has finished running and prior to displaying the trace.
If the scope is running with continuous triggering, it will initially be
unable to select a suitable vertical scale. When this happens, the
scope must be halted and re-started, or used in the manual scaling
mode.
In Manual Mode, the user selects the scale per grid division. The
vertical scale is changed by pressing the Up/Down Scale Buttons
at the sides of the Current Scale Text Box. The button on the left
decreases the scale value, and the button on the right increases
the scale value.
To return to the Automatic Mode, continue pressing the left button
(decreasing the scale value) until the word ‘AUTO’ appears in the
current scale text box.

Channel Trace
Vertical Offset

The Vertical Offset Buttons are used to move a trace vertically on
the display. This control is useful when two or more traces are
identical, in which case they will overlay each other and only the
uppermost trace will be seen on the display.
The offset value will remain in effect for a channel until the Vertical
Offset Reset Button is pressed or the scroll bar is used to return
the trace to its original position.

Vertical Offset
Reset

The vertical offset value applied using the vertical offset scroll bars
can be cleared when the Vertical Offset Reset Button is pressed.

Cursor Button After the scope has finished running and has displayed a trace, the
cursor bars can be enabled. These are displayed as two vertical
bars of the same color as the channel trace, and initially located at
the maximum and minimum trace points. The values these repre-
sent are shown below the scope display, and the text is of the
same color as the channel the values represent.
The bars can be moved by positioning the mouse cursor over the
required bar, holding down the left mouse button, and dragging the
bar to the required position. The maximum or minimum value
shown below the display is updated as the bar is dragged along
with the value of the trace at the current bar position.
The cursor bars are enabled/disabled by pressing the Cursor But-
ton, which toggles alternately displaying and removing the cursor
bars.
When the cursor bars are disabled, the maximum and minimum
points are indicated by a single white pixel on the trace.

176

Motion Perfect Tools Section 6-6

Advanced Oscilloscope
Configuration Options

When the Options Button of the General Options is pressed, the Advanced
Oscilloscope Configuration Window will be displayed.

It is possible to plot MC Unit Table ranges directly with the Oscilloscope.
Select Table in the parameter box of the Axis Specific Controls to display the
Table elements.

Parameter Checks There is a maximum Table size on the MC Unit, and it is not possible to enter
Table channel values beyond this value. It is also not possible to enter a lower
scope table value or increase the samples per grid division to a value which
causes the upper scope Table value to exceed the MC Unit maximum Table
value.
If the number of samples per grid division is increased, and subsequently the
time base scale is set to a faster value, causing an unobtainable resolution,
the scope will automatically reset the number of samples per grid division.

Displaying MC Unit Table
Points

If the scope is configured for both Table and motion parameters, then the
number of points plotted across the display is determined by the time base
and samples per division. If the number of points to be plotted for the table
parameter is greater than the number of points for the motion parameter, the
additional table points will not be displayed, but can be viewed by scrolling the
table trace using the horizontal scroll bar. The motion parameter trace will not
move.

Uploading Data from the
MC Unit to the Scope

If the overall time base is greater than a predefined value, then the data is
retrieved from the MC Unit in blocks, and the display can be seen to be
updated in sections. The last point plotted in the current section will be dis-
played as a white spot.
If the scope is configured both to record motion parameters and to plot Table
data, then the Table data is returned in one complete block, and the motion
parameters are read either continuously or in block, depending upon the time
base.

Oscilloscope:
Samples per Divi-
sion

The scope defaults to recording five points per horizontal time
base grid division. This value can be adjusted using the adjacent
scroll bar.
To achieve the fastest scope sample rate it is necessary to
reduce the number of samples per grid division to 1 and increase
the time base scale to its fastest value of 1 ms per grid division.
The trace might not be plotted completely to the right side of the
display, depending upon the time base scale and number of
samples per grid division.

Oscilloscope:
Table Range

The MC Unit records the required parameter data values in the
MC Unit’s Table array prior to uploading these values to the
scope. By default, the lowest scope Table value used is zero. If
this conflicts with programs running on the MC Unit that require
this section of the Table, then the lower scope table value can be
set.
The lower scope table value is adjusted by clicking into the text
box and entering the new value. The upper scope table value will
be automatically updated and cannot be changed by the user.
The upper scope table value depends on the number of channels
in use and the number of samples per grid division.
If an attempt is made to enter a lower table value which causes
the upper table value to exceed the maximum permitted value on
the MC Unit, then the original value will be used by the scope.

Table Graph:
Points per division

The scope defaults to recording fifty points per horizontal time
base grid division. This value can be adjusted using the adjacent
scroll bar.

Table Graph:
Table Range

The Table Limit Text Boxes are used to enter the Table ranges
for the four possible channels of the Oscilloscope.

177

Suggestions and Precautions in Using Motion Perfect Section 6-7

Even if the scope is in Continuous Trigger Mode, the Table data is not re-
read; only the motion parameters are continuously read from the MC Unit.

Enabling/Disabling Scope
Controls

While the scope is running, all the scope controls except the Trigger Button
will be disabled. To change the time base or vertical scale, the scope must be
stopped and restarted.

Display Accuracy The MC Unit records the parameter values at the required sample rate in the
Table, and then passes the information to the scope. The trace displayed is
therefore accurate with respect to the selected time base. There is, however,
a delay between when the data is recorded by the MC Unit and when it is dis-
played on the scope due to the time taken to upload the data via the serial
link.

6-7 Suggestions and Precautions in Using Motion Perfect
Programming and
Program Control

• Motion Perfect provides complete programming functions, such as edit,
delete, rename, create, select and copy functions. When available, these
should be used instead of the equivalent BASIC system commands in the
Terminal Window. Motion Perfect cannot detect changes made by these
BASIC system commands and a project check will be required to resolve
inconsistencies.

• Use Reset the Controller on the MC Unit Menu to perform a software
reset of the MC Unit.

• You do not need to close an Editor Window to run a program. It saves
time not to. It is better to open an edit session for each program you want
to see before running any programs. If there are programs already run-
ning, then it will not be possible to open an edit session.

• Do not turn the power ON and OFF or remove the serial connection when
using Motion Perfect. If you do so, a communications error message will
appear, and Motion Perfect will go off-line.

• You can force Motion Perfect to compare the computer project with the
MC Unit programs at any time by selecting Check project from the File
Menu.

Running Motion Perfect
Off-line

Motion Perfect can be run in an off-line mode if it is unable to find a MC Unit
and open a valid project. This may occur if it does not find any MC Units con-
nected to the computer or if the project consistency check fails and the check
is canceled.
In the offline mode, all project-related functions will be disabled. The user will
only have access to

• Terminal Window (VT100 emulation).
• System software load.
• Communications setup.
• On-line help functions.

A Terminal Window can be opened and an attempt can be made to establish
communications with the MC Unit. If the MC Units line mode >> prompt is
returned when the Enter Key is pressed from the keyboard at the computer,
then the MC Unit can be communicated with using the BASIC system com-
mands (see the BASIC on-line help for further information). The commands
given in 5-2-4 Program Commands and Functions can be used to manipulate
programs using a terminal.

Project Backups If the MC Unit stops responding during a development session and the same
project is reconnected, then it is likely the consistency check will be passed.
In the case that the programs are not consistent, the Check Project Options
Window will be displayed. Please be aware that if the current project is re-

178

Suggestions and Precautions in Using Motion Perfect Section 6-7

opened, the backup copy of the project will be overwritten. It is therefore nec-
essary to determine which copy of the programs to use before re-connecting
Motion Perfect.
To investigate the inconsistency further, a Terminal Window can be opened
off-line and the programs on the MC Unit can be listed. Any computer-based
editor or word processor can be used to examine the computer backup
project file copy of the programs. In this way, the location of the uncorrupted
or latest version of the programs can be identified. The correct program can
be imported to the project by using the Load Program File option of the
Project Menu.
The computer project copy of a program is updated during a Motion Perfect
development session whenever an edit session for the program is closed.

Retrieving Backup If you want to abandon changes made during a development session and
reload the backup copy made at the start of the session, then select Revert to
Backup from the Project Menu.

Downloading Firmware The Motion Controller series feature a flash-EPROM for storage of both user
programs and the system software. From Motion Perfect it is possible to
upgrade the software to a newer version using a system file.
Select the 'Load System Software' option from the controller menu and a
warning dialog will be presented to ensure the current project has been saved
the user wishes to continue. Press OK and select the file which needs to be
loaded.

!WARNING Each Motion Controller has its own system file, identified by the first letter of
the file name. Please ensure to only load software designed for the specific
controller.

Downloading will take several minutes, depending on the speed of the per-
sonal computer. When the download is complete, a checksum is performed to
ensure that the download process was successful, and a confirmation screen
will be presented to store the software into EPROM. The controller will take a
few moments to store the software into the EPROM.

!WARNING During the process of storing the software into EPROM the power may
NEVER be interrupted. If power is interrupted the MC Unit may disfunction
and has to be returned to OMRON for re-initialisation.

If the storing has been completed the unit is back to normal operation. At this
point you can check the controller configuration to confirm the new software
version.

179

SECTION 7
Troubleshooting

This section provides procedures on troubleshooting problems that may arise with the MC Unit.

7-1 Problems and Countermeasures . 180
7-2 Error Indicators . 184
7-3 Error Handling . 184
7-4 CPU Unit Error Flags and Control Bits . 187

180

Problems and Countermeasures Section 7-1

7-1 Problems and Countermeasures
The following table shows possible problems which may occur and the possi-
ble solution.

No. Problem Probable causes Items to check Remedy

1 None of the CPU
Unit’s indicators
are lit when the
power is turned
ON.

Power supply lines are wired
incorrectly.

Check the power supply wiring. Correct the power supply wir-
ing.

2 The power supply voltage is
low.

Check the power supply volt-
age.

