GENERAL CATALOGUE 2005/2006

Sensing \& Safety

Advanced Industrial Automation

Sensing \& Safety

Sensing \& Safety

Never fail...

This catalogue features products that lead the field in technology by providing new solutions for inspection, measurement, quality assurance and safety issues. What makes our products so special is that they are designed to deliver high performance and total reliability. With Omron's sensing and safety products in your automation system your products never fail, and your production never stops.

The attached CD-ROM contains comprehensive information of our sensing and safety product range. In addition you can find our latest innovations on www.omron-industrial.com or give us a call!

2 Omron - a global corporation right on your doorstep

4 Experts in sensing and safety

6 Proven application expertise

8 Smart Platform concept
10 New products

14 Product selection table

17 Catalogue content

Omron - a global corporation

...right on your doorstep

Application support

As an Omron customer you have unprecedented support from our application engineers, who can advise you on-site anywhere in Europe. We can carry out tests on your design on-site or demonstrate a new product without disturbing or halting your production process.

"From the moment you contact Omron you get direct access to our application expertise, wherever and whenever you need it...."

< European manufacturing

Omron has manufacturing sites in s'Hertogenbosch, the Netherlands and Nufringen, Germany where, in addition to our standard product offering, we can provide fast and flexible customised solutions using on-site R\&D facilities and expertise. Both factories meet very strict quality assurance standards, and are the forefront of meeting global environmental standards. Omron actively welcomes people to come and visit these facilities.

4 Online support
Omron's web-site is designed to provide fast, no-nonsense support, enabling you to quickly find the latest information on manuals, data sheets and brochures, read about our latest product releases, and check out the most frequently asked questions. You can also download our latest software versions or patch upgrades along with 2-D and 3-D CAD drawings. All the support you need is available on www.omron-industrial.com.

- Control Systems

- Safety

- Control \& Switching Components

4 European Repair Centre

Omron has set up a special repair service with DHL that enables your product to be picked up. repaired and returned within 5 days. This repair service is totally free for products under Omron's warranty conditions, and includes a direct pick up and delivery at your site. You can get more information on this service at www.repair.europe.omron.com.

Experts in sensing and safety

A strong knowledge match

Omron is renowned in the field of Industrial Automation for making innovative products that offer the highest possible product reliability. Our application knowledge in combination with our sensing technology knowledge, enable us to advise you on the right sensing solution. In almost every case to date we have been able to select a product from our sensor program that offers the best possible solution. With Omron's sensing and safety products in your automation system your products never fail, and your production never stops.

Our products are managed by teams of product experts, who are supported by development and application experts and by manufacturing sites. Together they form
competence centres dedicated to provide unrivalled automation products and customised expert solutions for all industries throughout Europe. This expertise is available "at your door-step" in every country.

Omron's expertise in industrial automation comes from years of product development and accumulated knowhow. Our ability to offer customers several options for their application needs is what distinguishes us from competition. We know that you cannot afford defects in your production. That's why we can provide on-site testing of your process with minimal disturbance to your production, so that together we can strive for zero defects. Challenge us!

Sensing \& safety competence

The competence centre is the hub for application-specific support and regular product training seminars for our European sales engineers, to train your engineers. It consolidates product, development \& application, and production expertise on the very latest technologies. Here, an elaborate network to the national sales organisations and industry specialists is nurtured, which guarantees a thorough understanding of the latest offerings in your local market.

This network enables us to incorporate a fast-track customisation service and to respond quickly to changing trends and future requirements.
At our European sensor and safety manufacturing site in Nufringen, near Stuttgart/Germany, products are tested under severe conditions at several on-site laboratories. ISO-Certifications DIN EN ISO 9001:2000 and DIN EN ISO 14001:1996 guarantee a high standard of quality and environmental protection.

Proven application expertise

Zero defects and total reliability

Omron's in-depth knowledge of many specific industries enables us to offer high-quality products as diverse as the applications they are designed for. Our expertise in machine building means that you can use our sensing and safety solutions in nearly every sector of manufacturing, including the automotive, semiconductor, food, beverage packaging and pharmaceuticals industries.

- Fitting a complete pre-assembled cockpit To achieve a seal between the cockpit mounting plate and the engine compartment a robot first applies the bonding bead around the entire cockpit plate. A sensor head is mounted on the robot arm and focuses directly behind the glue nozzle outlet, measuring the height of the bonding bead continuouly.

4 Safety solutions
Floating blanking is used when robot's arms have to pass through the light curtain for particular operations - Safety is guaranteed.

Automotive industry

In the automotive industry, complex integrated production processes put enormous demands on production planning, and only a totally reliable assembly process using measurement and inspection technology is acceptable for achieving a zero-error production rate in the sense of Poka-Yoke.

Omron is a well-established provider of advanced technologies in the automotive business. Our optical sensing techniques enable components to be checked directly in the assembly process. This reduces rework rates, as only correctly fitted parts are released to the next production phase.

Our latest generation of intelligent sensors can check for the presence and condition of components, and carry out measurement tasks without interrupting the process.

- Mega-retailers

Your packaging should always deliver absolute quality for bulk and multi-packs. That includes zero defect labelling, custom coding for automatic inventories and point-of-sale carton arrangements on pallets.

- Zero defect

Tamper evident seals and clear date/lot codes must be in place to maintain customer confidence and protect your company against liability.

- Verify bottle position

Two independent sensors detect toppled bottles to prevent a jam.

Semiconductors Industry

In the semiconductor electronics industry, the ever-advancing miniaturisation of electronic products requires smaller, purer and thinner chip technologies. Manufacturers are under continuous pressure to increase their productivity while reducing the costs per chip.
The trend is towards ever-smaller structure widths and the development and manufacturing of silicon wafers with large diameters.

Omron's sensors are designed to cover everything in semiconductor production, from the critical processes like wafer etching and cleaning, to high-precision distance measurement required for the production of 300 mm wafers. Through long-term partnerships with market leaders in machine building and with influential entities such as SEMI, we have developed the knowledge necessary to equip these complex machines with the sensors and safety components needed to successfully develop and market your product.

Food \& beverage / packaging industry

In the food \& beverage industry a 99.9% success rate in the packaging process simply isn't enough.
With such high throughput speeds, one simple error can lead to pallets of unlabelled or incorrectly labelled products, or damaged packaging.

Omron's highly effective inspection solutions combine vision, measurement and fibre-optic sensors to help you meet the strict quality requirements required in this industry. Our packaging inspection solutions can help boost the quality of your output and reduce waste. With our sensing and safety solutions, your production never fails.

4 If you would like to know more about Omron's industry knowledge, please order our market segment brochures or download them at www.europe.omron.com.

Smart Platform concept

One software - One connection - One minute

The launch of Smart Platform, Omron's new fully integrated automation architecture, demonstrates Omron to be one of the most innovative players in the market. Designed to make machine automation easy, the goal of Smart Platform is to allow increasingly complex machines to be developed, commissioned and maintained without the need of automation specialists.

It enables users to mix and match their preferred solutions without the need to worry about hierarchy or other communication issues. Driven by the need to make connectivity as simple and flexible as possible, Omron's Smart Platform creates a harmonious combination of sensing, control, motion and regulation devices.

The Smart Platform concept is built around three major advantages for the user:

- One software
- One connection
- One minute

Easy programming and configuration with Omron's CX-One software.

For a demonstration and to order your 30 days' trial version for free please visit www.smartplatform.info

One software

Omron introduces CX-One, a single programming and configuration environment that enables the user to build, configure and program networks, PLCs, HMIs, motion control systems, drives, temperature controllers and sensors.

The result of a single software is to reduce complexity of the configuration and allow automation systems to be programmed or configured with minimal training.

One connection

From a single connection point either locally, through networks, or from a modem connection the Omron 'Smart Platform' devices on your machine can be programmed or parameterised. This allows remote access or servicing of your complete machine to become a reality.

The same transparent communications architecture also allows Omron devices to easily communicate together, passing and sharing information and enabling more effective modular machine design.

One minute

‘Plug \& Work’ functionality is achievable through Omron's function block library, device profiles and SMART Active Parts, which can be simply 'drag \& drop'-configured in contrast to conventional programming.

The SMART Active Parts are pre-defined electronic objects of field devices (e.g. 'read actual speed' of an inverter, view a scene from a vision sensor, represent a temperature controller etc.) that can be dragged and dropped into the HMI screen.

Why Smart Platform?

Smart Platform can help you increase the flexibility and efficiency of your machines or production lines. It provides:

- A single software environment for your machine covering sensing, regulation, control, motion, and visualisation.
- Easy drag \& drop object-based programming and configuration of the complete system.
- Communications and architecture that is network independent.
- Distributed intelligent devices that are self-reporting and self-maintaining to reduce downtime and identify the source of production problems.

New products

Smart vision sensor ZFV

Easy vision - teach \& go

Omron's new ZFV smart vision sensor is an image-processing system in a sensor format. It consists of two separate components, a camera head with an integrated light source and a processing unit.

Parameter settings and lighting control are available at the touch of a button. A "smart" user interface allows parameter setting using a few buttons and the built-in colour LCD monitor.

During operation, the display gives direct feedback showing results and images in real time. Easy Vision - teach \& go, for applications which can be solved in minutes - not hours or days.

- Teach and go...

ZS-L Series - 2-D CMOS measurement displacement sensor

With Omron's ZS-L series, zero defect inspection is assured!

Innovative 2-D CMOS technology

The ZS-L's ability to provide high-speed image processing and high resolution is thanks to Omrons innovative 2-D CMOS image sensor. The sensor features an enhanced controller running a powerful algorithm, which ensures optimal sensitivity, no matter how varied the reflected light. The image is processed in the sensor head and transferred to the controller via a Low Voltage Differential Signal (LVDS). This arrangement results in a high-performance platform that can measure almost any surface.

Main features and benefits

Easy to integrate and to operate

- Fast change-over-handling for various products on the same production line
- Easy reconfiguration for latest product trends by using ZS-controller HMI
- Getting started within a minute

More flexibility through scalability

- Tailored ZS configuration to suit your process needs is possible by easy application oriented and user guided menu settings.
- Additional functionality can be easily expanded by adding additional modules to the high speed sensor bus

Measurement Tools:

- Hight measurement
- Step measurement
- Thickness measurement
- Gap measurement
- Flatness measurement
- Average measurement
- Excentricity
- Warpage / Evenness

1: Monitor SmartMonitor Professional PC-based user software ZS-SW11E - for set up and monitoring
2: Record Data storage unit ZS-DSU - ideal for ZS series data logging
3: Control Multi-calculation-controller ZS-MDC - enables logical operation and processing for up to 9 gang mounted controllers

Rubber

Glass

PC-Board

HDD Mirrow

4: Operate Sensor controllers ZS-LDC - enable maximum sensing performance with fully digital processing
5: See Sensor heads ZS-LD - advanced laser CMOS sensing technology with high speed, high resolution, packed into smallest IP67 housing

New products

DeviceNet safety

Main features and benefits

- Open communication standard
- Fast and easy installation
- Predefined and certified function blocks.
- Detachable cage clamp terminals.
- Future-ready for easy additions as your needs change
- DeviceNet Safety is designed for easy network additions to save your investment
- Smart, seamless and flexible
- I/O-Modules support standard and safety mode on one module.
- Reliable and safe
- Predicitive maintenance and self diagnosis.
- Certified for applications up to safety category 4 (EN 954-1) and SIL 3 (IEC 61508).

DeviceNet safety offers more than a safe network

DeviceNet is an innovative industrial network system that enables a wide range of devices to be easily networked and managed remotely.

Everything can be seamlessly integrated into DeviceNet, making it one of the best industrial field busses around.

As a founding member of DeviceNet and specialist for machine safety, Omron is one of the few companies with expertise to combine innovative bus technology and safety to a seamless solution up to safety category 4 (EN 954-1) and SIL 3 (IEC 61508).

Unique features of the DeviceNet Safety products are:

- Test pulse outputs to ensure crosstalk and short circuit detection.
- Mixed mode operation of the DeviceNet Safety Terminals. All in- and outputs can flexibly be assigned to the safety or standard part of the control system. If they are used for safety, the Safety Network Controller
ensures system integrity. Smart slave functions like operation counters and monitoring of ON-time or operation time are fully supported.
- Bulb current monitor function by using a dedicated test output of the remote terminals.

Safety Network Controller

The Safety Network Controller hosts the safety application program, monitors the safety inputs and controls the safety outputs.
The simplest DeviceNet Safety based solution is using the Safety Network Controller stand alone.

Advanced diagnostic is provided by the Safety Network Controller. LED displays, status LEDs for all in- and outputs and the accessibility of the system status data via DeviceNet enables easy troubleshooting and predictive maintenance.

DeviceNet Safety Terminals

The DeviceNet Safety Terminals have been designed to provide highest flexibility for all your installations.

G9SX - Flexible safety unit

The flexible way to design-in safety

Omron's GgSX is an innovative, flexible safety unit that provides a clever solution for partial and complete safeguarding the machine control. Using microprocessor technology, the G9SX provides a transparent and logical connection throughout your system that enables you to shut down any segmentation according to your machine's safety layout.

The GgSX increases your productivity by enabling you to isolate a faulty process within your machine instead of having to switch off the entire system, which minimises production losses and downtime. It features LED indicators to reduce troubleshooting time and support diagnostic maintenance. The GgSX lets you expand your system easily without having to completely re-design safety circuits. And while the G9SX uses a hardwired logical connection based on microprocessor technology, there is no programming or special training involved.

The G9SX is the latest segment in Omron's safety product portfolio and underlines the company's reputation as a total safety solutions' provider. Use the GgSX to design a flexible, expandable and reliable safety system in all applications like packaging, semiconductor, moulding and food processing industries.

Main features and benefits

- Unique! Logical connection
- Advanced diagnostics and trouble-shooting functionality
- Extended operating life through solid state outputs
- Expandable with up to 25 outputs per segment
- Choice of terminals
- Meeting all safety requirements

The G9SX flexible safety unit range

1: Basic unit G9SX-BC

The basic unit is used to control the primary safety function like the overall E-Stop.

2: Advanced unit G9SX-AD

This unit can be logically connected to the G9SX-BC and other G9SX-AD to provide precise shutdown of individual sections in a machine. The advanced units give you more precise control over the safety section you want to stop, without affecting the total process.

3: Expansion unit G9SX-EX

This unit is ideal for use in complex machines that require multiple safety output paths (Instantaneous or time delayed).

Product selection table

Standard Photo-
electric Sensors

| E3F2 |
| :--- | :--- |
| E3Z |
| E3T |
| E3NT |
| E3S-C |
| E3S-CL |
| E3G |
| E3M-V |
| E3MC* |
| E3S-LS3 |
| E3JK |
| F3C-AL* |
| E3G-L1/L3* |
| E3X-NL* |
| E3S-CR62/67 |
| F3UV* |
| E3S-A* |
| E3S-R* |
| F3C-AA* |

Advanced Photo-
electric Sensors

Displacement \& Width-Measuring Sensors

E32
E32-ET16WR-1/2*
E32-ETS/EDS
E32-D82F*
E32-L25T*
E32-V*
E3X-DA-S*
E3X-DA-N*
E3X-MDA*
E3X-NA*
E3X-DRT2*
E3X-SRT21*
E3X-CIF11*
E3C-LD11*
E3C-LD21*
E3C-LD31*
E3C-LDA*

ZX-L
ZS-L
Z300
Z500
Z510
Z550
ZX-E
ZX-T

Capacitive Sensors
Rotary Encoders
Pressure Sensors
Safety Sensors/ Components

E2KQ	E6A2-C	E8F2*	F3SN-A/F3SH-A
E2K-C	E6B2-C	E8MS/E8M*	F3S-B
E2K-F	E6C2-C/E6C3-C		F3S-TGR-SB
E2K-L*	E6F-C		F3SL
	E6H-C*		E3FS
	E6C3-A		F3SS*
	E6F-A		F3SP-U4P
	E6L*		DeviceNet Safety
			F3G-C*
			G9SX
			G9SA
			G9SB
			D4NS
			D4BS
			D4GS-N*
			D4NL
			D4GL
			D4BL
			D40B
			D4NH
			D4N--
			D4B-_N
			D4F
			D4N-_R
			A22E*
			A165E
			G7SA
			G7S*
			A4E
			F3W-D*
			F3ZN*

Table of Contents							17
Applications							19
Sensors							
Standard Photoelectric Sensors				Fiber Optic Amplifier	Digital Fiber Sensors	E3X-DA-S	(CD)
Overview	Standard Photoelectric Sensors		A-3		Digital Fiber Amplifier	E3X-DA-N	(CD)
General Purpose	M18 cylindrical housing	E3F2	A-17		2-Channel Fiber Sensors	E3X-MDA	(CD)
	General purpose sensors in compact plastic housing	E3Z	A-43		Super Manual Fiber Amplifier Communication unit for fiber	$\begin{aligned} & \text { E3X-NA } \\ & \text { E3X-DRT21 } \end{aligned}$	(CD)
	Ultra small size sensors in plastic housing	E3T	A-67		amplifier	E3X-SRT21	(CD)
	Harsh environment long distance photoelectric Sensor in metal housing	E3NT	A-83	Laser Sensor	Photoelectric Sensors with Separate Digital Amplifiers	$\begin{aligned} & \text { E3C-LD11 } \\ & \text { E3C-LD21 } \end{aligned}$	(CD)
	Oil-resistive, compact photoelectric sensor in metal housing	E3S-C	A-101			E3C-LD31	(CD)
	sensor in metal housing	E3S-CL	A-111	Displacement Sensors/Width-measuring Sensors			
	Photoelectric switch with builtin amplifier (long distance) in plastic housing	E3G	A-119	Laser Sensors	Smart Sensors Laser 2D CMOS Laser Measuring Sensor	ZX-L Series ZS-L Series	B-3 B-25
Special Function	Mark sensor	E3M-V	A-133		High-precision Visual	Z300	
	Color sensor	E3MC	(CD)		Displacement Measurement		B-31
	Printed Circuit Board Sensor All voltage photoelectric sensors	E3S-LS3	A-145		System		
		E3JK	A-149		Profile Measuring System	Z500 Z510	B-45
	Distance setting laser photoelectric sensor	F3C-AL	(CD)		Multi-Dimensional Sensor	Z550	B-57
	Distance-setting Photoelectric Sensor	E3G-L1/L3	(CD)	Sensors Contact	Smart Sensor High precision	ZX-T Series	B-61
	Optical Fiber Glossy Object Sensor	E3X-NL	(CD)	Sensors	Smart Sensor High precision contact type	ZX-T Series	B-77
	Transparent bottle sensor	E3S-CR62/67	A-157				
	Ultraviolet power monitor/ illumination monitor	F3UV	(CD)	Vision Systems			
	Built-in Amplifier Photoelectric Sensor			purpose	Smart Sensors	ZFV Series	C-3
		E3S-A	(CD)		Vision Sensor	F150-3	C-11
	Transparent Object Detection Sensor	E3S-R	(CD)		Integrated control software for F150-3	Vision Composer	(CD)
Special Shape	Distance settable PhotoelectricSensor for conveyingapplications	F3C-AA	(CD)		Color-graying vision sensor	F400	(CD)
					Vision Sensor	F160	C-25
					Vision Sensor	F210	C-37
					High-performance Vision Sensor	F250	C-45
Advanced Photoelectric Sensors					Vision Sensor	F500	C-55
Fiber Optic Sensors	Standard fiber unitGeneral purpose		A-165	Application Specific	2-Dimensional Code Reader	V530-R150	(CD)
			A-173			V530-R160	(CD)
	Long-distance		A-179	Camera, Lens and Lighting	Camera, Lens, Lighting		C-65
	Area sensing		A-183				

Table of Contents

Inductive Sensors			
Overview	General Purpose Inductive Proximity Switches		D-3
	Special Purpose Inductive Prox	imity Switches	D-5
General Purpose	General Purpose (metal housing)	E2A	D-9
	General Purpose (plastic housing)	E2F	D-29
	Long Distance	E2A3	D-35
	Small Diameter	E2E	D-45
	General Purpose	TL-W	D-53
	Standard Flat	TL-T	(CD)
	Miniature Square	E2S	D-61
	Long Distance Square	E2Q2	D-69
	Long Distance Square	E2Q4	D-77
Special Function	High precision positioning	E2C-EDA	D-83
	High frequency	E2EL	D-99
Special Shape	Ultra Small diameter	E2EC	D-107
	Smooth barrel	TL	D-115
Special Environment	Oil resistant (Automotive)	E2E	D-119
	Cylindrical Inductive Sensor for Explosive Environments	E2AX	(CD)
	Mobile Usage (vehicles)	E2AU	D-151
	Anti-Aluminum Cut Chips Models	E2EZ	D-161
	Chemical resistance	E2FQ	D-167
	Spatter Immune	E2EQ	D-171

Capacitive Sensors

Chemical Resistance	E2KQ-X	D-179
Long Distance	E2K-C	D-183
Flat Type	E2K-F	D-189
Liquid Level Sensor	E2K-L	(CD)

Rotary Encoders

Rotary Encoders			
Incremental	25 dia.	E6A2-C	E-3
	40 dia.	E6B2-C	E-5
	50 dia.	E6C2-C/E6C3-C	E-7
	60 dia.	E6F-C	E-9
	40 dia. (Hollow Shaft)	E6H-C	(CD)
Absolute	50 dia.	E6C3-A	E-11
	60 dia.	E6F-A	E-13
Easy Scale	Linear Encoder	E6L	(CD)

Pressure Sensors
E8F2 (CD)
E8MS/E8M (CD)

Safety Sensors / Components

Safety Sensors

Safety Light Curtain	Safety Light Curtain	F3SN-A	G-3
	Multi-Beam Safety Sensor	F3SH-A	
	Safety Light Curtain	F3S-B	G-31
	Safety sensor for Palletisers	F3S-TGR-SB	G-49
	Safety light curtain for long distance detection	F3SL	G-59
Safety Single Beam	Safety Single Beam Sensor + Controller	E3FS	G-63
	Single beam safety sensor for long distance detection	F3SS	(CD)
Muting Controller	Muting Controller for Safety Light Curtain	F3SP-U4P	G-73
Safety Networks	DeviceNet Safety System	NE1A/DST1	G-77
Safety Laser Scanner	Safety Laser Scanner	F3G-C	(CD)
Safety Units / Relay Units			
Flexible Safety Unit	Safety Relay Unit	G9SX	G-89
Expandable Safety Unit	Safety Relay Unit	G9SA	G-109
Slim Size Safety Unit	Safety Relay Unit	G9SB	G-123
Safety Door / Guard Lock Switches			
Safety Door Switch	Safety-door Switch	D4NS	G-131
		D4BS	G-143
		D4GS-N	(CD)
Safety Guard Lock	Guard Lock Safety-door Switch	D4NL	G-153
		D4GL	G-171
		D4BL	G-185
Non-contact Switch	Compact Non-contact Door Switch	D40B	G-197
Safety-door Hinge Switch	Miniature Safety-door Hinge Switch	D4NH	G-207

Other Safety Switches

Safety Limit Switch	Safety Limit Switches	D4N--	G-219
		D4B-_N	G-243
		D4F	G-259
	Manual Reset Limit Switches	D4N-_R	G-267
E-Stop Switch	Emergency Stop Switch	A22E	(CD)
		A165E	G-283
Force Guide Relay / Enabling Switch	Relays with Forcibly Guided Contacts	G7SA	G-291
	Safety Relay	G7S	(CD)
	Enabling Switch	A4E	G-299
Precaution			G-305
Standards			G-318
Approvals			G-321

Non safety line Sensor for picking applications

Non Safety Picking Sensor	F3WD	(CD)
Non Safety Area Sensor	F3ZN	(CD)

Selection Guide Power Supplies	(CD)
Accessories	$\mathrm{H}-3$

Contact Information

Index

Applications

Application	Model	Page
1 Detecting the Placement of a Transparent Liquid Crystal Glass with the Limited Reflective Type Fiber units	$\begin{aligned} & \text { E32-L16/ } \\ & \text { E3X-MDA } \end{aligned}$	23
2 Detecting the Liquid Crystal Glass with the Line Beam	$\begin{aligned} & \text { E3C-LD21/ } \\ & \text { E3C-LDA } \end{aligned}$	
3 Measuaring the Co-planarity of Connector Pins	ZS-L Series	
$4200^{\circ} \mathrm{C}$ Solder Surface Inspection with Linear Proximity Type	ZX-E Series	
5 Detecting Overlapped Lead Frames and Other Shiny Metals	ZS-L Series	
6 Deflection Inspection of a Specular Surface	ZS-L Series	
7 7m Long-Range Glass Inspection	$\begin{aligned} & \text { E3C-LR/ } \\ & \text { E3C-LDA } \end{aligned}$	24
8 Detecting Glass Substrates in Baking Ovens	E32-T84S	
9 Detecting Liquid Crystal Substrates in Ovens	E32-T61	
10 Detecting Glass Substrates in Vacuum Chambers	E3Z-B	
11 Detecting the Edges of Liquid Crystal Glass through a View Port	F3C-AL	
12 Detecting Wafers in a Vacuum Conveyance System	E32-V	
13 Detecting Wafers under High Temperatures	E32-T61	5
14 Mapping Wafers with a Through-beam Side-view Sensor	E32-A03/A04	
15 Mapping Wafers with a Through-beam Laser Sensor	ZX-LT Series	
16 Positioning for Wafer Cutting Machines	E6C3-C	
17 Detecting the Bottom Wafer	E32-L24L	
18 Wafer Positioning and High-speed Detection	E6L	
19 Wafer Cassette Mounting Confirmation	E3T	6
20 Detecting Wafer Cassette Racks	E3T	
21 Positioning Wafer Notches	E32-T16J	
22 Checking Orientation Flat Directions with a Fiber Unit	E32-T22S	
23 Chemical Level Detection with Pipe Mounting	E32-L25T	
24 Level Detection in Heated Chemicals	E32-D82F	
25 Detecting Levels of Corrosive Liquids	E2KQ-X10ME1	
26 Detection on Narrow Lines for Chemical Washing	E32-T14F	
27 Controlling Exhaust Pressure for Individual Cleaning Tanks	$\begin{aligned} & \text { E8M-A1/ } \\ & \text { K3C-MP8-T12 } \end{aligned}$	
28 Detecting Workpieces by Robot Hand	E32-D11/D21	
29 Controlling Nitrogen Gas Pressure	E8M-A1	
30 Detecting Lead Frames in Tight Spaces	$\begin{aligned} & \text { E32-T14L/ } \\ & \text { E32-D24 } \end{aligned}$	
31 Detecting Chips on TAB Films	E32-T16P	28
32 Detecting Overlapped Lead Frames and Other Shiny Metals	ZX Series	
33 Distinguishing the Length of IC Resin Tablets	$\begin{aligned} & \text { E32-ET16WR } \\ & \text { E3X-DA-21-N } \end{aligned}$	
34 Determining Defective IC Chips by Identifying Bad Marks	F150-3	
35 Detecting the Passage of Chip Components	$\begin{aligned} & \text { E32-T16P/ } \\ & \text { E3X-DAD } \end{aligned}$	
36 Detecting Chip Components	$\begin{aligned} & \text { E32-C42/ } \\ & \text { E39-F3A } \end{aligned}$	
37 Detecting the Alignment of Chip Components	ZX-LT Series	29
38 Detecting Chip Components on the Tapes of Taping Machines	E3T	
39 Detecting the Passage or Retention of Components by a Parts Feeder	E3T	
40 Detecting Bent or Missing IC Pins	E32-D33	
41 Verifying IC Models, Lot Numbers, and Printed Characters	F250	
42 Detecting Rises in Lead Frames	E32-T24	
43 Detecting Full IC Sticks	E3T	26
44 Distinguishing Lead Wire Defects in Components	E32-DC200E	
45 Detecting Connector Pins	E32-L25L	
46 Inspecting Connector Leads	F160	
47 Detecting Parts Inside Metal Cases	E32-DC200F	
48 Classifying Capacitors	ZX-LT Series	
49 Inspecting for Defects on Chip Capacitors	F160	31
50 Detecting Missing Chips on Embossed Tape	$\begin{aligned} & \text { E32-EC41/ } \\ & \text { E39-F3B } \end{aligned}$	
51 Detecting ICs in a High-temperature Handler	E32-T81R	
52 Terminal Picking	F250	
53 Liquid Crystal Position Measurement	F250	
54 Detecting PCBs	EA3S-LS3	
55 Inspecting Board Mold Height	ZX Series	32
56 Detection on fine pins	E3C-LDA Se-ries/E3C-LD1	

0Packing, Food Products,
Chemicals, and Sanitation

	Application	Model	Page
57	Meandering Inspection of a Transparent Packing Film	ZX-L-N	33
58	Measuring Plastic Board Warping with 2-Dimensions CMOS	ZS-L Series	
59	Packing Miss Inspection with Linear Proximity Type	ZX-E Series	
60	Inspection of the Slope of a Cap	ZX-L-N	
61	Detecting Clear Film	E3S-R	
62	Detecting Registration Marks	$\begin{aligned} & \text { E32-CC200/ } \\ & \text { E3X-DAB11-N } \end{aligned}$	
63	Detecting Out-of-place Candy Wrapper Tapes	E3MC	34
64	Detecting Shrink Tubes	E3X-NL	
65	Detecting Coatings on Paper or Metal	E3X-NL	
66	Detecting Looseness in Sheets	ZX Series	
67	Detect Shades of Black on Sheets	$\begin{aligned} & \text { E32-T11L/ } \\ & \text { E3X-DAH11-N } \end{aligned}$	
68	Detecting Labels	$\begin{aligned} & \text { E32-TC200/ } \\ & \text { E3X-DAB11-N } \end{aligned}$	
69	Detecting Clear Labels on Support Paper	$\begin{aligned} & \text { E32-S15-1/ } \\ & \text { E3X-NL11 } \end{aligned}$	35
70	Detecting Pinholes in Sealed Containers	ZX Series	
71	Detecting Dirt on Caps	F250	
72	Detecting Incorrect Caps	F400	
73	Detecting Lids on Milk Bottles	ZX Series	
74	Detecting PET Bottles	E3Z-B	
75	Position Detection of Glass Bottle Hollows	ZX Series	
76	Detecting Cap Height	ZX-LT Series	
77	Determining the Number of Inner Linings in Bottle Caps	ZX Series	
78	Detecting Candy and Cookies on Conveyor Belts	E3S-CL	
79	Detecting Liquid in Paper Cartons	E3Z	
80	Detecting Milk in Paper Cartons	E2K-C	
81	Detecting the Contents of Opaque Packages	E32-T17L	
82	Inspecting Food Packages	E32-TC200	
83	Detecting Noodles in Trays	E3S-CL	
84	Aligning Object Direction during Packing	E3MC	
85	Verifying Expiration Dates	F250	
86	Inspecting the Tightening Condition of Caps on Bottled Chemicals	ZX-LT Series	
87	Inspecting for Bent Hypodermic Needles	F150-3	38
88	Counting Glass Ampules	E3X-NL	
89	Detecting the Powdered Chemicals Passing through a Transparent Tube	E32-D36P1	
90	Detecting Adhesive Application on Bags of Chemicals	ZX Series	
91	Checking Sealing Tape on Boxes of Pharmaceuticals	E3X-NL	
92	Liquid Color Detection	E3MC	
93	Detecting Wrapped Candies	E3G-L1/L3	9
94	Counting Desiccant Packets	E32-T22S	
95	Detecting the Front Edge Location of Candies	E32-T16W	
96	Detecting Title Cards Inside CD Cases	F3C-AL	
97	Display of Bread Baking Time	$\begin{aligned} & \mathrm{E} 6 \mathrm{C} 2-\mathrm{C} / \\ & \mathrm{E} 6 \mathrm{C} 3-\mathrm{C} \end{aligned}$	
98	Measuring the Rotational Ratio of a Roller	$\begin{aligned} & \text { E6C2-C/ } \\ & \text { E6C3-C } \end{aligned}$	
99	Jamming detection in packaging process	ZX-E Series	40
100	Monitoring the cutting process	ZX-E Series	
101	Distance monitoring in vertical packaging machines	ZX-E Series	
102	Noodle protrusion in food industry	$\begin{aligned} & \text { E3C-LDA } \\ & \text { Series } \\ & \text { E3C-LD21 } \end{aligned}$	
103	Label detection	$\begin{aligned} & \text { E3C-LDA } \\ & \text { Series } \\ & \text { E3C-LD21 } \end{aligned}$	
104	Detection of product orientation	E3C-LDA Series E3C-LD31	

Applications

| Household Appliances and |
| :--- | :--- | :--- |
| Office Automation |

Rubber, Molding Machines, and Molds

Application	Model	Page	
140	Long-distance Detection of Black Tires	E3S-CL	48
141	Positioning Dies in Injection Molding Machines	E6C2-C/	
		E6C3-C	
142	Detecting the Level of Heat-medium Oils	E32-D82F	
143	Detecting Errors Due to Residual Materials in Press Dies	F3C-AL	
144	Inspecting Component Shapes	F250	
145	Inspecting for Chipping or Burrs in Components	F160	
146 Gap control in mould press machines	ZX-E Series	49	

Conveyor and Automatic Warehouses

Application	Model	Page	
147	Detecting Cardboard Boxes	E3Z/E39-L98	50
148	Sorting Packed Fruit Boxes by Grade	F160	
149	Inspecting the Height of Corrugations in	ZX Series	
Cardboard Boxes	E3Z-G		

418

Other Applications

	Application	Model	Page
151	Liquid Surface Inspection with Diffuse Reflection type Area Laser Beam	ZX-L-N	51
152	Liquid Surface Inspection with Linear Proximity Type	ZX-E Series	
153	Inspection of a Mark and a Gap of Various Sheets	E3C-LDA	
154	Counting Cards	ZX Series	
155	Counting Sheets of Paper	ZX Series	
156	Detecting Gas Flowmeter Balls	$\begin{aligned} & \text { E32-T14L/ } \\ & \text { E3X-DAB11-N } \end{aligned}$	
157	Inspecting the Gap between the Dial Plate and Indicator Needle in Pressure Indicators	ZX Series	52
158	Detection of Remaining Boards for Construction Use	F3C-AL	
159	Distinguishing Ceramic Types	ZX Series	
160	Inspecting the Length of Paper Tubes	ZX Series	
161	Sheet alignment for printing and finishing process	E3C-LDA Series/ E3C-LD21	

 E3C-LD21

Applications

Semiconductors and Electronic Components

1. Detecting the Placement of a Transparent Liquid Crystal Glass with the Limited Reflective Type Fiber units
Stable detection of placement is possible only with two fiber units and one amplifier. The fiber units are embedded at the robot hand.

E32-L16

E32-L16 (page A-208) + E3X-MDA (CD)
Limited reflective type fiber unit

3. Measuaring the Co-planarity of Connector Pins
Stable measurement of the combination of a 2D
even angled pins is ensured by CMOS and Laser beam.

ZS-LD

ZS-L Series (page B-25)
Smart Sensor (2-Dimensions CMOS and Laser Beam)

5. Detecting Overlapped Lead Frames and Other Shiny Metals

Overlapped shiny metal plates are detected by calculating the measuring value.

2. Detecting the Liquid Crystal Glass with the Line Beam

The edge of the liquid crystal glass surfaces are detected from outside of the view port, using long-distance and wide line beam.

E3C-LD21 + E3C-LDA (CD)
Photoelectric Sensors with Separate Digital Amplifiers

4. $200^{\circ} \mathrm{C}$ Solder Surface Inspection with Linear Proximity Type

Precise measurement of the surface of solder at the linear proximity which is excellent in environment-proof, if it can inspect for a short distance from the tank upper part.

ZX-E Series (page B-61)
Smart Sensor (Linear Proximity Type)

6. Deflection Inspection of a Specular Surface

High precision inspection of specular surface, such as an HDD aluminum deposition side, is possible by CMOS laser.

ZS-L Series (page B-25)
Smart Sensor (2-Dimensions CMOS and Laser Beam)

Applications

Semiconductors and Electronic Components

7. 7m Long-Range Glass Inspection

Retroreflective long-range glass inspection with spot laser light over a view port.The detection distance of the catalog value is 7 m .

E3C-LR

E3C-LR + E3C-LDA (CD)
Photoelectric Sensors with Separate Digital Amplifiers

9. Detecting Liquid Crystal Substrates in Ovens

Regular reflective light from the LCD substrates is received with a fiber to detect the presence or absence of the substrates. The large spot ensures stable detection of substrates even if positioning is not completely consistent.

E32-T61 (page A-203)
Heat-resistant Fiber Unit

11. Detecting the Edges of Liquid Crystal Glass through a View Port

The edges of the liquid crystal glass substrates are detected from outside of the view port.

F3C-AL (CD)
Distance-controlled Laser Photoelectric Sensors

8. Detecting Glass Substrates in Baking Ovens

An L-shaped side-view sensor requiring little space and providing $200^{\circ} \mathrm{C}$ heat resistance is used. The detection distance of $1,300 \mathrm{~mm}$ (for E3X-DA-N Standard Mode) is more than sufficient to detect even large glass substrates.

E32-T84S (page A-204)
Heat-resistant, Narrow-beam Fiber Unit

10. Detecting Glass Substrates in Vacuum Chambers

The E3Z-B is a retroreflective sensor that enables accurate detection even of transparent glass.

E3Z-B (page A-43)
Photoelectric Sensors for Detecting Transparent Objects

12. Detecting Wafers in a Vacuum Conveyance System

The E32-V provides an easy-connecting fiber and easy-touse 4 -channel flange system, making it ideally applicable to vacuum systems.

E32-V (CD)

13. Detecting Wafers under High Temperatures

The E32-T61 features a temperature-resistant fiber for stable detection of wafers baked at $300^{\circ} \mathrm{C}$ or higher.

E32-T61 (page A-203)
Heat-resistant Fiber Unit
15. Mapping Wafers with a Through-beam Laser Sensor The ZX-LT Series even detects transparent objects and glossy wafers.

17. Detecting the Bottom Wafer

Using convergent reflective operation enables detecting an object at a specific distance by detecting regular reflective

E32-L24L (page A-209)
Convergent Reflective Fiber Unit
14. Mapping Wafers with a Through-beam Side-view Sensor The narrow beam permits the detection of single wafers, even of wafers with mirror surfaces.

E32-A03/A04 (page A-211)
Mapping Fiber Units

16. Positioning for Wafer Cutting Machines

This sturdy rotary encoder enables positioning at a consistent cutting pitch when cutting silicon wafers.

E6C3-C (page E-7)
Incremental Rotary Encoders
18. Wafer Positioning and High-speed Detection

E6L (CD)
Easy-scale Linear Encoder

Applications

Semiconductors and Electronic Components

19. Wafer Cassette Mounting Confirmation

This slim sensor is only 3.5 mm thick to allow installation in small gaps and spaces.

E3T (page A-67)
Subminiature Photoelectric Sensors with a Built-in Amplifier

21. Positioning Wafer Notches

The small spot with a 0.1 mm diameter allows high-precision notch positioning.

E32-T16J (page A-184)
Area-detecting Fiber Unit

23. Chemical Level Detection with Pipe Mounting

 A minimum level difference of 4 mm can be detected in stages to control resist liquid levels.

E32-L25T (page A-211)
Fiber Pipe-mounting Liquid Level Sensor

20. Detecting Wafer Cassette Racks

The installation of a Slit and Adjustment Unit permits a restricted light for stable detection even when there is inconsistency in the cassette resin or individual units.

E3T (page A-67)

Subminiature Photoelectric Sensors with a Built-in Amplifier

22. Checking Orientation Flat Directions with a Fiber Unit

High-precision detection is possible using a narrow-view

E32-T22S (page A-207)
Narrow-view Fiber Unit

24. Level Detection in Heated Chemicals

The Fiber Unit uses Teflon* so that chemical levels can be precisely and directly detected in cleaning tanks or chemical processing

*Teflon is a registered trademark of DuPont Company and Mitsui DuPont Chemical Company for their fluoride resin.

25. Detecting Levels of Corrosive Liquids

Sensitivity adjustment can prevent detection errors previously caused by foam in cleaning tanks containing soap. Application in corrosive liquids is also possible by using a Teflon*

E2KQ-X10ME1 (page D-179)

Chemical-resistant Capacitive Proximity Sensor
*Teflon is a registered trademark of t DuPont Company and Mitsui DuPont Chemical Company for their fluoride resin.

27. Controlling Exhaust Pressure for Individual Cleaning Tanks

Sensors detect the exhaust pressure of each cleaning tank, enabling independent control and improving wafer yield.

E8M-A1/K3C-MP8-T1Z (CD)
Minute Pressure Sensors

29. Controlling Nitrogen Gas Pressure

Minute pressure differences are used to monitor nitrogen gas flow.

Minute Pressure Sensors
26. Detection on Narrow Lines for Chemical Washing
Teflon* Side-view Fiber Units are ideal for applications requiring resistance to chemials when the sensor can be installed on a narrow line.

E32-T14F (page A-201)
Teflon Side-view Fiber Unit
*Teflon is a registered trademark of DuPont Company and Mitsui DuPont Chemical Company for their fluoride resin.

28. Detecting Workpieces by Robot Hand

An allowable bending radius of 4 mm enables the E32-D11/D21 to withstand repeated bending, making it ideally applicable to moving parts subject to frequent bending.

E32-D11/D21 (page A-181)
Moving-piece-mounting Fiber Unit

30. Detecting Lead Frames in Tight Spaces

Side-view configuration allows use in spaces that are too small to install ordinary through-beam sensors. Highly effective, space-saving installation.

E32-T14L (Through-beam) (page A-193) / E32-D24 (Reflective) (page A-197)
Side-view Fiber Units

Applications

31. Detecting Chips on TAB Films

Chips are detected in an area of 11 mm .

E32-T16P (page A-185)
Area-detecting Fiber Unit

33. Distinguishing the Length of IC Resin Tablets

The length of resin tablets for different IC types can be distinguished by the amplifier's monitor output.

E32-ET16WR Area-detecting Fiber Unit (CD)
E3X-DA-21-N Digital Fiber Amplifier with Monitor Output

35. Detecting the Passage of Chip Components

The passing of chip components is detected even if the passing location varies within a width of 11 mm , regardless of whether they are metallic or non-metallic.

E32-T16P Area-detecting Fiber Unit (page A-185) E3X-DAD Digital Fiber Amplifier with Differential Output
32. Detecting Overlapped Lead Frames and Other Shiny Metals
Overlapped shiny metal plates that are only 0.15 mm thick can be detected.

ZX Series (page B-3)
Smart Sensors
34. Determining Defective IC Chips by Identifying Bad Marks The bad marks applied to ICs on wafer plates are read, and

F150-3 (page C-11)
Vision Sensors

36. Detecting Chip Components

Adding a Lens Unit to a fiber sensor enables the spot to be varied from 0.1 to 0.6 mm in diameter.

E32-C42 Fiber Unit (page A-199)
E39-F3A Lens Unit (page A-245)

37. Detecting the Alignment of Chip Components

Raised or angled chips can be found on trays. Inspection time is shortened by handling an entire tray with a single inspection.

ZX-LT Series (page B-3)

Parallel Beam Linear Sensors with a Separate Amplifier
39. Detecting the Passage or Retention of Components by a Parts Feeder

The use of a visible pinpoint beam permits the detection of workpieces smaller than 0.5 mm in diameter (when slit is attached)

E3T (page A-67)

Subminiature Photoelectric Sensors with a Built-in Amplifier
41. Verifying IC Models, Lot Numbers, and Printed Characters IC model numbers, lot numbers, and other information can

38. Detecting Chip Components on the Tapes of Taping Machines The E3T is capable of detecting objects as small as 0.15 mm . Detection remains stable, with minimal effect from backgrounds or surrounding metals.

E3T (page A-67)
Subminiature Photoelectric Sensors with a Built-in Amplifier

40. Detecting Bent or Missing IC Pins

Three sensors are used to simultaneously detect bent or missing pins.

E32-D33 (page A-189)
Thin Head Fiber Unit

42. Detecting Rises in Lead Frames

E32-T24 (page A-194)
Thin Side-view Fiber Unit

43. Detecting Full IC Sticks

E3T (page A-67)
Subminiature Photoelectric Sensors with a Built-in Amplifier

45. Detecting Connector Pins

When inspecting two levels of connector pins with an ordinary fiber unit, the lower set of connector pins caused an ON signal even when the upper level is missing.
The E32-L25L Convergent Reflective Fiber Unit, however, is able to detect upper and lower sets separately.

E32-L25L (page A-209)
Convergent Reflective Fiber Unit

47. Detecting Parts Inside Metal Cases

The E32-DC200F detects reflected light from internal threads to

E32-DC200F (page A-188)
Thin Sleeve Fiber Unit
44. Distinguishing Lead Wire Defects in Components The length of lead wires of electronic components can be confirmed.

Fiber Unit

46. Inspecting Connector Leads

The number and bending con-

F160 (page C-25)
Vision Sensor

48. Classifying Capacitors

The diameter of each capacitor is used to determine its type.

ZX-LT Series (page B-3)
Parallel Beam Linear Sensors with a Separate Amplifier

49. Inspecting for Defects on Chip Capacitors

Inspection is possible for mold defects, missing terminals, and other chip capacitor defects.

F160 (page C-25)
Vision Sensor

51. Detecting ICs in a High-temperature Handler

A Teflon* coating eliminates the weak spot of heat-resistance fibers (i.e., hard and difficult to bend) to achieve a bending radius of 10 mm . *Teflon is a registered trademark of DuPont Company and Mitsui DuPont Chemical Company for their fluoride resin

E32-T81R (page A-203)
Heat-resistant Fiber Unit

53. Liquid Crystal Position Measurement

The positions of liquid crystal reference marks can be measured using two cameras to determine the overall position. Stable measurement is achieved at low cost for moving objects.

F250 (page C-45)
High-performance Vision Sensor
50. Detecting Missing Chips on Embossed Tape

Adding a Lens Unit to a fiber sensor permits the detection of very small workpieces at a detection distance of 17 mm

E32-EC41 Fiber Unit (page A-199)
E39-F3B Lens Unit (page A-245)

52. Terminal Picking

The position and orientation of workpieces can be confirmed to permit accurate grasping by means of a robot arm

F250 (page C-45)
High-performance Vision Sensor

54. Detecting PCBs

Stable detection is possible because the large spot is not affected by the color, holes or notches of the boards.

E3S-LS3 (page A-145)
PCB Sensors

Applications

omron

Semiconductors and Electronic Components

55. Inspecting Board Mold Height

The peak height of a board can be measured by using the Self Peak Mode.

ZX-LD

56. Detection of fine pins

E3C-LD11 detects with it's small laser spot of $50 \mu \mathrm{~m}$ each small IC-pin. Due to very high response time of $80 \mu \mathrm{~s}$ it can be done in the real process. The optical axis and focus of the spot can be easily adjusted.

Applications

Packing, Food Products, Chemicals, and Sanitation

57. Meandering Inspection of a Transparent Packing Film

The stable inspection of an edge position or meandering is possible for a transparent packing film. The through type of line beam laser is used.

ZX-L-N (page B-3)
Smart Sensor (Laser type)

59. Packing Miss Inspection with Linear Proximity Type

It can inspect the height of machine of packing miss, contents get caught in the machine.

ZX-E Series (page B-61)
Smart Sensor (Linear Proximity Type)

61. Detecting Clear Film

Clear film can be detected with a reflector, reducing the amount of wiring.

E3S-R (CD)
Transparent Object Photoelectric Sensors

58. Measuring Plastic Board Warping with 2-Dimensions CMOS

The warping of clear plastic boards can be measured with high precision.

ZS-L Series (page B-25)
Smart Sensor (2-Dimensions CMOS and Laser Beam)

60. Inspection of the Slope of a Cap

Right-and-left comparison and the degree of parallel are

ZX-L-N (page B-3)

Smart Sensor (Laser Type)

62. Detecting Registration Marks

Teaching is also possible, and sensitivity can be adjusted without aligning the register marks. A blue LED light source enables detecting yellow marks on a white background or purple marks on a blue background (previously not possible).

E32-CC200 (page A-198)
E3X-DAB11-N
Blue LED Teaching Fiber Amplifier

Applications

63. Detecting Out-of-place Candy Wrapper Tapes

E3MC (CD)
RGB Color Sensors

65. Detecting Coatings on Paper or Metal

Differences in gloss can be used to detect coatings.

E3X-NL (CD)

Optical Fiber Glossy Object Sensor

67. Detect Shades of Black on Sheets

Differences in mark density can be used to permit detection using an infrared light source and through-beam sensor.

E32-T11L Long-distance Fiber Unit (page A-190) E3X-DAH11-N Infrared Digital Fiber Amplifier
64. Detecting Shrink Tubes

Stable detection is possible even for clear shrink tubes.

E3X-NL (CD)
Optical Fiber Glossy Object Sensor

66. Detecting Looseness in Sheets

Small surface variations can be averaged out to enable stable detection.

ZX Series (page B-3)

Smart Sensors

68. Detecting Labels

Detection is possible with a through-beam fiber sensor if the backing material is translucent. The light beam is interrupted when a label is detected and received when there is no label.

E32-TC200 Fiber Unit (page A-173)
E3X-DAB11-N Blue LED Teaching Fiber Amplifier

69. Detecting Clear Labels on Support Paper

Even clear labels at close intervals on support paper can be positioned without contact.

E32-S15-1/E3X-NL11 (CD)
Optical Fiber Glossy Object Sensor

71. Detecting Dirt on Caps

Character defects and other defects can also be detected.

F250 (page C-45)
High-performance Vision Sensor

73. Detecting Lids on Milk Bottles

Stable detection is possible without being affected by the

ZX Series (page B-3)
Smart Sensors
70. Detecting Pinholes in Sealed Containers

Differences in the depression of the film on the top of the container can be used to detect pinholes.

ZX Series (page B-3)

Smart Sensors

72. Detecting Incorrect Caps

Any caps of a different type can be detected using the area

74. Detecting PET Bottles

A retrospective reflex sensor that saves both space and wiring can achieve stable detection of PET bottles with gaps between the bottles as small as 5 mm .

E3Z-B (page A-43)
Photoelectric Sensors for Detecting Transparent Bottles

Applications

0 Packing, Food Products, Chemicals, and Sanitation

75. Position Detection of Glass Bottle Hollows

The 2- to 3-mm hollow on the bottom of bottles can be used for positioning and other operations.

ZX Series (page B-3)
Smart Sensors

77. Determining the Number of Inner Linings in Bottle Caps

The evaluation output of the amplifier can be used to determine the number of cap linings

ZX Series (page B-3)
Smart Sensors

79. Detecting Liquid in Paper Cartons

A powerful light beam can penetrate paper cartons to detect the contents.

E3Z (page A-43)
Photoelectric Sensors with a Built-in Amplifier

76. Detecting Cap Height

A check can be made for caps that are not straight by comparing the height of a cap left-to-right. The height and inclination of a cap can be determined by measuring and

ZX-LT-Series (page B-3)

Smart Sensors

78. Detecting Candy and Cookies on Conveyor Belts

Detection is even possible from overhead. Sensitivity adjustment is not required even if the color of the product changes.

E3S-CL Distance-controlled (page A-111)
Photoelectric Sensors

80. Detecting Milk in Paper Cartons

Milk in opaque paper cartons can be detected using a capacitive sensor.

E2K-C (page D-183)
Long-distance Capacitive Proximity Sensors

81. Detecting the Contents of Opaque Packages

The E3X-DA-N Long-distance Sensor enables detecting the contents of opaque packages.

E32-T17L

E32-T17L (page A-180)
Long-distance Fiber Unit

83. Detecting Noodles in Trays

Being able to differentiate between the tray separators and the tray bottoms enables stable detection of noodles without chattering. Water resistance of IP67 is provided for application in water rinsing processes in the food industry.

E3S-CL Distance-controlled (page A-111)
Photoelectric Sensors

85. Verifying Expiration Dates

The characters in expiration dates can be read and confirmed.

High-performance Vision Sensor

82. Inspecting Food Packages

Wrinkles in package materials can be detected. As shown below, light diffused by wrinkles in the package is received if the emitter and receiver are installed at an angle to each other.

E32-TC200 (page A-173)
Fiber Unit

84. Aligning Object Direction during Packing

The direction of objects can be aligned during packing by detecting minute color differences and marks.

E3MC (CD)
RGB Color Sensors
86. Inspecting the Tightening Condition of Caps on Bottled Chemicals The amount of blocked light is measured at the end of the rotary table. The amount that is blocked increases when the bottle cap is not completely tightened.

ZX-LT Series (page B-3)
Parallel Beam Linear Sensors with a Separate Amplifier

Applications

0 Packing, Food Products, Chemicals, and Sanitation

87. Inspecting for Bent Hypodermic Needles

Bending can be determined by measuring the difference between the base and the tip of the needle.

89. Detecting the Powdered Chemicals Passing through a Transparent Tube

Powdered chemicals passing within a specific area can be detected, and adjustments can be made by teaching. Teaching can be done without a workpiece.

E32-D36P1 (page A-186)
Area-detecting Fiber Unit

91. Checking Sealing Tape on Boxes of Pharmaceuticals

The difference in glossiness is used to detect sealing tape without being affected by the colors or patterns on the box.

E3X-NL (CD)

Optical Fiber Glossy Object Sensor

88. Counting Glass Ampules

The difference in glossiness is used to differentiate between the ampules and the dividers between them, to ensure that only the ampules are counted.

E3X-NL (CD)
Optical Fiber Glossy Object Sensor
90. Detecting Adhesive Application on Bags of Chemicals The application of adhesive is detected by using two sensors to measure the thickness of the bag.

ZX Series (page B-3)

Smart Sensors

92. Liquid Color Detection

The E3MC RGB Color Sensors distinguish colors by detecting differences between them and registered reference colors. Stability can be further enhanced by placing a white panel in the background.

E3MC (CD)

93. Detecting Wrapped Candies

Stable detection is possible without being affected by the color, tilt, or glossiness of the candies.

95. Detecting the Front Edge Location of Candies

Area detection using a screen fiber enables positioning of even irregularly shaped objects.

E32-T16W (page A-183)
Area-detecting Fiber Unit

97. Display of Bread Baking Time

To control the baking condition of conveyor-transported bread by monitoring the time elapsed while passing through the oven, the speed of the conveyor belt is detected by the Rotary Encoder, and the result is converted to passage time and displayed by the frequency/ratemeter.

E6C2-C/E6C3-C Rotary Encoders (page E-7) K3NR Frequency/ratemeters

94. Counting Desiccant Packets

The perforations between desiccant packets are detected by the E32-T22S Narrow-view Fiber Unit.

96. Detecting Title Cards Inside CD Cases

Low hysteresis in the distance setting enables detecting minute differences in the insertion position.

F3C-AL (CD)
Distance-controlled Laser Photoelectric Sensors

98. Measuring the Rotational Ratio of a Roller

The rotational ratio between two rollers being used to takeup film, textiles, paper, wire, etc., is measured to monitor and control tension and slackness.

E6C2-C/E6C3-C Rotary Encoders (page E-7) K3NR Frequency/Rate Meters

Applications

0 Packing, Food Products, Chemicals, and Sanitation

99. Jamming detection in packaging process

ZX-E controls the gap while sealing the products and stops the machine if jamming is detected.

ZX-E Series (page B-61)
Smart Inductive Sensor

101. Distance monitoring in vertical packaging

 machinesZX-E sensor monitors the distance of a mechanical movement in a vertical packaging machine.

ZX-E Series (page B-61)
Smart Inductive Sensor

103. Label detection

The E3C-LD21 detects the label from a long sensing distance, so therefore the sensor head can be mounted outside from moving parts. The optical axis and focus of the line beam can be easily adjusted.

100. Monitoring the cutting process

ZX-E sensor measures the bottom-dead-end point of the cutting tool in order to ensure the proper quality of products

102. Noodle protrusion in food industry

E3C-LD21 with a laser line beam can detect the protrusion of noodles before packaging. Thanks to the laser, the sensing distance can be up to 1 m . The optical axis and focus of the line can be easily adjusted.

E3C-LDA Series (CD)
E3C-LD21 (CD)

104. Detection of product orientation

By using the E3C-LD31 with an area laser beam it is possible to control the orientation in a certain area. The optical axis and focus of the area can be easily adjusted.

E3C-LD31 (CD)

Applications

105. Confirming the Insertion of Shadow Masks into CRTs

Stable detection of even mesh-type shadow masks is achieved by using a line beam.

ZX Series (page B-3)
Smart Sensors
107. Inspection of Tape Remaining in Tape Take-up Applications

E32-ET16WR (CD)

Area-detecting Fiber Unit

109. Confirming Suction of Chip Components

As part of the chip component inspection process, the E8MS/ K3C Pressure Sensors are able to confirm the suction of

E8MS/K3C (CD)
Pressure Sensors
106. Counting Copy Machine Staples

The ultra-small spot of the ZX Series enables counting by precisely detecting the grooves between the staples.

ZX Series (page B-3)

Smart Sensors
108. Confirming the Application of Adhesive/Grease onto Components The small 2 mm diameter spot can detect even minute amounts of adhesive or grease applied to precision components.

Optical Fiber Glossy Object Sensor

110. Inspecting the Position of Rotary Switches

The F150-3 Vision Sensors permit the detection of switches and buttons, and the inspection of the position of adjusted dials, prior to shipment.

F150-3 (page C-11) Vision Sensors

Applications

111. Inspection of High-speed Table Movement

A response frequency of 1 kHz makes the E2S well suited to high-speed machine and device applications.

113. Managing Liquid Level for Lubricating Oils

The use of Teflon* makes these Sensors ideal for applications with a wide variety of oils.

E32-D82F (CD)
Contact Liquid Level Sensors
*Teflon is a registered trademark of DuPont Company and Mitsui DuPont Chemical Company for their fluoride resin.

115. Detecting Frayed Edges on Safety Belts

The ZX-LT can detect the strands of frayed edges during the weaving process in safety belt production.

ZX-LT Series (page B-3)
Smart Sensors

112. Confirming the Indication and Picking of Assembly Components

An F3W-D Sensor makes it possible to confirm that components are not forgotten in automotive assembly lines.

F3W-D (CD)
Picking Sensors

114. Detecting Bent Drill Bits

The installation of a transparent shield in front of these sensors protects them from splattering oil.

F3C-AL (CD)
Distance-controlled Laser Photoelectric

116. Detecting Oil Drops

The E32-D12F can detect light reflected from oil drops. The Teflon* fiber can also be safely used in an environment where oil is likely to be spattered.

Chemical-resistant Fiber Unit
*Teflon is a registered trademark of DuPont Company and Mitsui DuPont Chemical Company for their fluoride resin.

117. Positioning the Welding Point on Ring Gears

The compact size makes it possible for these Sensors to be mounted on welding machines in small spaces.

119. Positioning at the Welding Site

These Sensors are designed for use in places subject to spattering.

E2EQ (page D-171)
Antispatter Proximity Sensors
121. Detecting Workpieces in the Automotive Coating Process A fiber length of 10 meters permits a long-distance detection up to 20 meters (using the E3X-DA-N standard mode).

E32-T17L (page A-180)
Fiber Unit with Lens

118. Detecting Weld Locations on Metal Pipes

Because teaching without a workpiece is possible for the E3X-DA-N, the sensitivity for detecting weld locations can be set without having to stop the workpiece.

E32-CC200 (page A-198)
Fiber Unit
120. Detection of People Entering the Work Area of Robots F3SN-A Safety Light Curtains help to provide a protection measure by detecting the entry of people into dangerous areas. (They help to ensure safety according european and international regulations.)

F3SN-A/F3SH-A (page G-3), F3S-TGR (page G-49) Safety Light Curtains

122. Detecting the Position of Robot Arms

Due to a small metal ball installed on the robot arm, the position of the arm can be detected when the ball moves directly in front of the sensor.

E3Z-L (page A-43)
Narrow-beam Photoelectric Sensors with a Built-in Amplifier

123. Eccentricity control of shaft and bearings

ZX-E measures the eccentricity of shaft and bearings while rotating without influence of oil and water due to inductive principle.
The control function can be used to stop the machine at a curtain point.

ZX-E Series (page B-61)
Smart Inductive Sensor

125. Thickness measurement of metal plates

By simply connecting two sensors with a calculation unit the thickness can be measured and monitored using the digital outputs.

ZX-E Series (page B-61)
Smart Inductive Sensor

127. Repeatability of robot arm teaching

The small laser spot size of the E3C-LD11 ensures a high repeat accuracy from a long sensing distance, therefore the sensor head can be mounted with safety distance to the robot arm.

E3C-LDA Series (CD) E3C-LD11 (CD)
124. Height and step measurement in rough metal plates
ZX-E measures the step and the height of metal plates in a rough and dusty ambient.

ZX-E Series (page B-61)
Smart Inductive Sensor

126. Adhesive and seal inspection

The small sensor head can be easily mounted on a robot arm and the line beam can detect the profile of sealing and adhesive. The optical axis and focus of the line can be easily adjusted

E3C-LDA Series (CD)
E3C-LD21 (CD)

128. Detecting of a sealing rubber in the assembly process

The E3C-LD21 detects even black rubber from a long distance, so therefore the sensor head can be mounted outside from moving parts. The optical axis and focus of the line can be easily adjusted.

E3C-LD21 (CD)

Applications

129. Warping control of metal plate

For multiple measurements it is possible to connect up to five sensors without mutual interferences. Warping is controlled by using (A-B) calculation

ZX-E Series (page B-61)
Smart Inductive Sensors

Applications

130. Measurement of Watch Small Parts

The height and vertical interval of small parts of watch can be measured precisely even if small space.

ZX-TDS

ZX-T Series (page B-77)
Smart Sensor (High Precision contact type)

132. Confirming the Sealing Material

Long distance (1m) and small spot laser beam can inspect existance of the sealing stability.

E3C-LD11 + E3C-LDA (CD)
Photoelectric Sensors with Separate Digital Amplifiers

134. Confirming the Application of Sealing Material

The use of a small-diameter fiber head makes it possible to install the Fiber Unit and Lens Unit on the nozzle tip. The Lens Unit permits a stable detection of the sealing material.

E32-D32 Fiber Unit (page A-200) E39-F3A Lens Unit (page A-245)

131. Inspection of Small Rivet Height

The peak height of a small rivet can be measured by using the Peak Hold Mode.

ZS-LD

ZS-L Series (page B-25)
Smart Sensor (2-Dimensions CMOS and Laser Beam)
133. Flattness Inspection of resin or metal

Stable flatness can be inspected even if the black resin or gloss metal at many points.


```
ZS-L Series (page B-25)
Smart Sensor (2-Dimensions CMOS and Laser Beam)
```

135. Detecting and Determining Proper Quantity of Adhesive during Packing Box Assembly The quantity of adhesive being dispensed can be monitored by detecting the amount of light blocked by the adhesive as it leaves the nozzle.

136. Detection of Screw Threads

The E32-D33 Thin Head Fiber Unit is able to determine whether threads have been cut into aluminum die-cast workpieces. Because the light strikes at an angle, even extremely small threads can be accurately detected.

E32-D33 (page A-189) Thin Head Fiber Unit
138. Measuring the Distance between Rollers

These Sensors ensure the distance between metal rollers to be measured.

ZX-LT-Series (page B-3)
Smart Sensors
137. Safety Sensor to Protect People from Dangerous Machinery

The entry of people into the danger zones on and around high-speed machinery, such as chip inserters, presses etc. can be detected.

F3SN-A

F3SN-A (page G-3)
Safety Light Curtains
139. Inspecting Spraying Coverage by Detecting the Spray Angle The spray angle of a substance can be measured by detecting the amount of light that it blocks and the total block-

ZX-LT Series (page B-3)
Parallel Beam Linear Sensors with a Separate Amplifier

Applications

Rubber, Molding Machines, and Molds

140. Long-distance Detection of Black Tires

These sensors are minimally affected by backgrounds, enabling them to accurately detect black objects, such as tires, at a distance.

E3S-CL (page A-111)
Distance-controlled Photoelectric Sensors
142. Detecting the Level of Heat-medium Oils

The $200^{\circ} \mathrm{C}$ heat resistance of these Sensors permits the use with extremely high-temperature liquids.

E32-D82F (CD)
Contact Liquid Level Sensors

144. Inspecting Component Shapes

The edges of measured objects captured by camera are detected to inspect the shape.

High-performance Vision Sensor
141. Positioning Dies in Injection Molding Machines

The strengthened axial load of this Rotary Encoder permits clamp positioning for the dies of injection molding machines.

E6C2-C/E6C3-C (page E-7)

Rotary Encoders

143. Detecting Errors Due to Residual Materials in Press Dies

The edges of materials remaining inside press dies after the pressing process are detected, and an error is output.

F3C-AL (CD)
Distance-settable Laser Photoelectric Sensors
145. Inspecting for Chipping or Burrs in Components Chips, burrs, or light-colored dirt can be detected on curved or tapered components.

Vision Sensor

Applications

146. Gap control in mould press machines

ZX-E controls the minute tool-gap in a mould press machine and prevent the production of fault products. The sensor head is heat resistant up to $200^{\circ} \mathrm{C}$.

ZX-E Series (page B-61)
Smart Inductive Sensors

Applications

147. Detecting Cardboard Boxes

A diffuse reflective sensor can be used to detect cardboard boxes from a distance of up to 1 m . A retroreflective sensor permits detection from up to 4 m . The use of the Cover Brackets provides even greater durability.

E3Z (page A-43)
Photoelectric Sensors with a Built-in Amplifier E39-L98 Cover Brackets
149. Inspecting the Height of Corrugations in Cardboard Boxes Crumpling can be detected by measuring the distance to the top of the corrugations in the inner layer of cardboard sheets as they move on a belt.

148. Sorting Packed Fruit Boxes by Grade

The boxes are sorted by distinguishing printed grade mark-

F160 (page C-25)
Vision Sensor

150. Warning Alarms for Cranes

The direction of crane movement can be distinguished, and the crane's entry into danger zones can be detected.

Grooved-type Photoelectric Sensors with a Built-in Amplifier

Applications

fir
 Other Applications

151. Liquid Surface Inspection with Diffuse Reflection type Area Laser Beam
An inspection highly precise with the linear output if the liquid is colored and it can inspect for a short distance from the tank upper part.

ZX-L-N (page B-3)

Smart Sensor (Laser Type)

153. Inspection of a Mark and a Gap of Various

 SheetsA mark and inspection of a gap are possible in various beam form. beam form. E3C-LD31

Photoelectric Sensors with Separate Digital Amplifiers

155. Counting Sheets of Paper

The number of sheets in a stack can be counted by detecting the level difference resulting from a single sheet.

152. Liquid Surface Inspection with Linear Proximity Type

Precise measurement of the surface of liquid at the linear proximity which is excellent in environment-proof, if it is magnetic liquid and it can inspect for a short distance from the tank upper part.

ZX-E Series (page B-3)
Smart Sensor (Linear Proximity Type)

154. Counting Cards

Bundles of cards, such as prepaid telephone cards, can be counted by detecting the card edges.

ZX Series (page B-3)

Smart Sensors

156. Detecting Gas Flowmeter Balls

The red transparent ball in gas flowmeters can be detected with high stability by the Blue LED Teaching Fiber Amplifier.

E32-T14L Side-view Fiber Unit (page A-193) E3X-DAB11-N Blue LED Teaching Fiber Amplifier

Applications
 Other Applications

157. Inspecting the Gap between the Dial Plate and Indicator Needle in Pressure Indicators The gap between the dial plate and indicator needle can be measured through the transparent glass cover.

ZX Series (page B-3)
Smart Sensors

159. Distinguishing Ceramic Types

Using two Sensors, the changes in thickness can be measured with high stability, without being affected by fluctuations in the conveyor belt.

ZX Series (page B-3)

Smart Sensors

161. Sheet alignment for printing and finishing

 processE3C-LD21 detects the alignment of paper sheets before printing or before packaging. The twin output model allows to set up two threshold levels for tolerance

158. Detection of Remaining Boards for Construction Use

The quantity of boards or other construction materials can be detected from above.

Distance-controlled Laser Photoelectric Sensors
160. Inspecting the Length of Paper Tubes

By using an end plate and detecting from the tube side, detection is possible without being affected by paper splinters.

ZX Series (page B-3)

Smart Sensors

Photoelectric Sensors

Standard Photoelectric Sensors			
Overview	Standard Photoelectric Sensors		A-3
General Purpose	M18 cylindrical housing	E3F2	A-17
	General purpose sensors in compact plastic housing	E3Z	A-43
	Ultra small size sensors in plastic housing	E3T	A-67
	Harsh environment long distance photoelectric Sensor in metal housing	E3NT	A-83
	Oil-resistive, compact photoelectric sensor in metal housing	E3S-C	A-101
	Distance setting photoelectric sensor in metal housing	E3S-CL	A-111
	Photoelectric switch with builtin amplifier (long distance) in plastic housing	E3G	A-119
Special Function	Mark sensor	E3M-V	A-133
	Color sensor	E3MC	(CD)
	Printed Circuit Board Sensor	E3S-LS3	A-145
	All voltage photoelectric sensors	E3JK	A-149
	Distance setting laser photoelectric sensor	F3C-AL	(CD)
	Distance-setting Photoelectric Sensor	E3G-L1/L3	(CD)
	Optical Fiber Glossy Object Sensor	E3X-NL	(CD)
	Transparent bottle sensor	E3S-CR62/67	A-157
	Ultraviolet power monitor/ illumination monitor	F3UV	(CD)
	Built-in Amplifier Photoelectric Sensor	E3S-A	(CD)
	Transparent Object Detection Sensor	E3S-R	(CD)
Special Shape	Distance settable Photoelectric Sensor for conveying applications	F3C-AA	(CD)

Advanced Photoelectric Sensors

Fiber Optic Sensors	Standard fiber unit		A-165
	General purpose		A-173
	Long-distance		A-179
	Area sensing		A-183
	Small fiber head		A-186
	Fiber for Robot Application R4		A-190
	Side view		A-193
	Coaxial fiber		A-198
	Chemical resistant		A-200
	Heat resistant		A-202
	Grooved		A-206
	Narrow Vision Field		A-207
	Limited-reflective		A-208
	Fluid-level Detection Fiber Units		A-211
	Mapping sensors		A-211
	Retroreflective		A-212
	Rating/Performance Fibre Units		A-213
	Dimensions Fibre Units		A-222
	Fiber Unit	E32-ET16WR1/2	(CD)
	Fiber Unit	E32-ETS/EDS Series	A-237
	Fluid level sensor	E32-D82F	(CD)
	Fluid level sensor	E32-L25T	(CD)
	Vacuum Sensor	E32-V	(CD)
	Accessories for E32		A-245
Fiber Optic Amplifier	Digital Fiber Sensors	E3X-DA-S	(CD)
	Digital Fiber Amplifier	E3X-DA-N	(CD)
	2-Channel Fiber Sensors	E3X-MDA	(CD)
	Super Manual Fiber Amplifier	E3X-NA	(CD)
	Communication unit for fiber amplifier	E3X-DRT21	(CD)
		E3X-SRT21	
		E3X-CIF11	
Laser Sensor	Photoelectric Sensors with Separate Digital Amplifiers	E3C-LD11	(CD)
		E3C-LD21	(CD)
		E3C-LD31	(CD)
		E3C-LDA	(CD)

OmROח

Overview Standard Photoelectric Sensors

Cylindrical Photoelectric Sensors

Housing	Cylindrical					
Model	E3F2					
Type	Standard, Axial					
Order reference	E3F2-LS	E3F2-DS1	E3F2-DS3	E3F2-R2	E3F2-R2R	E3F2-7
	Distance setting (BGS, FGS)	Diffuse reflectiv		Retroreflective		Through-beam
Housing material Features	Plastic (ABS), Brass, Stainless Steel					
	- cylindrical housing for easy mounting and installation - high quality for reliable object detection at excellent value for money - wide portfolio range for all standard applications					
	- thin beam for exact positioning - visible light for simple installation	- wide beam for reliable - detection of structured objects	- adjustable sensitivity for stable detection	- without adjuster for higher protection against tampering	- polarizing (MSR) for reliable detection of shiny objects	- cost efficient through beam solution
Max. Sensing Distance	0.1 m	0.1 m	0.3 m	2 m		7 m
Light source	Red LED	Infrared LED		Infrared LED	Red LED	Infrared LED
Key specifications	- Light ON/Dark ON selectable - 10-30 VDC - IP67 - IP69k					
Housing size	M18					
Connection	Cable: PVCCable connector: M8, M12, customer specificConnector: M12					
Page	A-17					

OmROn

Cylindrical Photoelectric Sensors

Housing	Cylindrical				
Model	E3F2				
Type	Standard, Radial		Long distance, Axial		
Order reference	E3F2-DS3 $\square 41$	E3F2-R2R $\square 41$	E3F2-D1	E3F2-R4	E3F2-10
	Diffuse reflective	Retroreflective	Diffuse reflective	Retroreflective	Through-beam
Housing material	Plastic (ABS), Brass				
Features	- radial optics for easy mounting, installation and adjustment		- high power LEDs for increased sensing distance and increased reliability in dirty environments		
	- adjustable sensitivity for stable detection adjustable sensitivity for stable detection	- polarizing (MSR) for reliable detection of shiny objects	- adjustable sensitivity for stable detection	- polarizing (MSR) for reliable detection of shiny objects	- coaxial setup for precision detection - test input for system reliability check
Max. Sensing Distance	$0.3 \text { m }$	2 m (typical 3.1 m with reflector E39-R8)	1 m	4 m (typical 5.6 m with reflector E39-R8)	10 m
Light source	Infrared LED	Red LED	Infrared LED	Red LED	Infrared LED
Key specifications	- Light ON/Dark ON selectable - 10-30 VDC - IP67, IP69k				- Light ON/ Dark ON selectable - 12-24 VDC - IP67, IP69k
Housing size	M18				
Connection	Cable: PVCCable connector: M8, M12, customer specificConnector: M12				
Page	A-17				

Square Photoelectric Sensors - General Purpose

Housing	Square			
Model	E3Z			
Type	Compact, general purpose			
Order reference	E3Z-LS	$\begin{aligned} & \text { E3Z-D } \square 2 \\ & \text { E3Z-D } \square 7 \end{aligned}$	E3Z-R	$\begin{aligned} & \text { E3Z-T } \square 2 \\ & \text { E3Z-T } \square 7 \end{aligned}$
	Distance setting (BGS, FGS)	Diffuse reflective	Retroreflective	Through-beam
Housing material	Plastic (PBT)			
Features	- Compact housing size and high power LED for excellent performance-size ratio. - Cest value-performance ratio for standard applications. - Intensive shielding for highest noise immunity (EMC). - Tough PBT housing for high mechanical resistance.			
	- Background suppression for reliable detection with changing backgrounds. - Foreground suppression for reliable detection of objects (e.g. glossy and structured) on conveyors.	- Standard beam for long distance detection.	- Polarizing (MSR) for reliable detection of shiny objects (red LED).	- High power infrared LED for increased sensing distance and high reliability in dirty environments.
Max. Sensing Distance	200 mm	1 m	4 m	15 m (typical 45 m)
Light source	Red LED Infrared LED			
Key specifications	- Light ON/Dark ON selectable - 10-24 VDC - IP67, IP69k			
Housing size	$11 \times 17 \times 31 \mathrm{~mm}$ ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$)			
Connection	Cable: PVC Cable connector: M8, M12, customer specific Connector: M12			
Page	A-43			

Housing	Square			
Model	E3T			
Type	Miniature			
Order reference	---	$\begin{aligned} & \text { E3T-SL } \\ & \text { E3T-FD } \end{aligned}$	E3T-SR	$\begin{aligned} & \text { E3T-ST } \\ & \text { E3T-FT } \end{aligned}$
	Distance setting (BGS, FGS)	Diffuse reflective	Retroreflective	Through-beam
Housing material Features	---	Plastic (PBT)		
		- Ultra small size with high output pin point LED where space is crucial. - 3.5 mm thin flat shape or 7 mm side side view shape.		
		- Thin beam for precision detection of miniature objects (min 0.15 mm dia).	- Thin visible beam for precision positioning.	- Unmatched precision sensor size ratio.
Max. Sensing Distance		30 mm	200 mm	1 m
Light source		Red LED		
Key specifications		- Light ON or Dark ON - 10-24 VDC - IP67		
Housing size		Flat: $12 \times 21 \times 3.5 \mathrm{~mm}(\mathrm{~W} \times \mathrm{H} \times \mathrm{D})$ Side view: $7 \times 21 \times 11 \mathrm{~mm}(\mathrm{~W} \times \mathrm{H} \times \mathrm{D})$		
Connection		Cable: PVC Cable Cable connector: M8, M12, customer specific		
Page	A-67			

Housing	Square			
Model	E3NT			
Type	Long distance, high functionality, high protection			
Order reference	E3NT-L \square-20	---	E3NT-R	E3NT-T
	Distance setting (BGS, FGS)	Diffuse reflective	Retroreflective	Through-beam
Housing material	Aluminium die cast			
Features	- Durable aluminium housing for highest resistance in harsh environments.			
	- One button teaching for quick set up. - Double triangulation for highest reliability detecting glossy objects. - Window heating for reliable operation in icy and foggy environments. - Analog output for distance information.		- Polarizing (MSR) for reliable detection of shiny objects.	
Max. Sensing Distance	3 m		16 m	
Light source	Infrared LED			
Key specifications	- Two freely configurable output (e.g. NO, NC, NO+NC, window function for BGS type (2 different switching points). - 10-30 VDC - IP67, IP69k			
Housing size	$\begin{aligned} & 27 \times 89 \times 65 \mathrm{~mm} \\ & (\mathrm{~W} \times \mathrm{H} \times \mathrm{D}) \end{aligned}$			
Connection	Combl Connector: M12			
Page	A-83			

Square Photoelectric Sensors - General Purpose

Housing	Square				
Model	E3S-C				
Type	Compact, high protection				
Order reference	E3S-CD	E3S-CR	E3S-CT	E3S-CL1	E3S-CL2
	Diffuse reflective	Retroreflective	Through-beam	Distance setting (BG	GS, FGS)
Housing material	Zinc diecast				
Features	- High water, oil and detergent resistance for long life in often cleaned or aggressive environments. - Enhanced performance at slightly larger housing compared with E3Z.				
	- Fuzzy logic interference prevention enables minimal mutual interference for close mounting of two sensors.	- Polarizing (MSR) for reliable detection of shiny objects.	- High power infrared LED for long distance detection. - Precision detection of miniature objects ($\min 0.5 \mathrm{~mm}$ dia) with slits.	- Minimal black/ white error (2\%) for highest reliability in detecting different colored objects.	- Higher sensing distance but also higherblack/white error compared to E3S-CL1. - Invisible light.
Max. Sensing Distance	2 m	3 m (typical 4 m)	30 m	200 mm	500 mm
Light source	Infrared LED	Red LED	Infrared LED	Red LED	Infrared LED
Key specifications	- Light ON/Dark ON selectable - 10-30 VDC - IP67				
Housing size	$20 \times 57 \times 23 \mathrm{~mm}(\mathrm{~W} \times \mathrm{H} \times \mathrm{D})$			$15 \times 42 \times 40 \mathrm{~mm}(\mathrm{~W} \times \mathrm{H} \times \mathrm{D})$	
Connection	Cable: PVC Cable connector: M8, M12, customer specific				
Page	A-101			A-111	

Housing				
	Square			
Model	E3G			
Type	Long distance			
Order reference	E3G-L7	---	E3G-R	---
	Distance setting (BGS, FGS)	Diffuse reflective	Retroreflective	Through-beam
Housing material	Plastic (PBT) - One-touch teaching for quick set up. - High power infrared LED for stable detection of structured objects in long distances.	---	Plastic (PBT)	---
Features			- High power visible light LED for precision detection in long distances.	
Max. Sensing Distance	2 m		10 m	
Light source	Infrared LED		Red LED	
Key specifications	- Light ON/Dark ON selectable - 10-30 VDC - IP67		- Light ON/Dark ON selectable - 10-30 VDC - IP67	
Housing size	$\begin{aligned} & 21 \times 68 \times 48 \mathrm{~mm} \\ & (\mathrm{~W} \times \mathrm{H} \times \mathrm{D}) \end{aligned}$		$\begin{aligned} & 21 \times 68 \times 48 \mathrm{~mm} \\ & (\mathrm{~W} \times \mathrm{H} \times \mathrm{D}) \end{aligned}$	
Connection	Cable: PVC Cable connector: M8, M12, custom- er specific Connector: M12 (turnable)		Cable: PVC Cable connector: M8, M12, custom- er specific Connector: M12 (turnable)	
Page	(CD)		A-119	

Special Square Photoelectric Sensors

Housing	Square				
Model	E3Z				
Type	Special functions within compact size E3Z family				
Order reference	$\begin{aligned} & \text { E3Z-LS } \square 3 \\ & \text { E3Z-LS } \square 8 \end{aligned}$	E3Z-L	$\begin{aligned} & \text { E3Z-D } \square 1 \\ & \text { E3Z-D } \square 6 \end{aligned}$	$\begin{aligned} & \text { E3Z-T } \square 1 \\ & \text { E3Z-T } \square 6 \end{aligned}$	$\begin{aligned} & \text { E3Z-T } \square 2 \\ & \text { E3Z-T } \square 7 \end{aligned}$
	Distance setting (BGS, FGS)	Diffuse reflective		Through-beam	
Housing material	Plastic (PBT)				
Features	- Compact housing size and high power LED for excellent performance-size ratio. - Best value-performance ratio for standard applications.				
	- Thin beam and 2 mm spot size.	- Narrow beam	- Wide beam	- Precision detection of miniature objects ($\min 0.2 \mathrm{~mm}$ dia) with slits. - Precision positioning through visible light. - Close mounting (in a stack) with mutual interference prevention filters.	- Ultra high power infrared LED for very long sensing distance and maximum reliability in dirty environments.
Application areas	- Precision positioning.	- Miniature object detection (0.1 mm dia).	- Reliable detection of structured and uneven objects.	- Precision detection. - Movement precision passage detection.	- Dusty environments - Passage detection over long distances.
Max. Sensing Distance	80 mm	$90 \mathrm{~mm}(\pm 30 \mathrm{~mm})$	100 mm	10 m	30 m
Light source		Red LED	Infrared LED	Red LED	Infrared LED
Key specifications	- Light ON/Dark ON selectable - 10-24 VDC - IP67, IP69k				
Housing size	$11 \times 17 \times 31 \mathrm{~mm}$ ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$)				
Connection	Cable: PVC Cable connector: M8, M12, customer specific Connector: M8				
Page	A-43				

Housing				
	Square			
Model	E3Z-■H		E3Z	
Type	Compact, tampering protection		Preventive maintenance	
Order reference	E3Z-D $\square H$ E3Z-R $\square H$ E3Z-LロH	E3Z-T $\square H$	$\begin{aligned} & \text { E3Z- } \square-\text { G0 } \square \text { for 'Emission stop' } \\ & \text { E3Z- } \square-\text { G2 } \square \text { for 'Emission reduction' } \\ & \text { E3Z- } \square-J 0 \text { for 'self diagnosis' } \end{aligned}$	
	Diffuse reflective Retroreflective	Through-beam	Diffuse reflective Retroreflective	Through-beam
Housing material	Plastic (PBT)			
Features	- Sensors without sensitivity adjuster for maximum tampering protection.			
	- Same as for general purpose E3Z but without adjuster for		- Machine stop or sensor defect alarm output if beam interruption is too long. - Active sensor check by test input forcing state change at receiver. - Detection of dirt cover by power reduction.	
Application areas	- Conveying applications and other passage detections where malfunctions due to unskilled personal need to be prevented		- Preventive maintenance for all machines requiring maximum machine availability during production.	
Max. Sensing Distance	Same as for general purpose E3Z		Same as for general purpose E3Z	
Light source				
Key specifications				
Housing size				
Connection				
Page	A-43			

Housing	Square				
Model	E3NT			E3G	
Type	Long distance, high functionality, high protection.			Special functions within long distance E3G family.	
Order reference	E3NT-L17 E3NT-L37	E3NT-LH	E3NT E3NT	E3G-L1	E3G-L3
	Distance setting (BGS, FGS)			Distance setting (BGS, FGS)	
Housing material	Aluminium die cast			Plastic (PBT)	
Features	- Durable aluminium housing for highest resistance in harsh environments.			- One-touch teaching for quick set up.	
	- High response time.	- Window heating for reliable operation in humid and icy environments.	- Ana quic dist info	- Shine-proof optical system for reliable detection of different colored objects.	- Optimised sensing distanceminimal object size ratio.
Application areas	- Long distance counting applications.	- Object detection in low temperature ($-40^{\circ} \mathrm{C}$) or areas with steam.	- App det mo	- Passage detection of differently colored objects.	- Higher sensing distance passage detection of differently colored objects - requires larger objects than E3G-L1.
Max. Sensing Distance	2 m			50 mm	200 mm
Light source	Infrared LED			Red LED Infrared LED	
Key specifications	- Two freely configurable output (e.g. NO, NC, NO+NC, window function (2 different switching points). - 10-30 VDC - IP67, IP69k			- Light ON/Dark ON selectable - 10-30 VDC - IP67	
Housing size	$27 \times 89 \times 65 \mathrm{~mm}(\mathrm{~W} \times \mathrm{H} \times \mathrm{D})$			$18 \times 40 \times 30 \mathrm{~mm}(\mathrm{~W} \times \mathrm{H} \times \mathrm{D})$	
Connection	Cmin Connector: M12			Cable: PVC Cable connector: M8, M12, cus- tomer specific Connector: M8	
Page	A-83			A-119	

Housing	Square				
Model	E3M-V	E3S-LS3	E3JK	F3C-AA	F3C-AL
Type	Mark Sensor	PCB detection sensor	All voltage (AC and DC)	Conveyor sensor	Distance settable Laser sensor
Order reference	E3MV	E3S-LS3	E3JK	F3C-AA	F3C-AL
	Distance setting	Diffuse reflective	Through beam Retroreflective Diffuse reflective	Distance setting (BGS, FGS)	Distance setting (BGS, FGS)
Housing material	Plastic (PBT)		Plastic (ABS)		
Features	- Auto-teaching for simple teaching during settup. - Coaxial optical system for reliable mark detection on laminated objects.	- Wide beam for reliable structured object detecion (objects with holes and different heights).	- 12-240 VDC or 24-240 VAC power supply voltage. - Product variety reduction through 'one sensor fits all requirements'.	- Special housing shape fitting between conveyor segments. - Reliable detection of multicolored objects even in changing backgrounds. - Optionally with integrated jamming control unit.	- Small spot for high precision detection and positioning.
Application areas	- Mark detection on food packages on conveyors.	- PCB detection on conveyors.	- Installations of all standard power supplies for minimal product variety.	- Conveyor belts	- Counting and positioning on conveyors.
Max. Sensing Distance	10+3 mm	60 mm	5 m	900 mm	700 mm
Light source	Green LED	Red LED	Red LED, Infrared LED	Infrared LED	Pulsed RED Laser class II
Key specifications	- 10-30 VDC - IP67	- Light ON - 12-24 VDC - IP40	- Light ON/ Dark ON or selectable - Relay output with 250 VAC, 3 A - IP64	- Dark ON - 10-30 VDC - IP54	- Light ON / Dark ON selectable - 10-30 VDC - IP40
Housing size	$\begin{aligned} & 21 \times 67.8 \times 47.8 \mathrm{~mm} \\ & (\mathrm{~W} \times \mathrm{H} \times \mathrm{D}) \end{aligned}$	$\begin{aligned} & 10 \times 34 \times 19 \mathrm{~mm} \\ & (\mathrm{~W} \times \mathrm{H} \times \mathrm{D}) \end{aligned}$	$\begin{aligned} & 18 \times 50 \times 50 \mathrm{~mm} \\ & (\mathrm{~W} \times \mathrm{H} \times \mathrm{D}) \end{aligned}$	$\begin{aligned} & 18 \times 90 \times 45 \mathrm{~mm} \\ & (\mathrm{~W} \times \mathrm{H} \times \mathrm{D}) \end{aligned}$	$\begin{aligned} & 18 \times 90 \times 45 \mathrm{~mm} \\ & (\mathrm{~W} \times \mathrm{H} \times \mathrm{D}) \end{aligned}$
Connection	$\begin{array}{ll} \text { Cable: PVC } \\ \text { M12 } & \text { Connector: } \\ & \text { M12 } \end{array}$	Cable: PVC Cable con- nector: M8	Comble: PVC	nector: M12	amble Cable con- nector: M12
Page	A-133	A-145	A-149	(CD)	(CD)

Housing	Square				
Model	E3S-G	E3MC	E3X-NL	E3Z-B	E3Z-G
Type	Mark Sensor	RGB Color sensor	Glossy object sensor	PET bottle sensor	Fork sensor
Order reference	E3S-GS1	E3MC	E3X-NL	E3Z-B	E3Z-G
	Through beam	Fixed distance	Fixed Diffuse reflective	Retroreflective	Through-beam
Housing material	Plastic	Zinc diecast	PBT and ABS	Plastic (PBT)	Plastic (PBT)
Features	- Simple installation and enhanced reliability against setup misalignment.	- 4 channel models for multi product teaching - analog output for continuous color differenciation	- Teaching and unique optical system for reliable and simple gloss level detection.	- Inner View optical system for reliable. PET bottle detection.	- Simple installation and enhanced reliability against setup misalignment. - 1 or 2 optical axis.
Application areas	- Mark detection on food packages on conveyors.	- Sorting of differently colored objects and bottles (with through beam fiber type). - Color shade quality control.	- Label detection - Glue detection	- Detection and counting of PET bottles on conveyors.	- Passage detection of cranes, hangsliders and objects.
Max. Sensing Distance	10 mm	$\begin{aligned} & 60 \pm 10 \mathrm{~mm} \\ & 0-200 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 10 \pm 3 \mathrm{~mm} \\ & 20 \pm 7 \mathrm{~mm} \end{aligned}$	2 m	25 mm
Light source	Green or Red LED	RGB LEDs	Red LED	Red LED	Infrared LED
Key specifications	- 12-24 VDC - IP65	- 12-24 VDC - IP66	- 12-24 VDC - IP50	- Light ON/Dark ON selectable - 12-24 VDC - IP67, IP69k	- Light ON/Dark ON selectable - 12-24 VDC - IP64
Housing size	$\begin{aligned} & 20 \times 55 \times 60 \mathrm{~mm} \\ & \text { (W } \times \mathrm{H} \times \mathrm{D} \text {) } \\ & \text { Forkopening: } \\ & 10 \times 35 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 30 \times 53 \times 80 \mathrm{~mm} \\ & (\mathrm{~W} \times \mathrm{H} \times \mathrm{D}) \end{aligned}$	$\begin{aligned} & 10.4 \times 29 \times 29 \mathrm{~mm} \\ & (\mathrm{~W} \times \mathrm{H} \times \mathrm{D}) \end{aligned}$	$\begin{aligned} & 11 \times 17 \times 31 \mathrm{~mm} \\ & (\mathrm{~W} \times \mathrm{H} \times \mathrm{D}) \end{aligned}$	$\begin{aligned} & 40 \times 11 \times 50 \mathrm{~mm} \\ & \text { (W } \times \mathrm{H} \times \mathrm{D} \text {) } \\ & \text { Forkopening: } \\ & 25 \times 35 \mathrm{~mm} \end{aligned}$
Connection	cim- Cable: PVC	(l) Connector:	四- Cable: PVC	Cable: PVC nector: M8, M12 Connector: M8	
Page	Please contact your OMRON representative	(CD)	(CD)	A-43	A-43

Housing		Square
Model	E3S-CR	F3UV
Type	Transparent bottle sensor	UV Power Monitor
Order reference	E3S-CR	F3UV
	Retroreflective	Intensity monitor
Housing material	Zinc diecast	Zinc diecast
Features	- Special optic design for reliable detection of glass bottles compensating 'double-detectioneffect'.	- Reliable UV light intensity monitoring up to $300 \mathrm{~mW} / \mathrm{cm}^{2}$. - Heat resistant up to $300^{\circ} \mathrm{C}$.
Application areas	- Detection and counting of transparent glass bottles on conveyors.	- UV light deterioration in food processing. - Resin hardening process.
Max. Sensing Distance	1 m	n.a.
Light source	Red LED	n.a.
Key specifications	- Light ON/Dark ON selectable - 10-30 VDC - IP67	- Analog output $1-5 \mathrm{~V}$ - 12-24 VDC - IP30
Housing size	$\begin{aligned} & 20 \times 57 \times 23 \mathrm{~mm} \\ & (\mathrm{~W} \times \mathrm{H} \times \mathrm{D}) \end{aligned}$	$\begin{aligned} & 16.4 \times 19.4 \times 35.5 \mathrm{~mm} \\ & (\mathrm{~W} \times \mathrm{H} \times \mathrm{D}) \end{aligned}$
Connection	Cable: PVC M12	Cable: PVC
Page	A-157	(CD)

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.
To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527

Cylindrical photoelectric sensors in M18 plastic, brass or stainless steel housings E3F2

- Large standard portfolio in plastic, brass or stainless steel housings
- Long distance types for highest reliability in dirty environments
- Radial $\left(90^{\circ}\right)$ types for easy mounting and adjustment
- Background suppression model with high precision beam for highest accuracy
- AC and DC switching types

Features

- M18 DIN-sized cylindrical housing
- Housing materials: plastic, nickel plated brass and stainless steel
- Axial and radial types (with integrated 90°-optics)
- Enclosure rating IP67
- DC switching types with connectors for easy maintenance
- Full metal plug-in type
- Sensing distance separate types : $7 \mathrm{~m}, 10 \mathrm{~m}$
- Retroreflective polarizing types: $2 \mathrm{~m}, 4 \mathrm{~m}$
- Background suppression type: 10 cm
- Long detection distance ($0.3 \mathrm{~m}, 1 \mathrm{~m}$) with sensitivity adjuster for diffuse type
- Wide-beam characteristics (10 cm) for diffuse type
- Wide operating voltage range (10 to 30 VDC or 24 to 240 VAC)
- Short-circuit and reverse connection protection (DC switching type)
- UL and CSA approved (AC switching types)
- UL listed (DC switching types)

Selection Guide

DC－Switching Models
Housing Material：Plastic

Sensing method			Appearance	Connection method	Sensing distance	Model		
			PNP output			NPN output		
Through－ beam	Multi purpose				pre－wired	7 m	E3F2－7B4	E3F2－7C4
			M12 connector		E3F2－7B4－P1		E3F2－7C4－P1	
	－precision detection ${ }^{(* 1)}$ －test input		pre－wired		10 m	E3F2－10B4	E3F2－10C4	
			M12 connector			E3F2－10B4－P1	E3F2－10C4－P1	
Retro－ reflective ${ }^{(* 2)}$	Non－polarizing （without MSR function）		$\mathbb{a}[\text { 时 } \leftrightharpoons$ axial	pre－wired	0．1－2 m ${ }^{*}{ }^{*}$	E3F2－R2B4－E	E3F2－R2C4－E	
			M12 connector	E3F2－R2B4－P1－E		E3F2－R2C4－P1－E		
	Polarizing （with MSR function）	Fixed sensitivity		pre－wired	0．1－4 m ${ }^{(* 4)}$	E3F2－R4B4F－E	E3F2－R4C4F－E	
				M12 connector		E3F2－R4B4F－P1－E	E3F2－R4C4F－P1－E	
		Adjustable sensitivity		pre－wired		E3F2－R4B4－E	E3F2－R4C4－E	
				M12 connector		E3F2－R4B4－P1－E	E3F2－R4C4－P1－E	
	Non－polarizing （without MSR function）			$\begin{aligned} & \text { 克 } \\ & \square \\ & \text { radial } \end{aligned}$	pre－wired	0．1－2 m ${ }^{*} 3$ ）	－	－
			M12 connector		－		－	
	Polarizing （with MSR function）		pre－wired		E3F2－R2RB41－E		E3F2－R2RC41－E	
			M12 connector		E3F2－R2RB41－P1－E		E3F2－R2RC41－P1－E	
Diffuse reflective	Fixed sensitivity Wide－beam characteristics		$\begin{gathered} \mathbb{a} \text { 梛 } \leftrightarrows \\ \text { axial } \end{gathered}$	pre－wired	0.1 m	E3F2－DS10B4－N	E3F2－DS10C4－N	
			M12 connector	E3F2－DS10B4－P1		E3F2－DS10C4－P1		
	Adjustable sensitivity			pre－wired	0.3 m	E3F2－DS30B4	E3F2－DS30C4	
			M12 connector	E3F2－DS30B4－P1		E3F2－DS30C4－P1		
			pre－wired	1 m	E3F2－D1B4	E3F2－D1C4		
			M12 connector		E3F2－D1B4－P1	E3F2－D1C4－P1		
	Fixed sensitivity Wide－beam characteristics			$\begin{aligned} & \leftrightarrows \\ & \square \\ & \text { radial } \end{aligned}$	pre－wired	0.1 m	－	－
			M12 connector		－		－	
	Adjustable sensitivity				pre－wired	0.3 m	E3F2－DS30B41	E3F2－DS30C41
			M12 connector		E3F2－DS30B41－P1		E3F2－DS30C41－P1	
Background suppression	Fixed sensing distance			$\begin{gathered} 10 \subset \text { 朋 } \leftrightharpoons \\ \text { axial } \\ \hline \end{gathered}$	pre－wired	10 cm	E3F2－LS10B4	E3F2－LS10C4
			M12 connector		E3F2－LS10B4－P1		E3F2－LS10C4－P1	

（＊）with slit E39－ES18
${ }^{(* 2)}$ Retroreflective models incl．reflectors E39－R1 or E39－R1S are also available
（3）with reflector E39－R1
$\left.{ }^{*} 4\right)$ with reflector E39－R1S

Note：Standard cable length is 2 m ．Models provided with a 5 m long cable are available．When ordering，specify the cable length by adding the length of the cable （e．g．E3F2－R2RB4 2M or E3F2－R2RB4 5M）．For other cable length please contact your OMRON sales representative．

Housing material：Metal（Nickel plated brass）

Sensing method			Appearance	Connection method	Sensing distance	Model		
			PNP output			NPN output		
Through－ beam	Multi purpose				pre－wired	7 m	E3F2－7B4－M	E3F2－7C4－M
			M12 connector		E3F2－7B4－M1－M		E3F2－7C4－M1－M	
	－precision detection －test input		pre－wired		10 m	E3F2－10B4－M	E3F2－10C4－M	
			M12 connector			E3F2－10B4－M1－M	E3F2－10C4－M1－M	
Retro－ reflective ${ }^{(* 1)}$	Non－polarizing （without MSR function）		 axial	pre－wired	0．1－2 m ${ }^{(* 2)}$	－	－	
			M12 connector	－		－		
	Polarizing （with MSR function）	Fixed sensivity		pre－wired		E3F2－R2RB4－M－E	E3F2－R2RC4－M－E	
				M12 connector		E3F2－R2RB4－M1－M－E	E3F2－R2RC4－M1－M－E	
				pre－wired	0．1－4 m ${ }^{*}{ }^{(3)}$	E3F2－R4B4F－M－E	E3F2－R4C4F－M－E	
				M12 connector		E3F2－R4B4F－M1－M－E	E3F2－R4C4F－M1－M－E	
		Adjustable sensivity		pre－wired		E3F2－R4B4－M－E	E3F2－R4C4－M－E	
				M12 connector		E3F2－R4B4－M1－M－E	E3F2－R4C4－M1－M－E	
	Non－polarizing （without MSR function）				pre－wired	0．1－2 m ${ }^{(* 2)}$	－	－
			M12 connector		－		－	
	Polarizing （with MSR function）		pre－wired		E3F2－R2RB41－M－E		E3F2－R2RC41－M－E	
			M12 connector		E3F2－R2RB41－M1－M－E		E3F2－R2RC41－M1－M－E	
Diffuse reflective	Fixed sensing distance Wide－beam characteristics		$\mathbb{a} \mid \text { 相 }=$ axial	pre－wired	0.1 m	E3F2－DS10B4－M	E3F2－DS10C4－M	
			M12 connector	E3F2－DS10B4－M1－M		E3F2－DS10C4－M1－M		
	Adjustable sensing distance			pre－wired	0.3 m	E3F2－DS30B4－M	E3F2－DS30C4－M	
			M12 connector	E3F2－DS30B4－M1－M		E3F2－DS30C4－M1－M		
			pre－wired	1 m	E3F2－D1B4－M	E3F2－D1C4－M		
			M12 connector		E3F2－D1B4－M1－M	E3F2－D1C4－M1－M		
	Fixed sensing distance Wide－beam characteristics				pre－wired	0.1 m	－	－
			M12 connector		－		－	
	Adjustable sensing distance				pre－wired	0.3 m	E3F2－DS30B41－M	E3F2－DS30C41－M
			M12 connector		E3F2－DS30B41－M1－M		E3F2－DS30C41－M1－M	
Background suppression	Fixed sensing distance			は桷 $=$ axial	pre－wired	10 cm	E3F2－LS10B4－M	E3F2－LS10C4－M
			M12 connector		E3F2－LS10B4－M1－M		E3F2－LS10C4－M1－M	

（2）Retroreflective models incl．reflector E39－R1 are also available
（＊2）with reflector E39－R1
（3）with reflector E39－R1S
Note：Standard cable length is 2 m ．Models provided with a 5 m long cable are available．When ordering，specify the cable length by adding the length of the cable （e．g．E3F2－R2RB4－M 2M or E3F2－R2RB4－M 5M）．For other cable length please contact your OMRON sales representative．

Housing material：Metal（Stainless steel）

Sensing method		Appearance	Connection method	Sensing distance	Model		
		PNP output			NPN output		
Through－ beam				pre－wired	7 m	E3F2－7B4－S	E3F2－7C4－S
		M12 connector		E3F2－7B4－M1－S		E3F2－7C4－M1－S	
Retro－ reflective ${ }^{(* 1)}$	Non－polarizing （without MSR function）	$\begin{gathered} a[\text { 明 } \\ \text { axial } \end{gathered}$	pre－wired	$\begin{aligned} & 0.1-2 \mathrm{~m} \\ & \text { (with } \\ & \text { reflector } \\ & \text { E39-R1) } \end{aligned}$	－	－	
			M12 connector		－	－	
	Polarizing （with MSR function）		pre－wired		E3F2－R2RB4－S－E	E3F2－R2RC4－S－E	
			M12 connector		E3F2－R2RB4－M1－S－E	E3F2－R2RC4－M1－S－E	
	Non－polarizing （without MSR function）		pre－wired		－	－	
			M12 connector		－	－	
	Polarizing （with MSR function）		pre－wired		－	－	
			M12 connector		－	－	
Diffuse reflective	Fixed sensitivity Wide－beam characteristics	$\begin{gathered} \text { a[明 } \leftrightarrows \\ \text { axial } \end{gathered}$	pre－wired	0.1 m	E3F2－DS10B4－S	E3F2－DS10C4－S	
			M12 connector		E3F2－DS10B4－M1－S	E3F2－DS10C4－M1－S	
	Adjustable sensitivity		pre－wired	0.3 m	E3F2－DS30B4－S	E3F2－DS30C4－S	
			M12 connector		E3F2－DS30B4－M1－S	E3F2－DS30C4－M1－S	
	Fixed sensitivity Wide－beam characteristics		pre－wired	0.1 m	－	－	
			M12 connector		－	－	
	Adjustable sensitivity		pre－wired	0.3 m	－	－	
			M12 connector		－	－	
Background suppression		Please contact your OMRON sales representative for these models					

（＊1）Retroreflective models incl．reflector E39－R1 are also available
Note：Standard cable length is 2 m ．Models provided with a 5 m long cable are available．When ordering，specify the cable length by adding the length of the cable （e．g．E3F2－R2RB4－S 2M or E3F2－R2RB4－S 5M）．For other cable length please contact your OMRON sales representative．

AC－Switching Models

Housing material：Plastic

Sensing method		Appearance	Connection	Sensing	Model	
			method	distance	Light－ON	Dark－ON
Through－ beam		 axial	pre－wired	3 m	E3F2－3Z1	E3F2－3Z2
Retro－ reflective ${ }^{(* 1)}$	Non－polarizing （without MSR function）	$\begin{gathered} \text { axial } \\ \text { axial } \end{gathered}$	pre－wired	$\begin{aligned} & 0.1-2 \mathrm{~m} \\ & \text { (with } \\ & \text { reflector } \\ & \text { E39-R1) } \\ & \hline \end{aligned}$	E3F2－R2Z1－E	E3F2－R2Z2－E
Diffuse reflective	Fixed sensing distance Wide－beam characteristics	$\mathbb{a} \square_{\text {湖 }} \leftrightharpoons$ axial	pre－wired	0.1 m	E3F2－DS10Z1－N	E3F2－DS10Z2－N

（＊1）Retroreflective models incl．reflector E39－R1 are also available
Note：Standard cable length is 2 m ．Models provided with a 5 m long cable are available．When ordering，specify the cable length by adding the length of the cable（e．g． E3F2－R2Z1 2M or E3F2－R2Z1 5M）．For other cable length please contact your OMRON sales representative．

Accessories (Order Separately)

Name	Sensing distance (typical) [1.]	Model	Remark
Reflectors	$\begin{aligned} & \text { 0.1-3.7 m (axial) } \\ & 0.1-2.4 \text { m (radial) } \end{aligned}$	E39-R1	$60 \times 40 \mathrm{~mm}$ (included in some models)
	0.1-4.3 m (axial)	E39-R1S	for E3F2-R4
	$0.1-4.2 \mathrm{~m}$ (axial) $0.1-2.7 \mathrm{~m}$ (radial)	E39-R7	84 mm
	$\begin{aligned} & 0.1-5.3 \mathrm{~m} \text { (axial) } \\ & 0.1-3.1 \mathrm{~m} \text { (radial) } \end{aligned}$	E39-R8	$100 \times 100 \mathrm{~mm}$
	0.1-4.3 m (axial)	E39-R40	$80 \times 80 \mathrm{~mm}$
Tape Reflectors		E39-RSA	$35 \times 10 \mathrm{~mm}$
		E39-RSB	$35 \times 40 \mathrm{~mm}$
		E39-RS3	$80 \times 70 \mathrm{~mm}$
Lens Cap		E39-F31	
Mounting Bracket		Y92E-B18	screw mount
		Y92E-G18	quick access mounting
Slit		E39-ES18	for E3F2-10 \square - precision detection

For detailed information about Accessories, refer to the main chapter "Accessories" at the end of the document.
Note: 1. Typical sensing distance corresponds to 80% of the max. sensing distance. For details, please refer to "Engineering Data".