Check the power supply
capacity and correct the
power supply.

3 An internal fuse has blown. Check the fuses. Replace the fuse and deter-
mine what caused it to blow.
(Refer to the troubleshooting
section in the applicable CPU
Unit operation manual).

4 The power supply is defective. Check the power supply. Replace the power supply.

5 None of the MC
Unit’s indicators
are lit.

The power supply capacity is
insufficient.

Add up the power supply capac-
ity for all of the Units mounted to
the same Backplane, including
the CPU Unit, and compare that
to the power supply capacity of
the Power Supply Unit. If the
combined capacity of the Units
is greater than that of the Power
Supply Unit, then they cannot
be properly used.

Increase the power supply
capacity.
Change the configuration so
that the power supply capac-
ity at the Backplane is not
exceeded.

6 The MC Unit is defective. --- Replace the MC Unit.

7 Motion Perfect
cannot connect
to the MC Unit.

Serial communications cable is
not connected properly.

Check the cable connection and
wiring.

Correct the cable wiring.
Replace cable if necessary.

8 Motion Perfect serial communi-
cations settings are different
from the MC Unit settings.

Check Motion Perfect settings. Correct the settings or set the
settings to default and reset
the MC Unit. Default settings
of the Unit is 9600 baud,
even parity and two stop bits.

9 A program is running which is
printing to the port and interfer-
ing Motion Perfect’s protocol.

Check the MC Unit by using a
VT100 Terminal.

Stop the program (verify if it
is safe to do so) by giving
command HALT or STOP.

10 The MC Unit is defective --- Replace the MC Unit.

11 Driver cannot be
enabled.

The MC Unit is not operating. Is the RUN indicator lit? Check No. 5

12 The wiring is incorrect between
the MC Unit and the Servo
Driver.

Check the wiring with a tester.
Change the connecting cables.

Correct the wiring.

13 A Servo Driver alarm has been
generated.

Check the contents of the Servo
Driver alarm.

If there is an alarm, follow the
instructions.

14 The MC Unit is defective. --- Replace the MC Unit.

181

Problems and Countermeasures Section 7-1

15 Motor is not turn-
ing.

The Servo Driver is not
enabled.

Check the MC Unit to see
whether the Driver is enabled
and the servo loop active
(WDOG and SERVO parame-
ters).
Check whether the Servo Driver
is operating.

Correct the MC Unit settings.
Correct the Servo Driver
operation.

16 The wiring is incorrect between
the MC Unit and the Servo
Driver.

Check the wiring with a tester.
Change the connecting cables.

Correct the wiring.

17 A run prohibit input (limit
switch), such is P-OT or N-OT,
is ON for a U-series Servo
Driver.

Check the run prohibit inputs. Turn OFF the Servo Driver
run prohibit input.
Make the setting so that the
Servo Driver run prohibit
inputs will not be used.

18 The Servo Driver is not in the
correct (speed control) mode
(and is not receiving MC Unit
speed reference).

Check the Servo Driver set-
tings.

Correct the Servo Driver set-
tings.

19 The mechanical axis is locked. Check whether there is a
mechanical limit or lock in
effect.

Manually release the
mechanical lock.

20 The MC Unit is defective. --- Replace the MC Unit.

21 Rotation is
reversed.

The Servo Driver is set for
reverse rotation.

Check whether the Servo Driver
is set for reverse rotation by jog-
ging.

Correct the setting for the
direction of Servo Driver rota-
tion.

22 The feedback signal (phase A/
B) is reversed.

Check whether the feedback
signal (phase A/B) is reversed.

Correct the wiring.

23 The PP_STEP parameter set-
ting is set for reverse rotation.

Check whether the parameter is
set for reverse rotation (is nega-
tive).

Correct the parameter value.

24 There are
unusual noises.

The machinery is vibrating. Check for foreign objects in the
machinery’s moving parts, and
inspect for damage, deforma-
tion, and looseness.

Make any necessary repairs.

25 The speed loop gain is insuffi-
cient. (The gain is too high.)

--- Perform autotuning.
Manually adjust (decrease)
the gain.

26 The wrong Servomotor is
selected (so it cannot be
adjusted).

Check the torque and inertia
ratings and select another Ser-
vomotor.

Change to a suitable Servo-
motor.

27 There is eccentricity in the cou-
plings connecting the Servomo-
tor axis and the mechanical
system.

--- Adjust the mounting of the
Servomotor and machinery.

No. Problem Probable causes Items to check Remedy

182

Problems and Countermeasures Section 7-1

28 Motor rotation is
unstable.

The parameters are set incor-
rectly.

Check the MC Unit parameters
with Motion Perfect.

Set the parameters correctly
and modify the initialisation
program accordingly.

29 The Servo Motor power lines
and encoder lines are wired
incorrectly.

Check the Servo Motor power
lines and encoder lines.

Correct the wiring.

30 The speed reference (VREF_0,
VREF_1, VREF_2, VREF_3)
polarity is wrong.

Check the speed reference wir-
ing.

Correct the wiring.

31 There is eccentricity in the cou-
plings connecting the Servomo-
tor axis and the mechanical
system. There may be loose
screws or load torque fluctua-
tion due to the meshing of pul-
ley gears.

Check the machinery. Try turn-
ing the motor with no load (i.e.,
with the machinery removed
from the coupling).

Adjust the machinery.

32 The gain adjustment is insuffi-
cient.

--- Execute Servomotor autotun-
ing.
Manually adjust the Servo-
motor gain.
Adjust the servo control
parameters with Motion Per-
fect.

33 The wrong Servomotor is
selected (so it cannot be
adjusted).

Check the torque and inertia
ratings and select another Ser-
vomotor.

Change to a suitable Servo-
motor.

34 The Servomotor bearings are
damaged.

Turn OFF the Servo Driver
power. If the Servomotor has a
brake, turn ON the brake power
supply and release the brake,
and then manually turn the
motor’s output axis with the
motor’s power line discon-
nected (because the dynamic
brake may be applied).

Replace the Servomotor.

35 The Servomotor windings are
disconnected.

With a tester, check resistance
between the Servomotor’s U, V
and W power lines. There
should be a proper balance
between the line resistances.

Replace the Servomotor.

36 Vibration is
occurring at the
same frequency
as the application
frequency.

Inductive noise is being gener-
ated.

Check whether the Servo Driver
control signals are too long.
Check whether the control sig-
nal lines and power lines are
bundled together.

Shorten the control signals.
Separate the control signal
lines and the power lines.
Use a low-impedance power
supply for the control signal
lines.

37 The control signals are not
properly grounded.

Check whether the control sig-
nal shield is properly grounded
at the Servo Driver.
Check whether the control sig-
nal lines are in contact with
ground.

Correct the wiring.

38 Twisted-pair or shielded cable
is not being used between the
MC Unit and the Servo Driver.

Check whether twisted-pair
cables are used for the encoder
signals and speed references,
and whether the cables are
shielded.

Use twisted-pair and shielded
cable as in the wiring exam-
ples.

No. Problem Probable causes Items to check Remedy

183

Problems and Countermeasures Section 7-1

39 The motor axis is
vibrating
unsteadily.

The gain adjustment is insuffi-
cient. (The gain is too low.)

--- Perform autotuning.
Manually adjust (increase)
the gain.

40 The gain cannot be adjusted
because the mechanical rigidity
is too weak.

This particularly tends to occur
in systems with vertical axes,
scalar robots, palletisers, and
so on, which place a torsion
load on the axes.

Increase the mechanical rgid-
ity.
Re-adjust the gain.

41 The mechanical structure is
producing stick slip (high vis-
cosity statical friction).

--- Perform autotuning.
Manually adjust the gain.

42 The wrong Servomotor is
selected (so it cannot be
adjusted).

Check the torque and inertia
ratings and select another Ser-
vomotor.

Change to a suitable Servo-
motor.

43 The Servomotor or Servo Driver
is defective.

--- Replace the Servomotor or
the Servo Driver.

44 There is slip-
page in position-
ing.

The slippage is not constant.
Malfunction due to noise.

Is shielded cable being used? Use shielded cable.

45 The shield is not properly
grounded at the Servo Driver.

Check the ground wiring. Correct the wiring.

46 The MC Unit’s output power
supply is not separated from
other power supplies.

Check whether the MC Unit’s
output power supply is sepa-
rated from other power sup-
plies.

Separate the MC output sup-
ply from other power sup-
plies.

47 Install a noise filter at the pri-
mary side of the MC Unit’s
output power supply.

48 Ground the MC Unit’s output
power supply

49 The cable between the MC Unit
and the Servomotor is too long.

Check whether the cable is two
meters or less.

The maximum cable length is
two meters.

50 Twisted-pair cable is not being
used for the pulse outputs.

Check whether twisted-pair
cable is being used for the
pulse outputs. (The connected
voltage is 0 V or 5/24 VDC.)

Use twisted-pair cable for
pulse outputs.

51 The cable between the MC Unit
and the Servo Driver is not sep-
arated from other power lines.

Check whether the cable is sep-
arated from other power lines.

Separate the cable from
other power lines.

52 The cable between the MC Unit
and Servo Driver is too long.

Check whether the cable is two
meters or less.

The maximum cable length is
two meters.

53 There is malfunctioning due to
noise from a welding machine,
inverter, etc.

Check whether there is a device
such as a welding machine or
inverter nearby.

Separate the Unit from the
noise source.

54 There is slippage in the
mechanical system.

Check for slippage by marking
the mechanical connections.

Tighten the connections.

No. Problem Probable causes Items to check Remedy

184

Error Indicators Section 7-2

7-2 Error Indicators
The following errors are displayed at the LED indicators at the top of the MC
Unit’s front panel.