Sensor I/O Connectors

Cord	Shape	Cab		Model
Standard	Straight	2 m	Four-wire type	XS2F-D421-D80-A
		5 m		XS2F-D421-G80-A
	L-shaped 5 =ive	2 m		XS2F-D422-D80-A
		5 m		XS2F-D422-G80-A
Vibration-proof robot cable	Straight	2 m		XS2F-D421-D80-R
		5 m		XS2F-D421-G80-R
	L-shaped	2 m		XS2F-D422-D80-R
		5 m		XS2F-D422-G80-R

Ordering Information: type list
DC-Switching Models, plastic

Model	Sensing method, sensing distance	Appearance	Connection (cable-length)	Control output	Comments
E3F2-7B4 2M	Through-beam, 7 m	axial	Pre-wired (2 m)*	PNP	Receiver and Emitter
E3F2-7B4-P1	Through-beam, 7 m	axial	Connector	PNP	Receiver and Emitter
E3F2-7C4 2M	Through-beam, 7 m	axial	Pre-wired (2 m)*	NPN	Receiver and Emitter
E3F2-7C4-P1	Through-beam, 7 m	axial	Connector	NPN	Receiver and Emitter
E3F2-7DB4 2M	Through-beam, 7 m	axial	Pre-wired (2 m)*	PNP	Receiver only
E3F2-7DB4-P1	Through-beam, 7 m	axial	Connector	PNP	Receiver only
E3F2-7DC4 2M	Through-beam, 7 m	axial	Pre-wired (2 m)*	NPN	Receiver only
E3F2-7DC4-P1	Through-beam, 7 m	axial	Connector	NPN	Receiver only
E3F2-7L 2M	Through-beam, 7 m	axial	Pre-wired (2 m)*	N.A.	Emitter only
E3F2-7L -P1	Through-beam, 7 m	axial	Connector	N.A.	Emitter only
E3F2-10B4 2M	Through-beam, 10m	axial	Pre-wired (2m)*	PNP	Receiver and Emitter (precision detection and test input)
E3F2-10B4-P1	Through-beam, 10m	axial	Connector	PNP	Receiver and Emitter (precision detection and test input)
E3F2-10DB4 2M	Through-beam, 10m	axial	Pre-wired (2m)*	PNP	Receiver only (precision detection and test input)
E3F2-10DB4-P1	Through-beam, 10m	axial	Connector	PNP	Receiver only (precision detection and test input)
E3F2-10C4 2M	Through-beam, 10m	axial	Pre-wired (2m)*	NPN	Receiver and Emitter (precision detection and test input)
E3F2-10C4-P1	Through-beam, 10m	axial	Connector	NPN	Receiver and Emitter (precision detection and test input)
E3F2-10DC4 2M	Through-beam, 10m	axial	Pre-wired (2m)*	NPN	Receiver only (precision detection and test input)
E3F2-10DC4-P1	Through-beam, 10m	axial	Connector	NPN	Receiver only (precision detection and test input)
E3F2-10LB 2M	Through-beam, 10m	axial	Pre-wired (2m)*	PNP	Emitter only (precision detection and test input)
E3F2-10LB-P1	Through-beam, 10m	axial	Connector	PNP	Emitter only (precision detection and test input)
E3F2-DS10B4-N 2M	Diffuse reflective, 0.1 m	axial	Pre-wired (2 m)*	PNP	Wide-beam characteristic
E3F2-DS10B4-P1	Diffuse reflective, 0.1 m	axial	Connector	PNP	Wide-beam characteristic
E3F2-DS10C4-N 2M	Diffuse reflective, 0.1 m	axial	Pre-wired (2 m)*	NPN	Wide-beam characteristic
E3F2-DS10C4-P1	Diffuse reflective, 0.1 m	axial	Connector	NPN	Wide-beam characteristic
E3F2-DS30B4 2M	Diffuse reflective, 0.3 m	axial	Pre-wired (2 m)*	PNP	Sensitivity adjuster
E3F2-DS30B41 2M	Diffuse reflective, 0.3 m	radial	Pre-wired (2 m)*	PNP	Sensitivity adjuster
E3F2-DS30B41-P1	Diffuse reflective, 0.3 m	radial	Connector	PNP	Sensitivity adjuster
E3F2-DS30B4-P1	Diffuse reflective, 0.3 m	axial	Connector	PNP	Sensitivity adjuster
E3F2-DS30C4 2M	Diffuse reflective, 0.3 m	axial	Pre-wired (2 m)*	NPN	Sensitivity adjuster
E3F2-DS30C41 2M	Diffuse reflective, 0.3 m	radial	Pre-wired (2 m)*	NPN	Sensitivity adjuster
E3F2-DS30C41-P1	Diffuse reflective, 0.3 m	radial	Connector	NPN	Sensitivity adjuster
E3F2-DS30C4-P1	Diffuse reflective, 0.3 m	axial	Connector	NPN	Sensitivity adjuster
E3F2-D1B4 2M	Diffuse reflective, 1 m	axial	Pre-wired (2 m)*	PNP	Sensitivity adjuster
E3F2-D1B4-P1	Diffuse reflective, 1 m	axial	Connector	PNP	Sensitivity adjuster
E3F2-D1C4 2M	Diffuse reflective, 1 m	axial	Pre-wired (2 m)*	NPN	Sensitivity adjuster
E3F2-D1C4-P1	Diffuse reflective, 1 m	axial	Connector	NPN	Sensitivity adjuster
E3F2-LS10B4 2M	Background suppression, 10 cm	axial	Pre-wired (2 m)*	PNP	Background suppression
E3F2-LS10B4-P1	Background suppression, 10 cm	axial	Connector	PNP	Background suppression
E3F2-LS10C4 2M	Background suppression, 10 cm	axial	Pre-wired (2 m)*	NPN	Background suppression
E3F2-LS10C4-P1	Background suppression, 10 cm	axial	Connector	NPN	Background suppression
E3F2-R2B4 2M	Retroreflective, 2 m	axial	Pre-wired (2 m)*	PNP	Non-polarizing
E3F2-R2B4-E 2M	Retroreflective, 2 m	axial	Pre-wired (2 m)*	PNP	Non-polarizing, including reflector
E3F2-R2B4-P1	Retroreflective, 2 m	axial	Connector	PNP	Non-polarizing
E3F2-R2B4-P1-E	Retroreflective, 2 m	axial	Connector	PNP	Non-polarizing, including reflector
E3F2-R2C4 2M	Retroreflective, 2 m	axial	Pre-wired (2 m)*	NPN	Non-polarizing
E3F2-R2C4-E 2M	Retroreflective, 2 m	axial	Pre-wired (2 m)*	NPN	Non-polarizing, including reflector
E3F2-R2C4-P1	Retroreflective, 2 m	axial	Connector	NPN	Non-polarizing
E3F2-R2C4-P1-E	Retroreflective, 2 m	axial	Connector	NPN	Non-polarizing, including reflector

Model	Sensing method, sensing distance	Appearance	Connection (cable-length)	Control output	Comments
E3F2-R2RB41 2M	Retroreflective, 2 m	radial	Pre-wired (2 m)*	PNP	Polarizing
E3F2-R2RB41-E 2M	Retroreflective, 2 m	radial	Pre-wired (2 m)*	PNP	Polarizing, including reflector
E3F2-R2RB41-P1	Retroreflective, 2 m	radial	Connector	PNP	Polarizing
E3F2-R2RB41-P1-E	Retroreflective, 2 m	radial	Connector	PNP	Polarizing, including reflector
E3F2-R2RC41 2M	Retroreflective, 2 m	radial	Pre-wired (2 m)*	NPN	Polarizing
E3F2-R2RC41-E 2M	Retroreflective, 2 m	radial	Pre-wired (2 m)*	NPN	Polarizing, including reflector
E3F2-R2RC41-P1	Retroreflective, 2 m	radial	Connector	NPN	Polarizing
E3F2-R2RC41-P1-E	Retroreflective, 2 m	radial	Connector	NPN	Polarizing, including reflector
E3F2-R4B4 2M	Retroreflective, 4m	axial	Pre-wired (2m)*	PNP	Polarizing, sensitivity adjuster
E3F2-R4B4-E 2M	Retroreflective, 4m	axial	Pre-wired (2m)*	PNP	Polarizing, sensitivity adjuster, incl. reflector
E3F2-R4B4F 2M	Retroreflective, 4m	axial	Pre-wired (2m)*	PNP	Polarizing, fixed sensitivity
E3F2-R4B4F-E 2M	Retroreflective, 4m	axial	Pre-wired (2m)*	PNP	Polarizing, fixed sensitivity incl. reflector
E3F2-R4C4 2M	Retroreflective, 4m	axial	Pre-wired (2m)*	NPN	Polarizing, sensitivity adjuster
E3F2-R4C4-E 2M	Retroreflective, 4m	axial	Pre-wired (2m)*	NPN	Polarizing, sensitivity adjuster, incl. reflector
E3F2-R4C4F 2M	Retroreflective, 4m	axial	Pre-wired (2m)*	NPN	Polarizing, fixed sensitivity
E3F2-R4C4F-E 2M	Retroreflective, 4m	axial	Pre-wired (2m)*	NPN	Polarizing, fixed sensitivity incl. reflector
E3F2-R4B4-P1	Retroreflective, 4m	axial	Connector	PNP	Polarizing, sensitivity adjuster
E3F2-R4B4-P1-E	Retroreflective, 4m	axial	Connector	PNP	Polarizing, sensitivity adjuster, incl. reflector
E3F2-R4B4F-P1	Retroreflective, 4m	axial	Connector	PNP	Polarizing, fixed sensitivity
E3F2-R4B4F-P1-E	Retroreflective, 4m	axial	Connector	PNP	Polarizing, fixed sensitivity incl. reflector
E3F2-R4C4-P1	Retroreflective, 4m	axial	Connector	NPN	Polarizing, sensitivity adjuster
E3F2-R4C4-P1-E	Retroreflective, 4m	axial	Connector	NPN	Polarizing, sensitivity adjuster, incl. reflector
E3F2-R4C4F-P1	Retroreflective, 4m	axial	Connector	NPN	Polarizing, fixed sensitivity
E3F2-R4C4F-P1-E	Retroreflective, 4m	axial	Connector	NPN	Polarizing, fixed sensitivity incl. reflector

* Standard cable length is 2 m . Models provided with a 5 m long cable are available. When ordering, specify the cable length by adding the length of the cable (e.g. E3F2-R2RB41 2M or E3F2-R2RB41 5M). For other cable length please contact your OMRON sales representative.

DC-Switching Models, metal (nickel plated brass)

Model	Sensing method, sensing range	Appearance	Connection (cable-length)	Control output	Comments
E3F2-7B4-M 2M	Through-beam, 7 m	axial	Pre-wired (2 m)*	PNP	Receiver and Emitter
E3F2-7B4-M1-M	Through-beam, 7 m	axial	Connector	PNP	Receiver and Emitter
E3F2-7C4-M 2M	Through-beam, 7 m	axial	Pre-wired (2 m)*	NPN	Receiver and Emitter
E3F2-7C4-M1-M	Through-beam, 7 m	axial	Connector	NPN	Receiver and Emitter
E3F2-7DB4-M 2M	Through-beam, 7 m	axial	Pre-wired (2 m)*	PNP	Receiver only
E3F2-7DB4-M1-M	Through-beam, 7 m	axial	Connector	PNP	Receiver only
E3F2-7DC4-M 2M	Through-beam, 7 m	axial	Pre-wired (2 m)*	NPN	Receiver only
E3F2-7DC4-M1-M	Through-beam, 7 m	axial	Connector	NPN	Receiver only
E3F2-7L-M 2M	Through-beam, 7 m	axial	Pre-wired (2 m)*	N.A	Emitter only
E3F2-7L-M1-M	Through-beam, 7 m	axial	Connector	N.A	Emitter only
E3F2-10B4-M 2M	Through-beam, 10m	axial	Pre-wired (2m)*	PNP	Receiver and Emitter (precision detection and test input)
E3F2-10B4-M1-M	Through-beam, 10m	axial	Connector	PNP	Receiver and Emitter (precision detection and test input)
E3F2-10DB4-M 2M	Through-beam, 10m	axial	Pre-wired (2m)*	PNP	Receiver only (precision detection and test input)
E3F2-10DB4-M1-M	Through-beam, 10m	axial	Connector	PNP	Receiver only (precision detection and test input)
E3F2-10C4-M 2M	Through-beam, 10m	axial	Pre-wired (2m)*	NPN	Receiver and Emitter (precision detection and test input)
E3F2-10C4-M1-M	Through-beam, 10m	axial	Connector	NPN	Receiver and Emitter (precision detection and test input)
E3F2-10DC4-M 2M	Through-beam, 10m	axial	Pre-wired (2m)*	NPN	Receiver only (precision detection and test input)
E3F2-10DC4-M1-M	Through-beam, 10m	axial	Connector	NPN	Receiver only (precision detection and test input)
E3F2-10LB-M 2M	Through-beam, 10m	axial	Pre-wired (2m)*	PNP	Emitter only (precision detection and test input)

Model	Sensing method, sensing range	Appearance	Connection (cable-length)	Control output	Comments
E3F2-10LB-M 2M	Through-beam, 10m	axial	Pre-wired (2m)*	PNP	Emitter only (precision detection and test input)
E3F2-10LB-M1-M	Through-beam, 10m	axial	Connector	PNP	Emitter only (precision detection and test input)
E3F2-DS10B4-M 2M	Diffuse reflective, 0.1 m	axial	Pre-wired (2 m)*	PNP	Wide-beam characteristic
E3F2-DS10B4-M1-M	Diffuse reflective, 0.1 m	axial	Connector	PNP	Wide-beam characteristic
E3F2-DS10C4-M 2M	Diffuse reflective, 0.1 m	axial	Pre-wired (2 m)*	NPN	Wide-beam characteristic
E3F2-DS10C4-M1-M	Diffuse reflective, 0.1 m	axial	Connector	NPN	Wide-beam characteristic
E3F2-DS30B41-M 2M	Diffuse reflective, 0.3 m	radial	Pre-wired (2 m)*	PNP	Sensitivity adjuster
E3F2-DS30B41-M1-M	Diffuse reflective, 0.3 m	radial	Connector	PNP	Sensitivity adjuster
E3F2-DS30B4-M 2M	Diffuse reflective, 0.3 m	axial	Pre-wired (2 m)*	PNP	Sensitivity adjuster
E3F2-DS30B4-M1-M	Diffuse reflective, 0.3 m	axial	Connector	PNP	Sensitivity adjuster
E3F2-DS30C41-M 2M	Diffuse reflective, 0.3 m	radial	Pre-wired (2 m)*	NPN	Sensitivity adjuster
E3F2-DS30C41-M1-M	Diffuse reflective, 0.3 m	radial	Connector	NPN	Sensitivity adjuster
E3F2-DS30C4-M 2M	Diffuse reflective, 0.3 m	axial	Pre-wired (2 m)*	NPN	Sensitivity adjuster
E3F2-DS30C4-M1-M	Diffuse reflective, 0.3 m	axial	Connector	NPN	Sensitivity adjuster
E3F2-D1B4-M 2M	Diffuse reflective, 1 m	axial	Pre-wired (2m)*	PNP	Sensitivity adjuster
E3F2-D1B4-M1-M	Diffuse reflective, 1 m	axial	Connector	PNP	Sensitivity adjuster
E3F2-D1C4-M 2M	Diffuse reflective, 1 m	axial	Pre-wired (2m)*	NPN	Sensitivity adjuster
E3F2-D1C4-M1-M	Diffuse reflective, 1 m	axial	Connector	NPN	Sensitivity adjuster
E3F2-LS10B4-M 2M	Background suppression, 10 cm	axial	Pre-wired (2m)*	PNP	Background suppression
E3F2-LS10B4-M1-M	Background suppression, 10 cm	axial	Connector	PNP	Background suppression
E3F2-LS10C4-M 2M	Background suppression, 10 cm	axial	Pre-wired (2m)*	NPN	Background suppression
E3F2-LS10C4-M1-M	Background suppression, 10 cm	axial	Connector	NPN	Background suppression
E3F2-R2RB41-M 2M	Retroreflective, 2 m	radial	Pre-wired (2 m)*	PNP	Polarizing
E3F2-R2RB41-M1-M	Retroreflective, 2 m	radial	Connector	PNP	Polarizing
E3F2-R2RB41-M1-M-E	Retroreflective, 2 m	radial	Connector	PNP	Polarizing, including reflector
E3F2-R2RB41-M-E 2M	Retroreflective, 2 m	radial	Pre-wired (2 m)*	PNP	Polarizing, including reflector
E3F2-R2RB4-M 2M	Retroreflective, 2 m	axial	Pre-wired (2 m)*	PNP	Polarizing
E3F2-R2RB4-M1-M	Retroreflective, 2 m	axial	Connector	PNP	Polarizing
E3F2-R2RB4-M1-M-E	Retroreflective, 2 m	axial	Connector	PNP	Polarizing, including reflector
E3F2-R2RB4-M-E 2M	Retroreflective, 2 m	axial	Pre-wired (2 m)*	PNP	Polarizing, including reflector
E3F2-R2RC41-M 2M	Retroreflective, 2 m	radial	Pre-wired (2 m)*	NPN	Polarizing
E3F2-R2RC41-M1-M	Retroreflective, 2 m	radial	Connector	NPN	Polarizing
E3F2-R2RC41-M1-M-E	Retroreflective, 2 m	radial	Connector	NPN	Polarizing, including reflector
E3F2-R2RC41-M-E 2M	Retroreflective, 2 m	radial	Pre-wired (2 m)*	NPN	Polarizing, including reflector
E3F2-R2RC4-M 2M	Retroreflective, 2 m	axial	Pre-wired (2 m)*	NPN	Polarizing
E3F2-R2RC4-M1-M	Retroreflective, 2 m	axial	Connector	NPN	Polarizing
E3F2-R2RC4-M1-M-E	Retroreflective, 2 m	axial	Connector	NPN	Polarizing, including reflector
E3F2-R2RC4-M-E 2M	Retroreflective, 2 m	axial	Pre-wired (2 m)*	NPN	Polarizing, including reflector
E3F2-R4B4-M 2M	Retroreflective, 4 m	axial	Pre-wired (2m)*	PNP	Polarizing, sensitivity adjuster
E3F2-R4B4-M-E 2M	Retroreflective, 4 m	axial	Pre-wired (2m)*	PNP	Polarizing, sensitivity adjuster, incl. reflector
E3F2-R4B4F-M 2M	Retroreflective, 4 m	axial	Pre-wired (2m)*	PNP	Polarizing, fixed sensitivity
E3F2-R4B4F-M-E 2M	Retroreflective, 4 m	axial	Pre-wired (2m)*	PNP	Polarizing, fixed sensitivity incl. reflector
E3F2-R4C4-M 2M	Retroreflective, 4m	axial	Pre-wired (2m)*	NPN	Polarizing, sensitivity adjuster
E3F2-R4C4-M-E 2M	Retroreflective, 4 m	axial	Pre-wired (2m)*	NPN	Polarizing, sensitivity adjuster, incl. reflector
E3F2-R4C4F-M 2M	Retroreflective, 4m	axial	Pre-wired (2m)*	NPN	Polarizing, fixed sensitivity
E3F2-R4C4F-M-E 2M	Retroreflective, 4 m	axial	Pre-wired (2m)*	NPN	Polarizing, fixed sensitivity incl. reflector
E3F2-R4B4-M1-M	Retroreflective, 4 m	axial	Connector	PNP	Polarizing, sensitivity adjuster
E3F2-R4B4-M1-M-E	Retroreflective, 4 m	axial	Connector	PNP	Polarizing, sensitivity adjuster, incl. reflector
E3F2-R4B4F-M1-M	Retroreflective, 4 m	axial	Connector	PNP	Polarizing, fixed sensitivity
E3F2-R4B4F-M1-M-E	Retroreflective, 4 m	axial	Connector	PNP	Polarizing, fixed sensitivity incl. reflector
E3F2-R4C4-M1-M	Retroreflective, 4 m	axial	Connector	NPN	Polarizing, sensitivity adjuster

Model	Sensing method, sensing range	Appearance	Connection (cable-length)	Control output	Comments
E3F2-R4C4-M1-M-E	Retroreflective, 4m	axial	Connector	NPN	Polarizing, sensitivity adjuster, incl. reflector
E3F2-R4C4F-M1-M	Retroreflective, 4m	axial	Connector	NPN	Polarizing, fixed sensitivity
E3F2-R4C4F-M1-M-E	Retroreflective, 4m	axial	Connector	NPN	Polarizing, fixed sensitivity incl. reflector

* Standard cable length is 2 m . Models provided with a 5 m long cable are available. When ordering, specify the cable length by adding the length of the cable (e.g. E3F2-R2RB41-M 2M or E3F2-R2RB41-M 5M). For other cable length please contact your OMRON sales representative.

DC-Switching Models, metal (stainless steel)

Model	Sensing method, sensing range	Appearance	Connection (cable-length)	Control output	Comments
E3F2-7B4-M1-S	Through-beam, 7 m	axial	Connector	PNP	Receiver and Emitter
E3F2-7B4-S 2M	Through-beam, 7 m	axial	Pre-wired (2 m)*	PNP	Receiver and Emitter
E3F2-7C4-M1-S	Through-beam, 7 m	axial	Connector	NPN	Receiver and Emitter
E3F2-7C4-S 2M	Through-beam, 7 m	axial	Pre-wired (2 m)*	NPN	Receiver and Emitter
E3F2-7DB4-M1-S	Through-beam, 7 m	axial	Connector	PNP	Receiver only
E3F2-7DB4-S 2M	Through-beam, 7 m	axial	Pre-wired (2 m)*	PNP	Receiver only
E3F2-7DC4-M1-S	Through-beam, 7 m	axial	Connector	NPN	Receiver only
E3F2-7DC4-S 2M	Through-beam, 7 m	axial	Pre-wired (2 m)*	NPN	Receiver only
E3F2-7L-M1-S	Through-beam, 7 m	axial	Connector	N.A.	Emitter only
E3F2-7L-S 2M	Through-beam, 7 m	axial	Pre-wired (2 m)*	N.A.	Emitter only
E3F2-DS10B4-M1-S	Diffuse reflective, 0.1 m	axial	Connector	PNP	Wide-beam characteristic
E3F2-DS10B4-S 2M	Diffuse reflective, 0.1 m	axial	Pre-wired (2 m)*	PNP	Wide-beam characteristic
E3F2-DS10C4-M1-S	Diffuse reflective, 0.1 m	axial	Connector	NPN	Wide-beam characteristic
E3F2-DS10C4-S 2M	Diffuse reflective, 0.1 m	axial	Pre-wired (2 m)*	NPN	Wide-beam characteristic
E3F2-DS30B4-M1-S	Diffuse reflective, 0.3 m	axial	Connector	PNP	Sensitivity adjuster
E3F2-DS30B4-S 2M	Diffuse reflective, 0.3 m	axial	Pre-wired (2 m)*	PNP	Sensitivity adjuster
E3F2-DS30C4-M1-S	Diffuse reflective, 0.3 m	axial	Connector	NPN	Sensitivity adjuster
E3F2-DS30C4-S 2M	Diffuse reflective, 0.3 m	axial	Pre-wired (2 m)*	NPN	Sensitivity adjuster
E3F2-R2RB4-M1-S	Retroreflective, 2 m	axial	Connector	PNP	Polarizing
E3F2-R2RB4-M1-S-E	Retroreflective, 2 m	axial	Connector	PNP	Polarizing, including reflector
E3F2-R2RB4-S 2M	Retroreflective, 2 m	axial	Pre-wired (2 m)*	PNP	Polarizing
E3F2-R2RB4-S-E 2M	Retroreflective, 2 m	axial	Pre-wired (2 m)*	PNP	Polarizing, including reflector
E3F2-R2RC4-M1-S	Retroreflective, 2 m	axial	Connector	NPN	Polarizing
E3F2-R2RC4-M1-S-E	Retroreflective, 2 m	axial	Connector	NPN	Polarizing, including reflector
E3F2-R2RC4-S 2M	Retroreflective, 2 m	axial	Pre-wired (2 m)*	NPN	Polarizing
E3F2-R2RC4-S-E 2M	Retroreflective, 2 m	axial	Pre-wired (2 m)*	NPN	Polarizing, including reflector

* Standard cable length is 2 m . Models provided with a 5 m long cable are available. When ordering, specify the cable length by adding the length of the cable (e.g. E3F2-R2RB41-S 2M or E3F2-R2RB41-S 5M). For other cable length please contact your OMRON sales representative.

AC-Switching Models, plastic

Model	Sensing method, sensing range	Appearance	Connection (cable-length)	Control output	Comments
E3F2-3LZ 2M	Through-beam, 3 m	axial	Pre-wired (2 m)*	N.A.	Emitter only
E3F2-3DZ1 2M	Through-beam, 3 m	axial	Pre-wired (2 m)*	Light-ON	Receiver only
E3F2-3DZ2 2M	Through-beam, 3 m	axial	Pre-wired (2 m)*	Dark-ON	Receiver only
E3F2-3Z1 2M	Through-beam, 3 m	axial	Pre-wired (2 m)*	Light-ON	Receiver and Emitter
E3F2-3Z2 2M	Through-beam, 3 m	axial	Pre-wired (2 m)*	Dark-ON	Receiver and Emitter
E3F2-R2Z1 2M	Retroreflective, 2 m	axial	Pre-wired (2 m)*	Light-ON	Non-polarizing
E3F2-R2Z2 2M	Retroreflective, 2 m	axial	Pre-wired (2 m)*	Dark-ON	Non-polarizing
E3F2-R2Z1-E 2M	Retroreflective, 2 m	axial	Pre-wired (2 m)*	Light-ON	Non-polarizing, including reflector
E3F2-R2Z2-E 2M	Retroreflective, 2 m	axial	Pre-wired (2 m)*	Dark-ON	Non-polarizing, including reflector
E3F2-DS10Z1-N 2M	Diffuse reflective, 0.1 m	axial	Pre-wired (2 m)*	Light-ON	Wide-beam characteristic
E3F2-DS10Z2-N 2M	Diffuse reflective, 0.1 m	axial	Pre-wired (2 m)*	Dark-ON	Wide-beam characteristic

[^0]
Specifications

Ratings / Characteristics of DC Switching Models

Note: 1.For stable sensing distance in detail, please refer to "Engineering Data"
2. Typical sensing distance corresponds to 80% of the max. sensing distance.
3.The enclosure rating IP67 of OMRON internal standards correspond to stricter test requirements than the standard IEC 60529 (refer to chapter "Precautions")

4 . For other cable materials (e.g. PUR) please contact your OMRON sales representative.
5 . Material-specification for stainless steel housing case: 1.4305 (W.-No.), 303 (AISI), 2346 (SS). For other stainless steel materials please contact your OMRON sales representative.
6 . Please contact your OMRON sales representative for the availability of stainless steel BGS types.
7 . with slit E39-ES18
8. PNP models -B4: Vcc to Vcc -2.5 V: Emitting OFF (Source current: 3 mA max.) / Open or 0 to 2.5 V : Emitting ON (Leakage current: 0.1 mA max.) NPN models -C4: 0 to 2.5 V : Emitting OFF (Source current: 3 mA max.) / Open or Vcc to Vcc - 2.5 V : Emitting ON (Leakage current: 0.1 mA max.)

Ratings / Characteristics of AC Switching Models

Item	$\begin{aligned} & \text { E3F2-3Z1 } \\ & \text { E3F2-3Z2 } \end{aligned}$	$\begin{aligned} & \text { E3F2-R2Z1 } \\ & \text { E3F2-R2Z2 } \end{aligned}$	$\begin{aligned} & \text { E3F2-DS10Z1 } \\ & \text { E3F2-DS10Z2 } \end{aligned}$
Sensing method	Through-beam	Non-polarizing Retroreflective	Diffuse reflective (wide-beam characteristic)
Power supply voltage	24 to 240 VAC $\pm 10 \%, 50 / 60 \mathrm{~Hz}$		
Current consumption	10 mA max.	5 mA max.	
Rated sensing distance[1.]	3 m	$\begin{gathered} 0.1-2 \mathrm{~m} \\ \text { (with reflector E39-R1) } \end{gathered}$	0.1 m $(5 \times 5 \mathrm{~cm}$ white mat paper)
Typical sensing distance for different reflector types [2.]	-	$\begin{aligned} & \text { E39-R1: 3,4 m } \\ & \text { E39-R7: } 3,9 \mathrm{~m} \\ & \text { E39-R8: } 5,2 \mathrm{~m} \end{aligned}$	-
Detectable object	Opaque object: 11 mm min.	Opaque object: 56 mm min.	Opaque objects
Directional angle	3° to 20°		-
Differential travel	-		20 \% max.
Response time	30 ms max .		
Control output	AC solid state (SCR) 200 mA max.; residual voltage: 5 V max. at 200 mA		
Power reset time	100 ms		
Ambient illumination	Incandescent lamp: 3000 lx max. Sunlight: 10000 lx max.		
Ambient temperature [5.]	Operating: -25 to $55^{\circ} \mathrm{C} /$ Storage: -30 to $70^{\circ} \mathrm{C}$ (with no icing or condensation)		
Ambient humidity	Operating: 35% to 85% / Storage: 35% to 95% (without condensation)		
Insulation resistance	20 M min. at 500 V DC between energized parts and case		
Dielectric strength	$1500 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min between energized parts and case		
Vibration resistance	10 to $55 \mathrm{~Hz}, 1.5 \mathrm{~mm}$ double amplitude for $2 \mathrm{hrs} \mathrm{each} \mathrm{direction} \mathrm{(X}, \mathrm{Y}, \mathrm{Z)}$		
Shock resistance	$500 \mathrm{~m} / \mathrm{sqr}$ (approx. 50 g) for each direction (X, Y, Z)		
Enclosure rating	IP67 [3.]; NEMA 1, 2, 4; IP69k after DIN 40050 part 9		
Light source	Infrared LED (880 nm)		
Indicators	Light incident/power indicator for light source (red)		
Sensitivity adjustment	Fixed		
Connection method	$2 \mathrm{~m}, 5 \mathrm{~m}$ pre-wired cable (PVC dia. 4 mm (14 / 0.15) [4.])		
Operation mode	Light-ON or Dark-ON (fixed)		
Circuit protection	None		
Weight (approx.)	110 g (pre-wired 2 m cable)		
Housing materials	Plastic (case: ABS; lens: PMMA)		

Note: 1 .For stable sensing distance in detail, please refer to "Engineering Data"
2 . Typical sensing distance corresponds to 80% of the max. sensing distance.
3 .The enclosure rating IP67 of OMRON internal standards correspond to stricter test requirements than the standard IEC 60529 (refer to chapter "Precautions")
4 . For other cable materials (e.g. PUR) please contact your OMRON sales representative.

Operating Range (typical)

Through-beam Models (axial) E3F2-7 $\square 4-\square$

Retroreflective Models (axial)
E3F2-R2 $\square 4-\square$ (non polarizing) and reflectors

Retro-reflective Models (axial) E3F2-R4 $\square 4 \square-\square$ (polarizing)

Through-beam Models (axial)

 E3F2-3Z \square

Retroreflective Models (axial) E3F2-R2Z \square (non polarizing) and reflectors

Retroreflective Models (radial) E3F2-R2R $\square 41-\square$ (polarizing) and reflectors

Through-beam Models (axial)

 E3F2-10 \square

Retroreflective Models (axial)

E3F2-R2R $\square 4-\square$ (polarizing) and reflectors

Diffuse reflective Models (axial) E3F2-DS10 $\square 4-\square$ (wide-beam type)

Diffuse reflective Models (radial) E3F2-DS30 $\square 41-\square$

Diffuse reflective Models (axial) E3F2-DS10Z- \square (wide-beam type)

Diffuse reflective Models (axial) E3F2-D1 $\square 4-\square$

Excess Gain Ratio vs. Distance (typical)

Through-beam Models (axial)
E3F2-7 $\square 4-\square$

Through-beam Models (axial) E3F2-3Z \square

Diffuse reflective Models (axial) E3F2-DS30 $\square 4-\square$

E3F2-10

Retroreflective Models (axial) E3F2-R2 $\square 4-\square$ (non polarizing) and reflectors

Retroreflective Models (axial)
E3F2-R4 $\square 4 \square-\square$

Diffuse reflective Models (axial) E3F2-DS10 $\square 4-\square$ (wide-beam type)

Retroreflective Models (axial) E3F2-R2Z \square (non polarizing) and reflectors

Retroreflective Models (radial) E3F2-R2R \square 41- \square (polarizing) and reflectors

Diffuse reflective Models (axial)
E3F2-DS10Z- \square (wide-beam type)

Retroreflective Models (axial) E3F2-R2R $\square 4-\square$ (polarizing) and reflectors

Diffuse reflective Models (axial)
E3F2-DS30 $\square 4-\square$

Diffuse reflective Models (radial)

E3F2-DS30 $\square 41-\square$

Diffuse reflective Models (axial)

Light spot vs sensing distance

Background suppression Models

 E3F2-LS \square

Incline (left and right)

Background suppression Models

 E3F2-LS \square

Incline (up and down)

Background suppression Models

 E3F2-LS

Object material vs sensing distance
Background suppression Models
E3F2-LS \square

Operation

Output Circuits

Structure of Sensor I/O Connector

Classification	Wire color	Connector pin No.	Use
DC	Brown	(1)	Power supply $(+V)$
	White	(2)	Modeselection Lon/Don
	Blue	(3)	Power supply $(0 \mathrm{~V})$
	Black	(4)	Output

XS2F-D42■-D80-■
XS2F-G42■-G80-■

PNP Output

Model	Output transistor status	Timing chart	Connection method	Output circuit
```E3F2-\squareB4-\square (except for E3F2-10B4-\square and E3F2-LS10B4-\square)```	-	-	-	Through-beam emitter
	ON when light is incident. (Light-ON)		Connect the pink (Pin (2) and brown (Pin (1) cords or open the pink cord (Pin (2).	
	ON when light is interrupted. (DarkON)		Connect the pink (Pin (2) and blue (Pin (3) cords.	


Model	Output transistor status	Timing ch	chart	Connection method	Output circuit
E3F2-10B4- $\square$	-	Test   input   Light   emission   Indicator	$\begin{aligned} & \text { ON } \begin{array}{l} \text { OFF } \\ \text { OFF } \\ \text { ON } \\ \text { OFF } \square \square \square \\ \text { OF } \\ \text { OFF } \square \square \end{array} \end{aligned}$	-	Through-beam emitter
	ON when light is incident. (Light-ON)	Incident Interrupted   Output indicator (orange) Output transistor $\begin{array}{ll}\text { Load } & \text { Op } \\ \text { (relay) } & \text { Re }\end{array}$		Connect the pink (Pin (2) and brown (Pin (1) cords or open the pink cord (Pin (2)).	
	ON when light is interrupted. (DarkON)	Incident Interrupted   Output indicator (orange) Output transistor		Connect the pink (Pin (2) and blue (Pin (3) cords.	
E3F2-LS10B4- $\square$	ON when light is incident.   (Light-ON)			Connect the pink (Pin (2) and brown (Pin (1) cords or open the pink cord (Pin (2)).	
	ON when light is interrupted. (DarkON)	Incident Interrupted Output indicator (orange) transistor $\begin{array}{ll}\text { Load } & \text { Op } \\ \text { (relay) } & \text { Re }\end{array}$		Connect the pink (Pin (2) and blue (Pin (3) cords.	

[^1]| Model | Output transistor status | Timing chart | Connection method | Output circuit |
| :---: | :---: | :---: | :---: | :---: |
| E3F2- $\square$ C4- <br> (except for E3F2-10C4- $\square$ and E3F2-LS10C4- $\square$ ) | - |  | - | Through-beam emitter |
|  | ON when light is incident. (Light-ON) |  | Connect the pink (Pin (2) and brown (Pin (1) cords or open the pink cord (Pin (2). |  |
|  | ON when light is interrupted. (DarkON) |  | Connect the pink (Pin (2) and blue (Pin (3) cords. |  |
| E3F2-10C4- $\square$ | - | $\left.\begin{array}{ll}\text { Test } \\ \text { input } & \text { ON } \\ \text { OFF } & \square \\ \text { Light } \\ \text { emission } & \text { ON } \\ \text { OFF } & \square \\ \text { Indicator } & \text { ON } \\ & \text { OFF } \\ & \square \\ & \end{array}\right)$ | - | Through-beam emitter |
|  | ON when light is incident. <br> (Light-ON) |  | Connect the pink (Pin (2) and brown (Pin (1) cords or open the pink cord (Pin (2). |  |
|  | ON when light is interrupted. (DarkON) |  | Connect the pink (Pin (2) and blue (Pin (3) cords. |  |


Model	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Output } \\ \text { transistor status } \end{array} \end{array}$	Timing chart	Connection method	Output circuit
E3F2-LS10C4-■	ON when light is incident. (Light-ON)		Connect the pink (Pin (2) and brown (Pin ${ }^{(1)}$ ) cords or open the pink cord (Pin (2).	
	ON when light is interrupted. (DarkON)		Connect the pink (Pin (2) and blue (Pin (3) cords.	

Note: Terminal numbers for connector type.
AC Output

Model	Output transistor status	Timing chart	Connection method	Output circuit
E3F2-3LZ	-	-	-	Through-beam emitter
$\begin{aligned} & \text { E3F2-3Z1 } \\ & \text { E3F2-R2Z1 } \\ & \text { E3F2-DS10Z1-N } \end{aligned}$	ON when light is incident. (Light-ON)		-	
$\begin{aligned} & \text { E3F2-3Z2 } \\ & \text { E3F2-R2Z2 } \\ & \text { E3F2-DS10Z2-N } \end{aligned}$	ON when light is interrupted. (DarkON)		-	

DC-Switching Models, plastic, axial type


DC-Switching Models, plastic, radial type


DC-Switching Models, metal (brass and stainless steel), axial type


DC-Switching Models, metal (brass and stainless steel), radial type

Cable type	Connector type
Without potentiometer	
E3F2-R2R $\square 41-M \quad$ E3F2-R2R $\square 41-S$	
With potentiometer	
E3F2-DS30 $\square 41-M \quad$ E3F2-DS30 $\square 41-S$	E3F2-DS30 $\square 41-\mathrm{M} 1-\mathrm{M}$ E3F2-DS30 $\square 41-\mathrm{M} 1-\mathrm{S}$

AC-Switching Models, plastic, axial type
Cable type
Without potentiometer
E3F2-3Z
E3F2-R2Z $\square$
E3F2-DS10Z $\square$-N


## Accessories (Order Separately)

Reflectors	
E39-R1   E39-R1S   Material, reflective surface: acrylic Rear surface: ABS	E39-R3   Material, reflective surface: acrylic Rear surface: ABS
E39-R7	E39-R8
E39-R40	




Note:
Hexagon bolt: M5 x 32
Material: plastic

## Mounting Bracket

Y92E-G18


Slit (for precision detection with E3F2-10 $\square$ )
E39-ES18


The E3F2 Photoelectric Sensor is not a safety component for ensuring the safety of people which is defined in EC directive (91/368/ EEC) and covered by separate European standards or by any other regulations or standards.

## Degree of protection

The E3F2 photoelectric sensors have a degree of protection rated with IP67. In this case, the sensors have passed the OMRON heat shock test before the IP67-test of IEC 60529 (submersion at 1m water depth for 30 min ). Afterwards the sensors have been tested according to the OMRON waterproof test.

Heat shock: Alternating, fast temperature changes between $-25^{\circ} \mathrm{C}$ and $+55^{\circ} \mathrm{C}$ are executed for 5 cycles and 1 hour for each temperature. Function and isolation are checked.

Water proof:The sensors are submerged alternating in water of $+2^{\circ} \mathrm{C}$ and $+55^{\circ} \mathrm{C} .20$ cycles with 1 hour for each temperature are executed. Function, water tightness and electrical isolation are checked.

Do not expose the photoelectric sensor to excessive shock during installation, keeping within IP 67 standards.

## Wiring

If the input/output lines of the photoelectric sensor are placed in the same conduit or duct as power lines or high-voltage lines, the photoelectric sensor could be induced to malfunction, or even be damaged by electrical noise. Separate the wiring, or use shielded lines as input/output lines to the photoelectric sensor.

Do not connect the black wire to the brown wire without a load. Direct connection of these wires may damage the photoelectric sensor (AC switching type).


When using the photoelectric sensor in the vicinity of an inverter motor, ensure to connect the protective earth ground wire of the motor to earth. Failure to ground the motor may result in malfunction of the sensor.
When you use the photoelectric sensor at temperatures exceeding $45^{\circ} \mathrm{C}$, the load current must be within the described values as shown in the figure below.


## Installation

Do not exceed a torque of

- 2.0 Nm ( 20 kgf cm ) when tightening mounting nuts for plastic models
- 20.0 Nm (200 kgf cm) when tightening mounting nuts for metal models


[^2]Cat. No. E224-E2-03
In the interest of product improvement, specifications are subject to change without notice.

General purpose sensors in compact plastic housing
E3Z

- Compact housing size and high power LED for excellent performance-size ratio
- IP67 and IP69k for highest protection in wet environments


Features
Basic performance


Distance-setting model $0.2 m$

## Reliability

Eliminates the influence of installation and on-site conditions, thus increasing the reliability of the line.

High protection against water and dust contami- High immunity to electrical interference, such nants

as inverter drives.


## Stability

E3Z-series reliability covers a wide range of object/background combinations, so ensuring stable detection regardless of workpiece color or reflectivity.

## Environmental protection

Photoelectric Sensor with Built-in Amplifier



E3Z is environmental-friendly, energy-saving.


10-quantity packing reduces waste cartons. Packed in "combustible" polyethylene bags free of Styrofoam. *


Standard models provided with a $0.5-\mathrm{m}$ cable are On-going elimination of materials containing available for the elimination of unnecessary ca- lead. ble length.


## Narrow Beam model

Ideal for detecting small objects with a small spot:

- Tiny objects as little as 0.1 mm in diameter can be detected with its 2.5mm dia. spot.
- The thin beam enables detection through gaps or small holes.
- The high-intensity spot of light enables visual alignment of sensing spot position.



## Transparent PET bottles

Stable detection of recyclable thin-wall PET bottles.
Standard-size transparent object sensor - Uses OMRON's unique optical system ("Inner View") that can detect various shapes of PET bottles and transparent objects.

- Detects a wide range of bottles regardless of size and facets



## Fork Sensor, single and dual beam versions

Fork design eliminates the need for optical axis adjustment.

- Two-axis models also available.
- Ideal for limit of travel monitoring.
- Condition monitoring.
- „Flag" identification.


## Applications



## Ordering Information

## Sensors

$\square$ Red light $\square$ Infrared light

*1. Models provided with a 0.5-m cable are available. When ordering, specify the cable length by adding the code " 0.5 M " to the model number (e.g., E3Z-T61 0.5 M ).
*2. With "Emission Stop" feature. Can be used to force a state change at the receiver (Sensor function test).
*3. Not attached. Please purchase the optional reflector (9 types) according to your application.
*4. The sensing distance specified is possible when the E39-R1S used. Figure in parentheses indicate the minimum required distance between the Sensor and Reflector.
*5. The connector joint type is available M12. Its model ends with -M1. (Example: E3Z-T61-M1J)

## Accessories (Order Separately)

Slits

Slit width	Sensing distance (typical)		Minimum sensing object (typical)	Model	Quantity
	E3Z-T $\square$	E3Z-T $\square \square A$			
0.5 mm dia.	50 mm	35 mm	0.2 mm dia.	E39-S65B	
1-mm dia.	200 mm	150 mm	0.4 mm dia.	E39-S65C	One set (contains slits for both
$2-\mathrm{mm}$ dia.	800 mm	550 mm	0.7 mm dia.	E39-S65D	the emitter and receiver)
$0.5 \times 10 \mathrm{~mm}$	1 m	700 mm	0.2 mm dia.	E39-S65E	
$1 \times 10 \mathrm{~mm}$	2.2 m	1.5 m	0.5 mm dia.	E39-S65F	
$2 \times 10 \mathrm{~mm}$	5 m	3.5 m	0.8 mm dia.		

Reflectors
Not provided with retroreflective models

Name	Sensing distance (typical) *	Model	Quantity	Remarks
Reflectors	3 m [100 mm] (Rated value)	E39-R1	1	
	4 m [100 mm] (Rated value)	E39-R1S	1	
	500 mm [80 mm]	E39-R1S	1	for E3Z-B $\square 1 / 6$
	2 m [100 mm]			for E3Z-B $\square 2 / 7$
	5 m [100 mm]	E39-R2	1	
	2.5 m [100 mm]	E39-R9	1	
	3.5 m [100 mm]	E39-R10	1	
Fog preventing	500 mm [80 mm]	E39-R1K	1	for E3Z-B $\square 1 / 6$
	2 m [100 mm]			for E3Z-B $\square 2 / 7$
Small reflector	$1.5 \mathrm{~m}[50 \mathrm{~mm}]$	E39-R3	1	
Tape Reflector	700 mm [150 mm]	E39-RS1	1	
	1.1 m [150 mm]	E39-RS2	1	
	1.4 m [150 mm]	E39-RS3	1	

* Values in parentheses indicate the minimum required distance between the sensor and reflector.

Note: 1. When using the reflector of other than the rated value, set the sensing distance to about 0.7 times of the typical example as a guideline.
2 . For details, refer to the "Reflector list".
Mutual interference prevention filter

Sensing distance	Shape/dimensions	Model	Quantity	Remarks
3 m		E39-E11	2 sets each for emit-   ters and receivers   (total of 4 pcs.)	Can be used with the through-beam E3Z-T $\square \square A$.   The arrow represents the polarizing direction.   Changing the polarizing direction of the two adja-   cent emitters and receivers prevents mutual in-   terference.

Mounting Brackets

Shape	Model	Quantity	Remarks	Shape	Model	Quantity	Remarks
	E39-L153	1	Mounting Brackets		E39-L150	One set	Sensor adjuster Easy mounting to aluminum frame/rail of conveyor or like, easy adjustment. For left-to-right adjustment
	E39-L104	1					
	9-L43	1	Horizontal type mounting bracket		E39-L151	One set	
	E39-L142	1	Horizontal type protective cover bracket				Sensor adjuster Easy mounting to alumi-
	E39-L44	1	Rear mounting bracket				For vertical angle adjustment
	E39-L98	1	Protective cover bracket		E39-L144	1	Vertical protective cover bracket

Note: 1 . If a through-beam model is used, order two Mounting Brackets for the emitter and receiver respectively.
2 . For details, refer to the "Mounting bracket list"

Sensor I/O Connectors

Size	Cable type				length	Model
M8	Standard cable	Straight	$\infty$	2 m	4-wire type	XS3F-M421-402-A
				5 m		XS3F-M421-405-A
		L-shaped		2 m		XS3F-M422-402-A
				5 m		XS3F-M422-405-A
M12 (for -M1J)		Straight		2 m	3 -wire type	XS2F-D421-DC0-A
				5 m		XS2F-D421-GC0-A
		L-shaped		2 m		XS2F-D422-DC0-A
				5 m		XS2F-D422-GC0-A

## Rating/performance

Item Mode	Sensor type	Through-beam			Retroreflective model (with M.S.R. function)	Diffuse-reflective		
					wide-beam	standard-beam		
	NPN output	E3Z-T62/T67	E3Z-T61/T66	E3Z-T61A/T66A		E3Z-R61/R66	E3Z-D61/D66	E3Z-D62/D67
	PNP output	E3Z-T82/T87	E3Z-T81/T86	E3Z-T81A/T86A	E3Z-R81/R86	E3Z-D81/D86	E3Z-D82/D87	
Sensing distance		30 m	15 m	10 m	4 m ( 100 mm ) * (When using the E39-R1S) $3 \mathrm{~m}(100 \mathrm{~mm})$ * (When using the E39-R1)	100 mm (White paper $100 \times 100$ mm)	1 m (White paper $300 \times 300$ mm )	
Setting range		---						
Reflectivity characteristic		---						
Spot Diameter		---						
Standard sensing object		Opaque: 12-mm dia. min.			Opaque: 75mm dia. min.	---		
Min. sensing object		---						
Differential distance		---				20\% max. of sensing distance		
Directional angle		Both emitter and receiver: $3^{\circ}$ to $15^{\circ}$		Both emitter and receiver: $3^{\circ}$ to $5^{\circ}$	$2^{\circ}$ to $10^{\circ}$	---		
Light source (wave length)		Infrared LED ( 870 nm )	Infrared LED ( 860 nm )	Red LED ( 700 nm )	Red LED ( 680 nm )	Infrared LED ( 860 nm )		
Power supply voltage		12 to 24 VDC $\pm 10 \%$, ripple (p-p) : $10 \%$ max.						
Current consumption		emitter: 15 mA receiver: 20 mA			30 mA max.			
Control output		Load power supply voltage 26.4 VDC max., load current 100 mA max. (residual voltage 2 V max.) Open collector output type (depends on the NPN/PNP output format) Light-ON/Dark-ON switch selectable						
BGS / FGS selection		---						
Protective circuits		Reverse polarity protection, output short-circuit protection, mutual interference prevention, output reverse protection	Protection from load short-circuit and reversed power supply connection		Reverse polarity protection, output short-circuit protection, mutual interference prevention, output reverse protection			
Response time		Operation or reset: 2 ms max.	Operation or reset: 1 ms max .					
Sensitivity adjustment		Single-turn adjustment						
Ambient illuminance		Incandescent lamp: 3,000 lux max. Sunlight 10,000 lux max.						
Ambient temperature		Operating: $-25^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$, Storage: $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (with no icing or condensation)						
Ambient humidity		Operating: 35\% to $85 \%$ RH, Storage: $35 \%$ to $95 \%$ RH (with no icing or condensation)						
Insulation resistance		$20 \mathrm{M} \Omega$ min. at 500 VDC						
Dielectric strength		1,000 VAC at 50/60 Hz for 1 minute						

* Values in parentheses indicate the minimum required distance between the sensor and reflector.


## Rating/performance

Diffusereflective	Distancesettable	Retro-reflective for PET bottles (without MSR function)		Grooved-type	
narrow-beam		standard-beam	wide-beam		
E3Z-L61/66	E3Z-LS61/66	E3Z-B61/66	E3Z-B62/67	E3Z-G61	E3Z-G62
E3Z-L81/86	E3Z-LS81/86	E3Z-B81/86	E3Z-B82/87	E3Z-G81	E3Z-G82
$\begin{aligned} & 90 \pm 30 \mathrm{~mm} \\ & (\text { White paper } \\ & 100 \times 100 \mathrm{~mm} \text { ) } \end{aligned}$	BGS: White or black paper ( $100 \times 100 \mathrm{~mm}$ ): 20 mm to set distance   FGS: White paper ( $100 \times 100 \mathrm{~mm}$ ):   Set distance to 200 mm min.   Black paper ( $100 \times 100 \mathrm{~mm}$ ): Set distance to 160 mm min .	500 mm   $(80 \mathrm{~mm})$ *   (When using the E39-R1S)	$2 \mathrm{~m}(100 \mathrm{~mm})$ * (When using the E39-R1S)	$25 \mathrm{~mm}$   1 optical axis	2 optical axis
---	White paper ( $100 \times 100 \mathrm{~mm}$ ): 40 to 200 mm Black paper ( $100 \times 100 \mathrm{~mm}$ ): 40 to 160 mm	---			
Refer to the diagram „Hysteresis Difference vs. Sensing Distance"	Black/white-error: $10 \%$ of set distance max.	---			
2.5 mm dia. (when sensing distance is 90 mm )	---				
---		Transparent round PET bottle 500 ml ( 65 mm dia.)		---	
0.1 mm dia. (copper wire)					
---					
---					
$\begin{array}{\|l\|} \hline \text { Red LED } \\ (650 \mathrm{~nm}) \end{array}$	$\begin{array}{\|l\|} \hline \text { Red LED } \\ (680 \mathrm{~nm}) \end{array}$	Red LED ( 660 nm )		$\begin{array}{\|l} \hline \text { Infrared LED } \\ (860 \mathrm{~nm}) \end{array}$	
12 to $24 \mathrm{VDC} \pm 10 \%$, ripple (p-p) : $10 \%$ max.					
30 mA max				25 mA max.	40 mA max.
Load power supply voltage 26.4 VDC max., load current 100 mA max. (residual voltage 2 V max.) Open collector output type (depends on the NPN/PNP output format) Light-ON/Dark-ON switch selectable					
	BGS: Open or connected to GND FGS: Connected to Vcc	---			
Reverse polarity protection, output short-circuit protection, mutual interference prevention					
Operation or reset: 1 ms max .					
Single-turn adjustment	five-turn endless adjuster	Single-turn adjustment		---	
Incandescent lamp: 3,000 lux max. Sunlight 10,000 lux max.					
Operating: $-25^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$, Storage: $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (with no icing or condensation)					
Operating: $35 \%$ to $85 \%$ RH, Storage: $35 \%$ to $95 \%$ RH (with no icing or condensation)					
20 M min . at 500 VDC					
1,000 VAC at $50 / 60 \mathrm{~Hz}$ for 1 minute					

## Rating/performance



## Rating/performance

Diffusereflective	Distancesettable	Retro-reflective for PET bottles (without MSR function)		Grooved-type	
narrow-beam		standard-beam	wide-beam		
E3Z-L61/66	E3Z-LS61/66	E3Z-B61/66	E3Z-B62/67	E3Z-G61	E3Z-G62
E3Z-L81/86	E3Z-LS81/86	E3Z-B81/86	E3Z-B82/87	E3Z-G81	E3Z-G82
10 to $55 \mathrm{~Hz}, 1.5-\mathrm{mm}$ double amplitude for 2 hours each in $\mathrm{X}, \mathrm{Y}$, and Z directions					
Destruction: $500 \mathrm{~m} / \mathrm{s}^{2}$ for 3 times each in $\mathrm{X}, \mathrm{Y}$, and Z directions					
IEC 60529 IP67				IEC 60529 IP64	
Pre-wired (standard length: $2 \mathrm{~m} / 500 \mathrm{~mm}$ )/M8 connector				Pull-out cable type (standard cable length: $2 \mathrm{~m} / 500 \mathrm{~mm}$ ) / connector relay type (standard cable length: 300 mm	
Operation indicator (orange), stability indicator (green)				Operation indicator (orange)	
Approx. 65 g		65 g			
Approx. 20 g				30 g	
PBT (polybutylene terephthalate)				ABS	
Methacylate resin	Denaturated polyallylate	Methacylate resin			
Instruction manual (The Reflector or Mounting Bracket is not provided with any of the above models.)					

Operating Range
Narrow-beam
E3Z-L


Distance-setting
E3Z-LS [BGS]


Excess Gain vs. Distance
Through-beam
E3Z-T $\square 1$ (T $\square 6)$


Retroreflective Models for transparent objects

E3Z-B $\square 1 / B \square 6+E 39-R 1 S$
(optional reflector)


E3Z-LS [FGS]


Through-beam
E3Z-T $\square A$

$E 3 Z-B \square 2 / B \square 7+E 39-R 1 S$ (optional reflector)


Retroreflective Models
E3Z-R $\square 1(R \square 6)$ + Reflectors



Retro-reflective for transparent objects
E3Z-B $\square 1 / B \square 6$ + E39-R1S
(optional reflector)


## Diffuse-reflective

 E3Z-D $\square 2(D \square 7)$

E3Z-B $\square 2 / B \square 7+E 39-R 1 S$
(optional reflector)


Distance vs. Size
Diffuse-reflective
E3Z-D $\square 1$ (D $\square 6)$


Diffuse-reflective
E3Z-D $\square 2(D \square 7)$


## Narrow-beam

E3Z-L


Spot diameter vs. Distance

Narrow-beam
E3Z-L


## Distance setting

## E3Z-LS



Differential travel / Hysteresis vs. Distance

## Narrow-beam

E3Z-L


Inclination Characteristics
Distance setting
E3Z-LS
Vertical


Distance setting
E3Z-LS


Short-distance Characteristics
Distance setting
E3Z-LS

## Horizontal




FGS Mode Set Distance vs. Sensing Range
Distance setting
E3Z-LS

White Paper


Sensing Distance vs. Material
Distance setting
E3Z-LS
At Set Distance of 40 mm


Black Paper


At Set Distance of 200 mm


## Output Circuit Diagram

NPN output

Model	Output transistor Status	Timing chart	Mode selection switch	Output circuit
E3Z-T61   E3Z-T66   E3Z-T61A   E3Z-T66A   E3Z-R61   E3Z-R66   E3Z-D61   E3Z-D66   E3Z-D62   E3Z-D67   E3Z-L61   E3Z-L66   E3Z-B61   E3Z-B62   E3Z-B66   E3Z-B67   E3Z-G61	Light ON Dark ON		L ON (LIGHT ON)   D ON (DARK ON)	Through-beam receiver Retroreflective model Diffuse-reflective model   Connector Pin Arrangement   Note: Terminal 2 is not used.
		Through-beam emitter		Connector Pin Arrangement   Note: Terminal 2 and 4 are not used.
$\begin{aligned} & \text { E3Z-LS61 } \\ & \text { E3Z-LS66 } \end{aligned}$	Light ON		L ON   (LIGHT ON)	12 to 24 VD
	Dark ON		D ON (DARK ON)	
	Light ON		$\begin{gathered} \text { L ON } \\ \text { (LIGHT ON) } \end{gathered}$	Connector Pin Arrangement
	Dark ON		D ON   (DARK ON)	BGS: Either leave the pink wire (2) open or connect it to the blue wire (3). FGS: Connect the pink wire (2) to the brown wire (1).
E3Z-G62	Light ON		$\begin{gathered} \text { L ON } \\ \text { (LIGHT ON) } \end{gathered}$	
	Dark ON	IncidentInterrupted   Operation indicator ON   (orange)$\quad$ OFFControl output ON   Output transistor OFF   Load   (Relay) Operate   Reset   (Between brown and black (white)	$\begin{gathered} \text { D ON } \\ \text { (DARK ON) } \end{gathered}$	

## PNP output



Connectors (Sensor I/O connectors)


## Nomenclature:



Distance-setting
E3Z-LS $\square \square$


BGS / FGS Application for distance setting E3Z-LS
Simple Detection of Glossy, Uneven Objects


## Operation

Slit for through-beam model (Optional accessory: E39-S65A/B/C/D/E/F)
Mounting method

1. Hook the upper protruding
portions of the Slit to the up-
per indented mounting por-
tion of the Sensor and
adjust the position of the
Slit so that the Slit will be
parallel to the lens surface.
2. Press the lower protruding
portion of the Slit onto the
indented mounting portion
of the Sensor until the Slit
snaps in.
Mounting condition
Demounting method
3. Press the upper portion of
the Slit.
4. Disconnect the lower pro-
truding portion of the Slit
from the Sensor and re-
move the Slit.
\} Caution

Do not connect an AC power supply to the Sensor. If AC power ( 100 VAC or more) is supplied to the Sensor, it may explode or burn.

Be sure to abide by the following precautions for the safe operation of the Sensor.

## Wiring

Power Supply Voltage and Output Load Power Supply Voltage
Make sure that the power supply to the Sensor is within the rated voltage range. If a voltage exceeding the rated voltage range is supplied to the Sensor, it may explode or burn.

## Load Short-circuiting

Do not short-circuit the load, otherwise the Sensor may be damaged.

## Connection without Load

Do not connect the power supply to the Sensor with no load connected, otherwise the internal elements may explode or burn.

## Operating Environment

Do not use the Sensor in locations with explosive or flammable gas.

## Correct Use

## Design

Power Reset Time
The Sensor is ready to operate 100 ms after the Sensor is turned ON. If the load and Sensor are connected to independent power supplies respectively, be sure to turn ON the Sensor before supplying power to the load.

## Wiring

Avoiding Malfunctions
If using the Photoelectric Sensor with an inverter or servomotor, always ground the FG (frame ground) and G (ground) terminals, otherwise the Sensor may malfunction.

## Mounting

Mounting the Sensor

- If Sensors are mounted face-to-face, make sure that the optical axes are not in opposition to each other. Otherwise, mutual interference may result.
- Always install the Sensor carefully so that the aperture angle range of the Sensor will not cause it to be directly exposed to intensive light, such as sunlight, fluorescent light, or incandescent light.
- Do not strike the Photoelectric Sensor with a hammer or any other tool during the installation of the Sensor, or the Sensor will lose its water-resistive properties.
- Use M3 screws to mount the Sensor.
- When mounting the case, make sure that the tightening torque applied to each screw does not exceed 0.54 Nm .


## M8 Connector

- Always turn OFF the power supply to the Sensor before connecting or disconnecting the metal connector.
- Hold the connector cover to connect or disconnect it.
- Secure the connector cover by hand. Do not use pliers, otherwise the connector may be damaged.
- If the connector is not connected securely, it may be disconnected by vibration or the proper degree of protection of the Sensor may not be maintained.


## Distance setting models E3Z-LS

- Make sure that the sensing side of the Sensor is parallel with the surface of the sensing objects. Normally, do not incline the Sensor towards the sensing object.


If the sensing object has a glossy surface, however, incline the Sensor by $5^{\circ}$ to $10^{\circ}$ as shown in the illustration, provided that the Sensor is not influenced by background objects.


- If there is a mirror-like object below the Sensor, the Sensor may not operate stably. Therefore, incline the Sensor or separate the Sensor from the mirror-like object as shown below.

- Do not install the Sensor in the wrong direction. Refer to the following illustration.


Install the Sensor as shown in the following illustration if each sensing object greatly differs in color or material.


## Adjustments-indicator operation

The Sensor may be unable to achieve stable detection depending on the shape of bottles. Be sure to verify stable detection before using the Sensor.


Note: 1 . If the stability indicator is lit, the detection/no detection status is stable within the rated ambient operating temperature ( -25 to $55^{\circ} \mathrm{C}$ ).
2.The VERY FAR region is supported only for FGS. The incident light threshold is fixed and cannot be set. The distance to the incident light threshold depends on the color and gloss of the sensing object's surface.

## Retro-reflective for transparent objects E3Z-B

## Design

Bottles

## Mounting

Sensor Mounting
If the Sensor fails to provide stable detection due to the shape of bottles, adjust the location and inclination of the Sensor.

## Inspection and Maintenance

Cleaning
Never use paint thinners or other organic solvents to clean the surface of the product.

## Dimensions (Unit: mm)

## Sensors

Through-beam
Pre-wired
E3Z-T61
E3Z-T81
E3Z-T61A


Emitter



Through-beam
Connector type
E3Z-T66
E3Z-T86
E3Z-T66A


## Retroreflective Models

Pre-wired
E3Z-B61
E3Z-B62
E3Z-B81
E3Z-B82


E3Z-R61
E3Z-R81

Diffuse-reflective
Pre-wired
E3Z-D61
E3Z-D81
E3Z-D62
E3Z-D82

## E3Z-L61

## E3Z-L81

## Retroreflective Models

Connector type
E3Z-B66
E3Z-B67
E3Z-B86
E3Z-B87
E3Z-R66
E3Z-R86
Diffuse-reflective
Connector type
E3Z-D66
E3Z-D86
E3Z-D67
E3Z-D87
E3Z-L66
E3Z-L86
Distance-settable Models
Pre-wired models
E3Z-LS61
E3Z-LS81


Distance-settable Models
Connector type
E3Z-LS66
E3Z-LS86


Grooved-type Models
E3Z-G


Note: 1. It is in a reflection side
2. Both 1 and 2-axis models have S1; only 2-axis models have S2. S1 output: black S2 output: white

## Accessories (Order Separately)



## ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.

To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .
Cat. No. E701-E2-01-X In the interest of product improvement, specifications are subject to change without notice.

## Ultra small size sensors in plastic housing

## E3T

- Ultra small size with high power pin point LED where space is crucial
- 3.5 mm thin flat shape or 7 mm wide side view shape



## Features

4 detection methods for selection according to work and space


The side-view type has realized long, 1 m distance detection. Furthermore, it can detect a small, 0.5 mm or less dia. work with a pin-point beam (when slit is fitted). The visible light spot and narrow-visibility beam ensure a stable detection of lead frames and chip parts.


Having the smallest size, this type can detect a merely 0.15 mm small object. In addition to this, it is insensitive to the background and surrounding metal, thus, ensuring a stable detection. The pin-point beam allows a clear vision of a red light spot, facilitating a sensing position check.

## Diffuse

 reflective model
3.5 mm thin size and can be installed to a gap etc. The pinpoint beam makes sensing position check easy, and the sensor is insensitive to the background and surrounding metal, ensuring stable detection.


The world first coaxial Retroreflective type in this size. When used with a small reflector, this sensor completes 2 mm dia. small work detection and 200 mm sensing distance. The switch detects small works, such as IC chips on tape, and the pin-point beam makes optical axis adjustment easy, achieving stable detection.


## Features

## The hyper LED issues a 0.8 mm dia. pin-point beam (E3T-SL1 $\square$ ) Small works can be detected

The hyper LED performs a high-output narrow-visibility beam of 0.8 mm spot diameter (E3T-SL1D). A red spot can be seen clearly and optical axis alignment and detection position check become easy. Besides, the LED is insensitive to the work color and background and can detect a small work securely.


High output pin-point light source LED (wave length: 650 mm )

## One-chip photo IC ensures high reliability.

The incident photo diode and analog/digital signal processing circuit are integrated densely into the one-chip fully customized IC in use. This photoelectric sensor has high reliability in the ultra small size.


LED (wave length: 650 mm )

[^3]Equipped with OMRON's original FAO, this photoelectric sensor has achieved the world's first coaxial retroreflective type. The FAO (FREE ANGLE OPTICS), or special beam splitter having multiple layers of dielectric films on a glass, has implemented the ultra small coaxial retroreflection. It can detect a small 2 mm dia. work, provides sensing position accuracy equivalent to that of the through-beam type, reducing wiring man-hours.

## Ordering Information

Sensors
$\square$ Red light

*1. The robot cable type is available. Its type ends with "R". (Example: E3T-ST11R)
*2. Values in parentheses indicate the minimum required distance between the sensor and reflector.

## Accessories (Order Separately)

Slits

Slit width	Sensing distance (typical)	Minimum sensing object (typical)	Model	Quantity	Remarks
0.5 mm dia.	100 mm	0.5 mm dia.	E39-S63	One each for Emitter and Receiver; common with Slit widths of 1 dia. and 0.5 dia.	(Plug-in type round slit)
1 mm dia.	300 mm	1 mm dia.			Can be used with the through-beam E3T-ST1 $\square$.
0.5 mm dia.	50 mm	0.5 mm dia.	E39-S64		(Plug-in type round slit)
1 mm dia.	100 mm	1 mm dia.			E3T-FT1 $\square$.

## Reflectors

Name	Sensing distance (typical)	Minimum sensing object (typical)	Model	Quantity	Remarks
Small reflector	$\begin{aligned} & 200 \mathrm{~mm}[10 \mathrm{~mm}] \text { * } \\ & \text { (rated value) } \end{aligned}$	2 mm dia.	E39-R4	1	Attached to the E3T-SR1 $\square$ Retroreflective model.
	100 mm (10 mm)*		E39-R37		---

[^4]Sensitivity Adjustment Unit

Shape	Sensing distance (typical)	Model	Quantity	Remarks
E39-E10	1	For E3T-ST1 $\square$		

Mounting Brackets

Shape	Model	Quantity	Remarks
	E39-L116	1	Can be used with the side-view E3T-S $\square \square \square$.
	E39-L117		
	E39-L118		
	E39-L119		Can be used with the flat E3T-F $\square \square \square$.
	E39-L120		

Note: 1 . If a through-beam model is used, order two Mounting Brackets for the emitter and receiver respectively. 2 . For details, refer to "Mounting bracket list".

## Rating/performance

## 

Item	Through-beam				Retroreflective		Limited reflective				Diffuse reflective	
	Side-view		Flat		Side-view						Flat	
	NPN	PNP										
Light-ON	-ST11	-ST13	-FT11	-FT13	-SR11	-SR13	-SL11	-SL13	-SL21	-SL23	-FD11	-FD13
Dark-ON	-ST12	-ST14	-FT12	-FT14	-SR12	-SR14	-SL12	-SL14	-SL22	-SL24	-FD12	-FD14
Sensing distance	1 m (Sen Adjustme is availab	sitivity nt Unit e)	500 mm		200 mm (see not (with the	$\begin{aligned} & 10 \mathrm{~mm}) \\ & \text { E39-R4) } \end{aligned}$	$\begin{aligned} & 5 \text { to } 15 r \\ & (50 \times 50 \\ & \text { white pa } \end{aligned}$		$\begin{aligned} & 5 \text { to } 30 r \\ & (50 \times 50 \\ & \text { white pa } \end{aligned}$		$\begin{aligned} & 5 \text { to } 30 r \\ & (50 \times 50 \\ & \text { white pa } \end{aligned}$	
Standard sensing object (white paper)	Opaque, 2 dia. min.				Opaque, 27 dia. min.		---					
Min. sensing object (typical)	Opaque, 2 dia. min.				2 dia. (sensing distance of 100 mm )		0.15 dia. (sensing distance of 10 mm )					
Differential travel	---						2 mm max.		6 mm max.		6 mm max.	
Directional angle	Emitter:   $3^{\circ}$ to $10^{\circ}$   Receiver:   3 to $70^{\circ}$		Emitter: $3^{\circ}$ to $13^{\circ}$ Receiver: 3 to $70^{\circ}$		Emitter: $2^{\circ}$ to $5^{\circ}$		---					
Light source (wave length)	Red LED ("Pin-point" LED) ( $\lambda=650 \mathrm{~nm}$ )											
Power supply voltage	12 to $24 \mathrm{VDC} \pm 10 \%$, ripple (p-p) $10 \%$ max.											$\begin{aligned} & 24 \text { VDC } \\ & \pm 10 \% \end{aligned}$
Current consumption	Emitter/Receiver: 12 mA max.				20 mA max.							
Control output	Open collector, load current: 50 mA max. at 24 VDC , residual voltage: 1 V max., operation mode: Light ON or Dark ON (separate models)											
Circuit protection	Protection from reversed power supply connection and output short-circuit				Protection from reversed power supply connection, output short-circuit, and mutual interference							
Response time	1 ms max . each for operation and release											
Ambientillumination (on Receiver lens)	Incandescent lamp: 5,000 lx max.Sunlight:10,000 lx max.											
Ambient temperature	Operating: $-25^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$   Storage: $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (with no icing or condensation)											
Ambient humidity	Operating: $35 \%$ to $85 \%$   Storage: $35 \%$ to $95 \%$ (with no condensation)											
Insulation resistance	20 M min . (at 500 VDC )											
Dielectric strength	1,000 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min											
Vibration resistance	Destruction: 10 to $2,000 \mathrm{~Hz}, 1.5-\mathrm{mm}$ double amplitude or $300 \mathrm{~m} / \mathrm{s}^{2}$ (approx. 30G) for 0.5 hrs each in $\mathrm{X}, \mathrm{Y}$, and Z directions											
Shock resistance	Destruction: 1,000 m/s² (approx. 100G) 3 times each in $\mathrm{X}, \mathrm{Y}$, and Z directions											
Degree of protection	IEC60529: IP67											
Connection method	Prewired (standard length: 2 m )											
Weight (with packaging)	Approx. 40 g				Approx. 20 g							
Materials	Case: PBT   Lens and cover: Polycarbonate											
Accessories	Phillips-head screws (side-view type: M2 x 14, flat type: M2 x 8), nuts, spring washers, flat washers, instruction sheet, and Reflector (for retroreflective model only)											

## Engineering Data

Excess Gain vs. Set Distance (Typical)
E3T-ST1 $\square$ (Through-beam)


E3T-FD1 $\square$ (Diffuse Reflective)


Parallel Operating Range (Typical)
(Through-beam)

## E3T-ST1 $\square$ with Slit



E3T-FT1 $\square$ with Slit


E3T-FT1 $\square$ (Through-beam)


E3T-SL1 $\square$ (Limited Reflective)


E3T-SR1 $\square$ with E39-R4 (Retroreflective)


E3T-SL2 $\square$ (Limited Reflective)


## (Retroreflective)

E3T-SR1 $\square$ with E39-R4


E3T-FT1 $\square$ with Slit (Enlarged graph)


Angle Characteristics (Typical)

E3T-SL1 $\square$


EE3T-SL1 $\square$


Close-distance Sensing Capability (Typical)
E3T-SL1 $\square$, E3T-SL2 $\square$, E3T-FD1 $\square$


## Sensing Object Size vs. Sensing Distance (Typical)

E3T-SL1 $\square$


E3T-SL1 $\square$


Operation Range (Typical)

E3T-FD1 $\square$ (Diffuse Reflective)


E3T-SL1 $\square$ (Limited Reflective)


E3T-SL2 $\square$ (Limited Reflective)


Sensing Distance Characteristics of Sensitivity Adjustment Unit (when completing optical axis adjustment) E3T-SL1 $\square$ with E39-E10


## Operation

## NPN Output Configuration

Model	E3T-पロप1
State of output transistor	Light ON ${ }^{\text {O }}$ Dark ON
Timing chart	
Output circuit	

## PNP Output Configuration

Model	
State of output transistor	Light ON ${ }^{\text {O }}$ Dark ON
Timing chart	
Output circuit	Emitter   (Through-beam Models)   Receiver (Through-beam Models),   Retroreflective, Diffuse Reflective, and Limited Reflective Models

## Dimensions

Note: All units are in millimeters unless otherwise indicated.
Photoelectric Sensors
Through-beam Models (Side-view Type)


Retroreflective Models (Side-view Type)

## E3T-SR1 $\square$



Mounting Holes


Limited Reflective Models (Side-view Type)

## E3T-SL1 $\square$ <br> E3T-SL2■



## Through-beam Models (Flat Type)

E3T-FT1 $\square$
(Emitter, Receiver)


Note: For E3T-FT11/-FT13 and E3T-FT12/-FT14 Receivers only.
Diffuse Reflective Models (Flat Type)
E3T-FD1 $\square$


## Accessories

Reflector (Attached to Retroreflective Models)


Slits (Order Separately)
Through-beam E3T-ST1 $\square$ with E39-S63 With Slit mounted


Material: 0.2-mm-thick stainless steel
(SUS301)


Note: A reflector and a stainless steel mounting plate are supplied together as a set

E39-S64 (for Through-beam E3T-FT1 $\square$ ) With Slit mounted


Material: 0.2-mm-thick stainless steel
(SUS301)

Sensitivity Adjustment Unit (for E3T-ST1 $\square$ )
E39-E10

When the Sensitivity Adjustment Unit is mounted


Material: Stainless steel (SUS301)

Mounting Brackets for E3T-S $\square$ (Order Separately)
E39-L116


E39-L117



## E3T-ST11 with E39-L118



Mounting Brackets for E3T-FT1 $\square / E 3 T-F D 1 \square$


E3T-FT11 with E39-L119


Material: 1.2-mm-thick stainless steel (SUS304) E39-L120


E3T-FT11 with E39-L120


Material: 1.2-mm-thick stainless steel (SUS304)

## Precautions

## For adjustment

Display

- The following graphs indicate the status of each operation level.
- Be sure to use the E3T within the stable operating range.


Note: If the E3T's operation level is set to the stable operation range, the E3T will be in most reliable operation without being influenced by temperature change, voltage fluctuation, dust, or setting change. If the operation level cannot be set to the stable operation range, pay attention to environmental changes while operating the E3T.

Use of E39-E10 Sensitivity Adjustment Unit
(Dark ON: E3T-ST12)

(1) Install the Unit on the Receiver.
(2) Set the adjustment dial of the sensitivity adjustment unit to Max. (Factory set to the Max. position)
(3) After Sensor installation adjust the optical axis and secure the Sensor.
(4) Place a work between the emitter and receiver, gradually turn the adjustment dial of the sensitivity unit to the Min position (CCW), and stop turning it when the operation indicator is turned ON and the stability indicator (green) is turned ON.
(5) Remove the work and confirm that the operation indicator is turned OFF and the stability indicator (green) is turned ON. This completes the adjustment.
Note: If the light attenuation rate due to a work is $40 \%$ or less, the stability indicator is not turned ON whether or not light is received. When the variation of light is small (e.g. when sensing semi-transparent works), carefully perform preliminary testing.

## Others

Do not install the E3T in the following places.

- Places where the E3T is exposed to direct sunlight.
- Places with high humidity and where condensation may result.

[^5]To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527

Harsh environment long distance photoelectric Sensor in metal housing E3NT

- 4 Diffuse reflective E3NT-L application optimized models:
- Extra long distance type for setting distances up to 3 m
- Window heating type for low temperature environments
- Analog output type for distance information
- Fast response type for high speed detection and counting
- Retro reflective E3NT-R models with sensing distance up to 16 m
- Two programmable outputs for 'window teaching'
- Double triangulation for stable detection of reflective objects
- IP67 and IP69k for highest resistance in wet environments



Condensation in often cleaned environments or due to rapid temperature changes is prevented by the completely sealed housing of the E3NT and the optional window heating.


With the optic link, the sensor can be remotely set and checked while it is operating in an area where access is restricted.


This robust sensor is ideal for operation in harshest environments.

## Ordering Information

Sensors

Sensing method	Type	Appearance	Connection method	Sensing / Setting distance	Model
Distance setting (BGS/FGS)	Long distance		M12 Connector (5-pole)	0.2 m .. 3.0 m ( $90 \%$ remission) 0.2 m .. 2.7 m (6\% remission)	E3NT-L17-20
	Window heating				E3NT-LH17
	Fast response				E3NT-L17
					E3NT-L37
	Analog and digital output				E3NT-L27
					E3NT-L47
Retro reflective (with MSR-polarisation)	Long distance			0.2 m .. 16.0 m (with E39-R8)	$\begin{aligned} & \text { E3NT-R17 } \\ & \text { E3NT-R37 } \end{aligned}$

## Accessories (order separately)

Optical data link

Communication method to sensor	Appearance	Communication method to PC	Model
IR data interface	RS232	E3NT-AL232 2M	

## Laser alignment aid

Max. distance for visible spot	Appearance	Operation time	Model
50 m		min. 5 hours with new battery	E3NT-AP1


Appearance	Model	Qty.	Remarks
	E39-EL1	1	Universal mounting bracket

Reflectors
E39-R8


Sensor I/O connectors


## Rating/performance

Sensors

Item	Model				
	$\begin{aligned} & \text { E3NT-L17 } \\ & \text { E3NT-L37 } \end{aligned}$	$\begin{aligned} & \text { E3NT-L27 } \\ & \text { E3NT-L47 } \end{aligned}$	$\begin{aligned} & \text { E3NT-LH17 } \\ & \text { E3NT-LH37 } \end{aligned}$	E3NT-L $\square 7-20$	E3NT-R
Sensor type	Diffuse reflective sensor with background suppression respectively foreground suppression				Retroreflective sensor
Signal evaluation	Double triangulation method				Polarization
Configuration	By push button on the sensor or with a PC connected via the optical data link E3NT-AL232$2 \mathrm{~m}$				
Operating modes	Background suppression, foreground suppression, background and foreground suppression (2-point window evaluation)				---
Light source	Infrared LED 850-880 nm				$\begin{array}{\|l\|} \hline \text { Red LED } \\ 660 \mathrm{~nm} \end{array}$
Rated sensing distance	2 m			3 m	16 m
Setting distance Sr	Distance - setting possible between				---
	$\begin{aligned} & 0.2 \ldots 2.0 \mathrm{~m} \text { ( } 90 \text { \% remission) } \\ & 0.2 \ldots 1.7 \mathrm{~m} \text { (6 \% remission) } \end{aligned}$		$\begin{array}{\|l} 0.2 \ldots 2.0 \mathrm{~m} \\ \text { (90 \% remission) } \\ 0.2 \ldots 1.4 \mathrm{~m} \\ (6 \% \text { remission) } \end{array}$	$0.2 \ldots 3.0 \mathrm{~m}$ (90 $\%$ remission) $0.2 \ldots 2.7 \mathrm{~m}$ ( $6 \%$ remission)	$0.2 \ldots 16.0$ m
Standard measured object	Kodak gray card 90\% (white), size: $200 \times 200 \mathrm{~mm}$				---
Blind zone	$<0.1$ m				< 0.15 m
Black/white error (6\%/90\%)	< $15 \%$ of setting distance Sr				---
Hysteresis (typical)	$<5 \%$ of setting distance Sr or 4 cm (for white $90 \%$ )   $<10 \%$ of setting distance Sr or 6 cm (for black $6 \%$ )			$<10 \%$ of setting distance Sr or 10 cm (for white) < $15 \%$ of setting distance Sr or 10 cm (for black)	---
Repetition accuracy	< 5 \% (of setting distance Sr ) or 4 cm			< $5 \%$ (of setting distance Sr ) or 10 cm	---
Light spot diameter	$<40 \mathrm{~mm}$ in the case of $\mathrm{Sr}=2 \mathrm{~m}$				$\begin{aligned} & \text { app. } 100 \mathrm{~mm}^{* 1} \\ & \text { at } 10 \mathrm{~m} \end{aligned}$
Minimum object size	> 40 mm				
Ambient light immunity to EN 60947-5-2:	Halogen lamps ( $100-120 \mathrm{~Hz}>10,000$ lux Fluorescent lamps ( 30 kHz ) $>5$,000 lux Energy saving lamps > 2,000 lux				
Utilization category to EN 60947-5-2	DC 12				
Rated operating voltage	+ 24 V DC, polarized				
Operating voltage range	+ 10 ... + 30 V DC			$\begin{aligned} & +11 \ldots \\ & +30 \mathrm{~V} \text { DC } \end{aligned}$	$\begin{aligned} & +10 \ldots \\ & +30 \mathrm{~V} \mathrm{DC} \end{aligned}$
Current consumption	$\begin{aligned} & \text { < } 90 \mathrm{~mA} \\ & \text { (display off) } \\ & <110 \mathrm{~mA} \\ & \text { (display on) } \end{aligned}$	$\begin{aligned} & \hline<100 \mathrm{~mA} \\ & \text { (display off) } \\ & <120 \mathrm{~mA} \\ & \text { (display on) } \end{aligned}$	< 220 mA with front pane heating	$\begin{aligned} & \hline<110 \mathrm{~mA} \\ & \text { (display off) } \\ & <130 \mathrm{~mA} \\ & \text { (display on) } \end{aligned}$	$\begin{aligned} & \hline<80 \mathrm{~mA} \\ & \text { (display off) } \\ & <110 \mathrm{~mA} \\ & \text { (display on) } \\ & \hline \end{aligned}$
Power-on delay	< 300 ms				
Input - / Output - pins	Pin $2=$ Input (In 2) or output (Out 2), depending on configuration Pin $4=$ Output (Out 1)				
	$\begin{array}{\|l} \hline \operatorname{Pin} 5=\operatorname{lnput} \\ (\ln 1) \end{array}$	Pin 5 = Analog output	Pin $5=\ln$ Put (In		
Digital Outputs	User set functions (e.g. switching output, alarm output, ...)				
Output circuit	User set PNP (open collector), NPN (open collector) or complementary (push-pull)				
Output current	max. 100 mA				
Voltage drop	<2.0 V				
Residual current	< $100 \mu \mathrm{~A}$				
Circuit protection	Reversed power supply, overload, short-circuit (pulsed)				



Accessories
E3NT-AL 2322 M

Item	
Dimensions (length x width x depth)	$29.5 \times 72.9 \times 26.4 \mathrm{~mm}$
Housing material	ABS and PMMA (IR transparent)
Housing colour	Black, RAL 9005
Assembly	Snap mounting on sensor
Connection	2 m connecting cable with 9-pole sub-D connector
Ambient temperature range	$-10^{\circ} \mathrm{C} \ldots+50^{\circ} \mathrm{C}$
Storage temperature range	$-40^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$
Permission relative humidity	$35 \%^{\ldots} \ldots 85 \%$, no condensation
Degreee of protection to   EN 60529 / IEC 529	IP 54
Emitted light	IR communication element 880 nm
Rated operating voltage	Via RS 232 interface from PC
Current consumption	6 mA

E3NT-AP1

Item	
Supply voltage	3 V DC
Battery type	Button battery $\varnothing 11.6 \mathrm{~mm}$, thickness: $5.4 \mathrm{~mm}, 3 \mathrm{Vm}$, type: CR1/3N
Ambient temperature range	$+10^{\circ} \mathrm{C} \ldots+40^{\circ} \mathrm{C}$
Storage temperature range	$-40^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$ (with no icing or condensation)
Ambient humidity	Operation and storage: $35 \% . . .85 \%$ (with no icing or condensation)
Ambient environment	No corrosive gases
Operation time period	min. 5 hours operation with 1 new battery
Degree of protection	IP20 (EN 60529)
Case material	Case: ABS/PC   Base plate: Aluminium
Weight	Approx. 42 g
Accessories:	1 Instruction sheet, 1 battery type CR1/3N
Max. distance for a visible beam spot	about 50 m (depending on the ambient light and surface conditions)
Laser beam power	$<1$ mW
Laser class	Laser Class II

## E3NT-L17/L37 and E3NT-LH17/LH37

## Operating range

(90\% remission)


## E3NT-L27/L47

Analog output current
(90\% remission)


E3NT-L17-20 and E3NT-L37-20

Parallel Operating range


Black/White - Error
(6\%-90\% remission)


Hysteresis


## E3NT-R

Spotsize


Black/White - Error
( $6 \%-90 \%$ remission, typical)


Hysteresis (typical)


## Circuit diagram

Output

Push-pull output circuit (Out1 at pin 4 / Out2 at pin 2)	Load connection		
	PNP	NPN	Analog

When use is made of the PNP or NPN output circuit, the output circuit that is not selected is deactivated. When used as a complementary output, NPN or PNP outputs act in antiphase as the switch state changes.

Input


The sensor inputs are realised in positive logic and detect a positive voltage level of more than 1 ms duration as a valid signal if the voltage level is between 10 V and the power supply voltage.

Connectors


* Not connected for standard 4-pole connectors


LED display	The distance from the measured object and the names of the menu levels during set-up of the sensor are displayed by the 4 -digit 7 -segment LED display.   The display appears as red digits or letters. If the sensor is set to a bar chart display, the distance from the measured object is displayed as a green LED bar chart.		
LED	The switching status and the stability of the two outputs are signalled as follows by two LEDs, visible from the top and the front of the sensor:		
	Yellow LED (Output 1)	ON	Object stably detected
		Blinking	Object not stable detected
		OFF	No object within range
	Red LED (Output 2)	ON	Object stably detected
		Blinking	Object not stable detected
		OFF	No object within range
	Status LED	ON	Set-up menu selected
		Blinking	Menu level with change of setting distance
		OFF	RUN (normal) mode

## Operation

Setting the switching points
The switching points can either be user set (Teach-in mode) with a measured object positioned at the corresponding distance or can be set using the setting input, for remote setting. For each output of the sensor (up to two), up to two switching points can be user set.
Only one switching point is active in the foreground and background suppression modes.
For the 2-point window evaluation mode, two switching points must be set.
Teaching the switching points in the normal mode
The sensor is set at the factory for both outputs to BGS, light on.

1. Place the target object in front of the sensor at the desired position.
2. Teach the switching point for output 1:

- Beginning with the $\oplus$ key, press it simultaneously with the ENTER $\odot$ key. Threshold level is obtained and the output/ LED is updated. Status LED is blinking.
- Using the $\oplus / \ominus$ keys an adjustment of the switching point is possible. The output/LED is updated immediately.
- Pressing the ENTER $\odot$ key for more than 2 seconds or after 2 minutes without any activation of the keys, the sensor returns to normal operation. The status LED is turned off.

3. Teach the switching point for Output 2:

- Beginning with the $\ominus$ key, press it simultaneously with the ENTER $\odot$ key.

Main menu structure


When the ENTER $\odot$ key is pressed for 2 seconds, the sensor switches from the normal mode to the TEACH menu path. The sensor switches to each next menu path when the ENTER $\odot$ key is repeatedly pressed for 2 seconds. In the menu paths, the required parameters can be selected by pressing $\ominus$ and $\oplus$ keys.
$\AA$ To skip a menu path, you can also press the ENTER key for 4 seconds.
$\mathbb{1}$ [ENTER] Press the ENTER $\odot$ key $<1$ second
i [ENTER 2s] Press the ENTER $\odot$ key $>2$ seconds.

## TEACH menu


1.) In the 2-point window evaluation mode, two switching points (A/B and C/D) can be set for each output. In the foreground and background suppression modes, only one switching point ( $A$ and $C$ ) can be set for each output. Then, only these switching points, $A$ and $C$, can be set in the TEACH menu path. $B$ and $D$ switching points are not available.
2.) If connector pin 2 is set as an input, only the switching points for Output 1 can be set

SET menu

1.) If connector pin 2 is set as an input, the switch-on/off delay function canonly be set for Output 1. A second switching output is not available.
2.) If the switch-on/off delay is off in the OPTIONS menu path, the switch-on/off delay parameters do not appear in the SET menu path.
3.) The outputs behave differently depending on the switch-off delay functionthat is set in the OPTIONS menu path.
4.) The key lock becomes active again when no keys have been pressed for approx. 5 minutes.

The key lock can be temporarily cancelled by pressing the $\oplus$ and $\Theta$ keys for 4 seconds.
5.) The On-delay-setting $t r-i$ or $t r-\succeq$ are only available if the switch-on/off de-lay in the OPTIONS menu path is set to an $-i$.

## OPTIONS menu


1.) If connector pin 2 is set as an input, the type of switch-on/off delay option can only be set for Output 1
2.) If the ECO energy saving mode is on, the display is switched off if no keys are pressed for about 5 minutes. The display is switched on again when any key is pressed.
3.) Firmware 1.10 and higher


## OPTIONS menu E3NT-R



Sensors
$\begin{array}{ll}\text { E3NT-L17 } & \text { E3NT-L37 } \\ \text { E3NT-L27 } & \text { E3NT-L47 } \\ \text { E3NT-LH17 } & \text { E3NT-LH37 }\end{array}$


## Accessoires (order separately)

Optical data link
E3NT-AL232 2m


Laser alignment aid E3NT-AP1


Universal mounting bracket
E39-EL1


Adapter bracket
E39-EL2

material: stainless steel 1.4305



Replacement bracket for E3N with E3NT
E39-EL3


## Precautions

## Mounting Directions

Sensor assembly
Contrary to sensors with single triangulation, E3NT with double triangulation, allows the measured object's direction of motion to be in all three directions. Thus, the rotatory position of the sensor about its optical axis can be chosen freely.


If the light spot is not completely on the same plane as the target object (minimum object size) the distance is not determined and malfunction can occur. If necessary a trigger signal or timer function has to be applied.


The sensor must be fitted so that:

- It is correctly aligned before it is adjusted
- It is protected as far as possible against vibration and shock
- It is protected as far as possible against extraneous incident light
- It is protected as far as possible against damage and soiling
- Electrical connection is possible
- It is as accessible as far as possible for maintenance work
- Operation of the push buttons is possible
- The display is visible.


## Sensor's assembly direction

As far as possible, the sensor's optical surface should be aligned parallel to the surface of the measured object.


If the measured object has a glossy, reflecting surface, the sensor's optical system should be tilted by $5 \ldots 10^{\circ}$ in relation to the surface of the measured object.


If there is a reflecting surface in parallel with the sensor's optical axis, this might lead to unstable switching states.
Therefore, reflecting objects within the sensor's optical axis should be avoided.
If this should not be possible, the reflecting surface should not be parallel to the sensor's optical axis, but should be rotated by at least $10^{\circ}$.
Mirror-like objects can cause malfunction inside and outside the sensing range. Avoid mirror-like objects in or close to the optical axis.

## Inspection and Maintenance

Cleaning
Do not use any scratching or abrasive cleaning materials. The protective pane of the optical system might get damaged.
The sensor requires no maintenance.
Remove dirt build up from the optical system and the display at regular intervals only with a soft, non abrasive fabric. Residual dirt may have influence on the switching point and display accuracy.