7-3 Error Handling
Motion error The motion coordinator is designed to trap error conditions in hardware, and if

required to automatically disable the drive and outputs to the drive. As this
happens automatically, it may not be immediately apparent that an error has
occurred and therefore there are some software flags which identify the situa-
tion.
A motion error occurs when the AXISSTATUS state for one of the axes
matches the ERRORMASK parameter setting. In this case the enable relay
(WDOG) will be turned OFF, the MOTION_ERROR parameter will have
value 1 and the ERROR_AXIS parameter will contain the number of the first
axis to have the error. As a result of the WDOG turning OFF, the speed refer-
ence signals of the axes will be set to zero. The relevant parameters are
again given here.

RUN DISABLE Error Remedy

ON --- (Normal) ---

OFF OFF The MC Unit is defective. Replace the MC Unit.

Flashing --- The battery voltage is
low.

Replace the battery.

--- Flashing The following error has
exceeded the limit. The
Servo Drives have been
disabled.

Check what caused the
error, correct the problem
and restart application.

Flashing Flashing One of the following
errors occurred in the
configuration of MC Unit
and CPU Unit:
Illegal unit number
Unit number duplication
Cyclic initial error
Unit number setting error

Set the correct unit num-
ber and turn ON the
power again.

Parameter Description

WDOG WDOG controls the enable relay which enables the drivers. In
case of a motion error this enable relay will be disabled.

AXISSTATUS AXISSTATUS contains the status bits of an axis.

ERRORMASK ERRORMASK is bit wise ANDed with the AXISSTATUS to
determine whether a motion error has occurred and the driver
enable should be set OFF. The default value of ERRORMASK
is 256 (i.e. bit 8 set) which implies a motion error occurs if fol-
lowing error exceeds limits.

MOTION_ERROR The MOTION_ERROR parameter will be ON when a motion
error has occurred.

ERROR_AXIS The ERROR_AXIS parameter contains the number of the axis
for which a motion error has occurred.

185

Error Handling Section 7-3

Run-time BASIC Errors Run-time BASIC errors will stop the program or will go into the error routine as
defined by BASICERROR. The following parameters are relevant when
checking a run-time error.

The table below shows a list of the different types of BASIC run-time errors
which are detected.

Parameter Description

BASICERROR The BASICERROR command traps the error and allows the
control of the program to go to an error handling routine

ERROR_LINE The ERROR_LINE parameter which shows which line in the
program has encountered the error.

RUN_ERROR The RUN_ERROR shows the identity number of the actual
error.

Error No. Message Displayed

1 Command not recognized

2 Invalid transfer type

3 Error programming Flash

4 Operand expected

5 Assignment expected

6 Quotes expected

7 Stack overflow

8 Too many named variables

9 Divide by zero

10 Extra characters at end of line

11] expected in PRINT

12 Cannot modify a special program

13 THEN expected in IF

14 Error erasing Flash

15 Start of expression expected

16) expected

17 , expected

18 Command line broken by ESC

19 Parameter out of range

20 No process available

21 Parameter is read only

22 Modifier not allowed

23 DriveLink axis is in use

24 Command is command line only

25 Command runtime only

26 LABEL expected

27 Program not found

28 Duplicate label

29 Program is locked

30 Program(s) running

31 Program stopped

32 Cannot select program

33 No program selected

34 No more programs available

35 Out of memory

36 No code available to run

37 Command out of context

186

Error Handling Section 7-3

38 Too many nested structures

39 Structure nesting error

40 ELSE/ENDIF without previous IF

41 WEND without previous WHILE

42 UNTIL without previous REPEAT

43 Variable expected

44 TO expected if FOR

45 Too many nested FOR/NEXT

46 NEXT without FOR

47 UNTIL/IDLE expected after WAIT

48 GOTO/GOSUB expected

49 Too many nested GOSUB

50 RETURN without GOSUB

51 LABEL must be at start of line

52 Cannot nest one line IF commands

53 LABEL not found

54 Line number cannot have decimal point

55 Cannot have multiple instances of REMOTE

56 Invalid use of $

57 VR(x) expected

58 Program already exists

59 Process already selected

60 Duplicate axes not permitted

61 PLC type is invalid

62 Evaluation error

63 Reserved keyword not available on this controller

64 Label not found

65 Table index range error

66 Table is full

67 Invalid line number

68 String exceeds permitted length

69 Scope period should exceed number of Ain params

70 Value is incorrect

71 Invalid I/O channel

72 Value cannot be set.

73 Directory not locked

74 Directory already locked

75 Program not running on this process

76 Program not running

77 Program not paused on this process

78 Program not paused

79 Command not allowed when running Motion Perfect

80 Directory structure invalid

81 Directory is locked

82 Cannot edit program

Error No. Message Displayed

187

CPU Unit Error Flags and Control Bits Section 7-4

PC Transfer Error Flag The PC Transfer Error Flag in the PC’s IR/CIO area will be set for a IORD/
IOWR instruction in the following cases:

• The control code of the IORD/IOWR instruction is not valid for the MC
Unit.

• The amount of words transferred is not a multiple of three for three-word
format transfer.

• The MC Unit’s Table or VR address in combination with the amount of
data is invalid.

• There is an overflow due to several IORD/IOWRs instructions and BASIC
commands PLC_WRITE/PLC_READ.

7-4 CPU Unit Error Flags and Control Bits
The PC error flags in the following tables will indicate the following errors.

• Duplicate unit numbers on Special I/O Units
• Refreshing between the CPU Unit and Special I/O Unit did not proceed

normally.
To restart a Special I/O Unit, toggle the corresponding Restart Bit shown in
the tables. These bits can be used to restart the Unit without turning off the
power supply.

C200HX/HG/HE PCs

C200HS PCs

CS1 PCs

Address Function

SR 25415 ON when an error occurs in a Special I/O Unit.

SR 282 bit i ON when an error occurs in Unit i

SR 281 bit i Restarts Unit i

Address Function

SR 25415 ON when an error occurs in a Special I/O Unit.

AR 00 bit i ON when an error occurs in Unit i

AR 01 bit i Restarts Unit i

Address Function

A40202 ON when an installed Unit does not match the Unit registered
in the I/O table.

A42800 to A43315 Specifies the corresponding Unit number 0 to 95 when the Unit
does not match the Unit registered in the I/O table.

A40206 ON when an error occurs in the data exchange with a Unit.

A41800 to A42315 Specifies the corresponding Unit number 0 to 95 when an error
occurs in the data exchange with the Unit.

A50200 to A50715 Restarts Units 0 to 95.

189

SECTION 8
Maintenance and Inspection

This section explains the maintenance and inspection procedures that must be followed to keep the MC Unit operating in
optimum condition. It also includes proper procedures when replacing an MC Unit or battery.

8-1 Routine Inspections. 190
8-2 Handling Precautions . 191

8-2-1 Procedure for Replacing an MC Unit . 191
8-2-2 Procedure for Replacing a Battery . 192

190

Routine Inspections Section 8-1

8-1 Routine Inspections
In order for your MC Unit to continue operating at optimum condition, periodic
inspections are necessary. The main components of the Unit are semicon-
ductors and have a long service life, but depending on the operating environ-
ment, there may be more or less deterioration of these and other parts. A
standard inspection schedule is once every six months to one year. More fre-
quent inspections may be advisable depending on the operating environment.
Maintain the inspection schedule once it has been set.

Inspection Points Check to be sure that the power supply, ambient temperature, humidity, and
other specifications are within the specifications. Be sure that there are no
loose screws and that all battery and cable connections are secure. Clean
any dust or dirt that has accumulated.

Item Inspection points Criteria Remarks

I/O Power
Supply

Measure the voltage variations at
the I/O power supply terminal block.
Do they meet the standards?

24 VDC: 20.4 to 26.4 VDC With a voltage tester, check
between the terminals and make
sure that the power supply falls
within the acceptable range.

Installation
and wiring

Is the MC Unit securely mounted? There must be looseness. With a Phillips screwdriver, tighten
all mounting screws.

Are the cable connectors properly
inserted and locked?

Carefully insert and lock all cable
connectors.

Are there any loose screws in the
external wiring?

With a Phillips screwdriver, tighten
all screws in the external wiring.

Are any crimp terminals for external
wiring too close together?

There must be sufficient dis-
tance between them.

Do a visual check and separate the
terminals as required.

Are any external cables discon-
nected?

There must be no external
abnormalities.

Do a visual check and connect or
replace cables as required.

Environment
conditions

Is the ambient temperature within
the acceptable range? (When used
in a panel, the ambient temperature
inside the panel must be checked.)

0 to 55°C With a thermometer, check the
ambient temperature inside the
panel and make sure that it falls
within the acceptable range.

Is the ambient humidity within the
acceptable range? (When used in a
panel, the ambient temperature
inside the panel must be checked.)

10% to 90% RH (with no con-
densation)

With a hydroscope, check the
ambient humidity inside the panel
and make sure that it falls within the
acceptable range.

Is the Unit exposed to direct sun-
light?

It must not be exposed to
direct sunlight.

Shield the Unit from direct sunlight.

Is there any accumulation of dust
(especially iron dust) or salts?

There must be none of these
present.

Remove any accumulation of dust
or salts and protect against them.

Is the Unit exposed to any spray of
water, oil, or chemicals?

It must not be exposed to any
of these.

Protect the Unit from water, oil, and
chemicals.

Is the location subject to corrosive
or flammable gases?

The Unit must not be exposed
to these.

Check for smells or use a gas sen-
sor.

Is the location subject to shock or
vibration?

The amount of shock or vibra-
tion must be within the
acceptable ranges given in
the specifications.

Install a cushion or other device to
reduce shock and vibration.

Is the location near any source of
noise?

There must be no noise. Remove the Unit from the noise
source or apply countermeasures.

191

Handling Precautions Section 8-2

Required Tools The following tools, materials, and equipment are required when performing
an inspection.