```
ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.
To convert millimeters into inches, multiply by 0.03937. To convert grams into ounces, multiply by 0.03527.
```

In the interest of product improvement, specifications are subject to change without notice.

Oil-resistive, compact photoelectric sensor in metal housing
E3S-C


## Features

## Meets IP67/IP67G (oil tight) and NEMA 6P standards water/oil resistance

E3S-C meets the IP67 requirements of the IEC standards and 6P of the NEMA standards. E3S-C can be used worry-free in automotive assembly lines and other production lines where oil vapor exists. It can also be applied to food processing lines because it resists hydrogen peroxide, detergent and potassium hydroxide.

## High shock resistance of $1,000 \mathrm{~m} / \mathrm{s}^{2}$

The industry's top-class photoelectric sensor features shock resistance of $1,000 \mathrm{~m} / \mathrm{s}^{2}$, which is as high as that of a proximity sensor at rated values, and vibration resistance of as high as 10 to $2,000 \mathrm{~Hz}$.
Lineup of M12 metal connector joint type models Lineup of water/oil/shock-resistant M12 metal connector joint type models are available. This series ensures ease of sensor replacement during maintenance.

## NPN/PNP output selector

The operation panel has the NPN/PNP output selector. You need not prepare two NPN and PNP models for export. You need not worry about malfunctions due to noise, either.


## Mutual interference prevention enhanced

 (Retroreflective, diffuse reflective models) Fuzzy inference is introduced into the mutual interference prevention for the first time in the industry. This prevents a malfunction due to mutual interference, enabling two sensors to be mounted closely side by side.
## Easy optical axis alignment

OMRON's original "automatic position compensation system" minimizes misalignment of mechanical and optical axes to merely $\pm 2^{\circ}$. The optical axis is aligned perfectly by only installing the sensor.

## Application



## Ordering Information



## Accessories (Order Separately)

Slits

Slit width	Sensing distance	Minimum sensing object (typical)	Model	Quantity	Remarks
Width 0.5 mmx 11 mm	1.8 m	0.5 mm dia.	E39-S61	1 each for emitter and receiver (total of 8 pcs .)	(Plug-in type long slit) Can be used with through-beam E3S-CT $\square 1$ (-M1J).
Width 1 mmx 11 mm	3.5 m	1 mm dia.			
Width $2 \mathrm{mmx11} \mathrm{~mm}$	7 m	2 mm dia.			
Width $4 \mathrm{~mm} \times 11 \mathrm{~mm}$	15 m	2.6 mm dia.			

Reflectors

Name	Sensing distance (typical)	Model	Quantity	Remarks
Reflectors	3 m (rated value)	E39-R1	1	Attached to the Retroreflective E3S-CR $\square 1$ (-M1J).
		4 m	E39-R2	1
	1.5 m	E39-R3	1	---
	750 mm	E39-R4	1	---
Tape Reflector	$700 \mathrm{~mm}(50 \mathrm{~mm})^{*}$	E39-RS1	1 pc.	The M.S.R. function is available.
	$1,100 \mathrm{~mm}(100 \mathrm{~mm})^{*}$	E39-RS2	1 pc.	
	$1,400 \mathrm{~mm}(100 \mathrm{~mm})^{*}$	E39-RS3	1 pc.	

* Values in parentheses indicate the minimum required distance between the sensor and reflector.

Note: 1. When the reflector used is other than the supplied one, set the sensing distance to about 0.7 times of the typical example as a guideline.

## Mounting Brackets

Shape	Model	Quantity	Remarks
	E39-L102	1	Attached to the horizontal model.

Note: If a through-beam model is used, order two Mounting Brackets for the emitter and receiver respectively.

## Sensor I/O Connectors

Cable	Shape	Cable length		Model
Standard cable	Straight	2 m	3-wire type	XS2F-D421-DC0-A
		5 m		XS2F-D421-GC0-A
	L-shaped Ser	2 m		XS2F-D422-DC0-A
	,	5 m		XS2F-D422-GC0-A

## Rating/performance

Sensor type		Through-beam	Retroreflective model (with M.S.R. function)	Diffuse-reflective	
Item	Model	Horizontal E3S-CT11 (-M1J)   Vertical E3S-CT61 (-M1J)	Horizontal E3S-CR11 (-M1J)   Vertical E3S-CR61 (-M1J)	Horizontal E3S-CD11 (-M1J)   Vertical E3S-CD61 (-M1J)	Horizontal E3S-CD12 (-M1J)   Vertical E3S-CD62 (-M1J)
Sensing distance		30 m	3 m (When using the E39-R1)	700 mm (White paper 300 x 300 mm ) 300 mm )	$\begin{aligned} & 2 \mathrm{~m} \text { (White paper } 300 \mathrm{x} \\ & 300 \mathrm{~mm}) \end{aligned}$
Standard sensing object		Opaque, 15dia. min.	Opaque: 75 mm dia. min.		
Differential distance		---		20\% max. of sensing distance	
Directional angle		Both emitter and receiver: $3^{\circ} \text { to } 15^{\circ}$	$3^{\circ}$ to $10^{\circ}$	---	
Light source (wave length)		Infrared LED (880 nm)	Red LED (700 nm)	Infrared LED (880 nm)	
Supply voltage		10 to 30 VDC [ripple (p-p) 10\% included]			
Current consumption		Both emitter and receiver: 25 mA max.	40 mA max.		
Control output		Load supply voltage 30 VDC max., load current 100 mA max. (residual voltage NPN output: 1.2 V max., PNP output: 2.0 V max.) Open collector output type (NPN/PNP switch selectable) Light-ON/Dark-ON switch selectable			
Protective circuits		Reverse polarity protection, output short-circuit protection	Reverse polarity protection, output short-circuit protection, mutual interference prevention		
Response time		Operation or reset: 1 ms max .			Operation/reset: 2 ms max. each
Sensitivity adjustment		Single-turn adjustment		2-turn endless adjuster (with indicator)	
Ambient illuminance		(on Receiver lens) Incandescent lamp: 5,000 lux max. Sunlight: 10,000 lux max.			
Ambient temperature		Operating: $-25^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$, Storage: $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (with no icing or condensation)			
Ambient humidity		Operating: $35 \%$ to $85 \%$ RH, Storage: $35 \%$ to $95 \%$ RH (with no condensation)			
Insulation resistance		20 M min . at 500 VDC			
Dielectric strength		1,000 VAC at $50 / 60 \mathrm{~Hz} 1$ minute			
Vibration resistance		10 to $2,000 \mathrm{~Hz}$ double amplitude 1.5 mm or $300 \mathrm{~m} / \mathrm{s}^{2}$ for 0.5 h in each of $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ directions			
Shock resistance		$1000 \mathrm{~m} / \mathrm{s}^{2}$ (approx.- 100 G ) 3 times each in $\mathrm{X}, \mathrm{Y}$, and Z directions			
Protective structure		IEC Standard IP67, NEMA 6P (limited to indoors use) *			
Connection method		Pre-wired (standard length: 2 m ), Junction connector (standard length: 300 mm )			
Weight   (Packed state)		About 270 g (pre-wired type) About 230 g (M12 connector joint type)	About 160 g (pre-wired type) About 130 g (M12 connector joint type)	About 150 g (pre-wired type) About 110 g (M12 connector joint type)	
Ma-terial	Case	Zinc diecast			
	Operation panel cover	Polyethyl sulfon			
	Lens	Acrylics			
	Mounting Brackets	Stainless steel (SUS304)			
Accessories		Mounting bracket (with screws), adjusting screwdriver, instruction manual, reflector (Retroreflective model only)			

[^6]
## Output Circuit Diagram

NPN output

\begin{tabular}{|c|c|c|c|c|}
\hline Model \& Operating status of output transistor \& Timing chart \& Mode selection switch \& Output circuit \\
\hline \begin{tabular}{l}
E3S-CT11(-M1J) E3S-CT61(-M1J) \\
E3S-CR11(-M1J) \\
E3S-CR61(-M1J) \\
E3S-CD11(-M1J) \\
E3S-CD12(-M1J) \\
E3S-CD61(-M1J) \\
E3S-CD62(-M1J)
\end{tabular} \& Light ON

Dark ON \&  \& \begin{tabular}{l}
L ON (LIGHT ON) <br>
D ON (DARK ON)

 \& 

Receiver (Through-beam Models) <br>
Retroreflective, Diffuse Reflective, and Limited Reflective Models <br>

* Note: Set the NPN and PNP output selector to NPN. <br>
Connector Pin Arrangement <br>
Note: Terminal 2 is not used.
\end{tabular} <br>

\hline \& \multicolumn{4}{|l|}{| Emitter (Through-beam Models) |
| :--- |
| Connector Pin Arrangement |
| Note: Terminal 2 and 4 are not used. |} <br>

\hline
\end{tabular}

PNP output

Model	Operating status of output transistor	Timing chart	Mode selection switch	Output circuit
E3S-CT11(-M1J) E3S-CT61(-M1J)   E3S-CR11(-M1J) E3S-CR61(-M1J)   E3S-CD11(-M1J)   E3S-CD12(-M1J)   E3S-CD61(-M1J)   E3S-CD62(-M1J)	Light ON Dark ON		L ON (LIGHT ON)   D ON (DARK ON)	Receiver (Through-beam Models)   Retroreflective, Diffuse Reflective, and Limited Reflective Models   * Note: Set the NPN and PNP output selector to PNP.   Connector Pin Arrangement   Note: Terminal 2 is not used.
	Emitter (Through-beam Models)   Connector Pin Arrangement   Note: Terminal 2 and 4 are not used.			

## Connectors (Sensor I/O connectors)



Note: Pin 2 is open.

Operating Range

Through-beam
E3S-CT $\square 1(-M 1 J)$


Retroreflective Models
E3S-CR $\square 1$ (-M1J) + E39-R1 (supplied reflector)


Diffuse-reflective
E3S-CDロロ(-M1J)


## Nomenclature:

(Horizontal type)

(Vertical type)


1. The output transistor can be selected with the NPN/PNP output selector
*2. The operation mode can be selected with the L/OND/ON selector.
Note: The through-beam and retroreflective models are different in sensitivity adjuster shape.

## Operation

Sensitivity adjustment (diffuse reflective model, light-ON)

Sequence	Detection state	Sensitivity adjuster	Indicator state	Adjustment procedure
(1) Point A			ON $\rightarrow$ OFF	Place a sensing object in the predetermined position, turn the sensitivity adjuster clockwise (increase sensitivity) until the incident indicator (red) is turned ON, and define this position as (A).
(2) Point B			$\underbrace{\text { ON } \rightarrow \text { OFF }}_{\substack{\text { Stability indicator } \\ \text { (green) }}} \quad$ ON $\rightarrow$ OFF	Remove the sensing object, turn the sensitivity adjuster further clockwise until the incident indicator (red) is turned ON by a background object, and define this position as (B). Turn the sensitivity adjuster counterclockwise (decrease sensitivity) from (B) until the incident indicator (red) is turned OFF, and define this position as (C). When there is no background object, define the maximum adjuster position (Max) as (C).
(3) Setting	---			Set the adjuster in the middle of positions (A) and (C) (optimum sensitivity setting). Also make sure that the stability indicator (green) is turned ON when there is an object and when there is no object.   When the indicator is not turned ON, recheck the detection method since there is a little allowance.

Unlike the conventional models, the E3S-C scarcely has sensitivity variations between products. Therefore, you need to make the above adjustment on only one diffuse reflective model of E3S-CD that will be used for detection under the same conditions, and match the indicator points of the other diffuse reflective models of E3S-CD with the above adjusted one. (You need not match the sensitivity of each sensor.)

## Correct Use

## Design

## Fuzzy mutual interference prevention

When reflective photoelectric sensors are installed side by side, one sensor may receive the light from the other sensor, which may disturb the incident signal, causing a malfunction. The fuzzy mutual interference prevention monitors interfering light for a predetermined period of time before light is emitted, and imports the interfering light level and incident frequencies as data. Using these values, fuzzy inference is made to find the risk of malfunction to control the light emitting timing, reducing the risk.
(When risk is low)
Light is emitted after interfering light is gone.

(When risk is high)
Light is emitted after shifting to a gap of interfering light.


## Wiring Considerations

Cable

- An oil-resistance cable is used to ensure oil resistance.
- The bending radius should be 25 mm or more.


## Installation

Sensor installation

- Note that during the E35-C installation, hammering it will damage the water resistance function.
- Use an M4 screw, tightened to a torque of no more than 1.18 Nm .
(When using the mounting bracket)
- To set the sensor on the mechanical axis, use the optical axis locking holes.
- When the sensor cannot be set on the mechanical axis, move the E3S-C vertically and/or horizontally and set it in the center of the area where the incident indicator is turned ON . Make sure that the stability indicator is ON .
(Direct installation)
Install the E3S-C as shown below.
[M4 screwing]

[M3 screwing]


Optical axis adjustment
(Optical axis locking holes)
By fitting screws into the optical axis locking holes, the mounting bracket is set onto the mounting shaft of the mounting bracket.
For adjustment


Optical axis position of through-beam model
Unlike the conventional product, the through-beam model has two lenses, but the one actually used is as shown below. When fitting the slit, use it after matching the slit hole with the used lens.
(Horizontal model) (Vertical model)


Water Resistance
To ensure water resistance, tighten the operation panel cover screws to 0.34 Nm to 0.54 Nm torque.

## Miscellaneous

Oil resistance/chemical resistance

- Though E3S-C has a high oil resistance, it may not be able to exhibit its performance depending on the oil type. Use oil in compliance with the following table.
- Regarding the oil resistance of E3S-C, it has passed tests on the oils given in the following table. Refer to the table for examining the oil to be used.

Testing oil classification	JIS classification	Product name	Dynamic viscosity ( $\mathrm{mm}^{2} / \mathrm{s}$ ) at $40^{\circ} \mathrm{C}$	PH
Lubricant	---	Velocity No. 3	2.02	---
Water-insoluble coolant	$\begin{gathered} \text { Class } 2 \\ \text { No. } 5 \end{gathered}$	Daphne Cut	Not less than 10 to less than 50	
	Class 2   No. 11	Yushiron Oil No. 2ac	Less than 10	
Watersoluble coolant	Class W1	Yushiroken EC50T-3	---	7 to 9.5
	No. 1	Yushiron Lubic HWC68		7 to 9.9
	$\begin{gathered} \text { Class W1 } \\ \text { No. } 2 \end{gathered}$	Gryton 1700D		7 to 9.2
	$\begin{gathered} \hline \text { Class W2 } \\ \text { No. } 1 \end{gathered}$	Yushiroken S50N		7 to 9.8

Note: 1 .The E3S-C was immersed in the oils in the above table at $50^{\circ} \mathrm{C}$ for 240 hours, and passed the test of 100-M or more insulation resistance.
2 . For use in the environment where the E3S-C is exposed to the oil other than those in the above table, use the dynamic viscosity and PH in the above table. Pre-examine the oils since the sensor may be affected by additives and like in the oils.

## Dimensions (Unit: mm)

## Sensors

Through-beam model (horizontal model)
E3S-CT11(-M1J)
Junction connector models (-M1J)


Emitter: E3S-CTDI-L
Receiver: E3S-CTDロ-D



Note: 1. Mounting bracket can be attached to side A.
2. The emitter for through-beam sensors have only the power supply indicator.
3. The cable for emitters for through-beam sensors is two-conductor, 4 dia. ( $27 \times 12$ dia.).


Junction connector models (-M1J)


* 1. Mounting bracket can be attached to side A
* 2. The emitter for through-beam sensors have only the power supply indicator
* 3. The cable for emitters for through-beam sensors is two-conductor, 4 dia. ( $27 \times 12$ dia.).

Retro/diffuse reflective model (horizontal model)

With mounting bracket


* Note: Mounting bracket can be attached to side A

Retro/diffuse reflective model (vertical model)
E3S-CR61(-M1J)
E3S-CD61(-M1J)
E3S-CD62(-M1J)


* Note: Mounting bracket can be attached to side A.


## Accessories (Order Separately)

Plug-in type long slit (for through-beam model )
E39-S61


Dimension A   $(\mathrm{mm})$	Material	Quantity
0.5	Stainless	1 each for emitter   and receiver   (total of 8 pcs.)
1	steel	
2	(SUS 304)	(   4

## ALL DIMENSIONS SHOWN ARE IN MILLIMETERS

To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .
Cat. No. E229-E2-04-X In the interest of product improvement, specifications are subject to change without notice.

Distance setting photoelectric sensor in metal housing
E3S-CL

- High water, oil and detergent resistance
- Minimal black/white error for highest reliability detecting different colored objects (E3S-CL1)



## Features

## Eliminates Background Influences with a Hysteresis of Only 2\% max. (E3S-CL1)

The hysteresis is the industry's minimum $2 \%$ max. (E3S-CL1). As a triangulation measuring is used, objects behind the setting distance cannot be detected. The sensor is insensitive to the influence of background objects of high reflectivity, and stable detects works on a conveyor from above. The hysteresis of the E3S-CL2 is $10 \%$ max. of the detecting distance ( $5 \%$ max. for white paper).


## What Is Distance Setting?

(Differences from other detecting system)
Distance-setting

Features	When the sensing object moves in direction A , the center position of the reflected light moves in direction B . This is received by the 2-split photodiode and the place where the incident levels are the same on the N and F sides is defined as the setting distance. The object is detected by the incident circuit processing only when NF , and is not detected when NF . Therefore, detection is stable without being influenced by the work type and background objects.
Structure	

Diffuse-reflective

Fea-	
tures	Since the level of the reflected light is judged for detection, the   sensing distance varies with the color, material and/or size of the   work.   A malfunction may occur if there is any object of high reflectivity in   the background.
Struc-   ture	

## 6-turn adjuster with indicator

- The 6-turn adjuster with indicator ensures ease of distance setting.
- Fine distance setting is possible.



Light source LED

- NPN/PNP Output Selectable
- Light-ON/Dark-ON is also switch selectable.


## Conforms to Applicable EN/IEC Standards

- The sensors satisfy the electrical safety (IEC947-5-2), noise resistance (IEC947-5-2, IEC801-2/3/ 4) and noise radiation restrictions (EN500 81-2, EN55011) required for photoelectric sensors.



## Application

E3S-CL1


Detecting Construction Materials (Boards) maining on a Pallet


E3S-CL2


Stable detecting boxes regardless of box position


Detecting Wafer Cassettes


Easy distance setting with 6-turn adjustment and indicator.

## Ordering Information



## Rating/performance

Sensing method		Distance-setting	
Item	Model	E3S-CL1	E3S-CL2
Sensing		5 to 200 mm (White paper $200 \times 200 \mathrm{~mm}$ ) (Setting distance 200 mm )	5 to 500 mm (White paper $200 \times 200 \mathrm{~mm}$ ) (Setting distance 500 mm )
Setting range		40 to 200 mm (White paper $200 \times 200 \mathrm{~mm}$ )	50 to 500 mm (White paper $200 \times 200 \mathrm{~mm}$ )
Differential distance		2\% max.	10\% max.
Reflectivity characteristics (black/white error)		2\% max.	10\% max.
Light source (wave length)		Red LED (700 nm)	Infrared LED (860 nm)
Power supply voltage		10 to 30 VDC [ripple (p-p) 10\% included]	
Current consumption		35 mA max.	50 mA max.
Control output		Load supply voltage 30 VDC max., load current 100 mA max. (residual voltage NPN output: 1.2 V max., PNP output: 2.0 V max.) Open collector output type (NPN/PNP switch selectable) Light-ON/Dark-ON switch selectable	
Protective circuits		Reverse polarity protection, output short-circuit protection, mutual interference prevention	
Response time		Operation or reset: 1 ms max .	Operation or reset: 2 ms max .
Distance setting		6-turn endless adjuster (with indicator)	
Ambient illuminance		Incandescent lamp: 5,000 lux max. Sunlight 10,000 lux max.	
Ambient temperature		Operating/Storage: $-25^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ (with no icing or condensation)	
Ambient humidity		Operating/Storage: 35\% to 85\%RH (with no condensation)	
Insulation resistance		20 M min. at 500 VDC	
Dielectric strength		1,000 VAC at $50 / 60 \mathrm{~Hz}$ for 1 minute	
Vibration resistance		10 to $55 \mathrm{~Hz}, 1.5 \mathrm{~mm}$ double amplitude for 2 hours each in $X, Y$, and $Z$ direction	
Shock resistance		Destruction: $500 \mathrm{~m} / \mathrm{s}^{2}$ for 3 times each in $\mathrm{X}, \mathrm{Y}$, and Z directions	
Protective structure		IEC Standard IP67, NEMA 6P (limited to indoor use) *2	IEC Standard IP67, NEMA 6P (limited to indoor use)
Connection method		Pre-wired models (standard length: 2 m )	
Weight (Packed state)		Approx. 170 g	
Material	Case	Zinc diecast	
	Operation panel cover	Polyethyl sulfon	
	Lens	Acrylics	
	Mounting Brackets	Stainless steel (SUS304)	
Accessories		Mounting bracket, hexagon bolt M4 x 12 (with spring washer, flat washer), adjusting screwdriver, instruction manual	

*1. Sensing distance difference between standard white paper (reflectivity 90\%) and standard black paper (reflectivity 5\%)
*2. NEMA (National Electrical Manufacturers Association) Standards

Spot Diameter vs. Sensing Distance

## E3S-CL1



Short distance characteristic
E3S-CL1


E3S-CL2


E3S-CL2


## Output Circuit Diagram

NPN output

Model	Operating status of output transistor	Timing chart	Mode selection switch	Output circuit
$\begin{aligned} & \text { E3S-CL1 } \\ & \text { E3S-CL2 } \end{aligned}$	Light ON		L ON (LIGHT ON)   D ON (DARK ON)	

PNP output

Model	Operating status of output transistor	Timing chart	Mode selection switch	Output circuit
$\begin{aligned} & \text { E3S-CL1 } \\ & \text { E3S-CL2 } \end{aligned}$	Light ON Dark ON		L ON (LIGHT ON)   D ON (DARK ON)	* Please make a changeover switch into the PNP side.

## Nomenclature:

## Operation panel



Output selection switch
(1) When using the sensor with NPN output, move the switch
to the NPN position.
(2) When using the sensor with PNP output, move the switch to the PNP position.
Mode selection switch
(1) When using the sensor with Light-ON, move the switch to the L•ON position.
(2) When using the sensor with Dark-ON, move the switch to the D•ON position.

## Distance Adjuster

(1) Turning the distance setting adjuster clockwise (to the Max
position) increases the detecting distance, and turning it counterclockwise (to the Min position) decreases the distance.
(2) The distance setting adjuster is a 6-turn endless adjuster ranging from the Min position to the Max position, and its number of turns is displayed on the setting distance indicator according to the rotation of the adjuster.

## Operation

Sensitivity adjustment (distance setting type, Light-ON)

Sequence	Detection state	Position of distance setting adjuster	State of setting distance indicator	Indicato	or state	Adjustment Steps
(1) Point (A)			(A)$1-$   $3-$   $3-$	$\begin{array}{\|c} \mathrm{ON} \rightarrow \mathrm{OFF} \\ \substack{\text { Stability indicator } \\ \text { (green) }} \end{array}$		Place a sensing object in the predetermined position, turn the adjuster clockwise until the incident indicator (orange) is turned ON, and define this position as (A).
(2) Points (B), (C)			(C)	ON $\rightarrow$ OFF   Stability indicator (green)	Operation indicator (orange)	(1) If there is a background object, remove the sensing object, turn the adjuster further clockwise until the incident indicator (orange) is turned ON, and define this position as (B). Turn the adjuster counterclockwise from ( $B$ ) until the incident indicator (orange) is turned OFF, and define this position as (C).   (2) If there is no background object, define the maximum adjuster position (Max) as (C).
(3) Setting	---	(A)	(A)$1-$   (C)   $3-$   $5-$   -4	ON   Stability indicator (green)		Set the adjuster in the middle of positions (A) and (C). Also make sure that the stability indicator (green) is turned ON when there is an object and when there is no object. When the indicator is not turned ON, reexamine the detection method since there is a little allowance.

## Precautions

Correct Use

## Design

Cable
The oil-resistant cable is used to ensure oil resistance.
(E3S-CL2)

## Installation

## Sensor installation

## Mounting orientation

- Install the photoelectric sensor in such manner that its detection surface and the object surface are parallel (without inclination relative to the sensing object).


If the sensing object has a glossy surface, incline the Sensor by $5^{\circ}$ to $10^{\circ}$ as shown on the right. In this case, ensure that the Sensor is not influenced by any background objects.


- If there is a mirror-smooth object under the photoelectric sensor, operation may become instable. Therefore, incline the photoelectric sensor as shown below or move it away from the object.

- Install the photoelectric sensor in either of the following orientations, being careful of the direction in which the sensing object will move.

- Also, when the color/material of the sensing object varies extremely, install the photoelectric sensor in either of the following orientations.

- Install the photoelectric sensor so that the sun, fluorescent lamp, incandescent lamp or any other strong light will not enter the directional angle range of the sensor.


## Mounting Precautions

- Do not strike the Photoelectric Sensor with a hammer or any other tool during the installation of the Sensor, or the Sensor will loose its water-resistive properties.
- Use M4 screws.
- Tighten the screws to the torque of 1.2 Nm max.


## Others

Oil resistance/chemical resistance (E3S-CL2)
For the oil resistance ofE3S-CL2, the Sensor has passed tests on the oils given in the following table. Refer to the table for examining the oil to be used. Depending on the oil type, however, the Sensor may not be able to exhibit its performance.

Testing oil clas-sification	JIS classification	Product name	Dynamic viscosity ( $\mathrm{mm}^{2} / \mathrm{s}$ ) at $40^{\circ} \mathrm{C}$	PH
Lubricant	---	Velocity No. 3	2.02	---
Water-insoluble coolant	Class 2   No. 5	Daphne Cut	Not less than 10 to less than 50	
	$\text { Class } 2$ $\text { No. } 11$	Yushiron Oil No. 2ac	Less than 10	
Watersoluble coolant	Class W1	Yushiroken EC50T-3	---	$7 \times 9.5$
	No. 1	Yushiron Lubic HWC68		$7 \times 9.9$
	$\begin{aligned} & \text { Class W1 } \\ & \text { No. } 2 \end{aligned}$	Gryton 1700D		7’9.2
	Class W2 No. 1	Yushiroken S50N		7'9.8

hours, and passed the test of $100-\mathrm{M}$ or more insulation resistance.
2 . For use in the environment where E3S-C is exposed to the oil other than those in the above table, use the dynamic viscosity and PH in the above table. Pre-check the oils since the sensor may be affected by additives etc. in the oils

Dimensions (Unit: mm)
E3S-CL1
E3S-CL2


With Mounting Bracket Attached

Mounting holes


E3S-CL1: Vinyl-insulated round cable of 4 dia. 3 cores conductor cross-sectional area: $0.2 \mathrm{~mm}^{2}$; insulation diameter: 1.1 mm Standard length: 2 m
E3S-CL2: Vinyl-insulated round cable of 4 dia.
3 cores conductor cross-sectional area: $0.2 \mathrm{~mm}^{2}$; insulation diameter: 1.1 mm Standard length: 2 m

Note: The output selector, mode selector and distance setting adjuster are exposed when the cover is opened.

[^7]To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527

## Photoelectric switch with built-in amplifier (long distance) in plastic housing

## Retroreflective Models

- Sensing Distance of 10 m , with polarized light to detect shiny objects.
- Operation stability monitored ba the stability indicator.
Distance-setting Models
- Distance setting models with a long 2 m sensing distance incorporate a teaching function.
- Set sensing area (zone setting) function allows detection of shiny objects with uneven surface.


## Common Features

- Meets IEC IP67 requirements.
- M12 rotary connector, pre-wired or terminal block connection



## Retroreflective Models

Though the Size Is Compact, the Sensing Distance Is as Long as 10 m .
Replace the conventional through-beam model with the retroreflective model for saving wiring and installation space.


Easy monitoring of Operation stability by means of stability indicator.


## Distance-setting

Distance-setting Models with a Long 2-m Sensing Distance Incorporate a Teaching Function
Sensitivity adjustment without being influenced by background objects is possible by simply pressing a button. Useful for teaching without a sensing object.

## Easy Optimum Sensing Distance Adjustments

Teaching with and without a sensing object ensures highly accurate detection without influence from the background.


## Zone Setting Function

Effective for detecting glossy objects, which were difficult to detect with conventional sensors. (D-ON)


Teach with only the background (conveyer)


## General

Select either transistor (NPN/PNP selectable) or relay output. Three connection methods (plus a model with a timer function). Select either a DC power supply or a variable power
supply: 24 V to 240 VAC or 12 to 240 VDC).

## IEC Standard IP67 Water Proofing



M12 Rotary Connector Available on Models with DC Power Supplies


## Application

Detection of large works
Retroreflective model can make longdistance detection, saving wiring.


Detection of large corrugated cardboard Just by installing the sensor on one side, only the boxes to be detected shall be sensed.


Detection of cars in multi-story parking lot


## Ordering Information

## Sensors

$\square$ Red light $\square$ Infrared light

Sensor type	Shape	Connection method	Sensing distance	Timer function	Model	
					NPN/PNP selector	Relay contact output
Retroreflective Models (with M.S.R. Function)	$\rightleftarrows$	Pre-wired			E3G-R13-G	
		Connector type		---	E3G-R17-G	
			3510m			E3G-MR19-G
		Terminal block	*	ON or OFF delay 0 to 5 s (adjustable)	---	E3G-MR19T-G
Distancesetting		Pre-wired	White paper $300 \times 300 \mathrm{~mm}$	---	E3G-L73	---
		Connector type			E3G-L77	
						E3G-ML79-G
		Terminal block		ON or OFF delay 0 to 5 s (adjustable)	---	E3G-ML79T-G

* Values in parentheses indicate the minimum required distance between the sensor and reflector.


## Accessories (Order Separately)

Reflectors

Shape	Sensing distance (typical)	Model	Quantity	Remarks
	$10 \mathrm{~m}(500 \mathrm{~mm})$ *	E39-R2	1	---
	$6 \mathrm{~m}(100 \mathrm{~mm})$ *	E39-R1S	1	---

* Values in parentheses indicate the minimum required distance between the sensor and reflector.

Terminal Protection Cover for Side-pullout Cable

Shape	Model	Quantity	Applicable type	Remarks
	E39-L129-G	1	E3G-MR19(T)-G	Provided with rubber bushing and cap for
E3G-ML79(T)-G				

Mounting Brackets

Shape	Model	Quantity	Applicable type	Remarks

Sensor I/O Connectors

Cable	Shape		Cable length		Model
Standard cable	Straight		2 m	3 -wire type	XS2F-D421-DC0-A
			5 m		XS2F-D421-GC0-A
	L-shaped		2 m		XS2F-D422-DC0-A
			5 m		XS2F-D422-GC0-A

## Rating/Performance



[^8]| Sensor type |  | Retroreflective Models (M.S.R. function) |  |  |  | Distance-setting |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Item | Model | E3G-R13-G | E3G-R17-G | E3G-MR19-G | E3G-MR19T-G | E3G-L73 | E3G-L77 | E3G-ML79-G | E3G-ML79T-G |
| Shock resistance |  | $500 \mathrm{~m} / \mathrm{s}^{2} 3$ times in each of $\mathrm{X}, \mathrm{Y}$ and Z directions |  |  |  |  |  |  |  |
| Protective structure |  | IEC 60529 IP67 (with Protective Cover attached) |  |  |  |  |  |  |  |
| Connection method |  | Pre-wired (standard length: 2 m) | M12 Connector | Terminal block |  | Pre-wired (standard length: 2 m ) | M12 <br> Connector | Terminal block |  |
| Weight <br> (Packed state) |  | Approx. <br> 150 g | Approx. 50 g | Approx. 150 g |  |  | Approx. 50 g | Approx. 150 g |  |
| Material | Case | PBT (polybutylene terephthalate) |  |  |  |  |  |  |  |
|  | Lens | Acrylics (PMMA) |  |  |  |  |  |  |  |
|  | Mounting Brackets | Stainless steel (SUS304) |  |  |  |  |  |  |  |
| Accessories |  | Instruction sheet, and screwdriver for adjustment |  |  |  | Instruction sheet |  |  |  |

## Output Circuit Diagram

NPN output

\begin{tabular}{|c|c|c|c|c|}
\hline Model \& Operating status of output transistor \& Timing chart \& Mode selection switch \& Output circuit \\
\hline \begin{tabular}{l}
E3G-R13-G \\
E3G-R17-G \\
E3G-L73 \\
E3G-L77
\end{tabular} \& Light ON

Dark ON \&  \& | L ON (LIGHT ON) |
| :--- |
| D ON (DARK ON) | \&  <br>

\hline
\end{tabular}

PNP output

Model	Operating status of output transistor	Timing chart	Mode selection switch	Output circuit
$\begin{aligned} & \text { E3G-R13-G } \\ & \text { E3G-R17-G } \\ & \text { E3G-L73 } \\ & \text { E3G-L77 } \end{aligned}$	Light ON Dark ON		L ON (LIGHT ON) $\begin{gathered} \text { D ON } \\ \text { (DARK ON) } \end{gathered}$	

## Relay contact output

Timer function	Model	Timing chart	Mode selection switch			Output circuit
None	E3G-MR19-G E3G-ML79-G	IncidentInterrupted   Operation   ON   indicator   (orange) OFFOFTa ONOFF	$\begin{gathered} \text { L ON } \\ \text { (LIGHT ON) } \end{gathered}$			
		Incident   Interrupted   Operation   ON   indicator   (orange) OFF$\mathrm{Ta} \quad \mathrm{ON} \square$	D ON (DARK ON)	,		
ON or OFF delay 0 to 5 s (adjustable)	E3G-MR19T-G E3G-ML79T-G		$\begin{gathered} \text { L ON } \\ (\mathrm{LIGHT} \text { ON }) \end{gathered}$	,	Main circuit	
			D ON (DARK ON)			

* For ON and OFF, delay timers vary independently.

Note: Td1, Td2: Delay time ( 0 to 5 s), T1: Any period longer than delay time, T2: Any period shorter than delay time

## Connectors (Sensor I/O connectors)



Class	Wire, outer   jacket color	Connector   pin No.	Application
For DC	Brown	$(1)$	Power   supply ( +V )
	-	$(2)$	-
	Blue	$(3$	Power sup-   ply (0 V)
	Black	(4)	Output



E3G-L/ML Distance-setting Models
Spot Diameter vs. Sensing Distance


Sensing Object Size vs. Setting Distance


Close-range Characteristics


Sensing Zone (in NORMAL mode)


Sensing Object Angle Characteristics (Up and Down)


Sensing Zone in ZONE Mode


Sensing Object Angle (Left and Right)


Retroreflective Models
E3G-R13-G (Pre-wired model)
E3G-R17-G (Connector model)


E3G-MR19-G (Terminal Block Model)
E3G-MR19T-G (Terminal Block Model with Timer)


Distance-setting
E3G-L73 (Pre-wired model)
E3G-L77 (Connector model)


E3G-ML79-G (Terminal Block Model)
E3G-ML79T-G (Terminal Block Model with Timer)

E3G-L/ML

## Adjustment Steps

Pro-   re-   dure	$\quad$ Operation
1	Install, wire, and turn on the Sensor.
2	Perform distance setting (teaching). Refer to "Distance Setting (Teaching)".
3	Check that the mode selector is set to RUN.

Distance Setting (Teaching)
Select the most appropriate teaching method in reference to the following descriptions.

Application	Teaching without sensing objects (i.e., Teaching the background).	Setting a threshold in the middle between the background and sensing object for operation.	Detection of glossy objects in front of the background.	Setting the maximum sensing distance of the Sensor.
$\checkmark$ V			$\checkmark$	$\checkmark$
Teaching	Normal one-point teaching	Normal two-point teaching	Zone teaching	Maximum distance setting (in normal mode)
Setting method	Press the TEACH button with the background object.	Press the TEACH button with the background object.	Press the TEACH button with the background object (conveyor, etc.).	Press the TEACH button for longer than three seconds.
Set threshold	Threshold (a) is set to a distance in front of the background of $20 \%$ of the background distance.	Threshold (a) is set approximately in the middle between the background and sensing object.	Thresholds (a and b) are set in the sensing distance on condition that the difference between these thresholds is approximately $10 \%$ of the whole sensing distance.	The threshold is set in such manner that the stability indicator will turn ON at approximately 2 m if the sensing object is white paper.
Output ON range	The output is ON between the Sensor and La.	The output is ON between the Sensor and La.	The output is ON between La and Lb.	The output is ON whenever the sensing object is located between the Sensor and at a distance of 2.2 m .

La: Distance equivalent to threshold
(a)

Lb: Distance equivalent to threshold
(b)

Normal Mode1. Normal Onepoint Teaching


Normal one-point teaching

Pro-   ce-   dure	Operation
1	Set the mode selector to TEACH .
2	Set the NORMAL/ZONE mode selector to NORMAL .
3	Press the TEACH   The teaching indicator (red) will turn ON.
4	Set the mode selector to RUN   mode.) (Set to L-ON or D-ON

Note: Perform normal one-point teaching with the background.
Normal two-point teaching

Pro-   ce-   dure	Operation
1	Set the mode selector to TEACH .
2	Set the NORMAL/ZONE mode selector to NORMAL .
3	Press the TEACH button with a sensing object.   The teaching indicator (red) will turn ON.

2. Normal Two-point Teaching


Zone Mode Zone Teach-
ing


Pro-cedure

Move the sensing object and press the [TEACH button with the background.
If the teaching is successful, the teaching indicator (green) will turn ON.
If the teaching is not successful, the teaching indicator (red) will flash.
When the teaching is successful, the setting is complete Set the mode selector to RUN. (Use the operation mode selector to set L-ON/D-ON.) When the teaching is not successful, change the work position and setting distance again, and restart the setting from step " 3 ".
Zone teaching

Pro-   ce-   dure	Operation
1	Set the mode selector to TEACH .
2	Set the NORMAL/ZONE mode selector to ZONE .
3	Press the TEACH button with the background.   The teaching indicator (red) will turn ON and the teaching   indicator (green) will then turn ON.
4	Set the mode selector to RUN . (Set to L-ON or D-ON   mode.)

Note: Perform zone teaching with the background.

Maximum distance setting (in normal mode)
If you want to set the maximum distance of the sensor, set a maximum distance as depicted in the following procedure.

Pro-   ce-   dure	Operation
1	Set the mode selector to TEACH .
2	Set the NORMAL/ZONE mode selector to NORMAL .
3	Press the TEACH button 3 s or more.   The teaching indicator (red) will turn ON.   In 3 s, the teaching indicator (green) will turn ON.
4	When the teaching indicator (green) turns ON, the setting   is complete. Set the mode selector to RUN . (Set to L-ON/   D-ON.)

## Precautions

Correct Use
E3G-R/MR

## Design

## Power Supply

A full-wave rectification power supply can be used with the E3G-MR19(T)-G.

## Wiring Considerations

The tensile strength of the cable during operation should not exceed the values shown below.

Model	Tensile strength
E3G-R13-G   E3G-MR19(T)-G	50 N max.
E3G-R17-G	10 N max.

- For adjustment

Display

- The following graphs indicate the status of each operation level.
- Set the E3G so that it will work within the stable operation range.


Note: If the operation level is set to the stable operation range, the E3G will operate with the highest reliability and without being influenced by temperature change, voltage fluctuation, dust, or setting change.


Design
Power Supply
A full-wave rectification power supply can be used with the E3G-ML79(T)-G.

## Wiring Considerations

The tensile strength of the cable during operation should not exceed the values shown below.

Model	Tensile strength
E3G-L73	50 N max.
E3G-ML79(T)-G	
E3G-L77	10 N max.

## Miscellaneous

## EEPROM Write Error

If a write error occurs (operation indicator flickers) due to pow-er-off, static electricity or other noise in the teaching mode, perform teaching again.

$$
\text { E3G-M } \square(\mathrm{T})-\mathrm{G}
$$

## Wiring Considerations

- The cable with an external diameter of 6 to 8 mm is recommended.
- Securely tighten the cover to maintain water resistance and dust resistance. The thread size of the conduit socket is PG 13.5
- Do not tighten with the cable caught by the terminal protection cover. Otherwise, the water-resistant structure and like cannot be maintained.

- Changing to Side-pullout Cable from Vertical-pullout Cable


Pro-   ce-   dure	Operation
$(1)$	Remove the present cover.
$(2)$	Attach the E39-L129-G Terminal Protection Cover for   side-pullout cable.
(3)	Remove the clamping nut, washer, and rubber bushing   of the E3G. These are used for the side-pullout cable.
(4)	Attach the rubber bushing and cap provided with the   E39-L129-G to the E3G as replacements.

## All E3G Models <br> Design <br> Load Relay Contact

If a load is used that will spark when it is turned OFF (e.g. a contactor or valve), the usually closed side may be turned ON before the usually open side is turned OFF or vice versa. If both usually open output and usually closed output are used simultaneously, apply an surge suppressor to the load. (Refer to OMRON's "Switch/Relay/Connector (PCB Product) Catalog" for typical examples of surge suppressors.

## Wiring Considerations <br> Connection/Wiring

The E3G has load short-circuit protection. If load short-circuit or like has occurred, the output turns OFF. Therefore, recheck the wiring and switch power on again. This resets the shortcircuit protection circuit. Load short-circuit protection is activated when a current of 2 times or more of the rated load current flows. When using an L load, use the one the inrush current of which is less than 1.2 times of the rated load current.

## Mounting

- If Sensors are mounted face-to-face, ensure that no optical axes cross each other. Otherwise, mutual interference may result.
- Be sure to install the Sensor carefully so that the directional angle range of the Sensor will not be directly exposed to intensive light, such as sunlight, fluorescent light, or incandescent light.
- Do not strike the Photoelectric Sensor with a hammer or any other tool during the installation of the Sensor, or the Sensor will loose its water-resistive properties.
- Use M4 screws for Sensor installation.
- For case installation, tighten it to the torque of 1.2 Nm max.


## Water Resistance

Tighten the operation cover screws and terminal block cover screws to a torque of 0.3 to 0.5 Nm in order to ensure water resistivity.

## Dimensions (Unit: mm)

## Sensors

Retroreflective Models

## Pre-wired

E3G-R13-G


Operation mode selector


## Connector type

 E3G-R17-G

Note: All dimensions other than the ones specified below are the same as the corresponding di mensions of E3G-R13-G.


Terminal block
E3G-MR19-G
E3G-MR19T-G


> Operation indicator (Orange) Stability indicator (Green)


Note: * The ON or OFF-delay adjuster is not available with the E3G-MR19


## Distance-setting

Pre-wired
E3G-L73


Connector type
E3G-L77


Note: The figures and dimensions not given are the same as those of E3G-L73-G shown on the left.


## Accessories (Order Separately)

Terminal Protection Cover for Side-pullout Cable E39-L129-G


Note: 1 . The cover is provided with a rubber bushing and cap to prevent the cable from being pulled out in vertical direction.

Terminal Protection Cover for Side-pullout Cable (Example of E3G-MR19-G)


Reflectors and Mounting Brackets
H-3

## ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.

To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .

## Mark Sensor

## E3M-V

- Detects laminated or light-dispersing objects in stable operation without being influenced by mirror reflection.
- Double indication of the detection level and threshold level allows easy grasp of the operating status and easy adjustment.
- Automatically sets to the optimum threshold level while sensing objects are being conveyed and incorporates an auto-teaching function that discriminates between the mark and background and turns ON when the mark is detected.
- IP67 watertight construction with M12 rotary connector
- High response speed of 50 s and half the size of OMRON's conventional models.



## Applications



Dependably Detects Marks on Laminated Sheets
The coaxial optical system ensures a long sensing distance and stable sensing characteristics over a wide angle range, even for objects that are distance-fluctuating or leaning at an angle, or for laminated objects with marks, which conventional models have difficulty in detecting


Auto-Teaching
An auto-teaching function automatically sets the threshold value upon a Remote Control input while the workpiece is moving. There is no need to position the mark at the optical spot.

## Ordering Information

Sensors

Shape	Connection method	Setting distance	Spot diameter	Model	
				NPN output	PNP output
	Connector type ${ }^{1}$	$\square 10+3 \mathrm{~mm}$	$1 \times 4 \mathrm{~mm}$	E3M-VG11	E3M-VG16
			$4 \times 1 \mathrm{~mm}$	E3M-VG21	E3M-VG26
	Pre-wired		$1 \times 4 \mathrm{~mm}$	E3M-VG12	E3M-VG17
			$4 \times 1 \mathrm{~mm}$	E3M-VG22	E3M-VG27

1. Possible to switch between vertical or horizontal connection using the M12 rotary connector

## Mounting Brackets

Shape	Model	Quantity	Remarks
	E39-L131		
	E39-L132		

Sensor I/O Connectors

Shape	Type	Cord		Model
	Single-end connector (Straight)	2 m	4-wire cord	XS2F-D421-D80-A
		5 m		XS2F-D421-G80-A
$w^{3 x}$	Single-end connector (L-shaped)	2 m		XS2F-D422-D80-A
		5 m		XS2F-D422-G80-A

## Specifications

## Ratings/Characteristics

Item	E3M-VG11	E3M-VG12	E3M-VG21	E3M-VG22	E3M-VG16	E3M-VG17	E3M-VG26	E3M-VG27
Sensing distance	$10 \pm 3 \mathrm{~mm}$							
Spot size (W x H)	$1 \times 4 \mathrm{~mm}$		$4 \times 1 \mathrm{~mm}$		$1 \times 4 \mathrm{~mm}$		$4 \times 1 \mathrm{~mm}$	
Light source (wavelength)	Green LED (525 nm)							
Power supply voltage	10 to 30 VDC, ripple (p-p) 10\% max.							
Current consumption	100 mA max.							
Control output	Load power supply voltage: 30 VDC max.   Load current: 100 mA max.   (Residual voltage: 1.2 V max.)    NPN open collector output type				Load power supply voltage: 30 VDC max.   Load current: 100 ma max.   (Residual voltage: 2 V max.)    PNP open collector output type			
Remote control input ${ }^{1}$	ON: Short-circuited to 0 or 1.5 V max. (with a flow current of 1 mA max.) OFF: Open or $\mathrm{Vcc}-1.5 \mathrm{~V}$ to Vcc (with a leakage current of 0.1 mA max.)				ON: Vcc - 1.5 V to Vcc (with an absorption current of 3 mA max.) OFF: Open or 1.5 V max. (with a leakage of 0.1 mA max.)			
Remote control output ${ }^{1}$	Load power supply voltage: 30 VDC max.   Load current: 100 mA max.   (Residual voltage: 1.2 V max.)    NPN open collector output type				Load power supply voltage: 30 VDC max.   Load current: 100 ma max.   (Residual voltage: 2 V max.)    PNP open collector output type			
Bank selection	Two banks selectable. Available for remote control only. (Refer to Remote Control Function.)							
Circuit protection	Protection from reversed power supply connection and load short-circuit							
Response time	ON: $50 \mu \mathrm{~s}$ max.   OFF: $70 \mu \mathrm{~s}$ max.							
Ambient illumination (on receiver lens)	Incandescent lamp: $3,000 \mathrm{~lx}$ max.   Sunlight: $10,000 \mathrm{x}$ max.							
Ambient temperature	Operating: $-20^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C} /$ Storage: $-30^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (with no icing)							
Ambient humidity	Operating: $35 \%$ to $85 \% /$ Storage: $35 \%$ to $95^{\circ} \mathrm{C}$ (with no condensation)							
Insulation resistance	20 M min . (at 500 VDC )							
Dielectric strength	1,000 VAC, $50 / 60 \mathrm{~Hz}, 1 \mathrm{~min}$.							
Vibration resistance ${ }^{2}$	Destruction: 10 to 55 Hz , 1-mm double amplitude or $150 \mathrm{~m} / \mathrm{s} 2$ for 2 hrs each in $\mathrm{X}, \mathrm{Y}$, and Z directions							
Shock resistance ${ }^{3}$	Destruction: $500 \mathrm{~m} / \mathrm{s} 23$ times each in X, Y, and Z directions							
Degree of protection	IEC60529 IP67 (with protective cover)							
Connection method	Connector	Pre-wired	Connector	Pre-wired	Connector	Pre-wired	Connector	Pre-wired
Weight with package box	Approx. 100 g							
Material	Case: Polybutylene terephthalate Lens: Acrylic (PMMA)							
Others	Instruction manual							

1. Remote controll input and answer-back output share the same signal line.
2. The Sensor withstands 0.75 mm double amplitude or $100 \mathrm{~m} / \mathrm{s}^{2}$ if the mounting bracket is attached to the sensor
3. The Sensor withstands $300 \mathrm{~m} / \mathrm{s}^{2}$ if the mounting bracket is attached to the sensor.

Sensing Distance vs. Incident Characteristics (Typical) E3M-VG1 $\square$


Angle vs. Incident Characteristics (X Direction) E3M-VG1 $\square / V G 2 \square$


Angle vs. Incident Characteristics (Y Direction) E3M-VG1[/VG2


## Color Sensing Capacity

EзM-VGㄷ

	White	Red	Yellow red	Yellow	Yellow green	Green	Blue green	Blue	Purple	Red purple	Black
White		$\bigcirc$									
Red	$\bigcirc$		$\bigcirc$	X	$\Delta$						
$\begin{aligned} & \text { Yellow } \\ & \text { red } \end{aligned}$	$\bigcirc$	$\bigcirc$		$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	X	$\bigcirc$	$\bigcirc$
Yellow	$\bigcirc$	$\bigcirc$	$\bigcirc$		$\bigcirc$						
Green yellow	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$		$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
Green	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$		$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
Blue green	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$		$\Delta$	$\bigcirc$	$\bigcirc$	$\bigcirc$
Blue	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\Delta$		$\Delta$	$\bigcirc$	$\bigcirc$
Purple	$\bigcirc$	$\bigcirc$	X	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\Delta$		$\bigcirc$	$\bigcirc$
Red purple	$\bigcirc$	X	$\bigcirc$		X						
Black	$\bigcirc$	$\Delta$	$\bigcirc$	X							

O : Detectable $\quad \Delta$ : Detectable but unstable $\quad \mathrm{X}$ : Not detectable

## Differences in Incident by Color



## Technical Guide

Glossy Sensing Objects
Incline the Sensor to detect glossy objects so that the Sensor will not be influenced by the mirror reflection of light and to ensure the stable sensing operation of the E3M-V.


Standard Sensing Object (Color vs. Munsell)
Japan Color Enterprises Standard Color Card 230

11 standard colors	Munsell color notation
White	N9.5
Red	4R, 4.5/12.0
Yellow red	4YR, 6.0/11.5
Yellow	5Y, 8.5/11.0
Yellow green	$3 \mathrm{GY}, 6.5 / 10.0$
Green	3G, 6.5/9.0
Blue green	5BG, 4.5/10.0
Blue	3PB, 5.0/10.0
Purple	7P, 5.0/10.0
Red purple	6RP, 4.5/12.5
Black	N 2.0

## Nomenclature



## Operation

## Output Circuits

## NPN (E3M-VG11, E3M-VG12, E3M-VG21, E3M-VG22)



Connector Pin Arrangement
PNP (E3M-VG16, E3M-VG17, E3M-VG26, E3M-VG27)


## Adjustments

Adjustment Steps

1. Install, wire, and turn ON the Photomicrosensor.
2. Perform teaching (mark registration). Refer to Mark Registration (Teaching).
3. Make fine adjustments of the threshold level if necessary. Refer to Threshold Level Adjustments on page A-139.
4. Check that the mode selector is set to RUN.

## Mark Registration (Teaching)

Refer to the following for ideal teaching.

Application						
The base has a color   pattern. The mark   and base are clearly   different in color.	The base has no col-   or pattern. The mark   and base are slightly   different in color.	The base has no col-   or pattern. Remote   teaching with no po-   sitioning is desired.		One-point teaching		
:---	:---	:---	Two-point teaching	Auto-teaching		
:---						
The default level is   set and the output is   ON when the mark is   detected.The threshold level is   set between the color   of the mark and   base. The output is   ON when the mark is   detected.						
The threshold level is   set between color of   the mark and base.   The output is ON   when the mark (i.e.,   the color with shorter   passing time) is de-   tected.						

Refer to the following for each teaching method. Remote one- or twopoint teaching is possible. Refer to Remote Control Function.

One-point Teaching
1 Set the mode selector to TEACH.
2 Locate the mark to the sensing position and press the SET button. Then all the red threshold indicators are ON.


3 Set the mode selector to RUN. The output will be ON whenever the set mark is detected.
Note: By teaching on the base, reversed output as shown above (base: ON mark: OFF) can be obtained.

## Two-point Teaching

1	Set the mode selector to TEACH.
2	Locate the mark to the sensing position and press the SET but-



Red threshold indicators are ON.
3 If teaching is successfull, move the mark and press the SET button at the base.

- If teaching is successfull, all the green detection level indicators are ON.
- If teaching is unsuccessfull, all the red threshold level indicator flash.


If teaching is successful, set the mode selector to RUN to complete the teaching operation. If teaching is unsuccessful, restart from the above step 2.
Note: Follow the above steps so that the output will be turned ON whenever the mark is detected. By taking the opposite steps, the output will be turned OFF whenever the mark is detected and turned ON whenever the base is detected.

## Auto-teaching

1. Check that the mode selector is set to either RUN or ADJUST.
2. Input a 0.9-s pulse signal into the remote control I/O terminal. ${ }^{1}$
3. Auto-teaching starts when the mark is moved. When the mark passes six times, auto-teaching completes.

- If teaching is successful, answer-back output from the remote control I/O terminal will turn ON for 0.3 s .
- If teaching is unsuccessful, no answer-back signal will be output. Readjust using two-point teaching.
(Teaching will be unsuccessful if there is no difference in incident between the mark and base.)

4. If the answer-back signal is ON, the whole teaching operation will be completed. The output will be turned ON whenever the mark (i.e., the color with shorter passing time) is detected.


## Example of Connection to Programmable Controller



Note: Be sure to connect the E3M-V to the Programmable Controller as shown above
Precautions when Using Automatic Teaching
Incorrect discrimination may be caused by automatic teaching in the following cases. Use one-point or two-point teaching in such cases.

- Color patterns exist in the base.
- Sensing objects change their positions.
- Sensing objects have protrusions or surface level differences.

Threshold Level Adjustments
It is possible to make fine adjustments of the threshold level after teaching. Such fine adjustments can be made remotely as well. Refer to Remote control Function (Bank Selection, Mark Registration, and Threshold Adjustments) on page A-140.

1 Set the mode selector to ADJUST
Select the upper or lower threshold selector. Whenever the SET button is pressed, the threshold level will move. Two indicators will be lit together when the threshold level is an even level.


[^9]
## Detection Level Indicator

Detection Level Indicator
The control output of the E3M-V will be turned ON if the detection level exceeds the threshold level. The indication of the detection level varies with the teaching method.
One-point Teaching
The upper and lower threshold values are set on the basis of the mark and the detection level indicators indicate the degree of color conformity to the mark's color.


Two-point or Auto-teaching
A single threshold value is set between the mark (registered first) and the base (registered next). The detection level indicators indicate the tolerance between the mark and base.

Detection level		Detection level indicators Operation indicator
		-1414.1.
		-414in*
	- Mark	
	Output ON	
	$\ldots$ - Threshold	
	Output OFF	mmonalouo
	- Base	
		-
		20000000
		¢
		Threshold value

Remote control Function (Bank Selection, Mark Registration, and Threshold Adjustments)
Under Run Mode or Adjust Mode
The input of any of the signals listed in the following table into the remote control I/O terminal allows remote control of the E3M-V. When the signal is accepted, answer-back output will be turned ON for 0.3 s. Only in the case of one-point teaching, however, can the signal be manually input, provided that the input is ON for 1.5 s or more. Timing Chart


Note: If Signals are sent continuously, make sure that there is an interval of 2.5 s between signal inputs as shown above.

Control Signals

No.	Control signal	Function
1		Bank 1 is selected (operation indicator OFF in TEACH mode)
2		Bank 2 is selected (operation indicator ON in TEACH mode)
3		Auto-teaching
4		Two-point teaching (1st and 2nd)
5		One-point teaching (or input for 1.5 s min .)
6		Threshold level 1 is selected.
7		Threshold level 3 is selected.
8		Threshold level 5 is selected.
9		Threshold level 7 is selected.
10		Threshold level 9 is selected.
11		Threshold level 11 is selected.
12		Threshold level 13 is selected.

Note: The input error of each signal pulse must be within $\pm 0.1 \mathrm{~s}$
Ladder Program Example
Control signals are input by a ladder program as shown below.


## Dimensions

Note: All units are in millimeters unless otherwise indicated.
Mark Sensors


## Connector Models



Accessories (Order Separately)
Mounting Brackets
E39-L131


Material: Stainless steel (SUS304)

## E39-L132



## Sensor I/O Connectors

Single-end Connector (Straight Model)
XS2F-D421-D80-A (L=2 m)
XS2F-D421-G80-A (L=5 m)


Single-end Connector (L-shaped Model) XS2F-D422-D80-A (L=2 m)
XS2F-D422-G80-A (L=5 m)


## Installation

## Sensor I/O Connector



Note: 1 . pin No. 2 is not used.
2.For details, refer to the Sensor I/O Connectors Catalog (X065)

Classification	Wire color	Connector   pin No.	Use
DC	Brown	1	Power supply   $(+\mathrm{V})$
	---	2	---
	Blue	3	Power supply   $(0 V)$
	Black	4	Output

Observe the following precautions to ensure safety.

- Do not use the Sensor in locations subject to flammable or explosive gases.
- Do not use the Sensor in water or conductive solution.
- Do not disassemble, repair, or modify the Sensor.
- Use the Sensor under proper power supply specifications such as the use of AC or DC power supply.