• Phillips screwdriver
• Voltage tester or digital voltage meter
• Industrial alcohol and a clean cotton cloth
• Synchroscope
• Oscilloscope
• Thermometer
• Hydrometer

8-2 Handling Precautions
• Turn OFF the power before replacing the Unit.
• If a Unit is found to be faulty and is replaced, check the new Unit again to

ensure there are no errors.
• When returning a faulty Unit for repair, make a detailed record of the

Unit’s malfunction and take it together with the Unit to your nearest
OMRON office or sales representative.

• If a contact is not good, put some industrial alcohol on a clean cotton cloth
and wipe the surface. After doing this, install the Unit.

• Before restarting operation, transfer the required programs and (position)
data to the MC Unit that was changed, and save them to the flash mem-
ory.

8-2-1 Procedure for Replacing an MC Unit
Use the following procedure when it is necessary to replace an MC Unit.

1,2,3... 1. Make a note of the unit number of the MC Unit to be replaced.
2. To retain the status of the MC Unit that is to be replaced, use Motion Per-

fect to check the project of the Unit and to have a local copy saved on the
personal computer.

3. Turn OFF the power supply.
4. Replace the MC Unit, and reconnect the wiring as before.
5. Set the unit number for the MC Unit.
6. Turn ON the power supply to the PC.
7. Clear all the programs in the MC Unit.
8. Download all of the programs and data to the MC Unit, and save the pro-

grams in flash memory.

Installation
and wiring

Is the MC Unit securely mounted? There must be looseness. With a Phillips screwdriver, tighten
all mounting screws.

Are the cable connectors properly
inserted and locked?

Carefully insert and lock all cable
connectors.

Are there any loose screws in the
external wiring?

With a Phillips screwdriver, tighten
all screws in the external wiring.

Are any crimp terminals for external
wiring too close together?

There must be sufficient dis-
tance between them.

Do a visual check and separate the
terminals as required.

Are any external cables discon-
nected?

There must be no external
abnormalities.

Do a visual check and connect or
replace cables as required.

Item Inspection points Criteria Remarks

192

Handling Precautions Section 8-2

8-2-2 Procedure for Replacing a Battery
Battery Type Type: Sonnenschein Lithium 1/2 AA

Model: SL-350/S
The battery in the MC Unit has a life expectancy of 5 years at an ambient tem-
perature of 25°C, whether or not the MC Unit is connected to electricity. The
life time will be shorter at higher ambient temperatures.

Replacing Battery When the battery voltage begins to fail, the RUN indicator will start flashing,
the BATTERY_LOW parameter will be set to TRUE and the Low Battery Flag
bit the IR/CIO area will be turned ON. Replace the battery as outlined below
within 1 week.

1,2,3... 1. Be sure that the programs have been saved either in flash memory or on
disk.

2. Turn OFF the power.
3. Remove the two retaining screws at the back of the MC Unit.
4. Remove the back cover of the MC Unit.
5. Slide the controller boards out of its case.
6. Undo the screws at the pillars holding the two boards together.
7. Gently separate the two boards from each other. Do not damage the inter-

board connector.
8. Remove the old battery and replace it with the new one. This operation

must be completed within 5 minutes.
9. Put the two boards back together again. Again, do not damage the inter-

board connector.
10. Tighten the screws at the retaining pillars.
11. Gently slide the controller boards back into the sleeve until they are prop-

erly home.
12. Replace the back cover of the MC Unit.
13. Replace and tighten the retaining screws.

193

Appendix A
Upgrading from C200HW-MC402-UK

This appendix provides further details on the changes that have been made for the C200HW-MC402-E in com-
parison with the C200HW-MC402-UK Unit. As indicated in 1-6 Comparison with C200HW-MC402-UK, the
C200HW-MC402-E is not fully backward compatible. Please read this appendix carefully when upgrading from
the C200HW-MC402-UK to the C200HW-MC402-E Unit.
In general programs created on the C200HW-MC402-UK will run on the C200HW-MC402-E without modifica-
tion. In some cases detailed operation may differ or modification of the program may be required. Please
review the application for the items listed below.

BASIC Programming Language
It is strongly recommended to fully re-test the application programs when upgrading to the C200HW-MC402-E.
The programs need to be checked for the changes in BASIC command, functions and parameters. In particular
review routines containing or related to any of the following:

• The INDEVICE and OUTDEVICE parameters are not supported for the C200HW-MC402-E. Programs
must be modified adopting the #n argument for the GET, INPUT, KEY and LINPUT functions. The PRINT
function has port 0 as default.

• The performance and error handling for many of the commands, functions and parameters have been
improved. In most cases this concerns improvement of argument checking and error handling. Functional
specifications are not changed unless mentioned explicitly. Nevertheless the changes could affect detailed
operation of an application, in particular in user error-handling or data-validation routines. Such routines
should therefore be re-verified for correct operation.

• The following commands are used by the Motion Perfect software and are not intended for direct use in
user programs.

They are therefore removed from the user manual. The commands can however still be used from within
user programs and their functionality is unchanged from that in the C200HW-MC402-UK. However, it is
recommended to remove these commands from user programs and execute the functions via Motion Per-
fect.

• The PC interface BASIC commands PLC_READ and PLC_WRITE and PC instructions IORD and IOWR
have been modified to enable new features which may be used to improve or simplify communication with
the PC. The commands are however backward compatible with the C200HW-MC402-UK.

Execution Time
The execution time for BASIC commands has been improved. The C200HW-MC402-E has faster memory,
which leads to lower memory access times for the system. For existing applications this will normally not cause
problems unless the application is programmed in such a way that application timing depends on BASIC exe-
cution time (for example when using WHILE/WEND or FOR/NEXT loops for time-delay construction).

Cyclic Servo Period
The cyclic servo period, which was adjustable for the C200HW-MC402-UK, has been fixed to the value of
1 ms. This means change of servo period is no longer supported. It will usually not be necessary to change the
BASIC program as the SERVO_PERIOD parameter still accepts assignment of any value. SERVO_PERIOD
will however always return value 0.001 (1 ms) and actual servo period will not be changed.

APPENDPROG INPUTS1

AXISVALUES LOADSYSTEM

EX MPE

INPUTS0 STORE

194

Upgrading from C200HW-MC402-UK Appendix A

The main purpose of the adjustable servo period was to allow change of the time-slicing for the various BASIC
tasks so that overall performance could be improved (in particular for serial communications). In the C200HW-
MC402-E this is no longer necessary because of the improved serial communications handling and BASIC
execution times.

Allocated IR/CIO Area Words
The allocation of the IR/CIO area words have been changed for the C200HW-MC402-E in relation to the
C200HW-MC402-UK. This has two effects:

• The PCs I/O Table needs to be re-registered when the MC Unit is replaced by a C200HW-MC402-E.
• All (PC-)programs which are using the IR/CIO area words must be updated. The following guidelines can

be used:
• The C200HW-MC402-UK status words (IR/CIO address n to n+5) have been shifted two words up (n+2

to n+7). See the figure below. For example, the Unit operating flag for the C200HW-MC402-UK on unit
number 0 can be found on 100.00 and the same bit for the C200HW-MC402-E on unit number 0 can be
found on 102.00.

• The functionality of the axis origin flags (addresses n+5 and n+6, bits 03 and 11 for C200HW-MC402-E)
has been modified. The bits will be set for the complete origin search (DATUM) sequence of the corre-
sponding axis.

Please refer to SECTION 3 PC Data Exchange for further details on the IR/CIO area allocation of the
C200HW-MC402-E.

User-defined Serial Communications
The serial communications interface has been modified internally and the C200HW-MC402-E requires that
Programming Port A will only be used for programming purposes with Motion Perfect or VT100 Terminal. It is
therefore strongly recommended to use serial port B for user-defined serial communication.
User-defined communication via Port A is still supported but acceptable performance must be verified thor-
oughly as the new setup may cause problems like missing or extra input characters during user-defined com-
munication. If problems occur, running the program task on a higher priority may improve the operation.

Compatible Software
For configuring the C200HW-MC402-E, Motion Perfect version 2.0 (or up) needs to be used. Older versions
will not recognize the Unit. Motion Perfect 2.0 (or up) is compatible with the C200HW-MC402-UK. Programs
and projects created under Motion Perfect 1.x can be used with Motion Perfect 2.0 without modification.

}
C200HW-MC402-UK

6 words
Status
Input

IR
area

PC

}
C200HW-MC402-E

}2 words

8 words

Transfer
Output

Status
Input

Transfer
Input

IR/CIO
area

PC

Word x bit i (C200HW-MC402-UK) Word x 2 bit i (C200HW-MC402-E)+�

195

Appendix B
PC Interface Area Lists

PC Interface Area Outputs (CPU Unit to MC Unit)

PC Interface Area Inputs (MC Unit to CPU Unit)

Output
word

Bit Name Function

n 00 to 15 Output Word 1 First transfer output word.

n + 1 00 to 15 Output Word 2 Second transfer output word.

Input word Bit Name Function

n + 2 00 Unit Operating Flag OFF: MC Unit is not operating. ON: MC Unit is operating.

01 Motion Error Flag OFF: No error. ON: A motion error has occurred.

02 Task 1 Flag OFF: Task1 is inactive. ON: Task 1 is active.

03 Task 2 Flag OFF: Task 2 is inactive. ON: Task 2 is active.

04 Task 3 Flag OFF: Task 3 is inactive. ON: Task 3 is active.

05 Task 4 Flag OFF: Task 4 is inactive. ON: Task 4 is active.

06 Task 5 Flag OFF: Task 5 is inactive. ON: Task 5 is active.

07 PC Transfer Busy Flag ON: The MC Unit is exchanging data with the PC Unit.

08 to 15 Digital Input Status Flags Indicate the status of digital inputs 0 to 7.

n + 3 00 to 15 Digital Input Status Flags Indicate the status of the digital inputs 8 to 23.

n + 4 00 to 15 Digital Output Status
Flags

Indicate the status of digital outputs 8 to 23.

n + 5 00 Axis 0 Following Error
Warning Limit Flag

ON: The warning limit was exceeded for the following error for axis 0.

01 Axis 0 Forward Limit Flag ON: A forward limit is set for axis 0.

02 Axis 0 Reverse Limit Flag ON: A reverse limit is set for axis 0.

03 Axis 0 Origin Search Flag ON: An origin search is in progress for axis 0.

04 Axis 0 Feedhold Flag ON: A feedhold is set for axis 0.

05 Axis 0 Following Error
Limit Flag

ON: The limit was exceeded for the following error for axis 0.

06 Axis 0 Software Forward
Limit Flag

ON: The software forward limit was exceeded for axis 0.

07 Axis 0 Software Reverse
Limit Flag

ON: The software reverse limit was exceeded for axis 0.

08 Axis 1 Following Error
Warning Limit Flag

ON: The warning limit was exceeded for the following error for axis 1.

09 Axis 1 Forward Limit Flag ON: A forward limit is set for axis 1.

10 Axis 1 Reverse Limit Flag ON: A reverse limit is set for axis 1.

11 Axis 1 Origin Search Flag ON: An origin search is in progress for axis 1.

12 Axis 1 Feedhold Flag ON: A feedhold is set for axis 1.

13 Axis 1 Following Error
Limit Flag

ON: The limit was exceeded for the following error for axis 1.

14 Axis 1 Software Forward
Limit Flag

ON: The software forward limit was exceeded for axis 1.

15 Axis 1 Software Reverse
Limit Flag

ON: The software reverse limit was exceeded for axis 1.

196

PC Interface Area Lists Appendix B

n + 6 00 Axis 2 Following Error
Warning Limit Flag

ON: The warning limit was exceeded for the following error for axis 2.

01 Axis 2 Forward Limit Flag ON: A forward limit is set for axis 2.

02 Axis 2 Reverse Limit Flag ON: A reverse limit is set for axis 2.

03 Axis 2 Origin Search Flag ON: An origin search is in progress for axis 2.

04 Axis 2 Feedhold Flag ON: A feedhold is set for axis 2.

05 Axis 2 Following Error
Limit Flag

ON: The limit was exceeded for the following error for axis 2.

06 Axis 2 Software Forward
Limit Flag

ON: The software forward limit was exceeded for axis 2.

07 Axis 2 Software Reverse
Limit Flag

ON: The software reverse limit was exceeded for axis 2.

08 Axis 3 Following Error
Warning Limit Flag

ON: The warning limit was exceeded for the following error for axis 3.

09 Axis 3 Forward Limit Flag ON: A forward limit is set for axis 3.

10 Axis 3 Reverse Limit Flag ON: A reverse limit is set for axis 3.

11 Axis 3 Origin Search Flag ON: An origin search is in progress for axis 3.

12 Axis 3 Feedhold Flag ON: A feedhold is set for axis 3.

13 Axis 3 Following Error
Limit Flag

ON: The limit was exceeded for the following error for axis 3.

14 Axis 3 Software Forward
Limit Flag

ON: The software forward limit was exceeded for axis 3.

15 Axis 3 Software Reverse
Limit Flag

ON: The software reverse limit was exceeded for axis 3.

n + 7 00 Task 1 BASIC Error Flag ON: An error occurred in the BASIC program in task 1.

01 Task 2 BASIC Error Flag ON: An error occurred in the BASIC program in task 2.

02 Task 3 BASIC Error Flag ON: An error occurred in the BASIC program in task 3.

03 Task 4 BASIC Error Flag ON: An error occurred in the BASIC program in task 4.

04 Task 5 BASIC Error Flag ON: An error occurred in the BASIC program in task 5.

05 Low Battery Flag ON: The voltage of the backup battery is low.

06 Not used ---

07 PC Transfer Error Flag ON: An error has occurred during data transfer between MC Unit and
PC Unit.

08 to 15 Indicator Mode Contains the value of the DISPLAY system parameter, which deter-
mines the display mode of the bank of the 8 LED indicators on the
front panel. Refer to 5-3-53 DISPLAY for details.

n + 8 00 to 15 Input Word 1 First transfer input word.

n + 9 00 to 15 Input Word 2 Second transfer input word.

Input word Bit Name Function

197

Appendix C
Programming Examples

Example 1: Turning an Output ON and OFF Every 100ms
The following code controls output 10 to go on and off every 100 ms. The DISPLAY parameter is included to
show the blinking on the MC Unit’s LED indicators.

DISPLAY = 5
loop:

OP(10, ON)
WA(100)
OP(10, OFF)
WA(100)
GOTO loop

Example 2: Flashing MC Unit Outputs
The following code will sequentially step through all available outputs on the MC Unit and flash them for 0.5
seconds each

start:
FOR a = 8 TO (NIO-1)

OP(a, ON)
WA(500)
OP(a, OFF)

NEXT a
GOTO start

Example 3: Turning ON Outputs
The following code will sequentially step through all available outputs on the MC Unit and turn them ON only
when input 0 is ON.

start:
FOR a = 8 TO 15

WAIT UNTIL IN(0) = ON
OP(a, ON)
WAIT UNTIL IN(0) = OFF
OP(a, OFF)

NEXT a
GOTO start

Example 4: Positioning a Rotary Table
A rotary table must stop at one of 8 equally spaced positions according to the value of a thumbwheel input
(inputs 4 to 7). The table will not move until a start button is pressed (input 15).

start:
WAIT UNTIL IN(15) = ON
WAIT UNTIL IN(15) = OFF
GOSUB get_tws

MOVEABS(45 * tw_value)
WAIT IDLE
GOTO start

get_tws:
tw_value = IN(4,7)
RETURN

198

Programming Examples Appendix C

Example 5: Positioning with Product Detection
A ballscrew is required to move forward at a creep speed until it reaches a product, at which point a
microswitch (IN(2)) is turned ON. The ballscrew is stopped immediately, the position at which the product was
sensed is indicated and the ballscrew is returned at a rapid speed back to the start position.

start:
IF (IN(1) = ON) THEN WAIT UNTIL IN(8) = OFF
WAIT UNTIL IN(1) = ON
SPEED = 10

FORWARD
WAIT UNTIL IN(2) = ON

prod_pos = MPOS
CANCEL
WAIT IDLE

PRINT "Product Position : "; prod_pos
SPEED = 100
MOVEABS(0)
WAIT IDLE
GOTO start

Example 6: Positioning on a Grid
A square palette has sides 1m long. It is divided into a 5 x 5 grid, and each of the positions on the grid contains
a box which must be filled using the same square pattern of 100mm by 100mm. A dispensing nozzle controlled
by digital output 8 must be turned ON when filling the box and OFF at all other times.

nozzle = 8

start:
FOR x = 0 TO 4

FOR y = 0 TO 4
MOVEABS(x*200, y*200)
WAIT IDLE
OP(nozzle, ON)
GOSUB square_rel
OP(nozzle, OFF)

NEXT y
NEXT x
GOTO start

square_rel:
MOVE(0, 100)
MOVE(100, 0)
MOVE(0, -100)
MOVE(-100,0)
WAIT IDLE
WA(1000)
RETURN

Example 7: Synchronising Cutter Movement
A flying shear cutter is required to synchronise with a continuously moving web and to cut a roll of paper every
5m:

• The cutter (axis 1) can move a total of 600mm. We use a maximum 500mm of this travel.
• The blade is operated by a solenoid which is switched by digital output 8.
• The blade must be operated mid-way through the cutter motion.
• The cutter must synchronise to cut, and return to its start position all within not more than 80% of the

repeat cycle.

199

Programming Examples Appendix C

To ensure that speeds and positions of the cutter and paper match during the cut process, the arguments of
the MOVELINK command must be correct. It is normally easiest to consider the acceleration, constant speed
and deceleration phases separately and then combine them as required.

start:
UNITS AXIS(0) = 5000 ’Meters
UNITS AXIS(1) = 5000
BASE(0)
FORWARD

loop:
BASE(1)
MOVELINK(0, 4, 0, 0, 0) ’Wait distance

MOVELINK(0.1, 0.2, 0.2, 0, 0) ’Accelerate
MOVELINK(0.3, 0.3, 0, 0, 0) ’Match speed
MOVELINK(0.1, 0.2, 0, 0.2, 0) ’Decelerate

MOVELINK(-0.5, 5, 3, 3, 0) ’Move back
GOTO loop

The middle MOVELINK commands can be done in one move using the following line.
MOVELINK(0.5, 0.7, 0.2, 0.2, 0)

Example 8: Generating Smooth High-speed Profiles
It is often desirable to generate a smooth profiled move for the maximum operational speed in high-speed
machines. An optimal profile for this is a sine squared:

y= mx - n(sin(x))
In this example we work in radians.

start:
GOSUB filltable
BASE(0)
SPEED = 200
FORWARD
BASE(1)

loop:
CAMBOX(0,36,1,100,0)
WAIT IDLE
WA(1000)
GOTO loop

filltable:
num_p = 37
scale = 2000
FOR p=0 TO num_p
TABLE(p,((-SIN(PI*2*p/num_p)/(PI*2))+p/num_p)*scale)
NEXT p
RETURN

Example 9: Coordinating Two Moving Objects
Two conveyors run in parallel, conveyor A (axis 1) carries a product that must be transferred into boxes evenly
spaced on conveyor B (axis 0). The transfer operation requires the products to be aligned at the end of the
conveyor.
A registration process checks the position of the product on the conveyor and calculates the amount that con-
veyor A must be advanced or retarded in order to align with conveyor B. Input 1 indicates that the registration
process has been completed and the correction amount loaded serially into VR(1).