- Do not apply any voltage or current exceeding the rated level.
- Be careful with the power supply polarities and wire correctly.
- Connect the loads correctly.
- Do not short-circuit both ends of loads.


## Correct Use

Installation

## Power Reset Time

Since the E3M-V is ready to detect objects from 100 ms max. after the E3M-V is turned ON, operate the remaining devices 100 ms after the Sensor is turned ON. If power is supplied to the E3M-V and the load independently, be sure to turn on the E3M-V first.
Power OFF
The E3M-V may output a single pulse when the control power supply is turned OFF. If the E3M-V is connected to a timer or counter to which power is supplied from an independent power supply, the E3MV will be more likely to output a single pulse when the control power supply is turned OFF. Therefore, supply power to the timer or counter from the same power supply for the E3M-V.
Power Supply Type
No full-wave or half-wave rectified power supplies can be connected to the E3M-V.
Power Supply Connection
Be sure to ground the FG (frame ground) and $G$ (ground) terminals if a switching regulator is connected to the E3M-V, otherwise the E3MV may malfunction due to the switching noise of the switching regulator.
Wiring
Cable
The cable can be extended up to 100 m provided that the thickness of the cable is 0.3 mm 2 minimum.
Repeated Cable Bending
The cable must not be bent repeatedly.
High-tension Lines
The power supply lines of the Sensor must not be wired alongside power lines or high-tension lines in the same conduit, otherwise the Sensor may become damaged or malfunction due to induction noise that may be generated from the power lines or high-tension lines Route the lines separately or in a single conduit.
Cable Pulling Force
Do not pull cables with pulling forces exceeding 50N.

## Mounting

Screw Tightening
Make sure that the casing is tightened to a maximum torque of 1.2 N 0 m .

## Mounting Direction

When Sensors are mounted to face each other, make sure to adjust the optical axes so that the Sensors will not be mutually interfered. Others

## EEPROM Write Error

An EEPROM error may result if power supply to the Sensor fails or the Sensor is influenced by static noise, in which case the threshold level indicators will flash. Perform the teaching and threshold level setting of the E3M-V again.

## M12 Metal Connector

Make sure to connect or disconnect the metal connector after turning off the E3M-V.
Make sure to hold the connector cover when connecting or disconnecting the metal connector.
Tighten the metal connector securely by hand. Do not use any tool, such as pliers, otherwise the metal connector may be damaged. If the metal connector is not tightened securely, the metal connector may be disconnected by vibration and the proper degree of protection of the E3M-V may not be maintained.

[^10]In the interest of product improvement, specifications are subject to change without notice.

## Printed Circuit Board Sensor

E3S-LS3

## Printed circuit board

 sensor capable of stable detection without being affected by holes or notches.- Suitable for incorporation in devices (E3S-LS3 $\square$ ).
- Wide range is suitable for component boards with high or irregularly shaped components (E3S-LS3 $\square \mathrm{W}$ ).


## Applications

Detecting for PCBs


Transparent Film Sheet Detection

Detection for Wafercassette Mounting


## Ordering Information

Sensor type	Shape	Connection method	Detection distance *	Timer function	Model	Output
Limited reflective	$\int_{\square}^{\circ} \mathrm{g} \longrightarrow$	Pre-wired (2 m)	$\square 20$ to 35 mm	Without	E3S-LS3N	NPN   Light ON
			$\square 10$ to 60 mm		E3S-LS3NW	
	$\left[\begin{array}{l} 0 \\ 0 \\ 0 \end{array}\right]+$	Pre-wired (2 m)	$\square 20$ to 35 mm	Without	E3S-LS3P	PNP   Light ON
				With	E3S-LS3PT	
		Pre-wired M8   3-pin connector ( 0.3 m )		Without	E3S-LS3P-M5J	
				With	E3S-LS3PT-M5J	
		Pre-wired M8   4-pin connector ( 0.3 m )		Without	E3S-LS3P-M3J	
				With	E3S-LS3PT-M3J	
		Pre-wired (2 m)	$\square 10$ to 60 mm	Without	E3S-LS3PW	
				With	E3S-LS3PWT	
		Pre-wired M8   3-pin connector ( 0.3 m )		Without	E3S-LS3PW-M5J	
				With	E3S-LS3PWT-M5J	
		Pre-wired M8   4-pin connector ( 0.3 m )		Without	E3S-LS3PW-M3J	
				With	E3S-LS3PWT-M3J	

* Using $80 \times 80 \mathrm{~mm}$ white art paper


## Rating/performance

Item   Sensor type   Model	E3S-LS3 $\square$			

## Characteristic data (typical)

## Sensing Distance vs. Materials <br> 

Operating Range (Left and Right)


Output vs. Set Distance


Operating Range (Up and Down)


Spot Diameter vs. Sensing Distance


## Output Circuit Diagram

NPN output (PNP output will be available soon)

Model	Operating status of output transistor	Timing chart	Output circuit
$\begin{aligned} & \text { E3S-LSN3 } \\ & \text { E3S-LS3NW } \end{aligned}$	Light ON		
$\begin{aligned} & \text { E3S-LS3P } \\ & \text { E3S-LS3PW } \end{aligned}$		Incident light    No Incident light    Operation indicator ON    (orange) OFF   Output ON   (ransistor OFF	
$\begin{gathered} \text { E3S-LS3PT } \\ \text { E3S-LS3PWT } \end{gathered}$			

## Dimensions (Unit: mm)

Note: All units are in millimeters unless otherwise indicated.
E3S-LS3N


Mounting Holes


E3S-LS3 $\square(\mathrm{T})(-\mathrm{M} 5 \mathrm{~J} /-\mathrm{M} 3 \mathrm{~J})$
E3S-LS3 $\square \mathrm{W}(\mathrm{T})(-\mathrm{M} 5 \mathrm{~J} /-\mathrm{M} 3 \mathrm{~J})$


Pre-wired M8 4-pin connector (-M3J)


Terminal number	Specifications	
	-M5J	-M3J
1	+V	+V
2	-	Open
3	0 V	0 V
4	Output	Output

Mounting Holes


Note:The Timer Adjuster is only for the E3S-LS3PT and E3S-LS3PWT.

To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .
Cat. No. E223-E2-01-X
In the interest of product improvement, specifications are subject to change without notice.

## All voltage photoelectric sensors

## E3JK

- Built-in amplifier accepts wide supply voltage range.
- Slim, space-saving construction measures only $50 \times 50 \times 17.4 \mathrm{~mm}$.
- Relay outputs with long life expectancy and high switching capacity (3 A, 250 V AC).
- Polarized retroreflective type available for glossy or shiny object detection.


Sensor type	Shape	Connection method	Sensing distance		Output form	Outpu		Model
Through-beam		Pre-wired models			Light ON	Relay output		E3JK-5M1
					Dark ON			E3JK-5M2
					Light ON/ Dark ON (selectable)	DC transistor output		NPN:   E3JK-5S3
Retroreflective model (with M.S.R. function)	$\square \leftrightarrows$		$\square_{(3 m)}^{2.5 m}$		Light ON	Relay output		E3JK-R2M1
					Dark ON			E3JK-R2M2
					Light ON/Dark ON		NPN	E3JK-R2S3
					(selectable)	output	PNP	E3JK-R2R3
Retroreflective model (without M.S.R. function)					Light ON	Relay output		E3JK-R4M1
				4m	Dark ON			E3JK-R4M2
				(5m)	Light ON/Dark ON (selectable)	DC transistor (NPN)	utput	E3JK-R4S3
					Light ON	y output		E3JK-DS30M1
Diffuse-reflective					Dark ON			E3JK-DS30M2
					Light ON/Dark ON (selectable)	DC transistor (NPN)	utput	E3JK-DS30S3

* The value within the parentheses indicates the sensing distance applied when the E39-R2 reflector is used.

Note: The UL-listed model ends with "-US". (Example: E3JK-5M1-US). Note that the DC transistor type of the E3JK is UL-unlisted.

## Accessories (Order Separately)

Slits

Slit width	Sensing distance		Minimum sensing   object (typical)	Model	Quantity	Remarks
Width $1 \mathrm{mmx20} \mathrm{~mm}$	E3JK-5 $\square$	0.7 m	1 mm dia.	E39-S39	1 pc. each for emitter   and receiver   (total 2 pcs.)	(Seal type long slit)   Can be used with the through-   beam model E3JK-5 $\square \square$.

Reflectors

Name	Sensing distance (typical)		Model	Quantity	Remarks
Reflectors	E3JK-R2■	2.5 m (rated value)	E39-R1	1	Attached to the E3JK-R2■■. Attached to the E3JK-R4■■.
	E3JK-R4■ $\square$	4 m (rated value)			
	E3JK-R2■	3 m	E39-R2	1	---
	E3JK-R4■	5 m			
Small reflector	E3JK-R2■	$1 \mathrm{~m}(5 \mathrm{~mm})$ *	E39-R3	1	---
Tape Reflector	E3JK-R2■	$750 \mathrm{~mm}(200 \mathrm{~mm})^{*}$	E39-RS1	1	The M.S.R. function is available.
	E3JK-R2■	$1.2 \mathrm{~m}(200 \mathrm{~mm})^{*}$	E39-RS2		
	E3JK-R2■	$1.5 \mathrm{~m}(200 \mathrm{~mm})$ *	E39-RS3		

* Values in parentheses indicate the minimum required distance between the sensor and reflector.

Note: When the reflector used is other than the supplied one, set the sensing distance to about 0.7 times of the typical example as a guideline.
Mounting Brackets

Shape	Model	Quantity	Remarks

Note: If a through-beam model is used, order two Mounting Brackets for the emitter and receiver respectively.

## Rating/Performance

E3JK

Item	Sensor type   Model	Through-beam		Retroflective model (with M.S.R. function)		Retroflective model (without M.S.R. function)		Diffuse-reflective	
		E3JK-5M $\square$	E3JK-5S3	E3JK-R2M■	E3JK-R2 $\square 3$	E3JK-R4M $\square$	E3JK-R4S3	E3JK-DS30M	E3JK-DS30S3
Sensing distance		5 m		$\begin{aligned} & 2.5 \mathrm{~m} \\ & \text { (When using the E39-R1) } \end{aligned}$		4 m   (When using the E39-R1)		$\begin{aligned} & 300 \mathrm{~mm} \\ & \text { (White paper } 100 \times 100 \mathrm{~mm} \text { ) } \end{aligned}$	
Standard sensing object		Opaque 14.8 dia. min.		Opaque: 75 mm dia. min.				---	
Differential distance								$20 \%$ max. of sensing distance	
Directional angle		Both emitter and receiver:$3^{\circ} \mathrm{C} \text { to } 20^{\circ} \mathrm{C}$		$1^{\circ}$ to $5^{\circ}$				---	
Light source (wave length)		Infrared LED (950 nm)		Red LED (660 nm)				Infrared LED (950 nm)	
Power supply voltage		12 to 240 VDC $\pm 10 \%$ ripple (p-p) : 10\% max. 24 to 240 VAC $\pm 10 \% 50 / 60 \mathrm{~Hz}$							
Cur-   rent   con-   sump-   tion	DC	3 W max.		2 W max.					
	AC	3 W max.		2 W max.					
Control output		Relay output:   250VAC   $3 \mathrm{~A}(\cos =1)$   max., 5 VDC   10 mA min.	DC SSR   Negative common 48 VDC 100 mA max. Leak current 0.1 mA max. With load short-circuit protection	Relay output: 250VAC $3 \mathrm{~A}(\cos =1)$ max., 5 VDC 10 mA min.	DC SSR   Negative or positive common 48 VDC 100 mA max. Leak current 0.1 mA max. With load short-circuit protection	Relay output: 250VAC $3 \mathrm{~A}(\cos =1)$ max., 5 VDC 10 mA min.	DC SSR   Negative common 48 VDC 100 mA max. Leak current 0.1 mA max. With load short-circuit protection	Relay output:   250VAC   $3 \mathrm{~A}(\cos =1)$   max., 5 VDC   10 mA min.	DC SSR   Negative common 48 VDC 100 mA max. Leak current 0.1 mA max. With load short-circuit protection
Life ex-pectancy (relay output)	Me-chanical	50 million times or more (switching frequency 18,000 times/hour)							
	Electrical	100 thousand times or more (switching frequency 18,000 times/hour)							
Response time		30 ms max.	10 ms max.	$30 \mathrm{~ms} \mathrm{max}$.	5 ms max.	30 ms max .	5 ms max.	30 ms max .	5 ms max.
Sensitivity adjustment		---						Single-turn adjustment	
Ambient illuminance		Incandescent lamp: 3,000 lux max.							
Ambient temperature		Operating: $-25^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$, Storage: $-30^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (with no icing or condensation)							
Ambient humidity		Operating: $45 \%$ to $85 \%$ RH, Storage: $35 \%$ to $95 \%$ RH (with no condensation)							
Insulation resistance		$20 \mathrm{M} \mathrm{min}$.							
Dielectric strength		1,500 VAC at $50 / 60 \mathrm{~Hz}$ for 1 minute							
Vibration resistance	De-struction	10 to $55 \mathrm{~Hz}, 1.5 \mathrm{~mm}$ double amplitude for 2 hours each in $\mathrm{X}, \mathrm{Y}$, and Z directions							
	Malfunction	10 to $55 \mathrm{~Hz}, 1.5 \mathrm{~mm}$ double amplitude for 2 hours each in $\mathrm{X}, \mathrm{Y}$, and Z directions							


Item	Sensor type Model	Through-beam		Retroflective model (with M.S.R. function)		Retroflective model(without M.S.R. function)		Diffuse-reflective	
		E3JK-5M $\square$	E3JK-5S3	E3JK-R2M $\square$	E3JK-R2 $\square 3$	E3JK-R4M $\square$	E3JK-R4S3	E3JK-DS30M	E3JK-DS30S3
Shock resistance	De-struction	Destruction: $500 \mathrm{~m} / \mathrm{s}^{2}$ for 3 times each in $\mathrm{X}, \mathrm{Y}$, and Z directions							
	Malfunction	Destruction:   $100 \mathrm{~m} / \mathrm{s}^{2}$   (approx.   10G)   3 times each in $\mathrm{X}, \mathrm{Y}$, and Z directions	Destruction: $500 \mathrm{~m} / \mathrm{s}^{2}$ for 3 times each in $X, Y$, and $Z$ directions	Destruction: $100 \mathrm{~m} / \mathrm{s}^{2}$ (approx. 10G) 3 times each in $X, Y$, and $Z$ direc tions	Destruction: $500 \mathrm{~m} / \mathrm{s}^{2}$ for 3 times each in $X, Y$ and $Z$ directions	Destruction: $100 \mathrm{~m} / \mathrm{s}^{2}$ (approx. 10G) 3 times each in $X, Y$, and $Z$ direc tions	Destruction: $500 \mathrm{~m} / \mathrm{s}^{2}$ for 3 times each in $\mathrm{X}, \mathrm{Y}$, and $Z$ directions	Destruction: $100 \mathrm{~m} / \mathrm{s}^{2}$ (approx. 10G) 3 times each in $X, Y$, and $Z$ direc tions	Destruction: $500 \mathrm{~m} / \mathrm{s}^{2}$ for 3 times each in $X, Y$, and $Z$ directions
Protective structure		IEC60529 IP64							
Connection method		Pre-wired models (standard length: 2 m )							
Weight (Packed state)		Approx. 420 g		Approx. 250 g					
Materi-   al	Case	ABS							
	Lens	Acrylics							
	Mounting bracket	Steel							
Accessories		Mounting bracket (with screws), nuts, instruction manual, reflector (retroreflective model only)							

Characteristic data (typical)

Excess Gain Ratio vs. Setting Distance
Through-beam model

## E3JK-5 $\square \square$



Retroreflective Models
E3JK-R2 $\square \square$ + E39-R1 (supplied reflector)


E3JK-R4 $\square+$ E39-R1 (supplied reflector)


Diffuse-reflective E3JK-DS30■


## Output Circuit Diagram

E3JK
Relay output

Model	Timing chart	Output circuit
E3JK-5M1   E3JK-5M2   E3JK-R2M1   E3JK-R2M2   E3JK-R4M1   E3JK-R4M2   E3JK-DS30M1   E3JK-DS30M2		

DC transistor output
Model

Note: Connect to brown and blue on the emitter side

## Operation

Adjustment

Item   Model	Through-beam	Retroreflective Models	Diffuse-reflective
E3JK	Swing the receiver and emitter vertically and/or horizontally and set the adjuster in the center of the range where the indicator of the receiver turns ON .	Like the through-beam model, adjust the reflector and emitter/receiver. Since the directional angle of the emitter/receiver is 1 to $5^{\circ}$, adjust the emitter/receiver especially carefully.	$\qquad$   (1) If you have a sensing object as shown in the figure, turn the sensitivity adjuster clockwise (increase the sensitivity) until the indicator is turned ON , and define this adjuster position as (A).   (2) Remove the sensing object, turn the sensitivity adjuster clockwise until the indicator is turned ON by a background object, and define this position as (B).   (3) Turn the sensitivity adjuster counterclockwise (decrease the sensitivity) from (B) until the indicator is turned OFF, and define this position as (C).   (4) The position in the middle of $(\mathrm{A})$ and $(\mathrm{C})$ is the optimum position. If the indicator is not turned ON by the background object at the maximum sensitivity, set the adjuster in the middle of $(\mathrm{A})$ and maximum sensitivity. The sensitivity adjuster may be damaged if an excessive force is applied.

## Precautions

## Correct Use

## E3JK

## Design

## Power Reset Time

The Sensor is ready to detect an object within 200 ms after it is turned ON. If Sensor and load are connected to separate power supplies, ensure to turn ON the Sensor first.

## Wiring Considerations

## Connection/Wiring

If the DC transistor output type is used, the sum of load currents of L-ON output (NO) and D-ON output (NC) should be within 100 mA . If the sum of load currents exceeds 100 mA , the load short-circuit protection may be activated. (The load short-circuit protection is reset by turning OFF the power of the photoelectric sensor.)

## Miscellaneous

## Ambient Conditions (Installation Area)

The E3JK will malfunction if installed in the following places.

- Places where the E3JK is exposed to a dusty environment.
- Places where corrosive gases are produced.

- Places where the E3JK is directly exposed to water, oil, or chemicals.




## Accessories (Order Separately)

Seal type long slit (for E3JK)
E39-S39


Material: Polyester
0.1 mm thick

## Transparent bottle sensor

## E3S-CR62/67

Ideal for detecting transparent glass and plastic containers


## Features

Stable operation even if container interval is shortened for higher productivity.
Stable detection of 5 mm gaps that previous regression reflection models were unable to detect because of a speed increase for higher productivity.


Bottle detection seen from the upper side


## Application

Narrow pin interval detection
Stable detection of 5 mm gaps that are not detectable by previous regression reflection models.


Wide detection range. Stable detection even at long distances.
Use of hyper-point LED as light source ( $1 / 2$ light emission diameter of previous models) enables stable long-distance detection.


Stable detection of ampules and other small containers.
Visible spotlight for easy adjustment.


## Features

We significantly increased the $\mathrm{S} / \mathrm{N}$ ratio to enable a stable detection of PET bottles and various other transparent containers


## Ordering Information

Sensors
$\square$ Red light

Sensor type	Shape	Connection method	Sensing distance		Model
			Reflector	Reflector E39-R1	
Retroreflective Models	$\left[\begin{array}{l} 0 \\ 0 \end{array}\right.$	Pre-wired type	250 mm		E3S-CR62-C
		Connector type			E3S-CR67-C

* Values in parentheses indicate the minimum required distance between the sensor and reflector.


## Accessories (Order Separately)

Reflectors

Name	Sensing distance	Model	Quantity	Remarks
Reflectors	250 mm	E39-R6	1	
	$1 \mathrm{~m}(250 \mathrm{~mm})^{*}$	E39-R1	1	

* Values in parentheses indicate the minimum required distance between the sensor and reflector.


## Mounting Brackets

Shape	Model	Quan-   tity	Remarks
	E39-L103	1	Supplied with the product.

Sensor I/O Connectors

Cable	Shape		Cable length		Model
Standard cable	Straight		2 m	3 -wire type	XS2F-D421-DC0-A
			5 m		XS2F-D421-GC0-A
	L-shape	是	2 m		XS2F-D422-DC0-A
			5 m		XS2F-D422-GC0-A

## Rating/performance

Item	Sensor type   Model	Retroreflective Models (M.S.R. function)	
		E3S-CR62-C	E3S-CR67-C
Sensing distance		250 mm (When using the E39-R6),   $1 \mathrm{~m}(250 \mathrm{~mm})^{*} 1$ (When using the E39-R1)	
Standard sensing object		30 mm dia. X 150 mm glass tube (thickness: 1.8 mm )	
Directional angle		2 to $6^{\circ}$	
Light source (wave length)		Red LED (660 nm)	
Power supply voltage		10 to 30 VDC, ripple (p-p) : 10 \% max.	
Current consumption		40 mA max.	
Control output		Load supply voltage: 30 VDC or less; load current 100 mA or less (residual voltage: NPN output 1.2 V or less, PNP output 2 V or less); open collector model (NPN/PNP output switching) light ON / dark ON switching	
Protective circuits		Load short protection, reverse connection protection, mutual interference protection function	
Response time		Operation or reset: 1 ms max .	
Sensitivity adjustment		2-turn endless adjuster (with indicator)	
Ambient illuminance		Incandescent lamp: 5,000 lux max. Sunlight 10,000 lux max.	
Ambient temperature		Operating: $-25^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$, Storage: $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (with no icing or condensation)	
Ambient humidity		Operating: $35 \%$ to $85 \%$ RH, Storage: $35 \%$ to $95 \%$ RH (with no icing or condensation)	
Insulation resistance		20 M min . at 500 VDC	
Dielectric strength		1,000 VAC at $50 / 60 \mathrm{~Hz}$ for 1 minute	
Vibration resistance		Destruction: 10 to $2,000 \mathrm{~Hz}, 1.5 \mathrm{~mm}$ double amplitude or $300 \mathrm{~m} / \mathrm{s}^{2}$ (approx. 30 G ) for 0.5 hrs each in $\mathrm{x}, \mathrm{y}$, and $Z$ directions	
Shock resistance		$1000 \mathrm{~m} / \mathrm{s}^{2}$ (approx. 100G) 3 times each in $\mathrm{X}, \mathrm{Y}$, and Z directions	
Protective structure		IEC Standard IP67 NEMA 6P (restricted to indoor use) *2	IEC Standard IP67 NEMA 6P (restricted to indoor use)
Connection method		Pre-wired models (standard length: 2 m )	Connector type
Weight (Packed state)		Approx. 115 g	Approx. 80 g
Mate-   rial	Case	Zinc diecast	
	Lens	Acrylics	
	Display operation panel	Polyethyl sulfon	
	Mounting Brackets	Stainless steel (SUS304)	
Accessories		Brackets (with screws), adjustment driver, operation manual	

*1. Values in parentheses indicate the minimum required distance between the sensor and reflector.
*2. NEMA (National Electrical Manufacturers Association) Standard

## Output Circuit Diagram

NPN output

Model	Operating status of output transistor	Timing chart	Mode selection switch	Output circuit
$\begin{aligned} & \text { E3S-CR62-C } \\ & \text { E3S-CR67-C } \end{aligned}$	Light ON		L ON (LIGHT ON)	
	Dark ON		D ON (DARK ON)	* Please make a changeover switch into the NPN side.   Connector Pin arrangement   Note: Pin 2 is not used.

PNP output


## Connectors (Sensor I/O connectors)




Class	Wire, outer	Connector pin	Application
For DC	Brown	$(1$	+V
	-	$(2$	-
	Blue	$(3$	0 V
	Black	(4)	Output

Note: Pin 2 is open.

Note: Pin 2 is open.

## Nomenclature


*1. Output transistor switching is possible by means of NPN/PNP output switch.
*2. Operation mode can be switched using L ON/D ON switch

## Operation

Sensitivity adjustment
The light source switch and reflective plate can be moved horizontally and vertically to set them in the center of the illumination area of the red incident light indicator lamp, allowing the operator to check whether the green stability indicator lamp is illuminated.

Sensing object	Detection state	Sensitivity adjuster	Indicator state	Adjustment procedure
Transparent pin or   glass plate	Without sensing object			

Correct Use

## Design

## Fuzzy mutual interference prevention

- If the light source switches for the reflective plates are arranged in a row, light from a neighboring light source switch may be received, causing erroneous light reception signals and errors.
- The fuzzy reciprocal interference prevention function monitors interference light for a certain period of time before illumination, and gathers data on the strength of the interference light and the frequency of incidence. It then determines the risk of error due to these two factors using fuzzy logic and controls the timing of illumination to reduce the risk.


## (When risk is low)

- Light is emitted after interfering light is gone.

- Light is emitted after shifting to a gap of interfering light.



## Bottles

In some cases, factors such as the shape of a bottle prevent stable detection. Please confirm that a correct detection is performed before use.

## Wiring Considerations

Cable

- An oil resistant cable is used to ensure oil resistance. Avoid repeated bending of the cable.
- The bending radius should be 25 mm or more.


## Avoiding Malfunctions

When using a photoelectric switch with an inverter or sub-motor, be sure to connect FG (frame ground pin) and G (ground pin). If not connected, errors may result.

## Installation

## Sensor installation

- When installing a photoelectric switch, avoid tapping with a hammer. This may damage the water resistance function.
- Use an M4 screw, tightened to a torque of no more than 1.18 Nm .
(When using the mounting bracket)
- To set the sensor on the mechanical axis, use the optical axis locking holes.
- When it is not possible to mount on the mechanical shift, move the photoelectric switch vertically or horizontally so that it is located in the center of the area illuminated by the incident light indicator lamp. Verify that the stability indicator lamp is on.
(Direct installation)
Install the photoelectric switch as shown in the following diagram.
Tighten M4 screw Tighten M3 screw


Light axis adjustment
Adjust the optical axis of the clamp to the direction of detection object approach. The optical axis of the photoelectric switch is the same as the mounting axis of the clamp, enabling easy adjustment.

## Optical axis locking hole

By fitting screws into the optical axis locking holes, the mounting bracket is set onto the mounting shaft of the mounting bracket.


## Dimensions (Unit: mm)

## Sensors

Retroreflective Models
Pre-wired
E3S-CR62-C


With Mounting Blanket Attached

Connector type
E3S-CR67-C


* Mounting Bracket can be attached to side A

Accessories (Order Separately)
H-3

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.
To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .
Cat. No. E268-E2-01-X
In the interest of product improvement, specifications are subject to change without notice.

## Standard fiber unit

## E32

## The fiber optic - E32 series provides for each sensing problem the optimum solution



Omron offers with the E32-fiber optics series a huge range of fiber optic sensors for all automation tasks, whether it's for basic object detection, positioning, color analysis or high accuracy sensing.
Omrons takes a leading part in fiber technology with a long time experience in producing
fiber optic solutions for all kind of industry.

Everything from head size, sensing distance, mounting, beam size up to special heat - and chemical resistant materials can be chosen in order to best suit your application.
The E32 series provides for each sensing problem the optimum solution

On top of it, Omron provide customised fiber solutions based on your demand and specification, made in Germany.

## Variation of fiber optics

Flexible fiber models are indicated by an "R" at the end of the model number.
Flexible fiber contains multiple cores. These cores are all surrounded by cladding, giving a minimum bending radius of 1 mm . The fiber can be bent at right angles without affecting the light intensity. Handle it just like any other cable.


Conventional Fiber
Conventional fiber uses just one core and one cladding section. Bending the fiber may break it or reduce the light intensity.


Flexible Fiber
Flexible fiber contains multiple independent cores all surrounded by cladding. The fiber can be bent without breaking or reducing the light intensity.


## Fiber for robot application

Individual cores in one bundle, Surrounded by cladding, Strong against repeatable bending
Bending radius 4 mm

## Coaxial fibers

The accuracy of coaxial fibers is very high, due to the special orientation of transmitter- and receiver fibers.
With the special lens unit, the spot beam can be reduced to $\min .0,1 \mathrm{~mm}$.


E32-EC31


E32-EC41

Coaxial fibers and lens unit (small spot)


Beam Spot variable type E39-F3A
Beam spot can be changed from 0.1 to 1 mm dia., applicable to various size of sensing objects.

Applicable fiber unit:


Beam spot 0.5 to 1 mm : E32-D32
Beam spot 0.1 to 0.6 mm : E32-C42
Long distance \& Minute spot E39-F3B
Achieving 0.2 mm dia. spot \& 15 mm sensing distance.


Detection of chips on embossed tape.


Applicable fiber unit:

E32-EC31
E32-EC41

Minute beam spot E39-F3A-5
Achieving 0.1 mm dia. spot \& 7 mm sensing distance. Optimum solution for downsizing of electronic parts.


Detection of front or back of "0603" chips.
Applicable fiber unit:

## E32-EC31

E32-EC41
Long distance type E39-F3C
Achieving 0.2 mm dia. spot \& 20 mm sensing distance.


Detection of yarn for industrial sewing machine.


## Applicable fiber unit:

E32-EC31
E32-EC41
Detection missing chips on embossed tape. Adding a lens unit to a fiber sensor permits the detection of very small workpieces at a detection distance of 17 mm with a 0.2 mm diameter spot.


E32-EC41 Fiber Unit
E39-F3B Lens Unit.
Fibers for Robot application

## (Strong against repeatable bending )

Omron offers special fibers with independent cores in one bundle.
This fibers are very strong against repeatable bending and suitable for moving- and robot applications.
Moving-piece-mounting Fiber Unit E32-D11/D21
Detecting workpiece by robot hand
An allowable bending radius of 4 mm enables the E32-D11/ D21 to withstand repeated bending, making it ideal applicable to moving parts subject to frequent bending


## Liquid level detection

Direct contact type E32-D82F
The E32-D82F1 / E32-D82F2 are suitable for high accuracy detection of fluid level detection in tanks. The principle is based on the change of the refractive index when the sensor touches the medium. The fiber head is Teflon ${ }^{\circledR 1}$ covered and therefore chemical resist and can be used for high temperature up to $200^{\circ} \mathrm{C}$.
Level detection in heated chemicals
The fiber unit uses Teflon ${ }^{\circledR 1}$ so that chemical levels can be precisely and directly detected in cleaning tanks or chemical processing tanks.


Tube mounting E32-L25T
Omron offers a variation of different level detection sensors. Depending on the mounting situation the applicable tube can be from 3,2 to 10 mm dia. For special purpose the fiber material is Teflon ${ }^{\circledR 1}$ covered and therefore chemical resist.
Chemical level detection with pipe mounting
A minimum level difference of 4 mm can be detected in stages to control resist liquid levels.


## E32-D36F

The wide sensing area provide a stable liquid detection without influence of bubbles.

[^11]Due to the special sensing head there is no limitation to tube diameter, (thickness of tube max. $1,6 \mathrm{~mm}$, bending radius 4 mm ).


Product Features:

- Omron original optical design using prism to provide a great signal noise ratio. The wide area sensing method (11mm) is nearly not influenced by bubbles or water drops in a tube.
- E32-A1 has a fail-safe function output an faulty signal, which is the same as " No Liquid" signal when the fiber unit is accidentally broken or released from the fiber amplifier unit.
- Dark red resist liquid can stably be detected by a high power amplifier unit of E3X-DA-N which has an LED auto power control circuit
- Fluorine resin coated, bundle type fiber cable (bending radius: 4 mm ) can be cut freely.


## Sensing Principle:



## Area Type

Omron offers a variation of area sensing fibers from 10 mm area up to 30 mm area. Due to the area the sensor can easily detect parts somewhere on a conveyer even when the parts are not very good guided.

Standard screen E32-T16P/-T16
E32-T16P standard screen fiber sensor, providing 11 mm width of area detection.


E32-T16 long distance screen sensor, providing 11 mm width \& 3,500 mm max. distance of area detection.


## Wide Screen E32-T16WR

## Widest screen in the industry

By the 30 mm wide optical screen, provide wide area detection.


Applicable to parts feeder for various size of parts.


## Side-view E32-T16J

## First in the industry

By the adoption of prism, achieved side-view screen reflective sensor. Optimum for mounting to limited space.


Detection of liquid level throug transparent tube.


Screen reflective E32-D36P1
Screen reflective sensor provide wide area detection and space saving mounting.


Detection of pills through transparent tube.


Area detecting fiber unit E32-T16W
Detecting the front edge location of candies
Area detection using a screen fiber enables positioning of even irregularly shaped objects.


Area detecting fiber unit E32-T16P Inspection of tape remaining in tape take-up application


Chemical resistant
Due to the Teflon ${ }^{\circledR 1}$ covered sensor head and fiber, the sensor is resist against oil and chemicals. Also the combination of chemical- and temperature resistant for $200^{\circ} \mathrm{C}$ is available.
Overview of chemical and temperature resistant fibers:

Temperature	Through Beam Type	Reflection Type
$-40^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$	E32-T81F-S	
$-30^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	E32-T11F	E32-D12F
	E32-T12F	
	E32-T14F	

[^12]Teflon ${ }^{\circledR 1}$ side-view fiber unit E32-T14F
Detection on narrow lines for chemical washing
Teflon ${ }^{\circledR 1}$ side view fiber units are ideal for applications requiring resistance to chemicals when the sensor can be installed on a narrow line


Chemical-resistant fiber unit E32-D12F
The E32-D12F can detect light reflected from oil drops. The Teflon ${ }^{\circledR 1}$ fiber can also be safely used in an environment where oil is likely to be spattered.


## Heat resistant fibers

Omron offers a huge variation of heat resistant fibers, beginning from $150{ }^{\circ} \mathrm{C}$, Teflon ${ }^{\circledR 1}$ covered and for extreme temperature resist up to $400{ }^{\circ} \mathrm{C}$. For strong mechanical strength there are special fibers with stainless steel spiral tubes available.


[^13]Overview of heat resistant fibers:

Temperature	Trough Beam Type	Reflection Type
$150^{\circ} \mathrm{C}$	E32-T54	E32-ED51
	E32-ET51	
$200^{\circ} \mathrm{C}$	E32-T84S-S	E32-D81R-S
	E32-T81R-S	E32-D81R
$300^{\circ} \mathrm{C}$		E32-D61
$350^{\circ} \mathrm{C}$	E32-T61-S	E32-D61-S
$400^{\circ} \mathrm{C}$		E32-D73
		E32-D73-S

Heat-resistant, narrow beam fiber unit E32-T84S
Detecting glass substrates in baking ovens
An L-shaped side-view sensor requiring little space and providing $200^{\circ} \mathrm{C}$ heat resistance is used. The detection distance of $1,300 \mathrm{~mm}$ (for E3X-DA-N standard mode) is more then sufficient to detect even large glass substrates.


Heat-resistant fiber unit E32-T61-S
Detecting liquid crystal substrates in ovens
Regular reflective light from the LCD substrates is received with a fiber to detect the presence or absence of the substrates. The large spot ensures stable detection of substrates even if positioning is not completely consistent.


## Limited reflective

Minute difference of displacement E32-L25L
Sensing distance: $7.2 \pm 1.8 \mathrm{~mm}$


Minute difference of displacement E32-L25/-L25A
Sensing distance: 3.3 mm


Minute difference \& Side-view E32-L24L
With special optical lens


Sensing distance: $4 \pm 2 \mathrm{~mm}$
Detection of wafer


Depending on the amplifier mode the sensing distance can be set up from 500 to 1.100 mm .
Mapping fiber units E32-A03/-A04
Mapping wafers with a through-beam side-view sensor
The narrow beam permits the detection of single wafers, even of wafers with mirror surfaces.


## Vacuum resist sensors

Vacuum sensors E32-V
Detecting wafers in a vacuum conveyance system
The E32-V provides an easy-connecting fiber and easy-touse 4-channel flange system, making it ideally applicable to vacuum systems.


## Side-view sensors

Thin side-view fiber unit E32-T24
Detecting rises in lead frames
Easy detection even in tight spaces, is possible with no sleeve bending.


High precision
Narrow-view fiber unit E32-T22S
Checking orientation flat directions with a fiber unit
High-precision detection is possible using a narrow-view beam.


## Sensing Distance

General purpose
Throughbeam fiber units

*1. Sensing distance based on white paper.
*2. Indicates values for standard mode.
*3. Longer sensing distance by using the lens unit E39-F1.

*1. Sensing distance based on white paper.
*2. Indicates values for standard mode.
*3. Longer sensing distance by using the lens unit E39-F1.

					$\square$ High $\square$ Supe $\square$ Gree	solution mode ong-distance mode ght $\quad \square$ Red light		ard mode high-speed mode d ray
Features	Shape	Applicable Amplifier Unit	$\begin{array}{\|l} \hline \text { Sensing } \\ \text { (Parenth } \\ \text { Unit) } \end{array}$	g dist theses:	9-F1 Lens	Standard object   (min. sensing object ${ }^{* 2}$ )   (Parentheses:   Opaque object)	Model	Permissible bending radius
M3   For detecting minute sensing objects Free-cut	M3 screw	E3X-DA■-S	$\square 270$   $\square$   $\square 50$			$\begin{aligned} & 0.5 \mathrm{~mm} \varnothing \\ & (0.005 \mathrm{~mm} \varnothing) \end{aligned}$	$\begin{aligned} & \text { E32- } \\ & \text { TC200E } \end{aligned}$	10 mm
		$\begin{array}{\|l} \hline \text { E3X-DAG } \square-S \\ \text { E3X-DAB } \square-S \end{array}$	$\begin{array}{\|c} 025 \\ 020 \\ 012 \end{array}$					
		E3X-DA■-N		$\begin{aligned} & 250 \\ & 1220 \end{aligned}$		$\begin{aligned} & \hline 0.5 \mathrm{~mm} \varnothing \\ & (0.01 \mathrm{~mm} \varnothing) \end{aligned}$		
		E3X-DAB\#-N	$\begin{aligned} & 125 \\ & \begin{array}{l} 120 \\ 112 \end{array} \end{aligned}$					
		E3X-MDA	$\begin{aligned} & \square 170 \\ & \square 130 \\ & \square 50 \end{aligned}$			$\begin{aligned} & 0.5 \mathrm{~mm} \varnothing \\ & (0.005 \mathrm{~mm} \varnothing) \end{aligned}$		
		E3X-NA $\square$ (V)	$\square 100$			$\begin{aligned} & \hline 0.5 \mathrm{~mm} \varnothing \\ & (0.03 \mathrm{~mm} \varnothing) \end{aligned}$		
		E3X-NAG■	$\square 20$					
		E3X-NA■F	$\square 30$			$\begin{aligned} & \hline 0.5 \mathrm{~mm} \varnothing \\ & (0.1 \mathrm{~mm} \varnothing) \end{aligned}$		
M3 Free-cut		E3X-DA■-S	$\begin{array}{\|l\|l\|} \hline 130 \\ \hline \square 00 \end{array}$			$\begin{aligned} & 0.5 \mathrm{~mm} \varnothing \\ & (0.005 \mathrm{~mm} \varnothing) \end{aligned}$	E32-ET21R	1 mm
		E3X-DA■-N	$\begin{array}{\|l\|} \hline 150 \\ \square \\ \hline \square 50 \\ \hline \end{array}$			$\begin{aligned} & 0.5 \mathrm{~mm} \varnothing \\ & (0.005 \mathrm{~mm} \varnothing) \end{aligned}$		
		E3X-MDA	$\begin{array}{\|l\|} \square 100 \\ \square \\ \square \\ \square \end{array}$			$\begin{aligned} & 0.5 \mathrm{~mm} \varnothing \\ & (0.01 \mathrm{~mm} \varnothing) \end{aligned}$		
		E3X-NA■(V)	$\square 60$			$\begin{aligned} & 0.5 \mathrm{~mm} \varnothing \\ & (0.03 \mathrm{~mm} \varnothing) \end{aligned}$		
		E3X-NAG■	${ }^{112}$					
		E3X-NA■F	-18			$\begin{aligned} & 0.5 \mathrm{~mm} \varnothing \\ & (0.1 \mathrm{~mm} \varnothing) \\ & \hline \end{aligned}$		

*1. Sensing distance based on white paper.
*2. Indicates values for standard mode.
*3. Longer sensing distance by using the lens unit E39-F1.

Diffuse reflective fibre units

*1. Sensing distance based on white paper.
*2. Indicates values for standard mode.

				High resolution modeSuper long-distance mode$\square$ Green light $\quad \square$ Red light		$\square$ Standard mode$\square$ Super high-speed mode$\square$ Infrared ray	
Features	Shape	Applicable Amplifier Unit	Sensing distance (mm)* ${ }^{\text {¹ }}$		Standard object (min. sensing object *2 ${ }^{\text {) }}$ (Parentheses: Opaque object)	Model	Permissible bending radius
M6   Fiber sheat material: fluorine resin Free-cut		E3X-DA $\square$-S	$\begin{aligned} & \square 1 \\ & \square 170 \\ & \square 50 \end{aligned}$		$\begin{aligned} & 300 \times 300 \\ & (0.005 \mathrm{~mm} \text { ø) } \end{aligned}$	$\begin{gathered} \text { E32-D11U } \\ \text { NEW } \end{gathered}$	4 mm
		E3X-DA\#-N	$\square{ }^{220}$		$\begin{aligned} & 300 \times 300 \\ & (0.01 \mathrm{~mm} ø) \end{aligned}$		
		E3X-MDA			$\begin{aligned} & 300 \times 300 \\ & (0.005 \mathrm{~mm} \text { ø) } \end{aligned}$		
		E3X--NA\#(V)	70		$\begin{aligned} & \hline 150 \times 150 \\ & (0.01 \mathrm{~mm} \varnothing) \end{aligned}$		
		E3X--NA\#F	$\square 30$		$\begin{aligned} & 50 \times 50 \\ & (0.0015 \mathrm{~mm} ø) \end{aligned}$		
3 mm ø Free-cut		E3X-DA $\square$-S	$\begin{aligned} & \hline \square 300 \\ & \square 170 \\ & \square 50 \end{aligned}$		$\begin{aligned} & 300 \times 300 \\ & (0.005 \mathrm{~mm} ø) \end{aligned}$	E32-D12R	1 mm
		E3X-DA■-N	$\square{ }^{\square 170}$		$\begin{aligned} & 300 \times 300 \\ & (0.01 \mathrm{~mm} ø) \end{aligned}$		
		E3X-MDA	$\square 170$ $\square 120$ $\square 50$		$\begin{aligned} & 300 \times 300 \\ & (0.005 \mathrm{~mm} ø) \end{aligned}$		
		E3X-NA $\square(\mathrm{V})$	$\square 90$		$\begin{aligned} & \hline 150 \times 150 \\ & (0.01 \mathrm{~mm} \varnothing) \end{aligned}$		
		E3X-NAG $\square$	415		$\begin{aligned} & \hline 25 \times 25 \\ & (0.1 \mathrm{~mm} \text { ø) } \end{aligned}$		
		E3X-NA $\square$ F	$\square 30$		$\begin{aligned} & 50 \times 50 \\ & (0.02 \mathrm{~mm} \varnothing) \end{aligned}$		
M3   Free-cut	$\begin{aligned} & =\mathrm{q} \mathrm{tap}^{2} \\ & \text { M3 screw } \end{aligned}$	E3X-DA $\square$-S	$\begin{aligned} & \square 130 \\ & \square 80 \\ & \square 22 \end{aligned}$		$\begin{aligned} & 100 \times 100 \\ & (0.005 \mathrm{~mm} ø) \end{aligned}$	$\begin{array}{\|l\|} \hline \text { E32- } \\ \text { DC200E } \end{array}$	10 mm
		$\begin{aligned} & \text { E3X-DAG } \square-S \\ & \text { E3X-DAB } \square-S \end{aligned}$	$\begin{aligned} & \square 32 \\ & \square 25 \\ & \square 16 \end{aligned}$		$\begin{aligned} & 25 \times 25 \\ & (0.2 \mathrm{~mm} \text { ø) } \end{aligned}$		
		E3X-DA■-N			$\begin{aligned} & \hline 100 \times 100 \\ & (0.01 \mathrm{~mm} \varnothing) \end{aligned}$		
		E3X-DAB\#-N	I8 18		$\begin{aligned} & 25 \times 25 \\ & (0.2 \mathrm{~mm} ø) \end{aligned}$		
		E3X-MDA	$\begin{aligned} & \square 80 \\ & \square 55 \\ & \square 22 \end{aligned}$		$\begin{aligned} & 100 \times 100 \\ & (0.005 \mathrm{~mm} ø) \end{aligned}$		
		E3X-NA $\square(\mathrm{V})$	$\square 36$		$\begin{aligned} & 50 \times 50 \\ & (0.01 \mathrm{~mm} ø) \end{aligned}$		
		E3X-NAG $\square$	16		$\begin{aligned} & 25 \times 25 \\ & (0.1 \mathrm{~mm} \text { ø) } \end{aligned}$		
		E3X-NA $\square$ F	【12		$\begin{array}{\|l} \hline 25 \times 25 \\ (0.02 \mathrm{~mm} \varnothing) \end{array}$		

[^14]
*1. Sensing distance based on white paper.
*2. Indicates values for standard mode.

## Long-distance

Throughbeam fiber units

*1. Sensing distance based on white paper.
*2. Indicates values for standard mode.
*3. Longer sensing distance by using the lens unit E39-F

*1. Sensing distance based on white paper.
*2. Indicates values for standard mode.
*3. Longer sensing distance by using the lens unit E39-F

## Long distance

Diffuse reflective fiber units

*1. Sensing distance based on white paper.
*2. Indicates values for standard mode.

*1. Sensing distance based on white paper.
*2. Indicates values for standard mode.

Area sensing
Throughbeam fiber units

*1. Sensing distance based on white paper.
*2. Indicates values for standard mode.
*3. The sensing distance is 100 mm , possible detection within specified area under static condition
*4. The sensing distance is 300 mm , possible detection within specified area under static condition.

Features

*1. Sensing distance based on white paper.
*2. Indicates values for standard mode.
*3. The sensing distance is 100 mm , possible detection within specified area under static condition
*4. The sensing distance is 300 mm , possible detection within specified area under static condition.

*1. Sensing distance based on white paper.
*2. Indicates values for standard mode.
*3. The sensing distance is 100 mm , possible detection within specified area under static condition
*4. The sensing distance is 300 mm , possible detection within specified area under static condition.

					resolution mode er long-distance mode en light		ard mode high-speed mode ht
Features	Appearance	Applicable Amplifier Unit	Sensing distance (mm) ${ }^{\text {¹ }}$		Standard object ${ }^{* 2}$ (min. sensing object: Gold wire)	Model	Permissible bending radius
Side-view detection over wide areas Free-cut		E3X-DA $\square$-S	$\square 250$		$\begin{aligned} & \hline 300 \times 300 \\ & (0.005 \mathrm{~mm} \text { ø) } \end{aligned}$	E32-D36P1	25 mm
		E3X-DA $\square$-N	$\square$   $\square 50$		$\begin{aligned} & 300 \times 300 \\ & (0.01 \mathrm{~mm} \varnothing) \end{aligned}$		
		E3X-MDA	$\begin{array}{\|l} \square \\ \square \\ \square \\ \square \end{array}$		$\begin{aligned} & \hline 300 \times 300 \\ & (0.005 \mathrm{~mm} \text { ø) } \end{aligned}$		
		E3X-NA $\square$ (V)	$\square 75$		$\begin{aligned} & \hline 100 \times 100 \\ & (0.03 \mathrm{~mm} \varnothing) \end{aligned}$		
		E3X-NA $\square \mathrm{F}$	$\square 25$		$\begin{aligned} & 50 \times 50 \\ & (0.03 \mathrm{~mm} ø) \end{aligned}$		

*1. Sensing distance based on white paper.
*2. Indicates values for standard mode.

## Small fiber head

Throughbeam fiber unit

				$\square$ High $\square$ Supe $\square$ Gree	resolution mode   long-distance mode   light		rd mode high-speed mode ht
Features	Shape	Applicable Amplifier Unit	Sensing dis (Parenthese Unit)	9-F1 Lens	Standard object ${ }^{* 2}$   (min. sensing   object)   (Parentheses:   Opaque object)	Model	Permissible bending radius
2 mm ø For detecting minute sensing objects Free-cut		E3X-DA $\square$-S	$\square 270$   $\square$   $\square 50$		$\begin{aligned} & 0.5 \mathrm{~mm} \varnothing \\ & (0.005 \mathrm{~mm} \varnothing) \end{aligned}$	E32-T22	10 mm
		E3X-DA■-N			$\begin{aligned} & \hline 0.5 \mathrm{~mm} \varnothing \\ & (0.01 \mathrm{~mm} \varnothing) \end{aligned}$		
		E3X-MDA	$\square 170$ $\square 130$ $\square 50$		$\begin{aligned} & 0.5 \mathrm{~mm} \varnothing \\ & (0.005 \mathrm{~mm} \varnothing) \end{aligned}$		
		E3X-NA $\square$ (V)	$\square 100$		$\begin{aligned} & 0.5 \mathrm{~mm} \varnothing \\ & (0.03 \mathrm{~mm} \varnothing) \end{aligned}$		
		E3X-NAG $\square$	L20				
		E3X-NA $\square$ F	$\square 30$		$\begin{aligned} & 0.5 \mathrm{~mm} \varnothing \\ & (0.1 \mathrm{~mm} \varnothing) \end{aligned}$		
$2 \mathrm{~mm} \varnothing$ For detecting minute sensing objects Free-cut		E3X-DA $\square$-S	$\begin{aligned} & \square 160 \\ & \square \\ & \square 30 \end{aligned}$		$\begin{aligned} & 0.5 \mathrm{~mm} \varnothing \\ & (0.005 \mathrm{~mm} \varnothing) \end{aligned}$	E32-T22R	1 mm
		E3X-DA $\square$-N	$\begin{array}{\|} 150 \\ \square \\ \square \\ \square \end{array}$		$\begin{aligned} & 0.5 \mathrm{~mm} \varnothing \\ & (0.01 \mathrm{~mm} \varnothing) \end{aligned}$		
		E3X-MDA	$\begin{aligned} & \square 100 \\ & \square 75 \\ & \square 30 \end{aligned}$		$\begin{aligned} & 0.5 \mathrm{~mm} \varnothing \\ & (0.005 \mathrm{~mm} \varnothing) \end{aligned}$		
		E3X-NA $\square(\mathrm{V})$	$\square 60$		$\begin{aligned} & 0.5 \mathrm{~mm} \varnothing \\ & (0.03 \mathrm{~mm} \varnothing) \end{aligned}$		
		E3X-NA $\square \mathrm{F}$	18		$\begin{aligned} & \hline 0.5 \mathrm{~mm} \varnothing \\ & (0.1 \mathrm{~mm} \varnothing) \end{aligned}$		

*1. Sensing distance based on white paper.
*2. Indicates values for standard mode.

*1. Sensing distance based on white paper.
*2. Indicates values for standard mode.


1. Sensing distance based on white paper
. Indicates values for standard mode

*1. Sensing distance based on white paper.
*2. Indicates values for standard mode.

Fiber for Robot Application R4 (Strong against repeatable bending)
Throughbeam fiber unit

						resolution mode long-distance mode light	$\square$	d mode high-speed mode ht
Features	Shape	Applicable Amplifier Unit	Sensing Unit)	g distan theses:	$m)^{\pi}$   39-F1 Lens	Standard object ${ }^{* 2}$   (min. sensing   object)   (Parentheses:   Opaque object)	Model	Permissible bending radius
Ideal for mounting on moving sections (R4) Free-cut		E3X-DA $\square$-S	$\square$   $\square 180(930)$   $\square$			$\begin{aligned} & 1.0 \mathrm{~mm} \varnothing \\ & (0.005 \mathrm{~mm} \varnothing) \end{aligned}$	E32-T11	4 mm
		E3X-DA $\square-\mathrm{N}$		1250 (1	$\begin{aligned} & 50(4,000)^{* 3} \\ & 680(3,600) \end{aligned}$	$\begin{aligned} & 1.0 \mathrm{~mm} \varnothing \\ & (0.01 \mathrm{~mm} \varnothing) \end{aligned}$		
		E3X-MDA		$180 \text { (930) }$	$\begin{aligned} & 1 \\ & 30(3,000) \\ & 2,300) \end{aligned}$	$\begin{aligned} & 1.0 \mathrm{~mm} \varnothing \\ & (0.005 \mathrm{~mm} \varnothing) \end{aligned}$		
		E3X-NA $\square$ (V)		7360		$\begin{aligned} & 1.0 \mathrm{~mm} \varnothing \\ & (0.03 \mathrm{~mm} \varnothing) \end{aligned}$		
		E3X-NAG $\square$	$\square 65$					
		E3X-NA $\square$ F	$\square 100$			$\begin{aligned} & \hline 1.0 \mathrm{~mm} \varnothing \\ & (0.2 \mathrm{~mm} \varnothing) \end{aligned}$		
	M3 screw	E3X-DA $\square$-S		$\begin{aligned} & 1240 \\ & 200 \end{aligned}$		$\begin{aligned} & 0.5 \mathrm{~mm} \varnothing \\ & (0.005 \mathrm{~mm} \varnothing) \end{aligned}$	E32-T21	
		E3X-DA $\square$-N		$220$		$\begin{aligned} & \hline 0.5 \mathrm{~mm} \varnothing \\ & (0.01 \mathrm{~mm} \varnothing) \end{aligned}$		
		E3X-MDA	$\begin{aligned} & \square 150 \\ & \square \\ & \square 45 \end{aligned}$			$\begin{aligned} & 0.5 \mathrm{~mm} \varnothing \\ & (0.005 \mathrm{~mm} \varnothing) \end{aligned}$		
		E3X-NA $\square$ (V)	$\square 100$			$\begin{aligned} & 0.5 \mathrm{~mm} \varnothing \\ & (0.03 \mathrm{~mm} \varnothing) \end{aligned}$		
		E3X-NAG $\square$	18					
		E3X-NA $\square \mathrm{F}$	$\square 30$			$\begin{aligned} & 0.5 \mathrm{~mm} \varnothing \\ & (0.1 \mathrm{~mm} ø) \end{aligned}$		
		E3X-DA $\square$-S	$\square 200$	$\begin{aligned} & 1240 \\ & 200 \end{aligned}$		$\begin{aligned} & 0.5 \mathrm{~mm} \varnothing \\ & (0.005 \mathrm{~mm} \varnothing) \end{aligned}$	E32-T22B	
		E3X-DA $\square$-N		$\begin{aligned} & 1220 \\ & 200 \end{aligned}$		$\begin{aligned} & 0.5 \mathrm{~mm} \varnothing \\ & (0.01 \mathrm{~mm} \varnothing) \end{aligned}$		
		E3X-MDA	$\begin{array}{\|l} \square \\ \square \\ \square \\ \square \end{array}$			$\begin{aligned} & 0.5 \mathrm{~mm} \varnothing \\ & (0.005 \mathrm{~mm} \varnothing) \end{aligned}$		
		E3X-NA $\square$ (V)	$\square 100$			$\begin{aligned} & 0.5 \mathrm{~mm} \varnothing \\ & (0.03 \mathrm{~mm} \varnothing) \end{aligned}$		
		E3X-NAG $\square$	18					
		E3X-NA $\square \mathrm{F}$	$\square 30$			$\begin{aligned} & 0.5 \mathrm{~mm} \varnothing \\ & (0.1 \mathrm{~mm} \varnothing) \end{aligned}$		

*1. Sensing distance based an white paper.
*2. Indicates values for standard mode.
*3. Sensing distance by using the lens unit E39-F1.

Diffuse reflection fiber units

*1. Sensing distance based an white paper.
*2. Indicates values for standard mode.

*1. Sensing distance based an white paper.
*2. Indicates values for standard mode.

## Side view

Throughbeam fiber units

*1. Sensing distance beased on white paper.
*2. Indicates values for standard mode.

					resolution mode   long-distance mode $n$ light		rd mode high-speed mode ht	
Features	Appearance	Applicable Amplifier Unit	Sensing distance (mm)   (Parentheses: With E39-F1   Lens Unit)		Standard object   (min. sensing object ${ }^{\star}$ )   (Parentheses:   Opaque object)	Model	Permissible bending radius	
Suitable for detecting minute sensing objects; small $\varnothing$ Free-cut	$1-\mathrm{mm} \varnothing \rightarrow \Rightarrow \\|$	E3x-DA $\square$-S	$\square$   $\square$   $\square$   $\square$		$\begin{array}{\|l} \hline 0.5 \mathrm{~mm} \varnothing \\ (0.005 \mathrm{~mm} \varnothing) \end{array}$	E32-T24	10 mm	
		E3x-DA $\square-\mathrm{N}$	$\begin{array}{\|r} 150 \\ \square \\ \square \\ \square \end{array}$		$\begin{aligned} & 0.5 \mathrm{~mm} \varnothing \\ & (0.01 \mathrm{~mm} \varnothing) \end{aligned}$			
		E3x-MDA	$\begin{array}{\|l} \square 100 \\ \square 70 \\ \square 30 \end{array}$		$\begin{array}{\|l} \hline 0.5 \mathrm{~mm} \varnothing \\ (0.005 \mathrm{~mm} \varnothing) \end{array}$			
		E3x-NA $\square(\mathrm{V})$	$\square 90$		$\begin{aligned} & 0.5 \mathrm{~mm} \varnothing \\ & (0.03 \mathrm{~mm} \varnothing) \end{aligned}$			
		E3x-NAG $\square$	$\square 12$					
		E3x-NA $\square \mathrm{F}$	$\square 27$		$\begin{array}{\|l} \hline 0.5 \mathrm{~mm} \varnothing \\ (0.3 \mathrm{~mm} \varnothing) \end{array}$			
Suitable for detecting minute sensing objects; small ø Free-cut		E3x-DA■-S	$\begin{aligned} & \square 60 \\ & \square 50 \\ & \square 10 \end{aligned}$		$\begin{aligned} & \hline 0.5 \mathrm{~mm} \varnothing \\ & (0.005 \mathrm{~mm} \varnothing) \end{aligned}$	E32-T24R	1 mm	
		E3x-DA $\square$-N	$\begin{aligned} & 60 \\ & \square 50 \\ & \square 25 \end{aligned}$		$\begin{aligned} & \hline 0.5 \mathrm{~mm} \varnothing \\ & (0.01 \mathrm{~mm} \varnothing) \end{aligned}$			
		E3x-MDA	$\begin{array}{\|l} \square \\ \square 25 \\ \square 10 \\ \square 10 \end{array}$		$\begin{aligned} & 0.5 \mathrm{~mm} \varnothing \\ & (0.005 \mathrm{~mm} \varnothing) \end{aligned}$			
		E3x-NA $\square(\mathrm{V})$	$\square 30$		$\begin{aligned} & \hline 0.5 \mathrm{~mm} \varnothing \\ & (0.03 \mathrm{~mm} \varnothing) \end{aligned}$			
		E3x-NA $\square \mathrm{F}$	\\|9		$\begin{aligned} & \hline 0.5 \mathrm{~mm} \varnothing \\ & (0.3 \mathrm{~mm} \varnothing) \end{aligned}$			

*1. Sensing distance beased on white paper.
*2. Indicates values for standard mode.

*1. Sensing distance beased on white paper.
*2. Indicates values for standard mode.

Diffuse reflective fiber units

*1. Sensing distance beased on white paper.
*2. Indicates values for standard mode.

*1. Sensing distance beased on white paper.
*2. Indicates values for standard mode.

Coaxial fiber
Diffuse reflective fiber units

*1. Sensing distance based an white paper.
*2. Indicates values for standard mode.
*3. Refer to page "AB-" when using the optional lens unit

*1. Sensing distance based an white paper.
*2. Indicates values for standard mode.
*3. Refer to page "AB-" when using the optional lens unit

*1. Sensing distance based an white paper.
*2. Indicates values for standard mode.
*3. Refer to page "AB-" when using the optional lens unit

## Chemical resistant

Throughbeam fiber unit

*1. Sensing distance based an white paper.
*2. Indicates values for standard mode.
*3. Teflon is a registered trademark of Dupont Company and Mitsui Dupont Company for their fluoride resin.

*1. Sensing distance based an white paper.
*2. Indicates values for standard mode.
*3. Teflon is a registered trademark of Dupont Company and Mitsui Dupont Company for their fluoride resin.

## Diffuse reflective fiber units

				resolution mode   er long-distance mode n light	$\square$ Stand $\square$ Supe $\square$ Red	rd mode high-speed mode ht
Features	Shape	Applicable Amplifier Unit	Sensing	Standard object   (min. sensing   object: Gold wire)	Model	Permissible bending radius
Teflon-covered*; withstands chemicals and harsh environments (operating ambient temperature: $-30^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Free-cut	$\underset{\substack{+-m m}}{\frac{1}{4}}$	E3X-DA $\square$-S		$\begin{array}{\|l\|} \hline 200 \times 200 \\ (0.005 \mathrm{~mm} \text { ø) } \end{array}$	E32-D12F	40 mm
		E3X-DA $\square$-N		$\begin{aligned} & 200 \times 200 \\ & (0.01 \mathrm{~mm} \varnothing) \end{aligned}$		
		E3X-MDA	$\begin{aligned} & \square 95 \\ & \square 70 \\ & \square 30 \end{aligned}$	$\begin{aligned} & 200 \times 200 \\ & (0.005 \mathrm{~mm} \varnothing) \end{aligned}$		
		E3X-NA $\square$ (V)	$\square 50$	$\begin{aligned} & 100 \times 100 \\ & (0.03 \mathrm{~mm} \varnothing) \end{aligned}$		
		E3X-NAG $\square$	18	$\begin{aligned} & 25 \times 25 \\ & (0.3 \mathrm{~mm} \varnothing) \end{aligned}$		
		E3X-NA $\square$ F	16	$\begin{aligned} & 25 \times 25 \\ & (0.03 \mathrm{~mm} \varnothing) \end{aligned}$		

*1. Sensing distance based an white paper.
*2. Indicates values for standard mode.
*3. Teflon is a registered trademark of Dupont Company and Mitsui Dupont Company for their fluoride resin.

## Heat resistant

Throughbeam fiber unit

$\square$ High resolution mode	$\square$ Standard mode
Super long-distance mode	$\square$ Super high-speed mode
Red light	


Features	Shape	Applicable   Amplifier Unit	Sensing distance (mm) ${ }^{\text {¹ }}$ (Parentheses: With E39-F1 Lens Unit)	Standard object ${ }^{* 2}$ (min. sensing object) (Parentheses: Opaque object)	Model	Permissible bending radius
Resists $150^{\circ} \mathrm{C}^{* 3}$; fiber sheath fiber sheat material: fluorine resin (operating ambient temperature: $-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ ) Free-cut		E3X-DA $\square$-S   E3X-DA $\square$-N   E3X-MDA   E3X-NA $\square$ (V)   E3X-NA $\square \mathrm{F}$		$1.5 \mathrm{~mm} \varnothing$   $(0.1 \mathrm{~mm} \varnothing)$   $1.5 \mathrm{~mm} \varnothing$   $(0.01 \mathrm{~mm} \varnothing)$   $1.5 \mathrm{~mm} \varnothing$   $(0.1 \mathrm{~mm} \varnothing)$   $1.5 \mathrm{~mm} \varnothing$   $(0.03 \mathrm{~mm} \varnothing)$   $1.5 \mathrm{~mm} \varnothing$   $(1 \mathrm{~mm} \varnothing)$	E32-ET51	35 mm

*1. Sensing distance based an white paper.
*2. Indicates values for standard mode.
*3. For continuous operation, us the products within the temperature ranging from $-40^{\circ} \mathrm{C}$ to $130^{\circ} \mathrm{C}$.
*4. Indicates the heat resistant temperature at the fiber tip.
*5. Teflon is a registered trademark of the Dupont Company and the Mitsui Dupont Chemical Company for their fluoride resin.
*6. Longer sensing distance by using the lens unit E39-F1.

*1. Sensing distance based an white paper.
*2. Indicates values for standard mode.
${ }^{*} 3$. For continuous operation, us the products within the temperature ranging from $-40^{\circ} \mathrm{C}$ to $130^{\circ} \mathrm{C}$.
*4. Indicates the heat resistant temperature at the fiber tip.
*5. Teflon is a registered trademark of the Dupont Company and the Mitsui Dupont Chemical Company for their fluoride resin.
*6. Longer sensing distance by using the lens unit E39-F1.

		$\square$ High resolution mode $\square$ Standard mode   Super long-distance mode $\square$ Super high-speed mode       Red light					