200

Programming Examples Appendix C

setup:
BASE(1)
CONNECT(1,0)
ADDAX(2)
BASE(2)

loop:
IF IN(1) = ON THEN WAIT UNTIL IN(1) = OFF
WAIT UNTIL IN(1) = ON
correction = VR(1)
MOVE(correction)
WAIT IDLE
GOSUB do_transfer
GOTO loop

do_transfer:
OP(15,ON)
WA(500)
OP(15,OFF)
RETURN

Example 10: Coordinating Motion with Mark Detection
A cyclic cut-to-length operation requires a rolled product to be cut in relation to a printed mark.
The product is nominally 150mm long and the printed registration mark appears 30mm from the end of the
product. The product must be stationary when cut, but the draw motion should be one continuous move.
A high-speed optical sensor is connected to the registration input of the feed axis.

loop:
REGIST(3)
DEFPOS(0)
MOVE(150)
WAIT UNTIL MARK
MOVEMODIFY(REG_POS+30)
WAIT IDLE
GOSUB cut_operation
GOTO loop

cut_operation:
’Omitted from this example.
RETURN

Example 11: Pick and Place Machine
A pick-and-place machine is filling boxes on a palette. When the palette is full, a transfer carousel will replace
the palette with a fresh one and a secondary operation will spiral-wrap the whole palette with plastic film.
We can assume the palletising operation is similar to example 6.
The wrapping operation takes approximately half the time taken to fill the palette and involves the following
operations:

• Wait for "finished" signal from pick-and-place unit
• Rotate the carousel 180°
• Signal pick-and-place unit "OK to continue"
• Engage the wrapper drive (digital output)
• Rotate wrapper 4 times
• Disengage the wrapper drive
• Signal operator to remove palette
• Wait until operator presses the continue button

201

Programming Examples Appendix C

Example 12: Master Program
This master shell program is designed to master most applications. The program controls the executions of the
application programs and continuously monitors the status of the system. Please be careful to use it in the
application and check that it is functioning correctly in all cases before relying on its safety operation. This pro-
gram should be set to run at power up at low priority (tasks 1, 2 or 3).

Note This master shell program does not include any hand-shaking for communications with the PC Unit. If
the application is using dynamic data from the PC memory, be sure to transfer the data to the MC Unit
during the initialization phase of the application.

GOSUB vars

‘Define the highest real axis
top = 3

GOSUB initial

‘Set error check with ERRORMASK in conjunction with
‘MOTION_ERROR. BEWARE not to use this for MC402-UK.

ERRORMASK=32+64+256+512+1024

loop:
‘Continuous check for errors for all axes
FOR i = 0 TO top

BASE(i)

GOSUB constants

start:
FOR x = 0 TO 4

FOR y = 0 TO 4
MOVEABS(x*200, y*200)
WAIT IDLE
OP(nozzle, ON)
GOSUB square_rel
OP(nozzle, OFF)

NEXT y
NEXT x

VR(fill_complete) = 1
WAIT UNTIL VR(carousel_ok) = 1
VR(fill_complete) = 0
GOTO start

GOSUB constants

loop:
WAIT UNTIL VR(fill_complete) <> 0
VR(carousel_ok) = 0
MOVE(180) AXIS(ax_carousel)
WAIT IDLE
VR(carousel_ok) = 1
OP(engage_wrap, ON)
WA(1000)
MOVE(4) AXIS(ax_wrapdrive)
WAIT IDLE AXIS(ax_wrapdrive)
OP(engage_wrap, OFF)
OP(lamp_OK)
WAIT UNTIL IN(but_con) = ON
OP(lamp, OFF)
GOTO loop

constants:
ax_X = 0
ax_Y = 1
ax_carousel = 2
ax_wrapdrive = 3

but_con = 1
engage_wrap = 8
lamp = 9
nozzle = 10
fill_complete = 10
carousel_ok = 11

RETURN

constants:
ax_X = 0
ax_Y = 1
ax_carousel = 2
ax_wrapdrive = 3

but_con = 1
engage_wrap = 8
lamp = 9
nozzle = 10
fill_complete = 10
carousel_ok = 11

RETURN

202

Programming Examples Appendix C

IF MOTION_ERROR THEN GOSUB crash
NEXT i

‘Continuous check for emergency stop
IF IN(7)=0 THEN GOSUB e_stop
GOTO loop

vars:
‘Initiate the application variables
RETURN

initial:
‘Initiate the application

‘Stop your application tasks
STOP “applic”
WA(100)

‘Cancel all moves
RAPIDSTOP
FOR a=0 TO top

BASE(a)
CANCEL
CANCEL
CANCEL
WAIT IDLE
SERVO = OFF

NEXT a
WDOG = OFF

‘Initialise the axis parameters
WA(1000)
RUN “startup”
WA(100)
BASE(top)
WAIT UNTIL SERVO=1
WA(100)

‘Reset any following errors
FOR b = 0 TO top

BASE(b)
DATUM(0)

NEXT b

‘Enable axes
WDOG=1

‘Run the application individually on a specified task
RUN “applic”,2
RETURN

crash:
‘This routine will cancel all moves in case of emergency
‘and will store the errors.
VR(27 + ERROR_AXIS)=0
BASE(ERROR_AXIS)

‘IN(16) TO IN(19) refer to the driver alarm inputs
IF IN(16+ERROR_AXIS) THEN VR(27+ERROR_AXIS)=VR(27+ERROR_AXIS)+1
IF AXISSTATUS AND 16 THEN VR(27+ERROR_AXIS)=VR(27+ERROR_AXIS)+16
IF AXISSTATUS AND 32 THEN VR(27+ERROR_AXIS)=VR(27+ERROR_AXIS)+32
IF AXISSTATUS AND 256 THEN VR(27+ERROR_AXIS)=VR(27+ERROR_AXIS)+256

203

Programming Examples Appendix C

IF AXISSTATUS AND 512 THEN VR(27+ERROR_AXIS)=VR(27+ERROR_AXIS)+512
IF AXISSTATUS AND 1024 THEN VR(27+ERROR_AXIS)=VR(27+ERROR_AXIS)+1024

‘Cancel all moves
RAPIDSTOP
FOR a=0 TO top

BASE(a)
CANCEL
CANCEL
CANCEL
WAIT IDLE
SERVO = OFF

NEXT a
WDOG = OFF

‘Stop all application programs individually. Another
‘option is to halt all programs with HALT.
STOP “applic”

‘A bit may be set to restart the programs (if safe)
‘WAIT UNTIL IN(24)
‘GOSUB initial
RETURN

e_stop:
‘Emergency Stop
RAPIDSTOP
FOR a=0 TO top

BASE(a)
CANCEL
CANCEL
CANCEL
WAIT IDLE
SERVO = OFF

NEXT a
WDOG = OFF

‘Stop all application programs individually.
STOP “applic”

WAIT UNTIL IN(7)
RETURN

205

Index

A
absolute moves, 7

acceleration rate, 7

adding axes, 13

applicable PCs, 20

application, precautions, xiii

ASCII emulation, 165

axis
adding, 13
demand position, 17
encoder, 6
following error, 17
measured position, 17
repeat distance, 140
servo, 6
status, 91
types, 6
virtual, 6

axis connector, 27

axis types, 6

B
BASIC

commands, 58
data structures, 59
driver I/O, 64
functions, 58
I/O access, 63
labels, 60
parameters, 58
physical I/O, 64
statements, 58
variables, 59
virtual I/O, 64

BASIC commands, functions and parameters
listed alphabetically, 84
ABS, 87
ACCEL, 7, 87
ACOS, 87
add operator, 84
ADDAX, 13, 88
AND, 88
ASIN, 89
ATAN, 89
ATAN2, 89
ATYPE, 6, 90
AUTORUN, 90
AXIS, 59, 90
AXISSTATUS, 91, 169, 184
BASE, 58, 91
BASICERROR, 92, 185

BATTERY_LOW, 93
CAM, 11, 93
CAMBOX, 12, 94
CANCEL, 13, 95
CHECKSUM, 96
CLEAR, 60, 96
CLEAR_BIT, 96
CLOSE_WIN, 96
comment field, 87
COMMSERROR, 97
COMPILE, 97
CONNECT, 12, 97
CONTROL, 98
COPY, 98
COS, 98
CREEP, 99
D_GAIN, 17, 61, 99
DAC, 61, 99
DAC_OUT, 100
DATUM, 13, 100
DATUM_IN, 64, 101
DECEL, 7, 101
DEFPOS, 5, 101
DEL, 102
DEMAND_EDGES, 102
DIR, 103
DISPLAY, 45, 103, 196
divide operator, 85
DPOS, 17, 103
EDIT, 104
ENCODER, 104
ENDMOVE, 104
EPROM, 65, 104
equal operator, 86
ERROR_AXIS, 104, 184
ERROR_LINE, 105, 185
ERRORMASK, 105, 184
EXP, 105
FALSE, 106
FAST_JOG, 14, 64, 106
FE, 17, 106
FE_LIMIT, 37, 106
FE_RANGE, 106
FHOLD_IN, 64, 107
FHSPEED, 107
FOR, 107
FORWARD, 9, 108
FRAC, 108
FREE, 109
FS_LIMIT, 109
FWD_IN, 38, 64, 109
FWD_JOG, 14, 64, 109
GET, 109
GOSUB, 60, 110
GOTO, 60, 110
greater than operator, 86
greater than or equal operator, 87