Features	Shape	Applicable Amplifier Unit	Sensing d (Parenthe Lens Unit	$\begin{aligned} & \text { nce }(\mathrm{mm})^{\pi} \\ & \text { With E39-F1 } \end{aligned}$	Standard object ${ }^{2}$   (min. sensing   object)   (Parentheses:   Opaque object)	Model	Permissible bending radius
Resists $200^{\circ} \mathrm{C}^{* 4}$; L-shaped; fiber sheath material: stainless steel SUS		E3X-DA $\square-S$   E3X-DA $\square-N$   E3X-MDA   E3X-NA $\square(V)$   E3X-NA $\square F$				$\begin{gathered} \text { E32-T84S-S } \\ \text { NEW } \end{gathered}$	25 mm

*1. Sensing distance based an white paper.
*2. Indicates values for standard mode.
*3. For continuous operation, us the products within the temperature ranging from $-40^{\circ} \mathrm{C}$ to $130^{\circ} \mathrm{C}$.
*4. Indicates the heat resistant temperature at the fiber tip.
*5. Teflon is a registered trademark of the Dupont Company and the Mitsui Dupont Chemical Company for their fluoride resin.
*6. Longer sensing distance by using the lens unit E39-F1.

## Diffuse reflective fiber unit

$\square$ High resolution mode	$\square$ Standard mode
Super long-distance mode	$\square$ Super high-speed mode
Red light	



[^15]| Features | Shape | Applicable Amplifier Unit |  | resolution mode <br> er long-distance mode light | $\square$ Standa | ard mode high-speed mode |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Sensing distance (mm) ${ }^{\text {¹ }}$ | Standard object*2 (min. sensing object: Gold wire) | Model | Permissible bending radius |
| Resists $200^{\circ} \mathrm{C}^{*} 4$; fiber sheath material: fluorine resin (operating ambient temperature:$\left.-40^{\circ} \mathrm{C} \text { to } 200^{\circ} \mathrm{C}\right)$ |  | E3X-DA $\square$-S | $\square$ <br> $\square$ <br> $\square 20$ <br> 27 | $\begin{aligned} & \hline 200 \times 200 \\ & (0.005 \mathrm{~mm} ø) \end{aligned}$ | $\begin{aligned} & \text { E32-D81R-S } \\ & \text { E32-D81R } \end{aligned}$ | 10 mm |
|  |  | E3X-DA $\square$-N |  | $\begin{aligned} & 200 \times 200 \\ & (0.01 \mathrm{~mm} \varnothing) \end{aligned}$ |  |  |
|  |  | E3X-MDA | $\square 90$ $\square 63$ $\square 27$ | $\begin{aligned} & 100 \times 100 \\ & (0.005 \mathrm{~mm} \text { ø) } \end{aligned}$ |  |  |
| Resists $350^{\circ} \mathrm{C}^{\prime 4}$; fiber sheath material: stainless steel (operating ambient temperature:$\left.-60^{\circ} \mathrm{C} \text { to } 350^{\circ} \mathrm{C}\right)$ |  | E3X-DA $\square$-S | $\square$ <br> $\square$ <br> $\square 20$ | $\begin{aligned} & \hline 200 \times 200 \\ & (0.005 \mathrm{~mm} \varnothing) \end{aligned}$ | $\begin{gathered} \text { E32-D61-S } \\ \text { NEW } \end{gathered}$ | 25 mm |
|  |  | E3X-MDA | $\begin{aligned} & \square 90 \\ & \square 60 \\ & \square 27 \end{aligned}$ |  |  |  |
| $300^{\circ} \mathrm{C}$ Operating ambient temperature: -40 to $+300^{\circ} \mathrm{C}$ Fiber sheath material: SUS |  | E3X-DA■-N |  | $\begin{aligned} & 200 \times 200 \\ & (0.01 \mathrm{~mm} \varnothing) \end{aligned}$ | $\begin{array}{r} \text { E32-D61 } \\ \text { NEW } \\ \hline \end{array}$ |  |
|  |  | E3X-NA $\square$ (V) | $\square 45$ | $\begin{aligned} & \hline 100 \times 100 \\ & (0.03 \mathrm{~mm} \varnothing) \end{aligned}$ |  |  |
|  |  | E3X-NA $\square$ F | 15 | $\begin{aligned} & 25 \times 25 \\ & (0.03 \mathrm{~mm} ø) \end{aligned}$ |  |  |
| $400^{\circ} \mathrm{C}$ Operating ambient temperature: -40 to $+400^{\circ} \mathrm{C}$ Fiber sheath material: SUS |  | E3X-DA $\square-\mathrm{N}$ | $\begin{array}{\|l} \square \\ \square \\ \square \\ \square 20 \end{array}$ | $\begin{aligned} & \hline 100 \times 100 \\ & (0.01 \mathrm{~mm} \varnothing) \end{aligned}$ | E32-D73 | 25 mm |
|  |  | E3X-NA $\square$ (V) | $\square 30$ | $\begin{aligned} & 50 \times 50 \\ & (0.03 \mathrm{~mm} \varnothing) \end{aligned}$ |  |  |
|  |  | E3X-NA $\square \mathrm{F}$ | 】10 | $\begin{aligned} & 25 \times 25 \\ & (0.03 \mathrm{~mm} \varnothing) \end{aligned}$ |  |  |
| Resists $400^{\circ} \mathrm{C}^{*}$; fiber sheath material: stainless steel (operating ambient temperature:$\left.-40^{\circ} \mathrm{C} \text { to } 400^{\circ} \mathrm{C}\right)$ |  | E3X-DA $\square$-S | $\begin{aligned} & \square 100 \\ & \square 60 \\ & \square 18 \end{aligned}$ | $\begin{aligned} & 200 \times 200 \\ & (0.005 \mathrm{~mm} \varnothing) \end{aligned}$ | $\begin{gathered} \mathrm{E} 32-\mathrm{D} 73-\mathrm{S} \\ \text { NEW } \end{gathered}$ |  |
|  |  | E3X-MDA | $\begin{aligned} & \square 60 \\ & \square 40 \\ & \square 18 \end{aligned}$ |  |  |  |

*1. Sensing distance based an white paper.
*2. Indicates values for standard mode.
*3. For continius operation use the product within a temperature range of $-40^{\circ}$ to $130^{\circ} \mathrm{C}$.
*4. Indicates the heat-resistant temperature at the fiber tip.

## Grooved

Throughbeam fiber unit

*1. Sensing distance based an white paper.
*2. Indicates values for standard mode.

## Narrow Vision Field

Throughtbeam fiber unit

*1. Sensing distance based an white paper.
*2. Indicates values for standard mode.

## Limited-reflective

Diffuse reflective fiber units

*1. Sensing distance based an white paper.
*2. Indicates values for standard mode.

*1. Sensing distance based an white paper.
*2. Indicates values for standard mode.

*1. Sensing distance based an white paper.
*2. Indicates values for standard mode.

Fluid-level Detection Fiber Units
Diffuse reflective fiber units

*1. Sensing distance based an white paper.
*2. Indicates values for standard mode.
*3. Teflon is a registered trademark of Dupont Company and Mitsui Chemical Company for fluorine resin.

## Mapping sensors

Diffuse reflective fiber units

Features	Shape	Applicable Amplifier Unit	Sensing distance (mm) ${ }^{\text {T}}$	Standard object ${ }^{\text {² }}$ (min. sensing object: Gold wire)	Model	Permissible bending radius
Super-narrow vision field; side-view; opening angle: $1.5^{\circ}$; simple adjustment Free-cut	$3-\mathrm{mm} \varnothing \rightarrow \sim \square$	E3X-DA $\square-S$   DA $\square-\mathrm{N}$   E3X-MDA   NA $\square(\mathrm{V})$   NA $\square \mathrm{F}$		$2 \mathrm{~mm} \varnothing$   $(0.1 \mathrm{~mm} ø)$   $2 \mathrm{~mm} \varnothing$   $(0.01 \mathrm{~mm} ø)$   $2 \mathrm{~mm} \varnothing$   $(0.1 \mathrm{~mm} \varnothing)$   ---	E32-A03	1 mm

*1. Sensing distance based an white paper.
*2. Indicates values for standard mode.

*1. Sensing distance based an white paper.
*2. Indicates values for standard mode.

## Retroreflective

Diffuse reflective fiber

*1. Sensing distance based an white paper.
*2. Indicates values for standard mode.

## Rating/Performance

## Fiber Units

Through-beam fiber unit

Type/application		Long distance, general purpose, Thin fiber, side view	Flexible (break-resistant)	Chemical resistant		
		$\begin{aligned} & \text { E32-T11, E32-T21, } \\ & \text { E32-T22B } \end{aligned}$	E32-T12F, E32-T14F	E32-T81F		
	Operation		$-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (with no icing or condensation)			$-40^{\circ}$ to $200^{\circ} \mathrm{C}$ (with no icing or condensation)
ture	Storage				$-40^{\circ}$ to $110^{\circ} \mathrm{C}$ (with no icing or condensation)	
Ambient humidity		Operating: $35 \%$ to $85 \%$ RH, Storage: $35 \%$ to $95 \%$ RH (with no icing or condensation)				
Admissible bending radius		25 mm min. $(10 \mathrm{~mm}$ min. for 1 mm dia. fiber)	4 mm min.	40 mm min.	10 mm min.	
Fiber sheath material		Black polyethylene	Vinyl chloride	Teflon (*) covered		
Protective structure		IEC 60529 IP67				

* Teflon is a registered trademark of the Dupont Company and the Mitsui Dupont Chemical Company for their fluoride resin.

Type/application   Item		Flexible					
		E32-T12R	E32-T22R	E32-T16WR	$\begin{aligned} & \text { E32-T16JR } \\ & \text { E32-T16PR } \end{aligned}$	E32-T24R	E32-T14LR   E32-ET11R   E32-ET21R
Ambient temperature	Operation	$-40^{\circ}$ to $70^{\circ} \mathrm{C}$ (with no icing or condensation)		$-25^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ (with no icing or condensation)	$-40^{\circ}$ to $70^{\circ} \mathrm{C}$ (with no icing or condensation)		
	Storage	$-40^{\circ}$ to $70^{\circ} \mathrm{C}$ (with no condensation)					
Ambient humidity		Operating: $35 \%$ to $85 \%$ RH, Storage: $35 \%$ to $95 \%$ RH (with no icing or condensation)					
Admissible bending radius		1 mm min.					
Fiber sheath material		Mixed vinyl chloride	Black polyethylene	Mixed vinyl chloride		Black polyethylene	Mixed vinyl chloride
Protective structure		IEC 60529 IP67		IEC 60529 IP50		IEC 60529 IP67	


Type/application		Heat resistant				
		$300{ }^{\circ} \mathrm{C}$	$200^{\circ} \mathrm{C}$		$150^{\circ} \mathrm{C}$	
		E32-T61-S	E32-T84S	E32-T81R-S	E32-ET51	E32-T54
Ambient tempera-	Operation	$-40^{\circ}$ to $300^{\circ} \mathrm{C}^{* 1}$ (with no icing or con- den) densation)	$-40^{\circ}$ to $200^{\circ} \mathrm{C}$ (with no icing or condensation)	$\begin{aligned} & -40^{\circ} \text { to } 200^{\circ} \mathrm{C} \\ & \text { (with no icing or con- } \\ & \text { densation) } \end{aligned}$	$-40^{\circ}$ to $150^{\circ} \mathrm{C} * 2$ (with no incing o	
	Storage	$-40^{\circ}$ to $110^{\circ} \mathrm{C}$ (with no icing or condensation)				
Ambient humidity		Operating: $35 \%$ to $85 \%$ RH, Storage: $35 \%$ to $95 \%$ RH (with no icing or condensation)				
Admissible bending radius		25 mm min.		10 mm min.	35 mm min.	
Fiber sheath material		SUS303		Fluororesin		
Protective structure		IEC 60529 IP67				

[^16]| Type/application |  | Slot Sensor | Narrow vision field | Area sensing |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Item |  | E32-G14 | $\begin{aligned} & \text { E32-T22S } \\ & \text { E32-T24S } \end{aligned}$ | E32-T16W | E32-T16J | E32-T16 | E32-T16P |
| Ambient temperature | Operation | $-40^{\circ}$ to $70^{\circ} \mathrm{C}$ (with no icing or condensation) |  | $-25^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ (with no icing or condensation) | $-40^{\circ}$ to $70^{\circ} \mathrm{C}$ (with no icing or condensation) |  |  |
|  | Storage | $-40^{\circ}$ to $70^{\circ} \mathrm{C}$ (with no icing or condensation) |  |  |  |  |  |
| Ambient humidity |  | Operating: $35 \%$ to $85 \%$ RH, storage: $35 \%$ to $95 \%$ RH (with no icing or condensation) |  |  |  |  |  |
| Admissible bending radius |  | 25 mm min. |  | 10 mm min. (25 mm max. for E32-T16 only) |  |  |  |
| Fiber sheath material |  | Black polyethylene | Mixed vinyl chloride | Vinyl chloride (black polyethylene for E32-T16 only) |  |  |  |
| Protective structure |  | IEC 60529 IP67 |  | IEC 60529 IP50 (IP67 for E32-T16 only) |  |  |  |


Type/application		Mapping Sensor	
Item			

Fiber Units with Reflective Sensor

Type/application		Long distance, general purpose, thin fiber, side view	Coaxial				Flexible (resists breaking)	
		E32-EC31	E32-EC41	E32-C42	E32-D32	$\begin{aligned} & \text { E32-D11, E32-D21, } \\ & \text { E32-D21B, E32-D22B } \end{aligned}$		
Differential distance			20\% max. of sensing distance					
Ambient temperature	Operation	$-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (with no icing or condensation)						
	Storage							
Ambient humidity	Operation	35\% to 85\%RH (with no condensation)						
	Storage	$35 \%$ to $95 \%$ RH (with no condensation)						
Admissible bending radius		25 mm min. ( 10 mm min. for 1 mm dia. fiber)	25 mm min.				4 mm min.	
Fiber sheath material		Black polyethylene					Vinyl chloride	
Protective structure		IEC 60529 IP67						
Item ${ }^{\text {Type/application }}$		Flexible						
		E32-D12R	E32-D22R,	E32-D24R	E32-D14LR	E32-ED11R	E32-ED21R	
Differential distance		20\% max. of sensing distance						
Ambient temperature	Operation	$-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (with no icing or condensation)						
	Storage							
Ambient humidity	Operation	35\% to 85\%RH (with no condensation)						
	Storage	35\% to 95\%RH (with no condensation)						
Admissible bending radius		1 mm min.						
Fiber sheath material		Mixed vinyl chloride	Black polyethylene		Mixed vinyl chloride		Black polyethylene	
Protective structure		IEC 60529 IP67						


Type/application   Item		Chemical resistance		Heat re	sistance		
		E32-D12F	$150^{\circ} \mathrm{C}$	$200^{\circ} \mathrm{C}$	$300{ }^{\circ} \mathrm{C}$	$400^{\circ} \mathrm{C}$	
		E32-ED51	E32-D81R	E32-D61	E32-D73		
Differential distance			20\% max. of sensing distance				
Ambient temperature	Operation	$-30^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (with no incing or condensation)	$-40^{\circ}$ to $150^{\circ} \mathrm{C} * 1$ (with no incing or condensation)	$-40^{\circ}$ to $200^{\circ} \mathrm{C}$ (with no icing or condensation)	$-40^{\circ}$ to $300^{\circ} \mathrm{C}$ *2(with no icing or condensation)	$-40^{\circ}$ to $400^{\circ} \mathrm{C}$ (with no incing or condensation)	
	Storage	$-30^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (with no incing or condensation)	$-40^{\circ}$ to $110^{\circ} \mathrm{C}$ (with no icing or condensation)				
Ambient humidity		Operating: $35 \%$ to $85 \%$ RH, Storage: $35 \%$ to $95 \%$ RH (with no icing or condensation)					
Admissible bending radius		40 mm min.	35 mm min.	10 mm min.	25 mm min.		
Fiber sheath material		Teflon (*3) covered	Fluororesin		SUS		
Protective structure		IEC 60529 IP67					

*1 For continuous operation, use the products within a temperature range of $-40^{\circ} \mathrm{C}$ to $130^{\circ} \mathrm{C}$
*2 Since the heat resistance changes depending on the fiber area, refer to the external dimensions on page AB- for details.
*3 Teflon is a registered trademark of the Dupont Company and the Mitsui Dupont Chemical Company for their fluoride resin.

Type/application		Retroreflective		Limited reflective		Area sensing
Item		E32-R21	E32-R16	E32-L25, E32-L25A	$\begin{aligned} & \text { E32-L25L, } \\ & \text { E32-L24L } \end{aligned}$	E32-D36P1
Differential distance		20\% max. of sensing distance			$5 \%$ max. of sensing distance	20\% max. of sensing distance
Ambient temperature	Operation	$-40^{\circ}$ to $70^{\circ} \mathrm{C}$ (with no icing or condensation)	$-25^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ (with no incing or condensation)	$-40^{\circ}$ to $70^{\circ} \mathrm{C}$ (with no icing or condensation)	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } 105^{\circ} \mathrm{C} \text { * } \\ & \text { (with no incing or } \\ & \text { condensation) } \\ & \hline \end{aligned}$	$-40^{\circ}$ to $70^{\circ} \mathrm{C}$ (with no icing or condensation)
	Storage	$-40^{\circ}$ to $70^{\circ} \mathrm{C}$ (with no icing or condensation)			$-40^{\circ} \mathrm{C}$ to $95^{\circ} \mathrm{C}$ (with no incing or condensation)	$-40^{\circ}$ to $70^{\circ} \mathrm{C}$ (with no icing or condensation)
Ambient humidity		Operating: $35 \%$ to $85 \%$ RH, Storage: $35 \%$ to $95 \%$ RH (with no icing or condensation)				
Admissible bending radius		10 mm min.				25 mm min.
Fiber sheath material		Black polyethylene			Reinforced polyethylene	Black polyethylene
Protective structure		IEC 60529 IP67	IEC 60529 IP66	IEC 60529 IP50		---

* For continuous operation, use the products within a temperature range of $-40^{\circ} \mathrm{C}$ to $90^{\circ} \mathrm{C}$.

Type/application		Limited reflective
Item	Model	E32-L56E1/E32-L56E2
Standard sensing object		Soda glass (SCG) having $7 \%$ reflection factor $\mathrm{T}=0.7$ end face radius chamfering
Work inclination		$2^{\circ}$
Sensing position accuracy		+0.1/-0.3
Differential distance		20\% max. of sensing distance
Ambient temperature	Operation	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ *
	Storage	$-40^{\circ}$ to $70^{\circ} \mathrm{C}$
Ambient humidity	Operation	35\% to 85\%
	Storage	35\% to 95\%
Protective structure		IEC 60529 IP40
Material	Case	Aluminum
	Cover	SPCC steel sheet
	Lens	Glass (BK7)
	Fiber cladding	Fluororesin

[^17]
## Flexible fiber unit

The following fibers are available as flexible type (1 week). (Up to 10 sets) Contact your trading company for the prices, delivery time and types.

Flexible fiber (R1) type

Throughbeam

Application	Shape	Model
General purpose	M4 screw	E32-ET11R
General purpose	$\overline{\text { M3 screw }}$	E32-ET21R
General purpose	$\underset{3-\mathrm{mm} \varnothing}{\stackrel{+}{\sim}} \rightarrow-$	E32-T12R
Side view	$3-\mathrm{mm} \varnothing \rightarrow \rightarrow$	E32-T14LR
Area sensing		E32-T16JR
Area sensing		E32-T16PR
Area sensing		E32-T16WR
Small fibre head	$\underset{2-\mathrm{mm} \varnothing}{\stackrel{\dagger}{+}} \rightarrow \square$	E32-T22R
Narrow vision field	$\underset{3-\mathrm{m}_{\mathrm{m}}}{\stackrel{1}{+}} \rightarrow \square-$	E32-T22SR
Narrow vision field		E32-T22SR
Small fibre head		E32-T24R
Narrow vision field		E32-T24SR
Heat resistance	$=\underset{\text { M6 screw }}{=-4 \mathbb{S}_{3}}$	E32-T81R-S
General purpose	M3 screw	E32-TC200AR
General purpose		E32-TC200B4R
General purpose		E32-TC200F4R

Reflective model

Application	Shape	Model
Mapping Sensor	$3-m m \varnothing \rightarrow \rightarrow$	E32-A03
Coaxial fibre		E32-CC200R
General purpose		E32-D12R
Side view	$6-\mathrm{mm}$ ø	E32-D14LR
Small fibre heat		E32-D22R
Side view	$1-\mathrm{mm} \varnothing \rightarrow \sim$	E32-D24R
Coaxial fibre		E32-D32LR
Coaxial fibre		E32-D32R
Heat resisrant		E32-D81R
General purpose		E32-DC200B4R
General purpose		E32-DC200BR
General purpose		E32-DC200F4R
General purpose		E32-DC200FR
General purpose		E32-ED11R
General purpose		E32-ED21R
Limited reflective	-	E32-L24LR
Limited reflective		E32-L25LR
Liquid-level detection	0.	E32-L25TR

## Special compatibility of fiber units

Sensing distance (Unit: mm)

Fiber type	Amplifier type	Mode	Standard product	R5	R7.5	R10	R12.5
$\begin{aligned} & \text { E32- } \\ & \text { TC200B } \end{aligned}$	E3X-   DA11-N	Super-long-distance	950	590	770	840	950
		Stan- dard	760	470	610	670	760
		Super-highspeed	280	170	220	250	280
$\begin{aligned} & \text { E32- } \\ & \text { TC200F } \end{aligned}$		Super-long-distance	250	110	250	250	250
		Stan- dard	220	100	220	220	220
		Super-highspeed	90	40	90	90	90
$\begin{aligned} & \text { E32- } \\ & \text { DC200F } \end{aligned}$		Super-long-distance	100	70	100	100	100
		Stan- dard	80	55	80	80	80
		Super-highspeed	30	20	30	30	30

## Long fiber type

Applicable model (default type)
E32-T11L/-D11L, E32-TC200/-DC200, E32-TC200B/DC200B, E32-TC200E/-DC200E, E32-TC200F/-DC200F, E32-TC200A4E32-T11/-D11


1 m increments in the range $6 \mathrm{~m} \mathrm{l} 20 \mathrm{~m}[\mathrm{l}=2 \mathrm{~m}, \mathrm{l}=5 \mathrm{~m}$ (E32-T11L/E32-T11/E32-TC200/E32-DC200 only) are standard products.]

Fiber length vs. sensing distance

Through-beam fiber unit (assuming that the fiber length of 2 m is $100 \%$ )


Reflective fiber unit (assuming that the fiber length of 2 m is $100 \%$ )


## Different stainless steel tube length type

## Applicable model

E32－TC200F（tube diameter 0.9 mm ）E32－TC200B，E32－ DC200F（tube diameter 1.2 mm ）E32－DC200B（tube diameter 2.5 mm ）


Can be produced Tolerance：$\pm 1 \mathrm{~mm}$ when $\mathrm{L} 40 \mathrm{~mm}, \pm 2 \mathrm{~mm}$ ，within the range when $\mathrm{L} 40 \mathrm{~mm}(\mathrm{~L}=90 \mathrm{~mm}, \mathrm{~L}=40 \mathrm{~mm}$ $10 \mathrm{~mm} \mathrm{~L} 120 \quad$ is a standard product．）

Stainless steel tube front－end or root bent type

## Applicable model

E32－TC200B，E32－TC200F，E32－DC200F
（When tube is bent at front end）
（When tube is bent at root）


Bending radius and L1，L2 dimensions（Unit：mm）

Bend－ ing radi－ us	Control No．	L1		L2		SUS tube full length
		1	2	3	4	$\mathrm{S} \square$
R5	A	10	15	5	10	120 max．
R7．5	B	12.5	17.5	7.5	17.5	
R10	C	15	20	10	20	
R12．5	D	17.5	22.5	12.5	22.5	

Note：Only the products of the above dimensions can be manufactured．If the product is bent to other than the above dimension，the sleeve bender E39－F11（option）is available．

Type list based on bending radius and L1，L2 dimensions
（When only L1 is specified）（Unit：mm）

Bending radi－ us	L1（ $\pm 1$ ）	Model
R5	10	E32－＊1C200＊2－S＊3A1
	15	E32－AF゙C200Añ－S
R7．5	12.5	
	17.5	E32－AFFC200Añ－S
R10	15	
	20	E32－AFFC200Añ－S
R12．5	17.5	
	22.5	

[^18]（If only L2 is specified）（Unit：mm）

Bending radi－ us	L2（ $\pm 1$ ）	Model
R5	5	E32－＊1C200＊2－S＊3A3
	10	E32－A］C200 $\bar{A}-$ S
R7．5	7.5	E32－A］C200
	17.5	E32－A C200 ${ }^{\text {A }}$－S ${ }^{\text {Añ̇B4 }}$
R10	10	E32－A C200 A－S
	20	E32－A C200 ${ }^{\text {A }}$－S AñC4
R12．5	12.5	E32－A C200 ${ }^{\text {A }}$－S
	22.5	E32－A C200 ${ }^{\text {A }}$－S

＊1＂T＂for through－beam type，＂D＂for reflective type．
＊2 B or＂F＂at the end of E32－TC200B．
＊3＂ 50 ＂for 50 mm full length．Full length 120 mm
（When L1 and L2 are both specified）（Unit：mm）

Bending radi－ us	L1（ $\pm 1$ ）	L2（ $\pm 1$ ）	Model
R5	10	5	E32－＊1C200＊2－A13
	10	10	E32－Ä゙C200АП－A14
	15	5	E32－AFّC200
	15	10	
R7．5	12.5	7.5	E32－AF゙C200AT－B13
	12.5	17.5	E32－Ar゙C200ATM－B14
	17.5	7.5	E32－Ar＇C200AT\＃－B23
	17.5	17.5	E32－Ar゙C200ATM－B24
R10	15	10	E32－Ar゙C200AT－C13
	15	20	E32－ArCC200AT－C14
	20	10	E32－Af゙C200AT－C23
	20	20	E32－AF゙C200AT－C24
R12．5	17.5	12.5	E32－AFّC200AT－D13
	17.5	22.5	E32－AFّC200AT－D14
	22.5	12.5	E32－AFّC200AT－D23
	22.5	22.5	E32－AFّC200An－D24

[^19]
## Fiber Units

## Installation

Tightening Force
The tightening force applied to the Fiber Unit should be as follows:
Screw-mounting Model Cylindrical Model


Fiber Units	Clamping torque
M3/M4 screw	0.78 Nm max.
M6 screw/6-mm dia. column	0.98 Nm max.
1.5-mm dia. column	0.2 Nm max.
2-mm dia./3-mm dia. column	0.29 Nm max.
E32-T12F 5-mm dia. Teflon model	0.78 Nm max
E32-D12F 6-mm dia. Teflon model	Nm
E32-T16	0.49 Nm max.
E32-R21	0.59 Nm max.
E32-M21	0.49 Nm max. for up to 5 mm from front end, 0.78 Nm max. for more than 5 mm from front end
E32-L25A	0.78 Nm max.
E32-T16P   E32-T16PR   E32-T24S   E32-L24L   E32-L25L   E32-T16J   E32-T16JR	0.29 Nm max.
$\begin{aligned} & \text { E32-T16W } \\ & \text { E32-T16WR } \end{aligned}$	0.3 Nm max.

Use a proper-sized wrench.


Fiber Connection and Disconnection
The E3X Amplifier Unit has a lock button. Connect or disconnect the fibers to or from the E3X Amplifier Unit using the following procedures:

1. Connection

Open the protective cover, insert the fibers according to the fiber insertion marks on the side of the Amplifier Unit, and lower the lock button.


## 2. Disconnection

Remove the protective cover and raise the lock button to pull out the fiber.


Note:To maintain the fiber properties, confirm that the lock is released before removing the fiber.

## 3. Precautions for Fiber Connection/Disconnection

Be sure to lock or unlock the lock button within an ambient temperature range between $-10^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$.

Cutting Fiber

- Insert a fiber into the Fiber Cutter and determine the length of the fiber to be cut.
- Press down the Fiber Cutter in a single stroke to cut the fiber.
- The cutting holes cannot be used twice. If the same hole is used twice, the cutting face of the fiber will be rough and the sensing distance will be reduced. Always use an unused hole.
- Cut a thin fiber as follows:

(1) \begin{tabular}{l}
An attachment is <br>
temporarily fitted <br>
to a thin fiber be- <br>
fore shipment. <br>
(3) <br>
(3) <br>
ing in the direction <br>
indicated by the <br>
arrow.

 

Insert the fiber to <br>
ine cut into the <br>
E39-F4.
\end{tabular}

## Connection

- Do not strain the fiber unit, e.g. do not apply tensile or compression force. (Within 9.8 Nm or 29.4 Nm) Use special care since the fiber is thin.
- The bending radius of the fiber unit should exceed the admissible bending radius given in "Type/standard price" and "Ratings/performance".
- Do not bend the edge of the fiber units (excluding the E32$T \square R$ and $E 32-D \square R)$.

- Do not apply excess force on the fiber units.

- The fiber head could be break from excessive vibration. To prevent this, the following is applied:



## E39-F11 Sleeve Bender

- The bending radius of the stainless steel tube should be as large as possible. The smaller the bending radius becomes, the shorter the sensing distance will be.
- Insert the tip of the stainless steel tube to the sleeve bender and bend the stainless steel tube slowly along the curve of the sleeve bender (refer to the figure).



## Heat-resistant fibers (E32-D51, E32-T51)

- The bending radius should be 35 mm up.
- The fiber connector E39-F10 cannot be used for extension.
- +130 max. for continuous operation at high temperature. The upper limit of the short-time operable temperature is +150


## E32-T14/E32-G14

The presence of a reflective object at the front ends of the lenses may place the unit in an incident state. In this case, apply the supplied black
 seals to the front ends of the lenses.

## Wafer sensor (E32-L25 (A))

- Insert the fiber with a white line into the emission side of the amplifier.
- When installing the sensor head, tighten it to the 0.78 Nm torque.
- Do not expose the sensor to water.


## Supplied slit for E32-T16

When using the supplied slit, peel off the back paper and apply it along the

Example


## E32-M21

Set the four fibers at a sufficient distance to avoid interfering with each other.

## Adjustment

## E32-G14

Because of a short sensing distance, the incident level becomes excessive, disabling "without-work teaching". Use with/without-work teaching.

## Accessories

## Use of E39-R3 Reflector

1. When using an adhesive tape on the rear face, apply it after washing off oil, dust, etc. with detergent from the place of application. The reflector cannot be installed if there remains oil, etc.
2. The E39-R3 cannot be used in places where it is exposed to oil or chemicals.

## Protective Spiral Tubes

1. Insert a fiber to the protective spiral tube from the head connector side (screwed) of the tube.


Tube
2. Push the fiber into the protective spiral tube. The tube should be straight so that the fiber is not twisted when inserted. Then turn the end cap of the spiral tube.

3. Secure the protective spiral tube at a suitable place with the attached nut.

4. Use the attached saddle to secure the end cap of the protective spiral tube. To secure the protective spiral tube at a position other than the end cap, apply tape to the tube so that the portion becomes thicker in diameter.


E39-F10 Fiber Connector
Fit the connector in the following procedure.


- The fiber units should be as close as possible when they are connected. Sensing distance will be reduced by approximately $25 \%$ when fibers are connected.

Only 2.2 mm dia. fibers can be connected.

## For E3X-DA-N

Operating Instructions Sticker E39-Y1

- Apply this seal next to the sensor.
- (1 English and 1 Japanese stickers per set)
- Material: (Front) Paper, (rear) adhesive tape


## Japanese Sticker



English Sticker


## Dimensions

General purpose
Throughbeam

E32-ET11R


E32-T11U

*1 Material: nickel-plated brass
*2 Sheath: flouroresin

E32-ET21R


E32-T12R


E32-TC200A


E32-TC200E


Diffuse reflective
E32-D11U


E32-D22R


E32-DC200


E32-DC200E


E32-ED21R


## Long Distance

Throughbeam

## E32-T12L



E32-T21L



E32-D16


## E32-D21L



E32-D22L


## Area sensing

Throughbeam
E32-M21


E32-T16


E32_T16P
E32_T16PR


E32-T16
E32-T16JR


E32-T16W
E32-T16WR


Diffuse reflective
E32-D36P1


Two, M3

Small fiber head
Throughbeam


E32-TC200B
E32-TC200B4


E32-TC200F
E32-TC200F4


E32-T22R


Diffuse reflective

E32-D33


* SUS303 stainless steel


Fiber for Robot Application R4
Throughbeam


Side view


E32-T24
E32-T24R


Diffuse reflective


## Coaxial fiber

Diffuse reflective
E32-C42


* SUS303 stainless steel

E32-CC200


E32-D32


## E32-D32L



E32-EC31


E32-EC41


## Chemical resistant

Throughbeam

## E32-T11F



E32-T12F


## E32-T14F



E32-T81F-S


Diffuse reflective

## E32-D12F



Heat resistant
Throughbeam
E32-ET51


E32-T54


* SUS303 stainless steel

E32-T51


* material: nickel plated brass

E32-T61-S


E32-T81R-S


* SUS303 stainless steel

E32-T84S-S


Diffuse reflective
E32-D61
E32-D61-S


* 3. Fiber length 10 m and more becomes 6 -diameter.

4. Fiber length 10 m and more becomes 10 -diameter.

E32-D73
E32-D73-S


E32-D81R
E32-D81R-S


## E32-ED51



## Grooved

Throughbeam
E32-G14


## Narrow Vision Field

Throughbeam
E32-T22S


E32-T24S


Limited-reflective
Diffuse reflective


E32-L24L


E32-L25A


E32-L25L


E32-L56E1
E32-L56E2


E32-L66


Flexible tube (SUS), two $2.8-\mathrm{mm} \varnothing$
Note: Ambient temperature of A part is 300 degree $C$ and of $B$ part is 110 degree $C$ When the part indicated by *2 is inserted into amplifier, ambient temperature of *2 part is the same as that of amplifier unit.

Fluid-level Detection Fiber Units
Diffuse reflective
E32-A01


Sensing head: ABS Prism: PMMA Pipe holder: PBT

E32-A02


E32-D36F

*material: polypropylene
Larger scaled cut-out of sensing



E32-L25T


Mapping sensors
Diffuse reflective

## E32-A03



E32-A04


Retroreflective
E32-R16


E32-R21


ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.
To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .

## Fiber Unit

## E32-ETS / EDS Series

## Flat square shape for easy mounting

- Flat and space saving shape fits in narrow spaces
- Easy mounting and optical axis alignment
- No mounting bracket necessary, just fixing it with two screws
- Flexible fibers with 1 mm bending radius
- Strong Aluminium housing for rough ambient conditions



## Application



## Ordering Information

Sensors

Sensor Type	Product Code	Shape
Through Beam	E32-ETS10R 2M	
	E32-ETS14R 2M	
Through Beam,   Side View		
Through Beam	E32-ETS20R 2M	
Through Beam,   Side View	E32-ETS24R 2M	

## Amplifier Overview

## Digital Amplifier

Amplifier Units
Amplifier Units with Cables

Item		Appearance	Functions	Model		
		NPN output		PNP output		
Standard models				---	E3X-DA11-S	E3X-DA41-S
Mark-detecting models	Green LED	2	---	E3X-DAG11-S	E3X-DAG41-S	
	Blue LED		---	E3X-DAB11-S	E3X-DAB41-S	
Advanced models	Twin-output models		Area output, self-diagnosis, differential operation	E3X-DA11TW-S	E3X-DA41TW-S	
	External-input models		Remote setting, counter, differential operation	E3X-DA11RM-S	E3X-DA41RM-S	

Amplifier Units with Connectors

Item		Appearance	Functions	Model	
		NPN output		PNP output	
Standard models			---	E3X-DA6-S	E3X-DA8-S
Mark-detecting models	Green LED		---	E3X-DAG6-S	E3X-DAG8-S
	Blue LED		---	E3X-DAB6-S	E3X-DAB8-S
Advanced models	Twin-output models		Area output, self-diagnosis, differential operation	E3X-DA6TW-S	E3X-DA8TW-S
	External-input models		Remote setting, counter, differential operation	E3X-DA6RM-S	E3X-DA8RM-S

## Dual Channel Amplifier

Amplifier Units
Amplifier Units with Cables

Item	Appearance	Functions	Model	
2-channel models			NPN output	PNP output
		AND/OR output	E3X-MDA11	E3X-MDA41

Amplifier Units with Connectors

Item	Appearance	Functions	Model	
				NPN output
2-channel models				PNP output

## Manual Amplifier

Amplifier Units with Cables


Anplifier Units with Connectors


## Performance

## Sensing Distance

Amplifier	Mode	E32-ETS10R 2m	E32-ETS14R 2M	E32-ETS20R 2M	E32-ETS24R 2M	E32-EDS24R 2M
E3X-DA-N	Super long distance mode	700 mm	580 mm	150 mm	130 mm	45 mm
	Standard mode	560 mm	460 mm	120 mm	110 mm	35 mm
	Super high speed mode	200 mm	170 mm	40 mm	40 mm	10 mm
	Super long distance mode	480 mm	430 mm	160 mm	160 mm	70 mm
E3X-MDA	Standard mode	370 mm	330 mm	120 mm	120 mm	50 mm
	Super high speed mode	140 mm	130 mm	50 mm	50 mm	20 mm
	Super long distance mode	720 mm	630 mm	250 mm	240 mm	100 mm
E3X-DA-S	Standard mode	560 mm	480 mm	190 mm	180 mm	60 mm
	Super high speed mode	140 mm	125 mm	50 mm	45 mm	20 mm
E3X-NA41	Standard mode	420 mm	280 mm	100 mm	50 mm	17 mm
E3X-NAG41	Standard mode	100 mm	80 mm	25 mm	10 mm	2 mm
E3X-NA41F	Standard mode	140 mm	100 mm	30 mm	15 mm	4 mm

## Specifications



## Dimensions

## E32-ETS10R



## E32-ETS14R




## E32-ETS24R



E32-EDS24R


## Fiber Units

Installation

## Fiber Connection and Disconnection

The E3X Amplifier Unit has a lock button. Connect or disconnect the fibers to or from the E3X Amplifier Unit using the following procedures:

1. Connection

Open the protective cover, insert the fibers according to the fiber insertion marks on the side of the Amplifier Unit, and lower the lock button.


## 2. Disconnection

Remove the protective cover and raise the lock button to pull out the fiber.


Note:To maintain the fiber properties, confirm that the lock is released before removing the fiber.

## 3. Precautions for Fiber Connection/Disconnection

Be sure to lock or unlock the lock button within an ambient temperature range between $-10^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$.

## Cutting Fiber

- Insert a fiber into the Fiber Cutter and determine the length of the fiber to be cut.
- Press down the Fiber Cutter in a single stroke to cut the fiber.
- The cutting holes cannot be used twice. If the same hole is used twice, the cutting face of the fiber will be rough and the sensing distance will be reduced. Always use an unused hole.
- Cut a thin fiber as follows:

(1) | An attachment is |
| :--- |
| temporarily fitted |
| to a thin fiber be- |
| fore shipment. |
| (3) |
| Secure the attach- |
| ment after adjust- |
| it in the direction |
| indicated by the |
| arrow. |
| (4) |
| Insert the fiber to |
| be cut into the |
| E39-F4. |

## Connection

- Do not strain the fiber unit, e.g. do not apply tensile or compression force. (Within 0.98 Nm to 18 Nm ) Use special care since the fiber is thin.
- The bending radius of the fiber unit should exceed the admissible bending radius given in "Type/standard price" and "Ratings/performance".
- Do not bend the edge of the fiber units (excluding the E32$T \square R$ and E32-D $\square \mathrm{R}$ ).

- Do not apply excess force on the fiber units.

- The fiber head could be break from excessive vibration. To prevent this, the following is applied:



## E39-F11 Sleeve Bender

- The bending radius of the stainless steel tube should be as large as possible. The smaller the bending radius becomes, the shorter the sensing distance will be.
- Insert the tip of the stainless steel tube to the sleeve bender and bend the stainless steel tube slowly along the curve of the sleeve bender (refer to the figure).



## Accessories

## Use of E39-R3 Reflector

1. When using an adhesive tape on the rear face, apply it after washing off oil, dust, etc. with detergent from the place of application. The reflector cannot be installed if there remains oil, etc.
2. The E39-R3 cannot be used in places where it is exposed to oil or chemicals.

## E39-F10 Fiber Connector

Fit the connector in the following procedure.


- The fiber units should be as close as possible when they are connected. Sensing distance will be reduced by approximately $25 \%$ when fibers are connected.

Only 2.2 mm dia. fibers can be connected.

## ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.

To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .

## Accessories for E32

E32

## Lens Unit



Reflectors

Shape	Name	Sensing distance (default)	Model	Quantity	Remarks
	Reflectors	$1.5 \mathrm{~m}(150 \mathrm{~mm})$ *	E39-R1	1	Retroreflective model attached to E32-R16.
	Small reflector	$250 \mathrm{~mm}(25 \mathrm{~mm})$ *	E39-R3	1	Retroreflective model attached to E32-R21.

* Values in parentheses indicate the minimum required distance between the sensor and reflector. Mounting Brackets

Shape	Applicable type	Model	Quantity	Remarks

Operating Instructions Sticker

Model	Remarks
E39-Y1	Apply this seal to near the   sensor.

End Plate

Shape	Model	Quantity
	PFP-M	1

* For the through-beam type, please order two pcs. for the emitter and receiver.

Note: For details, refer to "Mounting bracket list".
Protective Spiral Tubes

Shape	Application	Model	Tube length	Applicable Fiber
	For protection of fiber	E39-F32A5	500 mm	$\begin{aligned} & \text { E32-DC200E E32-D21 E32-DC200F(4) } \\ & \text { E32-D21R } \end{aligned}$
		E39-F32A	1 m	
		E39-F32B5	500 mm	```E32-T21L E32-TC200F(4) E32-TC200E E32-T21 E32-EC31 E32-T21R```
		E39-F32B	1 m	
		E39-F32C5	500 mm	E32-T11L E32-T11 E32-TC200 E32-T51 E32-TC200B(4) E32-T11R
		E39-F32C	1 m	
$\longrightarrow$		E39-F32D5	500 mm	E32-D11L E32-D11 E32-DC200 E32-CC200 E32-DC200B(4) E32-ED51 E32-ED11R
		E39-F32D	1 m	

Other Accessories

| Shape | Application | Name | Model | Applicable Fiber |
| :--- | :--- | :--- | :--- | :--- | :--- |

## Rating/Performance

Lens Unit


* These models allow a longer sensing distance because their optical fiber length is 2 m .

	Name   Application   Model   Sensor type		side view unit					
			Conversion of detection direction into side view					
			E39-F2					
			Through-beam					
Applicable Fiber			E32-T11L	E32-TC200	E32-T61-S	E32-T11	E32-ET11R	E32-T81R-S
E3X-DA-N	Sensing distance	Super-long-distance	900 mm	800 mm	570 mm	780 mm	500 mm	350 mm
		Standard	800 mm	700 mm	450 mm	660 mm	400 mm	280 mm
		Super-high-speed	400 mm	300 mm	170 mm	250 mm	150 mm	100 mm
Standard sensing object			Opaque: 3 mm dia. min.					
Directional angle			20 to $60^{\circ}$					
Ambient temperature			Use the unit within the operating temperature range of the fiber used. When used with E32-T61-S, use the unit within the range -40 to $+200^{\circ} \mathrm{C}$.					
Material	Tube:		Brass					
	Lens		Optical glass					


		Name	Reflective side view conversion attachment unit
		Application	Conversion of through-beam model into side view reflective model
		Model	E39-F5
		Sensor type	Reflective model
Applicable			E32-TC200A
	Sensing	White paper super-long-distance	1 to $130 \mathrm{~mm}(100 \times 100 \mathrm{~mm})$
E3X-DA-N	(Standard sensing	White paper Standard	1 to 120 mm ( $100 \times 100 \mathrm{~mm}$ )
		White paper super-high-speed	2 to $45 \mathrm{~mm}(100 \times 100 \mathrm{~mm})$
Differential	tance		20\% max. of sensing distance
Ambient tem	erature		$-40^{\circ}$ to $70^{\circ} \mathrm{C}$ (with no icing or condensation)
Material	Base:		Brass
	Reflector:		Stainless steel

Lens Unit (E39-F3 $\square$ series)

Item	Name   Spot diameter Model	Spot lens unit							
		Adjustable in the range 0.5 to 1.0 mm dia.	Adjustable in the range 0.1 to 0.6 mm dia.	Focal length 7 mm 0.5 mm dia. fixed	Focal length 7 mm 0.1 mm dia. fixed	Focal length 17 mm 0.5 mm dia. fixed	Focal length 17 mm 0.2 mm dia. fixed	4 mm max. at 0 to 20 mm	
		E39-F3A		E39-F3A-5		E39-F3B		E39-F3C	
Applicable fiber type		E32-D32	E32-C42	E32-EC31	E32-EC41	E32-EC31	E32-EC41	E32-EC31	E32-EC41
Material	Tube:	Aluminum							
	Lens	Optical glass							

Protective Spiral Tubes


## Dimensions

## Accessories (Order Separately)

Reflectors H-3
Mounting Brackets H-3
End Plate
PFP-M
Lens Unit
E39-F1 Long Distance Lens Units
E39-F2 side view unit E39-F2


M2.6
Effective depth: 3.2
Countersunk with straight edge, depth: 0.9
Effective depth: 3
Countersunk with straight edge, depth: 0.9
straight

Material: Tube: Brass Lens: Optical glass
Note: One set includes two units
Lens-equipped Reflective Unit
E39-F3


Material: Tube: Brass Base: Aluminum

* Fix the fiber head using the slotted head machines screw. Do not insert the E39-F1 Lens.

Small Spot Lens Unit E39-F3A


Material: Tube: Aluminum Optical lens: Optical glass


Note: E32-D32 is a Lens Unit for the E32-C42.

## Small Spot Lens Unit E39-F3B



Material: Tube: Aluminum Optical lens: Optical glass


Note: E32-C31 is a Lens Unit for the E32-C41.


Optical lens. Optical Note: E32-C31 is a Lens Unit for the E32-C41.


Fiber Unit mounting holes (E32-TC200A)


Material: Base: Brass Reflector Stainless steel
Note: Only the E32-TC200A can be mounted. When mounting it, remove all the supplied nuts and screw it into the E39-F5. (Screw it until it is stopped by the stopper.)

## Small Spot Lens Unit E39-F3A-5

Small Spot Lens Unit E39-F3C


Material: Tube: Aluminum Optical lens: Optical glass


Note: E32-C31 is a Lens Unit for the E32-C41.

## Protective Spiral Tubes



Note: 1 .L is as follows: E39-F32A and E39-F32B: 1,000 E39-F32A5, E39-F32B5: 500
2. A pair of E39-F32A (5)'s is sold as E39-F32B (5)
E39-F32C, F32C5

Other Accessories


E39-F9 Attachment for Thin Fiber

Note: One set includes two units.
Included with Thin Fiber Unit.


E39-K2 Protective Attachment


Material: ABS




## ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.

To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .

## Displacement Sensors / Width-measuring Sensors

Laser	Smart Sensors Laser	ZX-L Series	B-3
Sensors	2D CMOS Laser Measuring Sensor	ZS-L Series	B-25
	High-precision Visual Displacement Measurement System	Z300	B-31
	Profile Measuring System	Z500	B-45
	Welding Bead Sensor	Z510	B-53
	Multi-Dimensional Sensor	Z550	B-57
Inductive Sensors	Smart Sensors	ZX-E Series	B-61
Contact Sensors	Smart Sensor High precision contact type	ZX-T Series	B-77

## Smart Laser Sensor

## - Unique Plug \& Play Measurement Concept for Precise Measurement

> A multitude of "smart" functions packed in a small amplifier. Full line-up of heads for different detection methods and micron detection performance

## Features

The world's smallest and lightest laser sensor.
It is the world's lightest. A body size similar to a photoelectric sensor permits space conservation and solves installation space problems.
Naturally, we have also achieved a high-speed response on the same level as a photoelectric sensor.


* High-speed sampling: 0.15 ms (response speed: 0.3 ms )


## Platform architecture as a optimum solution

Platform architecture allows users to configure a variety range of sensor-heads to one amplifier.
Plug \& Play provides easy sensorhead replacement and easy maintenance.


## Our line-up includes 8 reflective-type models and 3 Through-beam-type models.

Reflective
Models
Class 2 visible-light laser
Minute work is detected by a spot beam, and regular work is detected by a line beam.
Smart adaptation to meet the needs of the application.
Furthermore, the system seamlessly covers a measurement range of 28 mm to 500 mm .



## Thoughtbeam Class 1 visible-light laser

High-precision positioning is accomplished with a 1 mm dia. spot beam, and area detection is accomplished with a 5 mm width / 10 mm width screen beam.

Measurement width and distance range (Resolution: 4mm)


## Many useful functions are provided.

Calculation settings that eliminate the need for a digital panel meter Patent pending
A calculation unit can be inserted between two amplifiers to display the calculation results of two sensor units on one of the amplifiers. Settings are accomplished by simply entering the necessary parameters in one of the amplifiers.


## Includes a sensor life monitor.

The laser diode (LD) life is detected automatically and the operator alerted.
When LD deterioration is detected, the sub-display alerts you. This gives you time to take action before the LD dies.


## Top priority is given to easy operation.

Sophisticated functions and high performance, with ease of use. This is a key feature of the ZX-L-Series.
The interface comes from our E3X-DA-N* Digital Fiber Amplifier. Feel how simple it is to operate.

*E3X-DA-N


## Obtain the resolution with ease Paten pending

Simply perform detection of the work you wish to test, and you can check the resolution.
The resolution is displayed so you can check how much fluctuation there is to the threshold setting and decide whether detection is possible with certitude.


## Reflective Models

Light intensity mode for high-performance laser photoelectric detection
Light intensity detection is possible using the minute spot of the laser beam. The sensor be used not only as a displacement meter, but also as a high-precision laser photoelectric sensor for detection of minute work with a background object and color difference. Select displacement mode or light intensity mode as appropriate for the application to establish the optimum function settings.



## Multiple teaching functions.

Positioning / 2-point / auto-matching
Includes three types of teaching functions on the same level as a photoelectric sensor.

[^20]
## Install in any direction.

A side viewer attachment (optional) can be installed to enable various installations


## Wide variety of easy-to-use functions.

Scaling, display reverse, display off mode, ECO mode, change number of display digits, measurement processing (various timer functions and hold functions), threshold value settings, input/output settings, mutual interference (when using a computing unit), function lock, initial reset, zero reset, differential function, sensitivity selection, monitor focus, etc.

## Application



Features
Connect to a computer for full use of sensor performance. Use the computer monitor screen for enhanced panel display.
Easy processing of detection results such as waveform monitor and data logging results, which used to make system configuration more easy.


## Quality control as you desire.

Data logging
Log detection data and manage a status history for effective and efficient quality control and implementation of countermeasures for problems.


* Screen images may in some cas-
es differ from the actual product.

Settings are supported by a list display Settings that are complicated if the amplifier panel must be used can be easily accomplished by referring to the Function menu. The settings can also be easily imported to and exported from a text editor.


## Waveform monitoring function

Easy monitoring of waveforms, which was previously only possible with an oscilloscope. Plenty of easy-to-use functions, such as drag and drop threshold value setting.
Waveform monitoring


## Summary of PC software specifications

Digital numerical value monitoring

- Tolerance direct threshold value setting
- Various teaching settings

Waveform monitoring

- Waveform collection
- Waveform observation/editing
- Waveform saving/reading

Data logging

- Various collection condition settings
- Supports Microsoft Excel

Configuration function

- Amplifier unit function settings
(observation scaling, input scaling, etc.)
- Saving/reading of amplifier setting conditions **Microsoft Excel is either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.


## Ordering Information

## Sensors

Sensor head (reflection type)

Optical method	Beam shape	Sensing distance	Resolution *	Model
Diffuse-reflective	Spot beam	$40 \pm 10 \mathrm{~mm}$	$2 \mu \mathrm{~m}$	ZX-LD40
		$100 \pm 40 \mathrm{~mm}$	$16 \mu \mathrm{~m}$	ZX-LD100
		$300 \pm 200 \mathrm{~mm}$	$300 \mu \mathrm{~m}$	ZX-LD300
	Line beam	$40 \pm 10 \mathrm{~mm}$	$2 \mu \mathrm{~m}$	ZX-LD40L
		$100 \pm 40 \mathrm{~mm}$	$16 \mu \mathrm{~m}$	ZX-LD100L
		$300 \pm 200 \mathrm{~mm}$	$300 \mu \mathrm{~m}$	ZX-LD300L
Regular reflection type	Spot beam	$30 \pm 2 \mathrm{~mm}$	$0.25 \mu \mathrm{~m}$	ZX-LD30V
	Line beam			

* At average count of 4,096 times

Sensor head (transmissive type)

Optical method	Measurement width	Sensing distance	Resolution *	Model
Through-beam	1 mm dia.	0 to 2,000 mm	$4 \mu \mathrm{~m}$	ZX-LT001
	5 mm	0 to 500 mm		ZX-LT005
	10 mm			ZX-LT010
	30 mm		$12 \mu \mathrm{~m}$	ZX-LT030

* At average count of 64 times

Amplifier Units

Shape	Power supply	Output specifications	Model
		NPN output	ZX-LDA11-N

Note: Compatible with sensor head connection.

## Accessories (Order Separately)

Computing unit

Shape	Model
	ZX-CAL2 ${ }^{+1}$

*1. Calculation Units are required to connect two or more sensors
Side view attachment

Shape	Suitable sensor head	Model
	ZX-LT001   ZX-LT005	ZX-XF12

Extension cable for robot application

Cablelength	Model	Quantity
1 m	ZX-XC1R	
4 m	ZX-XC4R	
8 m	1 pc.	
9 m	ZX-XC8R	
	ZX-XC9R	

"Smart monitor" communication interface and Setup Tool for Personal Computer and PLC

Shape	Name	Model
	ZX-L-series   Communication   Interface Unit	ZX-SF11
	ZX-series Commu-   nication Interface   Unit + ZX-L-series   Sensor Setup and   Logging Software	ZX-SFW11E V3
CD-ROM	ZX-L-series   Sensor Setup and   Logging Software	ZX-SW11E V3

Two-sided connector cable (for extension)

Cable length	Model	Quantity
1 m	ZX-XC1A	
4 m	ZX-XC4A	1
8 m	ZX-XC8A	
$9 \mathrm{~m}^{*}$	ZX-XC9A	

[^21]
## Rating/Performance

Sensor head (reflection type)

Item Model	ZX-LD40	ZX-LD100	ZX-LD300	ZX-LD30V	ZX-LD40L	ZX-LD100L	ZX-LD300L	ZX-LD30VL
Optical method	Diffuse reflection			Regular reflection	Diffuse reflection			Regular reflection
Light source (wave length)	Visible-light semiconductor laser (wavelength $650 \mathrm{~nm}, 1 \mathrm{~mW}$ or less, Class 2)							
Measurement center distance	40 mm	100 mm	300 mm	30 mm	40 mm	100 mm	300 mm	30 mm
Measurement range	$\pm 10 \mathrm{~mm}$	$\pm 40 \mathrm{~mm}$	$\pm 200 \mathrm{~mm}$	$\pm 2 \mathrm{~mm}$	$\pm 10 \mathrm{~mm}$	$\pm 40 \mathrm{~mm}$	$\pm 200 \mathrm{~mm}$	$\pm 2 \mathrm{~mm}$
Beam shape	Spot				Line			
Beam diameter *1	50 mm dia.	100 mm dia.	300 mm dia.	75 mm dia.	$75 \mu \mathrm{mx} 2 \mathrm{~mm}$	$\begin{aligned} & 150 \mu \mathrm{mx} \\ & 2 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 450 \mu \mathrm{mx} \\ & 2 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 100 \mu \mathrm{~m} \mathrm{x} \\ & 1.8 \mathrm{~mm} \end{aligned}$
Resolution ${ }^{2}$	$2 \mu \mathrm{~m}$	$16 \mu \mathrm{~m}$	$300 \mu \mathrm{~m}$	$0.25 \mu \mathrm{~m}$	$2 \mu \mathrm{~m}$	$16 \mu \mathrm{~m}$	$300 \mu \mathrm{~m}$	$0.25 \mu \mathrm{~m}$
Linearity ${ }^{*}$	$\begin{aligned} & \pm 0.2 \% \text { F.S. } \\ & \text { (entire } \\ & \text { range) } \end{aligned}$	$\begin{aligned} & \pm 0.2 \% \text { F.S. } \\ & (80 \text { to } \\ & 121 \mathrm{~mm}) \end{aligned}$	$\begin{array}{\|l} \hline \pm 2 \% \text { F.S. } \\ (200 \text { to } \\ 401 \mathrm{~mm}) \end{array}$	$\begin{aligned} & \pm 0.2 \% \text { F.S. } \\ & \text { (entire } \\ & \text { range) } \end{aligned}$	$\begin{aligned} & \pm 0.2 \% \text { F.S. } \\ & (32 \text { to } \\ & 49 \mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \pm 0.2 \% \text { F.S. } \\ & (80 \mathrm{to} \\ & 121 \mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \pm 2 \% \text { F.S. } \\ & (200 \text { to } \\ & 401 \mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \pm 0.2 \% \text { F.S. } \\ & \text { (entire } \\ & \text { range) } \end{aligned}$
Temperature drift ${ }^{4}$	$\pm 0.03 \%$ F.S. $/{ }^{\circ} \mathrm{C}\left( \pm 0.1 \%\right.$ F.S. $/{ }^{\circ} \mathrm{C}$ for ZX-LD300/ZX-LD300L)							
Ambient illuminance	Incandescent lamp: 3,000 lux max.							
Ambient temperature	Operating: $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$, Storage: $-15^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ (with no icing or condensation)							
Ambient humidity	Operating/Storage: 35\% to 85\% RH (with no condensation)							
Insulation resistance	$20 \mathrm{M} \Omega$ at 500 VDC							
Dielectric strength	1,000 VAC at 50/60 Hz for 1 minute							
Vibration resistance	10 to $150 \mathrm{~Hz}, 0.7 \mathrm{~mm}$ double amplitude for 80 minutes each in $X, Y$, and $Z$ directions							
Shock resistance	$300 \mathrm{~m} / \mathrm{s}^{2}, 6$ directions, 3 times each (up-down, left-right, forward-backward)							
Protective structure	IEC 60529 IP50			IEC Standard IP40	IEC 60529 IP50			IEC Standard IP40
Connection method	Junction connector (standard length: 500 mm )							
Weight   (Packed state)	Approx. 150 g			Approx. 250 g	Approx. 150 g			Approx. 250 g
Material	Case: PBT (polybutylene terephthalate), Cover: Aluminum, Lens: Glass			Case, Cover: Aluminum Lens: Glass	Case: PBT (polybutylene terephthalate), Cover: Aluminum, Lens: Glass			Case, Cover: Aluminum Lens: Glass
Accessories	Operation manual, laser warning labels (English characters)							

*1. Beam diameter: This is the value of the measurement center distance (actual value), and is defined at $1 / \mathrm{e}^{2}$ ( $13.5 \%$ ) of the central light intensity. If there is stray light outside, the defined area and the area around the object has a higher reflectance than the object,
2. Resolution: Indicates the amount of fluctuation ( $\pm 3 \delta$ ) in the linear output when connected to the ZX-LDA. (The measured value when the average count of the ZXLDA is set to 4,096 and our standard object (white ceramic) is used for the central distance.) This indicates the repeatability precision when the work is in a static state, and does indicate the distance precision. The resolution performance may not be satisfactory in a strong electromagnetic field.
3. Linearity: This indicates the error with respect to the ideal straight line of the displacement output when measuring our standard object.
*4. Temperature characteristic: The value when the distance between the sensor and the object (our standard object) is fixed using an aluminum jig. (Measured at the measurement center distance.)
Note: When an object has a high reflectance, detection errors are possible outside the measurement range

Item Model	ZX-L	T001	ZX-LT005	ZX-LT010	ZX-LT030
Optical method	Through-beam				
Light source (wave length)	Visible-light semiconductor laser (wavelength $650 \mathrm{~nm}, 1 \mathrm{~mW}$ or less, Class 1)				
Measurement width	1 mm dia.	1 to 2.5 mm dia.	5 mm	10 mm	30 mm
Sensing distance	$0 \text { to } 500$ mm	$\begin{aligned} & 500 \text { to } \\ & 2,000 \mathrm{~mm} \end{aligned}$	0 to 500 mm		
Min. sensing object	8 mm dia. Opaque object	8 to $50 \mu \mathrm{~m}$ Opaque object	Opaque: 0.05 mm dia.	Opaque: 0.1 mm dia.	Opaque: 0.3 mm dia.
Resolution ${ }^{* 1}$	$4 \mu \mathrm{~m}{ }^{*}$	---	$4 \mu \mathrm{~m}^{*}{ }^{\text {a }}$		$12 \mu \mathrm{~m}$
Temperature drift	0.2\%F.S. $/{ }^{\circ} \mathrm{C}$				0.3\%F.S. $/{ }^{\circ} \mathrm{C}$
Ambient illuminance	Incandescent lamp: 3,000 lux max.				Incandescent lamp: 10,000 lux max.
Ambient temperature	Operating: $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$, Storage: $-25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (with no icing or condensation)				
Protective structure	IEC 60529 IP40				IP 40
Cable length	Can be extended to 10 m with the special extension cable.				
Material	Case: polyetherimide, case cover: polycarbonate, front cover: glass				Zinc-die-cast
Clamping torque	0.3 N²m max.				
Accessories	Optical axis adjustment seal, sensor head - amplifier unit connector cable, operation manual				Mounting bracket

*1. The amount of fluctuation ( $\pm 3 \delta$ ) of the linear output when connected to an amplifier unit, converted to a detection span.
*2. When the average count is $64.5 \mu \mathrm{~m}$ when the count is 32 . The value when the smallest detection object shades the vicinity of the center of the 1 mm dia. detection span.
3. When the average count is $64.5 \mu \mathrm{~m}$ when the count is 32 .

Amplifier Units

Item Model	ZX-LDA11	ZX-LDA41
Measurement period	$150 \mu \mathrm{~s}$	
Possible average count settings *1	1/2/4/8/16/32/64/128/256/512/1,024/2,048/4,096 times	
Temperature drift	When reflective head is connected: $0.01 \%$ F.S. $/{ }^{\circ} \mathrm{C}$, when transmissive head is connected: $0.1 \%$ F.S. ${ }^{\circ} \mathrm{C}$	
Linear output *2	4 to $20 \mathrm{~mA} / \mathrm{F} . \mathrm{S}$., maximum load resistance of $300 \Omega \pm 4 \mathrm{~V}\left( \pm 5 \mathrm{~V}, 1\right.$ to $\left.5 \mathrm{~V}{ }^{*}\right)$, output impedance of $100 \Omega$	
Decision output (HIGH/ PASS/LOW: 3 outputs) *1	NPN open collector output, 30 VDC 50 mA max., residual voltage 1.2 V or less	PNP open collector output, 30 V DC 50 mA max., residual voltage 2 V or less
Laser OFF input / zero reset input / timing input / reset	When ON: supply voltage 1.5 V or less, when OFF: open circuit (maximum leakage current 0.1 mA or less)	When ON: supply voltage 1.5 V or less, when OFF: open circuit (maximum leakage current 0.1 mA or less)
Functions	Measurement value display, setting value and incident level and resolution display, scaling, display reverse, display off mode, ECO mode, change number of display digits, sample hold, peak hold, bottom hold, peak to peak hold, self peak hold, self-bottom hold, intensity mode, zero reset, initial reset, on-delay timer, off-delay timer, one-shot timer, differential, sensitivity selection, keeping clamp change, threshold value settings, positioning teaching, twopoint teaching, automatic teaching, hiss width variable, timing input, reset input, monitor focus, (A-B) operation, $(A+B)$ operation ${ }^{*}$, mutual interference *4, laser degradation detection zero reset memory, function lock	
Indicator lamp	Operation indicator lamp: high (orange), pass (green), low (yellow), 7-segment digital main display (red), 7-segment digital sub-display (yellow), laser ON (green), zero reset (green), enable display (green)	
Power supply voltage	12 to 24 VDC $\pm 10 \%$, ripple (p-p) : $10 \%$ max.	
Current consumption	200 mA or less (when sensor is connected)	
Ambient temperature	Operating: $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$, Storage: $-15^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ (with no icing or condensation)	
Ambient humidity	Operating/Storage: 35\% to 85\% RH (with no condensation)	
Insulation resistance	$20 \mathrm{M} \Omega$ at 500 VDC	