206

Index

HALT, 111
I_GAIN, 17, 61, 111
IF, 111
IN, 112
INITIALISE, 58, 113
INPUT, 113
INT, 113
JOGSPEED, 114
KEY, 114
LAST_AXIS, 114
less than operator, 85
less than or equal operator, 85
LINPUT, 115
LIST, 115
LN, 116
LOCK, 116
MARK, 116
MERGE, 14, 116
MHELICAL, 10, 117
MOD, 118
MOTION_ERROR, 118, 184
MOVE, 7, 9, 119
MOVEABS, 7, 9, 120
MOVECIRC, 10, 121
MOVELINK, 13, 122
MOVEMODIFY, 125
MPOS, 17, 125
MSPEED, 125
MTYPE, 62, 125
multiply operator, 84
NEW, 126
NIO, 126
NOT, 126
not equal operator, 86
NTYPE, 62, 127
OFF, 127
OFFPOS, 127
ON, 127
OP, 128
OPEN_WIN, 129
OR, 129
OUTLIMIT, 130
OV_GAIN, 17, 61, 130
P_GAIN, 17, 61, 130
PI, 130
PLC_READ, 48, 55, 131
PLC_TYPE, 132
PLC_WRITE, 48, 55, 132
PMOVE, 63, 133
power operator, 84
POWER_UP, 65, 134
PP_STEP, 134
PRINT, 134
PROC, 59, 136
PROCESS, 136
PROCNUMBER, 136
PSWITCH, 64, 136

RAPIDSTOP, 13, 137
READ_BIT, 138
REG_POS, 138
REGIST, 14, 64, 138
REMAIN, 139
RENAME, 140
REP_DIST, 140
REP_OPTION, 140
REPEAT, 141
RESET, 60, 141
RETURN, 110
REV_IN, 38, 64, 142
REV_JOG, 14, 64, 142
REVERSE, 9, 142
RS_LIMIT, 142
RUN, 142
RUN_ERROR, 143, 185
RUNTYPE, 67, 143
SCOPE, 144
SCOPE_POS, 145
SELECT, 145
SERVO, 61, 145
SET_BIT, 146
SETCOM, 146
SGN, 146
SIN, 147
SPEED, 7, 147
SQR, 147
SRAMP, 147
statement separator, 87
STEPLINE, 148
STOP, 148
subtract operator, 85
TABLE, 59, 148
TAN, 149
TICKS, 150
TRIGGER, 150
TROFF, 150
TRON, 150
TRUE, 151
TSIZE, 151
UNITS, 5, 7, 151
UNLOCK, 116
VERSION, 152
VFF_GAIN, 18, 61, 152
VP_SPEED, 152
VR, 59, 152
WA, 153
WAIT IDLE, 154
WAIT LOADED, 154
WAIT UNTIL, 154
WDOG, 61, 155, 184
WHILE, 155
XOR, 156

BASIC programs
compile description, 66
debugging, 150, 167

Index

207

editing, 165
error processing, 68
managing, 65
multitasking, 58
priority, 66
run at start-up, 67
stepping, 148
storing, 65
tasks, 66
trace function (TRON/TROFF), 150

BASIC statement groups
axis parameters, 81
constants, 81
I/O commands and functions, 77
loop and conditional structure commands, 77
mathematical and logical functions, 80
motion control commands, 76
Motion Perfect statements, 81
PC data exchange commands, 83
program commands and functions, 78
system commands and parameters, 78
task commands and parameters, 83

buffer
actual move, 62
next move, 62
task, 62

C
C200HW-MC402-UK, comparison with, 20

C200HW-MC402-UK, upgrading from, 193

cables
computer to MC Unit, 32
MC Unit to terminal block, 33
part numbers, 5
terminal block to Servo Drivers, 33

CAM control, 11

cancelling moves, 13

circular interpolation, 10

clearing following error, 100

command line interface, 65, 164

communication errors, 97

comparison with C200HW-MC402-UK, 20

components, 24

connections
axis, 27
I/O, 26
serial ports, 31
Servo Driver, 33
terminal block, 33

continuous moves, 9

continuous path control, 9

control system, 14

coordinate system
description, 5
scaling, 134

CP control. See continuous path control

CPU Unit, data transfers, 46

D
data format, 47

datuming. See origin search

debugging. See BASIC programs, debugging

deceleration rate, 7

decoder, 15

demand position, 17

demand speed, 7

derivative gain, 17

dimensions
MC Unit, 26
terminal block, 33

driver I/O, in BASIC, 64

E
EG control. See electronic gearing

electronic gearbox, 12

electronic gearing, 11

enable relay. See Servo Driver, enable relay

encoder, 14

encoder axis, 6

error processing, 68

errors
BASIC error code list, 185
BASIC run-time errors, 185
motion errors, 184
PC error flags, 187
PC transfer error flag, 51, 55
serial communication, 97

examples
controlling I/O, 197
coordinating two moving objects, 199
coordinating with mark detection, 200
grid positioning, 198
high-speed profiles, 199
master shell program, 201
pick and place, 200
product detection, 198
programming, 197
rotary table, 197
synchronising cutter, 198

208

Index

F
features, 2

feedback pulses, 14

feedhold
input, 107
speed, 107

flags
BASIC error, 45, 196
indicator mode, 45, 196
low battery, 45, 196
PC control, 187
PC error, 187
PC transfer error, 45, 196
transfer input, 45, 196
transfer output, 43

floating point
comparison, 61
definition, 60

flying shear, 198

following error
description, 17
limit, 106
limit setting, 37
range, 106

functional specifications, 18

G-I
gain

derivative, 17
integral, 17
output speed, 17
proportional, 17
speed feedforward, 18

general specifications, 18

global variables, 59

helical interpolation, 10

I/O access in BASIC, 63

I/O connector, 26

I/O specifications, 29

indicators, 24

initialisation, application, 61

installation, 23

integer, definition, 60

integral gain, 17

interpolation
circular, 10
helical, 10
linear, 9

IORD instruction, 49

IOWR instruction, 52

IR/CIO area allocation, 42

J-L
jogging, 14, 171

forward input, 109
reverse input, 142
speed, 114

labels, definition, 60

LED indicators, 24

limit switches
description, 38
forward input, 109
reverse input, 142

linear interpolation, 9

linked CAM control, 12

linked move, 13

local variables, 60

M
master program, 69, 201

mathematical specifications, 60

measured position, 17

motion control
algorithm, 16
concepts, 5–14
initialisation, 61
types, 2

motion errors, 184

motion generator, 62

Motion Perfect
axis parameters window, 168
connecting to MC Unit, 158
control panel, 162
controller configuration window, 169
debugging, 167
desktop, 161
features, 158
firmware download, 178
full controller directory window, 171
I/O status window, 170
jog screen, 171
oscilloscope, 172
program editor, 165
project backup, 177
requirements, 158
retrieving backup, 178
serial connection, 31
simple examples, 163

Index

209

Table editor, 169
terminal window, 164
tools, 164
VR editor, 169

Motion Perfect projects
backup, 159
consistency check, 160
description, 159
manager, 159

motor runaway, 36

mounting Units, 25

move loading, 63

moves
absolute, 7
calculations, 9
cancelling, 13
continuous, 9
defining, 7
execution, 62
jogging, 14, 171
merging, 14
relative, 7

multitasking, 58

N-O
noise, precautions against, 38

number format, 60

one-word format, 47

operating environment, precautions, xiii

origin search, 13

output speed gain, 17

P
PC data exchange

data in IR/CIO area, 48
error flag, 51, 55
methods, 46
one-word format, 47
three-word format, 47
transfer by CPU Unit, 49
transfer by MC Unit, 55

PC, applicable models, 20

physical I/O, in BASIC, 64

point-to-point control, 7

positioning
continuous path, 9
electronic gearing, 11
point-to-point, 7

precautions

application, xiii
Motion Perfect, 177
operating environment, xiii
safety, xii
servo system, 36
servomotor, 36
wiring, 38

precedence, 61

print registration, 14
delay time, 19

programming examples, 197

proportional gain, 17

PTP control. See point-to-point control

Q-R
quadrature, 14

registration. See print registration

relative moves, 7

restrictions on CS1 data exchange, 56

RS-232C communication errors, 97

RS-232C connections, 31

runaway
due to disconnected wiring, 37
due to faulty wiring, 36

S
safety precautions, xii

S-curve factor, 147

semi-closed loop system, 16

sequencing, 63

servo axis, 6

Servo Driver
alarm inputs, 64
connection to terminal block, 33
enable relay, 155
resetting alarm, 64

servo period, 66

servo system, 16
precautions, 36

software limit
forward, 109
reverse, 142

software reset, 177

Special I/O Unit Area, word allocation, 42–43

specifications
functional, 18
general, 18

210

Index

I/O, 29
mathematical, 60

speed feedforward gain, 18

statements
axis, 58
description, 58
system, 59
task, 59

system configuration, 4

T-U
table variables, 59

task
buffer, 62
clock pulses, 150
priority, 66

terminal window, 65, 164

terminating resistors, 34

three-word format, 47

troubleshooting BASIC programs, 167

unit conversion factor, 5, 7
upgrading from C200HW-MC402-UK, 193

V-Z
variables

global, 59, 152
local, 60
table, 59, 148

virtual axis, 6

virtual I/O, in BASIC, 64

VR variables. See variables, global

VT100 Emulation, 165

wiring
axis connector, 27
I/O connector, 26
precautions, 38

Z-marker, 15

211

Revision History

A manual revision code appears as a suffix to the catalog number on the front cover of the manual.

The following table outlines the changes made to the manual during each revision. Page numbers refer to the
previous version.

Revision code Date Revised content

1 January 2000 Original production

2 June 2001 Modifications made for MC402-E version and for support of CS1 series. This
manual has been extensively revised throughout all sections and appendices.

Cat. No. W903-E2-2

Revision code

	CONTENTS
	PRECAUTIONS
	1 - Intended Audience
	2 - General Precautions
	3 - Safety Precautions
	4 - Operating Environment Precautions
	5 - Application Precautions
	6 - Conformance to EC Directives
	6-1 Applicable Directives

	SECTION 1 - Features and System Configuration
	1-1 Features
	1-1-1 Overview
	1-1-2 Description of Features

	1-2 System Configuration
	1-3 Motion Control Concepts
	1-3-1 PTP-control
	1-3-2 CP-control
	1-3-3 EG-Control
	1-3-4 Other Operations

	1-4 Control System
	1-4-1 Feedback Pulses
	1-4-2 Servo System Principles

	1-5 Specifications
	1-6 Comparison with C200HW-MC402-UK

	SECTION 2 - Installation
	2-1 Components and Unit Settings
	2-2 Installation
	2-2-1 Installation Method
	2-2-2 Dimensions

	2-3 Wiring
	2-3-1 Connector Pin Assignments
	2-3-2 I/O Specifications
	2-3-3 Serial Port Connections
	2-3-4 Terminal Block
	2-3-5 Connection Examples

	2-4 Servo System Precautions
	2-5 Wiring Precautions

	SECTION 3 - PC Data Exchange
	3-1 IR/CIO Area Allocation
	3-1-1 Overview
	3-1-2 Overview of IR/CIO Area Allocations

	3-2 Overview of Data Exchanges
	3-2-1 Data Exchange Methods
	3-2-2 Data formats

	3-3 Details of the Data Exchange Methods
	3-3-1 Data Words in IR/CIO Area
	3-3-2 Data Transfer by CPU Unit
	3-3-3 Data Transfer by MC Unit

	SECTION 4 - Multitasking BASIC Programming
	4-1 Overview
	4-2 BASIC Programming
	4-2-1 Axis, System and Task Statements
	4-2-2 Data Structures and Variables
	4-2-3 Mathematical Specifications

	4-3 Motion Control Application
	4-4 Command Line Interface
	4-5 BASIC Programs
	4-5-1 Managing Programs
	4-5-2 Program Compilation
	4-5-3 Program Execution

	4-6 Error Processing

	SECTION 5 - BASIC Motion Control Programming Language
	5-1 Notation Used in this Section
	5-2 Classifications and Outlines
	5-2-1 Motion Control Commands
	5-2-2 I/O Commands and Functions
	5-2-3 Loop and Conditional Structures
	5-2-4 Program Commands and Functions
	5-2-5 System Commands and Parameters
	5-2-6 Mathematical and Logical Functions
	5-2-7 Constants
	5-2-8 Motion Perfect Commands, Functions and Parameters
	5-2-9 Axis Parameters
	5-2-10 Task Commands and Parameters
	5-2-11 PC Data Exchange Commands

	5-3 Command, function and parameter description
	5-3-1 Multiply: *
	5-3-2 Power: ^
	5-3-3 Add: +
	5-3-4 Subtract: –
	5-3-5 Divide: /
	5-3-6 Is Less Than: <
	5-3-7 Is Less Than Or Equal To: <=
	5-3-8 Is Not Equal To: <>
	5-3-9 Is Equal To: =
	5-3-10 Is Greater Than: >
	5-3-11 Is Greater Than or Equal To: >=
	5-3-12 Statement separator: “:”
	5-3-13 Comment field: ‘
	5-3-14 ABS
	5-3-15 ACCEL
	5-3-16 ACOS
	5-3-17 ADDAX
	5-3-18 AND
	5-3-19 ASIN
	5-3-20 ATAN
	5-3-21 ATAN2
	5-3-22 ATYPE
	5-3-23 AUTORUN
	5-3-24 AXIS
	5-3-25 AXISSTATUS
	5-3-26 BASE
	5-3-27 BASICERROR
	5-3-28 BATTERY_LOW
	5-3-29 CAM
	5-3-30 CAMBOX
	5-3-31 CANCEL
	5-3-32 CHECKSUM
	5-3-33 CLEAR
	5-3-34 CLEAR_BIT
	5-3-35 CLOSE_WIN
	5-3-36 COMMSERROR
	5-3-37 COMPILE
	5-3-38 CONNECT
	5-3-39 CONTROL
	5-3-40 COPY
	5-3-41 COS
	5-3-42 CREEP
	5-3-43 D_GAIN
	5-3-44 DAC
	5-3-45 DAC_OUT
	5-3-46 DATUM
	5-3-47 DATUM_IN
	5-3-48 DECEL
	5-3-49 DEFPOS
	5-3-50 DEL
	5-3-51 DEMAND_EDGES
	5-3-52 DIR
	5-3-53 DISPLAY
	5-3-54 DPOS
	5-3-55 EDIT
	5-3-56 ENCODER
	5-3-57 ENDMOVE
	5-3-58 EPROM
	5-3-59 ERROR_AXIS
	5-3-60 ERROR_LINE
	5-3-61 ERRORMASK
	5-3-62 EXP
	5-3-63 FALSE
	5-3-64 FAST_JOG
	5-3-65 FE
	5-3-66 FE_LIMIT
	5-3-67 FE_RANGE
	5-3-68 FHOLD_IN
	5-3-69 FHSPEED
	5-3-70 FOR TO STEP NEXT
	5-3-71 FORWARD
	5-3-72 FRAC
	5-3-73 FREE
	5-3-74 FS_LIMIT
	5-3-75 FWD_IN
	5-3-76 FWD_JOG
	5-3-77 GET
	5-3-78 GOSUB RETURN
	5-3-79 GOTO
	5-3-80 HALT
	5-3-81 I_GAIN
	5-3-82 IF THEN ELSE ENDIF
	5-3-83 IN
	5-3-84 INITIALISE
	5-3-85 INPUT
	5-3-86 INT
	5-3-87 JOGSPEED
	5-3-88 KEY
	5-3-89 LAST_AXIS
	5-3-90 LINPUT
	5-3-91 LIST
	5-3-92 LN
	5-3-93 LOCK
	5-3-94 MARK
	5-3-95 MERGE
	5-3-96 MHELICAL
	5-3-97 MOD
	5-3-98 MOTION_ERROR
	5-3-99 MOVE
	5-3-100 MOVEABS
	5-3-101 MOVECIRC
	5-3-102 MOVELINK
	5-3-103 MOVEMODIFY
	5-3-104 MPOS
	5-3-105 MSPEED
	5-3-106 MTYPE
	5-3-107 NEW
	5-3-108 NIO
	5-3-109 NOT
	5-3-110 NTYPE
	5-3-111 OFF
	5-3-112 OFFPOS
	5-3-113 ON
	5-3-114 ON
	5-3-115 OP
	5-3-116 OPEN_WIN
	5-3-117 OR
	5-3-118 OUTLIMIT
	5-3-119 OV_GAIN
	5-3-120 P_GAIN
	5-3-121 PI
	5-3-122 PLC_READ
	5-3-123 PLC_TYPE
	5-3-124 PLC_WRITE
	5-3-125 PMOVE
	5-3-126 POWER_UP
	5-3-127 PP_STEP
	5-3-128 PRINT
	5-3-129 PROC
	5-3-130 PROCESS
	5-3-131 PROCNUMBER
	5-3-132 PSWITCH
	5-3-133 RAPIDSTOP
	5-3-134 READ_BIT
	5-3-135 REG_POS
	5-3-136 REGIST
	5-3-137 REMAIN
	5-3-138 RENAME
	5-3-139 REP_DIST
	5-3-140 REP_OPTION
	5-3-141 REPEAT UNTIL
	5-3-142 RESET
	5-3-143 REV_IN
	5-3-144 REV_JOG
	5-3-145 REVERSE
	5-3-146 RS_LIMIT
	5-3-147 RUN
	5-3-148 RUN_ERROR
	5-3-149 RUNTYPE
	5-3-150 SCOPE
	5-3-151 SCOPE_POS
	5-3-152 SELECT
	5-3-153 SERVO
	5-3-154 SET_BIT
	5-3-155 SETCOM
	5-3-156 SGN
	5-3-157 SIN
	5-3-158 SPEED
	5-3-159 SQR
	5-3-160 SRAMP
	5-3-161 STEPLINE
	5-3-162 STOP
	5-3-163 TABLE
	5-3-164 TAN
	5-3-165 TICKS
	5-3-166 TRIGGER
	5-3-167 TROFF
	5-3-168 TRON
	5-3-169 TRUE
	5-3-170 TSIZE
	5-3-171 UNITS
	5-3-172 VERSION
	5-3-173 VFF_GAIN
	5-3-174 VP_SPEED
	5-3-175 VR
	5-3-176 WA
	5-3-177 WAIT IDLE
	5-3-178 WAIT LOADED
	5-3-179 WAIT UNTIL
	5-3-180 WDOG
	5-3-181 WHILE WEND
	5-3-182 XOR

	SECTION 6 - Programming Environment
	6-1 Motion Perfect Features
	6-2 Motion Perfect Requirements
	6-3 Going Online with the MC Unit
	6-4 Motion Perfect Projects
	6-4-1 Motion Perfect Project Manager
	6-4-2 Using Motion Perfect on a MC Unit for the First Time

	6-5 Motion Perfect Desktop
	6-5-1 Control Panel
	6-5-2 Editing and Running Simple Programs

	6-6 Motion Perfect Tools
	6-6-1 Terminal
	6-6-2 Editor
	6-6-3 Axis Parameters
	6-6-4 Controller Configuration
	6-6-5 VR and Table Editors
	6-6-6 I/O Status Window
	6-6-7 Full Controller Directory
	6-6-8 Jog Screen
	6-6-9 Oscilloscope

	6-7 Suggestions and Precautions in Using Motion Perfect

	SECTION 7 - Troubleshooting
	7-1 Problems and Countermeasures
	7-2 Error Indicators
	7-3 Error Handling
	7-4 CPU Unit Error Flags and Control Bits

	SECTION 8 - Maintenance and Inspection
	8-1 Routine Inspections
	8-2 Handling Precautions
	8-2-1 Procedure for Replacing an MC Unit
	8-2-2 Procedure for Replacing a Battery

	APPENDIX
	A - Upgrading from C200HW-MC402-UK
	B - PC Interface Area Lists
	C - Programming Examples

	Index
	Revision History