Dielectric strength	1,000 VAC at $50 / 60 \mathrm{~Hz}$ for 1 minute	
Vibration resistance	10 to $150 \mathrm{~Hz}, 0.7 \mathrm{~mm}$ double amplitude for 80 minutes each in $\mathrm{X}, \mathrm{Y}$, and Z directions	
Shock resistance	$300 \mathrm{~m} / \mathrm{s}^{2}, 6$ directions, 3 times each (up-down, left-right, forward-backward)	
Protective structure	---	
Connection method	Pre-wired models (standard length: 2 m )	
Weight (Packed state)	Approx. 350 g	
Material	Case: PBT (polybutylene terephthalate), Cover: Polycarbonate	
Accessories	Instruction manual	

*1. The response speed of linear output (when the sensitivity is fixed) is calculated as (measurement period) $x$ (average count setting +1 ).
The response speed of decision output (when the sensitivity is fixed) is calculated as (measurement period) $x$ (average count setting +1 ).
2. Current/voltage can be switched using the switch on the bottom of the amplifier unit.
*3. Can be set with the monitor focus function.
${ }^{4}$. Computing unit is required.

## Characteristic data (typical)

Angle characteristics (reflective type)
The angle characteristics are a plot of the inclination of the measured object vs. errors occurring in linear output at the measurement center distance

## ZX-LD40

Angular properties of vertical inclination


Inclination angle ( ${ }^{\circ}$ )
Angle characteristics with respect to horizontal inclination


ZX-LD40L
Angular properties of vertical inclination


Angle characteristics with respect to horizontal inclination


ZX-LD100
Angular properties of vertical inclination


Angle characteristics with respect to horizontal inclination


ZX-LD100L
Angular properties of vertical inclination


Angle characteristics with respect to horizontal inclination


ZX-LD300
Angular properties of vertical inclination


Inclination angle ( ${ }^{\circ}$ )
Angle characteristics with respect to horizontal inclination


ZX-LD300L
Angular properties of vertical inclination


Angle characteristics with respect to horizontal inclination


ZX-LD30V
Angular properties of vertical inclination


Angle characteristics with respect to horizontal inclination


ZX-LD30VL
Angular properties of vertical inclination


Angle characteristics with respect to horizontal inclination


Linearity characteristics depending on material (reflective type)

ZX-LD40
Inclination angle $\mathbf{0}^{\circ}$


## ZX-LD100

Inclination angle 0


ZX-LD300
Inclination angle $0^{\circ}$


## ZX-LD40L

## Inclination angle $\mathbf{0}^{\circ}$



In case of a horizontal inclination Inclination angle - $10^{\circ}$


In case of a horizontal inclination Inclination angle - $10^{\circ}$


In case of a of a horizontal inclination Inclination angle - $10^{\circ}$


In case of a of a horizontal inclination Inclination angle -10


Inclination angle $+10^{\circ}$


Inclination angle $+10^{\circ}$


Inclination angle $+10^{\circ}$


Inclination angle $+10^{\circ}$


ZX-LD100L
Inclination angle $0^{\circ}$


ZX-LD300L
Inclination angle $\mathbf{0}^{\circ}$


ZX-LD30V
Inclination angle $\mathbf{0}^{\circ}$


ZX-LD30VL
Inclination angle $0^{\circ}$


In case of a of a horizontal inclination Inclination angle - $10^{\circ}$


In case of a of a horizontal inclination Inclination angle -10


In case of a of a horizontal inclination Inclination angle - $10^{\circ}$


In case of of a a horizontal inclination Inclination angle -10


Inclination angle $+10^{\circ}$


Inclination angle $+10^{\circ}$


Inclination angle $+10^{\circ}$


Inclination angle $+\mathbf{1 0}^{\circ}$


Spot diameter (reflective type)
Spot beam type


## ZX-LD40

L	30 mm	40 mm	50 mm
$\mathrm{X}(\mathrm{m})$	$240 \mu \mathrm{~m}$	$40.0 \mu \mathrm{~m}$	$250 \mu \mathrm{~m}$
$\mathrm{Y}(\mathrm{m})$	$350 \mu \mathrm{~m}$	$30.0 \mu \mathrm{~m}$	$370 \mu \mathrm{~m}$

## ZX-LD100

L	60 mm	100 mm	140 mm
$\mathrm{X}(\mathrm{m})$	$390 \mu \mathrm{~m}$	$100 \mu \mathrm{~m}$	$430 \mu \mathrm{~m}$
$\mathrm{Y}(\mathrm{m})$	$620 \mu \mathrm{~m}$	$65.0 \mu \mathrm{~m}$	$650 \mu \mathrm{~m}$

ZX-LD300

L	100 mm	300 mm	500 mm
$\mathrm{X}(\mathrm{m})$	$1,050 \mu \mathrm{~m}$	$180 \mu \mathrm{~m}$	$1,100 \mu \mathrm{~m}$
$\mathrm{Y}(\mathrm{m})$	$450 \mu \mathrm{~m}$	$300 \mu \mathrm{~m}$	$850 \mu \mathrm{~m}$

## Line beam type



## ZX-LD40L

L	30 mm	40 mm	50 mm
$\mathrm{X}(\mathrm{m})$	$2,000 \mu \mathrm{~m}$	$2,000 \mu \mathrm{~m}$	$2,000 \mu \mathrm{~m}$
$\mathrm{Y}(\mathrm{m})$	$240 \mu \mathrm{~m}$	$50.0 \mu \mathrm{~m}$	$250 \mu \mathrm{~m}$

## ZX-LD100L

L	60 mm	100 mm	140 mm
$\mathrm{X}(\mathrm{m})$	$2,000 \mu \mathrm{~m}$	$2,000 \mu \mathrm{~m}$	$2,000 \mu \mathrm{~m}$
$\mathrm{Y}(\mathrm{m})$	$410 \mu \mathrm{~m}$	$100 \mu \mathrm{~m}$	$430 \mu \mathrm{~m}$

## ZX-LD300L

L	100 mm	300 mm	500 mm
$\mathrm{X}(\mathrm{m})$	$2,000 \mu \mathrm{~m}$	$2,000 \mu \mathrm{~m}$	$2,500 \mu \mathrm{~m}$
$\mathrm{Y}(\mathrm{m})$	$750 \mu \mathrm{~m}$	$300 \mu \mathrm{~m}$	$650 \mu \mathrm{~m}$

## Spot beam type



ZX-LD30V

L	28 mm	30 mm	32 mm
$\mathrm{X}(\mathrm{m})$	$60.0 \mu \mathrm{~m}$	$30.0 \mu \mathrm{~m}$	$120 \mu \mathrm{~m}$
$\mathrm{Y}(\mathrm{m})$	$50.0 \mu \mathrm{~m}$	$40.0 \mu \mathrm{~m}$	$90.0 \mu \mathrm{~m}$

Line beam type


ZX-LD30VL

L	28 mm	30 mm	32 mm
$\mathrm{X}(\mathrm{m})$	$1,800 \mu \mathrm{~m}$	$1,800 \mu \mathrm{~m}$	$1,800 \mu \mathrm{~m}$
$\mathrm{Y}(\mathrm{m})$	$90.0 \mu \mathrm{~m}$	$60.0 \mu \mathrm{~m}$	$110 \mu \mathrm{~m}$

Detection object characteristics (transmissive type)

## ZX-LT001

(Using a 0.02 mm dia. pin gauge)


Linearity properties
ZX-LT005


ZX-LT001
(Using a 0.05 mm dia. pin gauge)


ZX-LT001
(Using a 0.05 mm dia. pin gauge)


## Diagram showing correlation between linear output and detection distance

Current or voltage can be selected with the amplifier unit switch.

## ZX-LD40/LD40L

(Current output)


## (Voltage output)



## ZX-LD100/LD100L

(Current output)


ZX-LD300/LD300L
(Current output)


## (Voltage output)



## ZX-LD30V/LD30VL

(Current output)

(Voltage output)


## NPN type: ZX-LDA11



PNP type: ZX-LDA41


## Connection

Amplifier Units


Note: 1 . In particular, when high resolution is necessary, provide a stable power source separate from other power systems.
2 . Damage may result if not wired correctly. (In particular, do not allow the linear output to contact other wires.)
3 . Green $(0 \mathrm{~V})$ is for the power supply. The outer covering of the shield wire (linear GND) is used for linear output along with the black wire (linear output). Even if you will not be using the linear output, connect the linear GND to GND ( 0 V ).

## Nomenclature:

Sensor head (reflection type)

## ZX-LD40

ZX-LD100
ZX-LD300
ZX-LD40L
ZX-LD100L
ZX-LD300L
ZX-LD30V
ZX-LD30VL


Sensor head (transmissive type)

## ZX-LT001

ZX-LT005
ZX-LT010


Communication interface
ZX-SF 11


Amplifier Units
ZX-LDA11
ZX-LDA41


Computing unit

## ZX-CAL-2



Amplifier Unit

## Precautions

Warning

## Laser safety

Safety measures are required for laser devices both in Japan and abroad. Brief explanations of three cases are given below, including use in Japan and assembling in Japan and then exporting to other countries.

## Europe

The ZX-L-Series Sensor Heads are Class 1 and Class 2 Laser Products according to EN 60825-1 (IEC825-1).
(The outline is given in the following table.)

## Summary of user precautions

Requirements subclause	Classification						
	Class 1	Class 1M	Class 2	Class 2M	Class 3R	Class 3B	Class 4
Laser safety iffucer 10.1	Not required but recommended for applications that involve direct viewing of the laser beam				Not required for visible emission Required for non-visible emission	Required	
Remote interlock 10.2	Not required					Connect to room or door circuits	
Key control 10.3	Not required					Remove key when not in use	
Beam attenuator	Not required					When in use prevents inadvertent exposure	
Emission indicator device	Not required				Indi cates laser is energized for nonvisible wavelenghts	Indicates laser is energized	
Warning signs 10.5	Not required					Follow precautions on warning signs	
Beam path 10.6	Not required	Class 1M *1 as for Class 3B	Not required	$\begin{aligned} & \text { Class 2M }{ }^{* 2} \\ & \text { as for Class 3B } \end{aligned}$	Terminate beam at end of useful length		
Specular reflection 10.7	No requirements	Class 1M *1 as for Class 3B	No requirements	Class 2M *2 as for Class 3B	Prevent unintentional reflections		
Eye protection 10.8	No requirements					Required if engineering and administrative procedures not practicable and MPE exceeded	
Protective clothing 10.9	No requirements					Sometimes required	Specific requirements
Training 10.10	No requirements	Class 1M *1 as for Class 3R	No requirements	Class 2M *2 as for Class 3R	Required for all operator and maintenance personnel		

[^22]Note: This table is intended to provide a convenient summary of precautions. See text of this standard for complete precautions.

## ZX-LD $\square \square \square Z X-L D 30 V \square$

Classification of reflective-type sensor heads

## Class 2

Classification of reflective-type sensor head of ZX-LT $\square \square \square$

## Class 1

## Laser-related labeling

The warning label at right is attached to the side of the sensor head.


## Handing Instructions

The ZX-LD $\square \square \square / Z X-L D 30 V \square$ emits visible laser light. Do not look directly at the light. Terminate the light path of the laser beam before use. If a reflective mirror surface is in the light path, ensure that the reflected light path is enclosed in the beam. In cases where the light path must be open, ensure that it is kept away from eye-height.

## (U.S.A.)

Exports of products equipped with this device to the U.S.A. are governed by the laser standards of the Food and Drug Administration of the U.S.A.
The ZX-L-Series Laser Series is classified as Class I and Class II device according to FDA (21 CFR1040.10).
Please inquire for detailed information on exporting to the U.S.A..

## (Countries other than the U.S.A.)

- ZX-LD $\square \square / Z X-L D 30 V @$ reflective-type (displacement) sensor head: In countries other than Japan and the U.S.A., replace the warning label with the provided English label.
- For the ZX-LT $\square \square \square$ transmissive-type (displacement) sensor head, the warning label already includes English, thus replacement is not necessary.
- With respect to exports to Europe, a different standard exists, Europe EN60825.


## Correct Use

Design
Object
Some object materials and forms may not permit measurement, or may reduce the accuracy of measurement (transparent materials or materials with an extremely low reflectance; steeply inclined objects, etc.).

## Power Supply and Wiring

- Do not connect or disconnect the connector while powered. Damage may result.
- Allow the system to warm up for about 10 minutes after turning on the power.
- Upon completed wiring, verify that the power source is wired correctly, that there are no incorrect connections that will cause load shorts, and that the load current is appropriate before turning on the power. Incorrect wiring may result in damage.
- When extending the cable, ensure that the overall length does not exceed 10 m from both the sensor head and the amplifier unit. If you need to extend the cable from the sensor head, use the optional extension cable (ZX-XC $\square A$ ). For wiring from the amplifier unit, use the same type of shielded cable.
- If the power line is subject to surges, connect a surge protector.
- If you are using a computing unit, connect the linear GND terminals of the amplifier units.


## Compatibility

The sensor head and amplifier unit are compatible. A sensor head purchased later can also be used.

## Mutual Interference

This sensor head allows the amplifier units to be used in conjunction by connecting a computing unit (ZX-CAL) between the amplifier units.

## Cleaning

Do not use thinner, benzene, acetone, or kerosene, or similar chemicals.

## Sensors

Sensor head (diffuse reflection type)
ZX-LD40
ZX-LD100
ZX-LD300
ZX-LD40L
ZX-LD100L
ZX-LD300L


Sensor head (regular reflection type)

## ZX-LD30V

ZX-LD30VL



Amplifier Units
ZX-LDA11
ZX-LDA41


## Sensor heads

## ZX-LT030

## Emitter



Receiver




- Sensor Head - Amplifier Connection Cable



Communication interface unit for ZX

## ZX-SF11



Two-sided connector cable
(for extension)
ZX-XC1A (1 m)
ZX-XC4A (4 m)
ZX-XC8A (8 m) ZX-XC9A (9 m)


## 2D CMOS Laser Measuring Sensor

## ZS-L Series

## The smart way to get higher performance and more flexibility for your process.



## Features

The scalable platform for more flexibility

- Connect and expand up to 9 controllers
- Connect Multi-calculation controller for advanced calculations like evenness or flatness
- Connect Data storage module for process-data logging
- Connect PC software for easy system set up and signal monitoring
- Sensor head with 2D-CMOS technology with high dynamic sensing range for measuring black rubber, plastic, shiny, glass and mirrow surfaces
- Advanced application settings
- Easy reconfiguration and teaching



## Ordering Information

## Sensors

Sensor Heads

Optical System	Sensing distance	Beam diameter	Resolution*1	Model
Diffuse reflection	$50 \pm 5 \mathrm{~mm}$	$900 \times 60 \mu \mathrm{~m}$	$0.8 \mu \mathrm{~m}$	ZS-LD50
	$80 \pm 15 \mathrm{~mm}$	$900 \times 60 \mu \mathrm{~m}$	$2 \mu \mathrm{~m}$	ZS-LD80
	$200 \pm 50 \mathrm{~mm}$	$900 \times 100 \mu \mathrm{~m}$	$5 \mu \mathrm{~m}$	ZS-LD200
Regular reflection	$20 \pm 1 \mathrm{~mm}$	$900 \times 25 \mu \mathrm{~m}$	$0.25 \mu \mathrm{~m}$	ZS-LD20T
	$40 \pm 2.5 \mathrm{~mm}$	$2,000 \times 35 \mu \mathrm{~m}$	$0.4 \mu \mathrm{~m}$	ZS-LD4OT

*1. This is the peak-to-peak displacement conversion value in the displacement output at the measuring center distance in high-precision mode when the number of samples to average is set to 128 and the measuring mode is set to the high-resolution mode. The standard workpiece is white aluminum ceramics in diffuse reflection mode and glass in the regular reflection mode.

Sensor Controllers

Shape	Supply Voltage	Control outputs	Model
	24 VDC	NPN outputs	ZS-LDC11
		PNP outputs	ZS-LDC41

Multi Controllers

Shape	Supply Voltage	Control outputs	Model
	24 VDC	NPN outputs	ZS-MDC11
		PNP outputs	ZS-MDC41

Data Storage Units

Shape	Supply Voltage	Control outputs	Model
	24 VDC	NPN outputs	ZS-DSU11
		PNP outputs	ZS-DSU41

## Accessories (Sold Separately)

Controller Link

Shape	Model
	ZS-XCN

Panel Mount Adapter

Shape		Model	
ZS-XPM1	For 1st Controller		
	ZS-XPM2	For expansion (from   2nd Controller on	

RS-232C Cable for Connecting to a Personal Computer

Shape	Model	Qty
	ZS-XRS2	1

Extension Cables for Sensor Heads

Cable length	Model	Qty
1 m	ZS-XC1A	1
4 m	ZS-XC4A	1
5 m	ZS-XC5B*1,*2	1
8 m	ZS-XC8A	1
10 m	ZS-XC10B*1 $^{* 1}$	1

. Up to two ZS-XC $\square$ B Cables can be connected ( 22 m max.).
*2. A Robot Cable (ZS-XC5BR) is also available.
Logging Software

Name	Model
Smart Monitor Zero   Professional	ZS-SW11E

Memory Card

Model	Model
F160-N64S(S)	64 MB
QM300-N128S	128 MB
F160-N256S	256 MB

## Specifications

## Sensor Heads

Item	Model	ZS-LD20T		ZS-LD40T		ZS-LD50		ZS-LD80		ZS-LD200	
Applicable Controllers		ZS-LDC Series									
Optical system		Regular reflection	Diffuse reflection	Regular reflection	Diffuse reflection	Diffuse reflection	Regular reflection	Diffuse reflection	Regular reflection	Diffuse reflection	Regular reflection
Measuring center distance		20 mm	6.3 mm	40 mm	30 mm	50 mm	47 mm	80 mm	78 mm	200 mm	200 mm
Measuring range		$\pm 1 \mathrm{~mm}$	$\pm 1 \mathrm{~mm}$	$\pm 2.5 \mathrm{~mm}$	$\pm 2 \mathrm{~mm}$	$\pm 5 \mathrm{~mm}$	$\pm 4 \mathrm{~mm}$	$\pm 15 \mathrm{~mm}$	$\pm 14 \mathrm{~mm}$	$\pm 50 \mathrm{~mm}$	$\pm 48 \mathrm{~mm}$
Light source		Visible semiconductor laser (wavelength: $650 \mathrm{~nm}, 1 \mathrm{~mW}$ max., Class 2)									
Beam diameter ${ }^{+1}$		$900 \times 25 \mu \mathrm{~m}$		$2,000 \times 35 \mu \mathrm{~m}$		$900 \times 60 \mu \mathrm{~m}$		$900 \times 60 \mu \mathrm{~m}$		$900 \times 100 \mu \mathrm{~m}$	
Linearity ${ }^{\text {2 }}$											$\pm 0.25 \%$ F.S.
Resolution ${ }^{3}$								$2 \mu \mathrm{~m}$		$5 \mu \mathrm{~m}$	
Temperature characteristic ${ }^{4}$		0.04\% F.S. ${ }^{\circ} \mathrm{C}$		0.02\% F.S. ${ }^{\circ} \mathrm{C}$		0.02\% F.S. ${ }^{\circ} \mathrm{C}$		0.01\% F.S. ${ }^{\circ} \mathrm{C}$		0.02\% F.S. ${ }^{\circ} \mathrm{C}$	
Sampling cycle ${ }^{\text {+5 }}$		$110 \mu \mathrm{~s}$									
Indicators	NEAR indicator	Lights near the measuring center distance, and nearer than the measuring center distance inside the measuring range. Flashes when the measurement target is outside of the measuring range or when the received light amount is insufficient.									
	FAR indicator	Lights near the measuring center distance, and further than the measuring center distance inside the measuring range. Flashes when the measurement target is outside of the measuring range or when the received light amount is insufficient.									
Operating ambient illumination		Illumination on received light surface: $3,000 \mathrm{~lx}$ or less (incandescent light)									
Ambient temperature		Operating: 0 to $50^{\circ} \mathrm{C}$, Storage: -15 to $60^{\circ} \mathrm{C}$ (with no icing or condensation)									
Ambient humidity		Operating and storage: $35 \%$ to $85 \%$ (with no condensation)									
Degree of protection		Cable length 0.5 m : IP66, cable length 2 m : IP67									
Materials		Case: Aluminum die-cast, Front cover: Glass									
Cable length		$0.5 \mathrm{~m}, 2 \mathrm{~m}$									
Weight		Approx. 350 g									
Accessories		Laser labels (1 each for JIS/EN, 3 for FDA), Ferrite cores (2), Insure Locks (2), Instruction Sheet									

1. Defined as $1 / \mathrm{e}^{2}(13.5 \%)$ of the center optical intensity at the actual measurement center distance (effective value). The beam diameter is sometimes influenced by the ambient conditions of the workpiece, such as leaked light from the main beam.
${ }^{2}$. This is the error in the measured value with respect to an ideal straight line. The standard workpiece is white aluminum ceramics in diffuse reflection mode and glass in the regular reflection mode of the ZS-LD20T/40T/50. Linearity may change according to the workpiece.
${ }^{*}$ 3. This is the peak-to-peak displacement conversion value in the displacement output at the measuring center distance in high-precision mode when the number of samples to average is set to 128 and the measuring mode is set to the high-resolution mode. The standard workpiece is white aluminum ceramics in diffuse reflection mode and glass in the regular reflection mode.
*4. This is the value obtained at the measuring center distance when the Sensor and workpiece are fixed by an aluminum jig.
*5. This value is obtained when the measuring mode is set to the high-speed mode.

## Sensor Controllers

ZS-LDC11/LDC41

Sensor Controllers Model			ZS-LDC11	ZS-LDC41
No. of samples to average			1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, or 4096	
Number of mounted Sensors			1 per Sensor Controller	
External interface	Connection method		Serial I/O: connector, Other: pre-wired (standard cable length: 2 m )	
	Serial I/O	USB 2.0	1 port, Full Speed ( 12 Mbps ), MINI-B	
		RS-232C	1 port, 115,200 bps max.	
	Outputs	Judgement outputs	3 outputs: HIGH, PASS, and LOW NPN open-collector, 30 VDC, 50 mA max., residual voltage: 1.2 V max.	3 outputs: HIGH, PASS, and LOW PNP open-collector, 50 mA max., residual voltage: 1.2 V max.
		Linear outputs	Selectable from 2 types of output, voltage or current (selected by slide switch on base).   Voltage output: -10 to 10 V , output impedance: 40 .   Current output: 4 to 20 mA , maximum load resistance: 300 .	
	Inputs	Laser OFF, ZERO reset timing, RESET	ON: Short-circuited with 0 V terminal or 1.5 V or less OFF: Open (leakage current: 0.1 mA max.)	ON: Short-circuited to supply voltage or within 1.5 V of supply voltage   OFF: Open (leakage current: 0.1 mA max.)
Functions			Display: Measured value, threshold value, voltage/current, received light amount, and resolution   Sensing: Mode, gain, measurement object, head installation   Filter: Smooth, average, and differentiation   Outputs: Scaling, various hold values, and zero reset   I/O settings: Linear (focus/correction), judgements (hysteresis and timer), non-measurement, and bank   (switching and clear)   System: Save, initialization, measurement information display, communications settings, key lock, lan-   guage, and data load	
Status indicators			HIGH (orange), PASS (green), LOW (orange), LDON (green), ZERO (orange), and ENABLE (green)	
Segment display		Main display	8 -segment red LED, 6 digits	
		Sub-display	8 -segment green LED, 6 digits	
LCD			16 digits $\times 2$ rows, Color of characters: green, Resolution per character: $5 \times 8$ pixel matrix	
Setting inputs		Setting keys	Direction keys (UP, DOWN, LEFT, and RIGHT), SET key, ESC key, MENU key, and function keys (1 to 4)	
		Slide switch	Threshold switch (2 states: High/Low), mode switch (3 states: FUN, TEACH, and RUN)	
Power supply voltage			21.6 V to 26.4 VDC (including ripple)	


Sensor Controllers	Model	ZS-LDC11
Current consumption	0.5 A max. (when Sensor Head is connected)	
Ambient temperature	Operating: 0 to $50^{\circ} \mathrm{C}$, Storage: -15 to $60^{\circ} \mathrm{C}$ (with no icing or condensation)	
Ambient humidity	Operating and storage: $35 \%$ to $85 \%$ (with no condensation)	
Materials	Case: Polycarbonate (PC)	
Weight	Approx. 280 g (excluding packing materials and accessories)	
Accessories	Ferrite core (1), Instruction Sheet	

## ZS-MDC11/MDC41 Multi-Controllers

Basic specifications are the same as those for the
Sensor Controllers.
The following points, however, are different
Controller Link Unit
Connection Using
the ZS-XCN
(1) Sensor Heads cannot be connected.
(2) A maximum 9 of Controllers can be connected. Control Link Units are required to connect Controllers.
(3) Processing functions between Controllers: Math functions


Data Storage Units

Sensor Controllers Model			ZS-DSU11	ZS-DSU41
Number of mounted Sensor Heads			Cannot be connected	
Number of connectable Controllers			10 Controllers max. (ZS-MDC: 1 Controller, ZS-LDC: 9 Controllers max.)**	
Connectable Controllers			ZS-LDCDप, ZS-MDC口 $\square$	
External interface	Connection method		Serial I/O: connector, Other: pre-wired (standard cable length: 2 m )	
	Serial I/O	USB 2.0	1 port, Full Speed (12 Mbps), MINI-B	
		RS-232C	1 port, 115,200 bps max.	
	Outputs		3 outputs: HIGH, PASS, and LOW NPN open-collector, 30 VDC, 50 mA max., residual voltage: 1.2 V max.	3 outputs: HIGH, PASS, and LOW PNP open-collector, 50 mA max., residual voltage: 1.2 V max.
	Inputs		ON: Short-circuited with 0 V terminal or 1.5 V or less OFF: Open (leakage current: 0.1 mA max.)	ON: Short-circuited to supply voltage or within 1.5 V of supply voltage   OFF: Open (leakage current: 0.1 mA max.)
Data resolution			32 bits	
Functions	Logging trigger functions		Start and stop triggers can be set separately; external triggers, data triggers (self-triggers), and time triggers	
	Other functions		External banks, alarm outputs, saved data format customization, and clock	
Status indicators			OUT (orange), PWR (green), ACCESS (orange), and ERR (red)	
Segment display			8 -segment green LEDs, 6 digits	
LCD			16 digits $\times 2$ rows, Color of characters: green, Resolution per character: $5 \times 8$ pixel matrix	
Setting inputs		Setting keys	Direction keys (UP, DOWN, LEFT, and RIGHT), SET key, ESC key, MENU key, and function keys (1 to 4)	
		Slide switch	Threshold switch (2 states: High/Low), mode switch (3 states: FUN, TEACH, and RUN)	
Power supply voltage			21.6 V to 26.4 VDC (including ripple)	
Current consumption			0.5 A max.	
Ambient temperature			Operating: 0 to $50^{\circ} \mathrm{C}$, Storage: -15 to $60^{\circ} \mathrm{C}$ (with no icing or condensation)	
Ambient humidity			Operating and storage: $35 \%$ to $85 \%$ (with no condensation)	
Materials			Case: Polycarbonate (PC)	
Weight			Approx. 280 g (excluding packing materials and accessories)	
Accessories			Ferrite core (1) Instruction Sheet, Tools for Data Storage Unit: CSV File Converter for Data Storage Unit, Smart Analyzer Macro Edition (Excel macros for analysis of collected data)	

". Control Link Units are required to connect Controllers.

## Sensor Heads

ZS-LD50/LD80/LD200


ZS-LD20T/LD40T


Panel Mount Adapters
ZS-XPM1/XPM2 (Dimension for Panel Mounting)



Laser Label Indications
Attach the following warning label to the side of the ZS-L-series Sensor Head.


## READ AND UNDERSTAND THIS DOCUMENT

Please read and understand this document before using the products. Please consult your OMRON representative if you have any questions or comments.

## WARRANTY

OMRON's exclusive warranty is that the products are free from defects in materials and workmanship for a period of one year (or other period if specified) from date of sale by OMRON.
OMRON MAKES NO WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, REGARDING NONINFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR PARTICULAR PURPOSE OF THE PRODUCTS. ANY BUYER OR USER ACKNOWLEDGES THAT THE BUYER OR USER ALONE HAS DETERMINED THAT THE PRODUCTS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR INTENDED USE. OMRON DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED.

## LIMITATIONS OF LIABILITY

OMRON SHALL NOT BE RESPONSIBLE FOR SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES, LOSS OF PROFITS OR COMMERCIAL LOSS IN ANY WAY CONNECTED WITH THE PRODUCTS, WHETHER SUCH CLAIM IS BASED ON CONTRACT, WARRANTY, NEGLIGENCE, OR STRICT LIABILITY.
In no event shall responsibility of OMRON for any act exceed the individual price of the product on which liability is asserted.
IN NO EVENT SHALL OMRON BE RESPONSIBLE FOR WARRANTY, REPAIR, OR OTHER CLAIMS REGARDING THE PRODUCTS UNLESS OMRON's ANALYSIS CONFIRMS THAT THE PRODUCTS WERE PROPERLY HANDLED, STORED, INSTALLED, AND MAINTAINED AND NOT SUBJECT TO CONTAMINATION, ABUSE, MISUSE, OR INAPPROPRIATE MODIFICATION OR REPAIR.

## SUITABILITY FOR USE

THE PRODUCTS CONTAINED IN THIS DOCUMENT ARE NOT SAFETY RATED. THEY ARE NOT DESIGNED OR RATED FOR ENSURING SAFETY OF PERSONS, AND SHOULD NOT BE RELIED UPON AS A SAFETY COMPONENT OR PROTECTIVE DEVICE FOR SUCH PURPOSES. Please refer to separate catalogs for OMRON's safety rated products.
OMRON shall not be responsible for conformity with any standards, codes, or regulations that apply to the combination of products in the customer's application or use of the product.
At the customer's request, OMRON will provide applicable third party certification documents identifying ratings and limitations of use that apply to the products. This information by itself is not sufficient for a complete determination of the suitability of the products in combination with the end product, machine, system, or other application or use.

The following are some examples of applications for which particular attention must be given. This is not intended to be an exhaustive list of all possible uses of the products, nor is it intended to imply that the uses listed may be suitable for the products:

- Outdoor use, uses involving potential chemical contamination or electrical interference, or conditions or uses not described in this document.
- Nuclear energy control systems, combustion systems, railroad systems, aviation systems, medical equipment, amusement machines, vehicles, safety equipment, and installations subject to separate industry or government regulations.
- Systems, machines, and equipment that could present a risk to life or property.
Please know and observe all prohibitions of use applicable to the products.
NEVER USE THE PRODUCTS FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR PROPERTY WITHOUT ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO ADDRESS THE RISKS, AND THAT THE OMRON PRODUCT IS PROPERLY RATED AND INSTALLED FOR THE INTENDED USE WITHIN THE OVERALL EQUIPMENT OR SYSTEM.


## PERFORMANCE DATA

Performance data given in this document is provided as a guide for the user in determining suitability and does not constitute a warranty. It may represent the result of OMRON's test conditions, and the users must correlate it to actual application requirements. Actual performance is subject to the OMRON Warranty and Limitations of Liability.

## CHANGE IN SPECIFICATIONS

Product specifications and accessories may be changed at any time based on improvements and other reasons.
It is our practice to change model numbers when published ratings or features are changed, or when significant construction changes are made. However, some specifications of the product may be changed without any notice. When in doubt, special model numbers may be assigned to fix or establish key specifications for your application on your request. Please consult with your OMRON representative at any time to confirm actual specifications of purchased products.

## DIMENSIONS AND WEIGHTS

Dimensions and weights are nominal and are not to be used for manufacturing purposes, even when tolerances are shown.

## ERRORS AND OMISSIONS

The information in this document has been carefully checked and is believed to be accurate; however, no responsibility is assumed for clerical, typographical, or proofreading errors, or omissions.

## PROGRAMMABLE PRODUCTS

OMRON shall not be responsible for the user's programming of a programmable product, or any consequence thereof.

## COPYRIGHT AND COPY PERMISSION

This document shall not be copied for sales or promotions without permission.
This document is protected by copyright and is intended solely for use in conjunction with the product. Please notify us before copying or reproducing this document in any manner, for any other purpose. If copying or transmitting this document to another, please copy or transmit it in its entirety.

## ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.

To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .
Cat. No. Z215-E2-01A-X In the interest of product improvement, specifications are subject to change without notice.

High-precision Visual Displacement Measurement System
$Z 300$

# 2-Dimensional CCD is Built in. A New Type of Displacement Sensor Utilizing the Best and Most Up-to-date Image Processing Technologies. 



## Features

Stable measurement of a transparent object or a glass. A wide variety of sensor heads for enhanced detection possibilities.
OMRON's Z300 makes the notion that displacement sensors cannot perform stable measurement of a transparent object or a glass a thing of the past. The newly-developed 2-dimensional CCD (S-CCD) incorporated in the Z300, combined with upgraded performance of the controller, provides enhanced stability and accuracy in measurement of a transparent object. The latest algorithm employed by the Z300 enables optimal sensitivity even if there is a big difference between the amount of reflected light from the surface and that from the bottom of a glass. Enhanced measurement area and a variety of high-resolution, long-distance sensor heads greatly expand the range of applications.
The Z300 is just another example of OMRON's ongoing challenge to the limits of sensing possibilities.

Z300-S60
Super Long-range Model
Detection distance of $600 \pm 350 \mathrm{~mm}$

Z300-S10
Long-range Model Detection distance of $100 \pm 20 \mathrm{~mm}$

Z300-S5T
High-precision Model Detection distance of $50 \pm 5 \mathrm{~mm}$

Z300-S2T
Super-precision Model Detection distance of $20 \pm 1 \mathrm{~mm}$

The innovative 2-dimensional CCD (S-CCD) is the key to the sensing performance.

## The 2-dimensional CCD enables stable, high-speed

 measurement.A conventional displacement sensor using a 1-dimensional CCD cannot deal with flutter influence to the output. Therefore, the sensor requires increased number of measurements for signal averaging, which leads to slow response time. The S-CCD with a 2-dimensional CCD has solved this disadvantage, by splitting the measurement point into 60 lines for measurement in finer detail. The value per each pixel is then averaged to produce a reliable output, free from flutter influence caused by the object's surface condition. Stable detection and high-speed processing is thus possible with the Z300.


## CCD makes a difference in measurement of a transparent object.

## PSD sensor

A PSD sensor using diffuse reflection is virtually prevented from performing measurement due to insufficient reflection distribution from the surface. A sensor using the mirror reflection method, on the other hand, receives reflective light from the bottom or background of the object, which causes an error in determining the target position, impeding accurate measurement.

## CCD sensor

A CCD using the mirror reflection method is a solution. It can extract only the light reflected off the surface of the target. Accurate measurement of a transparent object is possible without being affected by reflected light from the bottom or background of the object.


## omROn

## Monitoring as the object is being measured.

## Measurement data can be recorded and played back.

Easy-to-see color display is another great feature of the Z300 (when connected to a color monitor). Monitoring at each key stage including test and adjustment, operation, or maintenance greatly facilitates efficient, error-free measurement.

Real-time monitoring		
Digital monitor	Image monitor	Trend monitor
The measured value is displayed. The use of two colors: green for "Pass" judgement, and red for "High/Low," enhances visual recognition of the measurement result.	Displays the position of measurement point as well as intensity of the reflected light.   Conveniently checks whether optimum measurement is taking place.	Continuous measurement values during a certain period of time are shown in chronological order. Changes in the measured values of a moving or rotating object can be checked at a glance.

## Monitoring during recording and playback



Any desired number of measurement data can be stored for testing with a workpiece.

Conditions during Test mode can be recorded and played back


Test measurement data obtained off-line can be saved for reference for actual in-line measurement.

NG (High/Low) judgement status is recorded and played back.


Up to 20 in-line NG data (information including reflected light condition and measurement data) can be recorded for workpiece analysis as well as for troubleshooting.

## Interactive menus provide a variety of measurement functions.

Application menu
Settings for measurement methods are easily performed using the menu.
Just follow the guidance of the monitor screen.


Expert menu
Expert menu is available for more advanced measurement. Detailed setting conditions can be conveniently programmed using the menu.

## Enhanced hold functions widen the scope of application.

With discrete hold functions equipped within the controller, the Z300 provides a variety of trigger (measurement timing) functions, making otherwise difficult applications a reality - with ease.

## Hold functions

Sampling hold


Average hold



Peak to peak hold


Length hold


Selectable trigger function


Measurement trigger can be set to the controller for desired measurement timing.

## Application

Measuring the thickness of transparent film


Measuring the thickness of sheet


Inspecting the surface uniformity of a hard disk


Measuring tire or black rubber thickness


Measurement of electrode position in the display module


Measurement of warping in transparent plastic


Shape measurement for welding robot control


Grinding measurement of a whetstone



Ordering Information

Name $\quad$ Item	Model	
Sensor	Z300-S2T	
	Z300-S5T	
	Z300-S10	
	Z300-S60	
Controller	Z300-VC10EV3	NPN input/output
	Z300-VC15EV3	PNP input/output
Liquid Crystal Monitor	Z300-KP	
Sensor Extension Cable	F150-M05L	
Monitor Cable	Z309-SC1R (See note)	Cable length: $1.5 \mathrm{~m}, 3 \mathrm{~m}, 6 \mathrm{~m}, 8 \mathrm{~m}, 13 \mathrm{~m}$ or 18 m

Note: Specify the required cable length when ordering.

## Rating/performance

Sensor: Z300-S2T/Z300-S5T/Z300-S10/Z300-S60

Model		Z300-S2T		Z300-S5T		Z300-S10		Z300-S60
		Diffuse reflection	Mirror reflection	Diffuse reflection	Mirror reflection	Diffuse reflection	Mirror reflection	Diffuse reflection only
Distance to measurement center		$\pm 5.2 \mathrm{~mm}$	20 mm   (with beam cover attached: 16 mm )	$\pm 50 \mathrm{~mm}$	$\pm 44 \mathrm{~mm}$	$\pm 100 \mathrm{~mm}$	$\pm 94 \mathrm{~mm}$	$\pm 600 \mathrm{~mm}$
Measurement range		$\pm 1 \mathrm{~mm}$		$\pm 5 \mathrm{~mm}$	$\pm 4 \mathrm{~mm}$	$\pm 20 \mathrm{~mm}$	$\pm 16 \mathrm{~mm}$	$\begin{aligned} & \pm 350 \mathrm{~mm} \\ & \text { (F.S. } 700 \mathrm{~mm} \text { ) } \end{aligned}$
Light source		Visible-light semiconductor laser (Wavelength: 650 nm , 1 mW max., Class 2)		Visible-light semiconductor laser (Wavelength: $670 \mathrm{~nm}, 1 \mathrm{~mW}$ max., Class 2)				Visible-light semiconductor laser (Wavelength: 658 nm , 15 mW max., Class 3B)
Beam dimensions (See note 1.)		$20 \mu \mathrm{~m} \times 300 \mu \mathrm{~m}\left(200 \mu \mathrm{~m}^{*}\right)$ TYP.   (distance to measurement center)   * Measurement region		$30 \mu \mathrm{~m} \times 400$ (distance to m center)	um TYP. easurement	$60 \mu \mathrm{~m} \times 1000$ (distance to $m$ center)	$\mu \mathrm{m}$ TYP. easurement	$0.3 \mathrm{~mm} \times 16\left(10.3^{\star}\right)$   mm (at 500 mm )   *Measurement region
Linearity		$\begin{aligned} & \pm 0.05 \text { \%F.S. } \\ & \text { (See note 2.) } \end{aligned}$	$\pm 0.05$ \%F.S.   (See note 3.)	$\pm 0.1$ \%F.S. (S	note 4.)			```\pm0.07 %F.S. (250 to 750 mm) \pm0.1 %F.S. (750 to 950 mm) (See note 4.)```
Resolution		$0.4 \mu \mathrm{~m}$   (See notes 5 and 6.)		$0.4 \mu \mathrm{~m}$ (See notes 7	d 9.)	$1 \mu \mathrm{~m}$ (See notes 7	d 8.)	$8 \mu \mathrm{~m}$ (at 350 mm ) $40 \mu \mathrm{~m}$ (at 600 mm ) (See notes 7 and 8.)
Sampling period (See note 10.)		540 s						
	NEAR indicator	Lights if the workpiece is close to the measurement center or is on the near side of the measurement center and inside the measurement region.   Flashes if the workpiece is outside the measurement region or if the density is excessive or insufficient.						
	FAR indicator	Lights if the workpiece is close to the measurement center or is on the far side of the measurement center and inside the measurement region.   Flashes if the workpiece is outside the measurement region or if the density is excessive or insufficient.						
Temperature characteristic (See note 11.)		$\pm 0.01$ \%F.S. ${ }^{\circ} \mathrm{C}$						
	Degree of protection	IEC IP64		IEC IP67				IEC IP66
	Ambient operating illumination	Illumination at light-receiving surface: 3,000 lx max., incandescent light						
	Ambient temperature	Operating: 0 to $+50^{\circ} \mathrm{C}$, Storage: -15 to $+60^{\circ} \mathrm{C}$ (with no icing or condensation)						
	Ambient humidity	Operating and storage: $35 \%$ to $85 \%$ (with no condensation)						
	Vibration resistance	10 to 150 Hz (double amplitude: 0.35 mm ) for 8 min . each in $X, Y$, and $Z$ directions						
Materials		Unit: Die-cast aluminum; Cable sheathing: Heat-resistant chlorinated vinyl Connector: Zinc alloy and brass						
Cable length		2 m						50 cm
Minimum bending radius		68 mm						
Weight		Approx. 600 g   (Unit: Approx. 350 g )		Approx. 800 g (Unit: Approx. 600 g )				Approx. 800 g (Unit: Approx. 700 g)
Accessories		3 ferrite cores, laser warning labels (English)						

Note: 1 . Defined at $1 / \mathrm{e}^{2}(13.5 \%)$ of the density at the light center. Light may, however, be present outside this range and if the reflection factor of the light around the workpiece is high compared to the workpiece, measurement may be affected.
2 . Error with respect to the theoretical line representing the displacement output for measurement of OMRON standard SUS blocks. The linearity varies with the type of workpiece.
3. Error with respect to the theoretical line representing the displacement output for measurement of OMRON standard quartz glass. The linearity varies with the type of workpiece.
4 . Error with respect to the theoretical line representing the displacement output for measurement of OMRON standard white alumina ceramics. The linearity varies with the type of workpiece.


5 . Displacement conversion value for peak-to-peak of displacement output. These figures are for measurement of OMRON standard quartz glass (mirror reflection mode) or OMRON standard SUS blocks (diffuse reflection) at the measurement center. In magnetic fields, it may not be possible to maintain resolution performance characteristics.
6 . These figures are for when the Sensor is connected to the Z300-VC10EV3/VC15EV3, the average number of measurements is 256 , and M command RS232C output is used.
7 . Displacement conversion value for peak-to-peak of displacement output (for measurement of OMRON standard white alumina ceramic at the measurement center).
In strong magnetic fields, it may not be possible to maintain resolution performance characteristics.
8 . With the Z300-VC10EV3/VC15EV3, at an average number of measurements of 64.
9 . With the Z300-VC10EV3/VC15EV3, at an average number of measurements of 512 .
10.Value for measurement with 1 line (high speed) set in CCD Mode.
11.Value for measurement with the space between the Sensor and the workpiece (Z300-S5T/S10/S60: white alumina ceramic; Z300-S2T: quartz glass) secured with an aluminum jig.

Controller: Z300-VC10EV3/Z300-VC15EV3

Item	mode	VISUAL mode	NON-VISUAL mode
	Number of Sensors that can be mounted	2	1
	Number of scenes	16	1
	Image memory function	NG images: 20 scenes max.; Surrounding images: 4 scenes max.; Workpiece display images: 4 scenes max.	
	Processing method	Gray center of gravity, edge centering	Edge centering
	Pre-image processing	Noise removal, smoothing	None
	Averaging/filtering	Average number of times (12 stages, 1 to 4096 times), HPF (high pass filter)	Average number of times (SLOW: 64 times; FAST: 1 time)
	Light intensity tracking function	Automatic (The light intensity tracking range can be specified.)   Fixed (Select from 32 stages.)	Automatic (The light intensity tracking range can not be specified.)   Fixed (Select either HIGH or LOW.)
	Applications	Select from the following 8 types: Surface displacement, spot displacement, maximum height, groove/indentation, level difference, transparent workpiece thickness, level difference (2 Sensors), or thickness (2 Sensors).	-
	Region specification	Region specification of line beam and displacement direction is possible.	-
	Two region measurement modes	Absolute coordinate mode and relative coordinate mode	-
	Hold functions	Sampling, peak, bottom, peak-to-peak, average, and length	-
	Two Sensor measurement modes	Simultaneous measurement and alternate measurement	-
	Measurement data	4 outputs per scene	1 output
	Equations	The following operations are possible for outputs 0 to 3 : $K+A, K-A, K+(A+B), K+(A-B)$, and $K-(A+B)$   $A$ and $B$ : Specified measurement points   K: Freed constant	-
	Results output	Judgement output (HIGH, PASS, LOW, ERROR)   $\longrightarrow$ RS-232C output   Terminal block output   Measurement value output (measurement value)   $\longrightarrow$ RS-232C output   $\longrightarrow$ Terminal block output   Analog output	Analog output
	Terminal block	```11 input points: \overline{TRIGGER, HOLD-RESET, \overline{LD-OFF,}}\mathbf{}, ALL-ZERO, ZERO0, ZERO1, RESET, and DI O to DI 3 21 output points: \overline{DO0}}\mathrm{ to }\overline{\textrm{DO2O}```	$\overline{\text { LD-OFF }}$
	Input/Output Type	Z300-VC10EV3: NPN Z300-VC15EV3: PNP	
	Monitor interface	1 channel (for pin jack or overscan monitor)	-
	Analog output resolution	The full scale for output can be divided into a maximum of 40000 gradations. Resolution (See note.) * $0.25 \mathrm{mV}( \pm 5 \mathrm{~V}), 0.4 \mu \mathrm{~A}$ ( 4 to 20 mA )	


Item mode		VISUAL mode	NON-VISUAL mode
	Supply voltage	21.6 to 26.4 VDC (including ripple)	
	Current consumption	1 A max. (with 2 Sensors connected)	
	Insulation resistance	$20 \mathrm{M} \Omega$ min. between all DC external terminals and GR terminal (100 VDC Megger, with internal surge absorber removed)	
	Dielectric strength	1000 VAC, $50 / 60 \mathrm{~Hz}$ between all DC external terminals and GR terminal (with internal surge absorber removed)	
	Leakage current	10 mA max.	
	Noise resistance	1500 Vp-p; Pulse width: $0.1 \mu \mathrm{~s} / 1 \mu \mathrm{~s}$; Rising edge: 1 -ns pulse	
	Vibration resistance	10 to 150 Hz (double amplitude: 0.1 mm ) for 8 min . each in $\mathrm{X}, \mathrm{Y}$, and Z directions	
	Shock resistance	$200 \mathrm{~m} / \mathrm{s}^{2}, 3$ times each in 6 directions	
	Ambient temperature	Operating: 0 to $+50^{\circ} \mathrm{C}$, Storage: -15 to $+60^{\circ} \mathrm{C}$ (with no icing or condensation)	
	Ambient humidity	Operating and storage: $35 \%$ to $85 \%$ (with no condensation)	
	Ambient environment	No corrosive gases	
	Ground	Ground the Z300's ground terminal to less than $100 \Omega$	
	Degree of protection	IEC60529 IP20 (in-panel)	
	Case material	Controller: ABS	
	Weight (including packaging)	Approx. 1300 g (Unit: Approx. 700 g )	
	Accessories	2 manuals, 1 resistor ( $250 \Omega, 1 / 2 \mathrm{~W}$ )	

Monitor

Monitor	Liquid Crystal Monitor
Item Model	F150-M05L
Size	5.5 inches
Type	TFT color liquid crystal
Resolution	$320 \times 240$ dots
Input signal	NTSC composite video (1.0 V / $75 \Omega$ )
Supply voltage	20.4 to 26.4 VDC
Current consumption	Approx. 700 mA
Ambient temperature	Operating: $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$, Storage: $-25^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$ (with no icing or condensation)
Ambient humidity	Operating and storage: 35 to $85 \%$ RH (with no condensation)
Weight (including packaging)	Approx. 870 g (Unit: Approx. 610 g )
Accessories	Operation manual, 4 mounting brackets

The Z300-S2T, Z300-Z5T and Z300-S10 Sensor Heads are Class 2 Laser Products according to EN60825-1 (IEC608251) and Class II Laser Product according to FDA (21 CFR1040.10) (see note). The Z300-S60 Sensor Head is a Class 3B and Class IIIB Laser Product, respectively. The Z300 Series is meant to be built into final system equipment. Pay special attention to the following precautions for the safe use of the product:

Note: Europe: Class 2 and Class 3B of EN60825-1: 1994 = IEC60825-1: 1993 U.S.A.: Class II and Class IIIB of FDA (21 CFR1040.10)

	Z300-S2T	Z300-S5T	Z300-S10
Z300-S60			
Wavelength	650 nm	670 nm	658 nm
Peak power	1 mW max.	15 mW max.	
Class	2	$3 B$	
Maximum   pulse duration	7 ms	17.5 ms	
Period	0.5 to 10 ms	0.5 to 25   ms	

(1)Use this product as specified in the operation manual. Otherwise, you may be exposed to hazardous laser radiation.
(2)The Z300 series radiates laser beams in the visible light range. Do not expose your eyes directly to the laser radiation. Ensure that the laser beam path is terminated during use. If a mirror or shiny surface is positioned in the laser beam path, ensure that the reflected beam path is also terminated.
If the Unit must be used without terminating the laser beam path, position the laser beam path so that it is not at eye level.
(3)To avoid exposure to hazardous laser radiation, do not displace nor remove the protective housing during operation, maintenance, and any other servicing.
(4)The user should return the product to OMRON for all repair and servicing.
(5)As for countries other than those of Europe and the U.S.A., observe the regulations and standards specified by each country.

## Precautions

## Warming up

After turning on the power, wait about 30 minutes before using the equipment. The circuits are not stable after turning on the power, and thus measured values tend to gradually drift.

## Dimensions (Unit: mm)

Sensor

Z300-S2T


Z300-S5T


Z300-S10


## Z300-S60



## Controller

Z300-VC10EV3
Z300-VC15EV3


Console
Z300-KP


LCD monitor
F150-M05L


Panel opening dimensions


## Profile Measuring System

## $Z 500$

High-Precision Sensor that Measures and Displays an Object's Profile.


## Features

OMRON's original line beam method provides a complete solution to profile measurement problems.
Conventional non-contact measurement of the profile of an object commonly uses a displacement sensor to measure the height of the object, by moving the object or the sensor.
However, this system has several disadvantages, such as lower measurement accuracy resulting from object or sensor movement as well as high system construction cost.
By utilizing a unique wide beam method and 2-dimensional CCD, OMRON's Z500 eliminates these problems.
Through its capability of measuring a diversely-shaped objects in a stable manner, the $Z 500$ can meet a variety of application needs.

Principle of line beam method
A wide beam is applied to the object to be measured. A 2-dimensional CCD receives
the reflected light to measure the 2-dimensional profile of the object.


## Application

Measurement of connector pin configuration


Height measurement for cream- Rivet height measurement soldered joint on PCB


Door gap measurement


## Features

## Measures the shape of object instantly.

A complete solution to the disadvantages of conventional measurement systems.
Measurement by displacement sensor


Enjoy the following advantages from Z500 ! - Moving the object or sensor is no longer necessary. - Various data processing and calculation functions are performed automatically.

Lower system construction cost Higher measurement accuracy Shorter measurement time

## Accurate and stable measurement.

OMRON's original 2-dimensional SW-CCD and multiple light intensity control system enable stable measurement of objects with round shape and other surface conditions.

## A variety of measurement items.

Various measurement items, such as level difference, width, and edge position, can be selected depending on the specific application.
Permitting simultaneous measurement of up to 8 items, the Z500 is applicable to various measurement purposes.


## Four types of monitor screens

Measurement data can be displayed on 4 types of monitor screens.
These screens enable analysis and evaluation of measurement data from various viewpoints.


Profile monitor
Time-series change of profile (data on cross section height) can be checked on a 3D gray scale image.


Image monitor Both measurement data and profile image can be checked at the same time.


Digital monitor
Two or more measurement data can be checked at the same time.


Trend monitor Time-series change of measurement data can be checked.

## System configuration



Ordering Information

Name	Item	Model
Sensor		
	Z500-SW2T	Cable length: 2 m
	Z500-SW6	Cable length: 0.5 m
	Z500-SW17	Cable length: 2 m
Controller	Z500-MC10E	NPN input/output
	Z500-MC15E	PNP input/output
Console	Z300-KP	
Liquid Crystal Monitor	F150-M05L	
Sensor Extension Cable	Z309-SC1R (See note)	Cable length: $1.5 \mathrm{~m}, 3 \mathrm{~m}, 6 \mathrm{~m}, 8 \mathrm{~m}$ or 13 m
Monitor Cable	F150-VM	Cable length: 2 m

Note: Specify the required cable length when ordering.

## Rating/Performance

Sensor Z500-SW2T/-SW6/-SW17

Model $\quad$ Z500-SW2T				Z500-SW6		Z500-SW17	
Measurement mode   Item		Diffuse reflection	Mirror reflection	Diffuse reflection	Mirror reflection	Diffuse reflection	Mirror reflection
Distance to measurement center		5.2 mm	20 mm   (with beam cover attached: 16 mm )	50 mm	44 mm	100 mm	94 mm
Measurement range		$\pm 0.8 \mathrm{~mm}$		$\pm 5 \mathrm{~mm}$	$\pm 4 \mathrm{~mm}$	$\pm 20 \mathrm{~mm}$	$\pm 16 \mathrm{~mm}$
Light source		Visible-light semiconductor laser (See note 10) (Wavelength 650 nm , 1 mW max., Class 2)		Visible-light semiconductor laser (Wavelength $658 \mathrm{~nm}, 15 \mathrm{~mW}$ max., Class 3B)			
Beam dimensions (See note 1)		Reference distance: $20 \mu \mathrm{~m} \times 4 \mathrm{~mm}$ TYP.   (Measurement region: 2 mm )		Reference distance: $30 \mu \mathrm{~m} \times 24 \mathrm{~mm}$ TYP.   (Measurement region: 6 mm )		Reference distance:   $60 \mu \mathrm{~m} \times 45 \mathrm{~mm}$ TYP.   (Measurement region: 17 mm )	
Linearity		$\pm 0.1$ \%F.S.   (See note 3)	$\pm 0.1$ \%F.S.   (See note 2)	$\pm 0.1$ \%F.S. (See note 4)			
Resolution		$0.25 \mu \mathrm{~m}$ (See notes 5 and 6)		$0.3 \mu \mathrm{~m}$ (See notes 7 and 8)		$1 \mu \mathrm{~m}$ (See notes 7 and 8)	
Sampling cycle		9.94 ms					
LED indicators (LASER indicator)		Lit while laser is ON.					
Temperature characteristic (See note 9)		0.01 \%F.S. $/{ }^{\circ} \mathrm{C}$					
Environment resistance	Degree of protection	IEC IP64		IEC IP66			
	Ambient operating illumination	Illumination at light-receiving surface: 3,000 lx max., incandescent light					
	Ambient temperature	Operating: 0 to $+50^{\circ} \mathrm{C}$, Storage: -15 to $+60^{\circ} \mathrm{C}$ (with no icing or condensation)					
	Ambient humidity	Operating and storage: 35 to 85 \% RH (with no condensation)					
	Vibration resistance	10 to 150 Hz (single amplitude: 0.35 mm ) for 80 min. each in $X, Y$, and $Z$ directions					
Materials		Unit: Die-cast aluminum Cable sheathing: Heat-resistant chlorinated vinyl Connector: zinc alloy and brass					
Cable length		2 m		0.5 m		2 m	
Minimum bending radius		68 mm					
Weight (including packaging)		Approx. 600 g   (Unit: Approx. 350 g )		Approx. 700 g (Unit: Approx. 600 g )		Approx. 800 g (Unit: Approx. 600 g )	
Accessories		3 ferrite cores, laser warning labels (English)					

Note: 1 . Defined at $1 / \mathrm{e}^{2}(13.5 \%)$ of the density at the light center. Light may, however, be present outside this range and if the reflection factor of the light around the workpiece is high compared to the workpiece, measurement may be affected.
2 . Error with respect to the theoretical line representing the displacement output for measurement of OMRON standard quartz glass. The linearity varies with the type of workpiece.
3. Error with respect to the theoretical line representing the displacement output for measurement of OMRON standard SUS blocks. The linearity varies with the type of workpiece.
4 . Error with respect to the theoretical line representing the displacement output for measurement of OMRON standard white alumina ceramics. The linearity varies with the type of workpiece.


5 . Displacement conversion value for peak-to-peak of displacement output. These figures are for measurement of OMRON standard quartz glass (mirror reflec-
tion mode) or OMRON standard SUS blocks (diffuse reflection mode) at the measurement center. In strong magnetic fields, it may not be possible to maintain resolution performance characteristics.
6 . These figures are for when the Sensor is connected to the $\mathrm{Z} 500-\mathrm{MC} 10 \mathrm{E} / \mathrm{MC} 15 \mathrm{E}$, the average number of measurements is 16 . Measurement data are sent to PC via RS-232C cable for calculation of their average values.
7. Displacement conversion value for peak-to-peak of displacement output (for measurement of OMRON standard white alumina ceramic at the measurement center). In strong magnetic fields, it may not be possible to maintain resolution performance characteristics.
8 . With the Z500-MC10E/MC15E, at an average number of measurements of 64 . Measurement data are sent to PC via RS-232C cable for calculation of their average values.
9. Value for measurement with the space between the Sensor and the workpiece (white alumina ceramic) secured with an aluminum jig.
10. Higher power laser type (Class 3B) is also available. For further information, please contact us.

Controller Z500-MC10E/MC15E


Note: For measurement at an average number of times of 64 with an OMRON K3AS Linear Sensor Controller connected.

Monitor	
Monitor	Liquid Crystal Monitor
Item Model	F150-M05L
Panel size	5.5 inches
Panel type	TFT color liquid crystal
Resolution	$320 \times 240$ dots
Input signal	NTSC composite video (1.0 V/75 $\Omega$ )
Power supply voltage	20.4 to 26.4 VDC
Current consumption	Approx. 700 mA
Ambient temperature	Operating: 0 to $+50^{\circ} \mathrm{C}$, Storage: -25 to $+65^{\circ} \mathrm{C}$ (with no icing or condensation)
Ambient humidity	Operating and storage: 35 to $85 \%$ RH (with no condensation)
Weight (including packaging)	Approx. 870 g (Unit: Approx. 610 g )
Accessories	Operation manual, 4 mounting brackets

## Laser Safety

The Z500-SW2T Sensor Head is a Class 2 Laser Product according to EN60825-1 (IEC60825-1) and Class II Laser Product according to FDA (21 CFR1040.10) (see note). The Z500-SW6 and Z500-SW17 Sensor Heads are Class 3B and Class IIIB Laser Products, respectively. The Z500 Series is meant to be built into final system equipment. Pay special attention to the following precautions for the safe use of the product:

Note: Europe: Class 2 and Class 3B of EN60825-1: $1994=$ IEC60825-1: 1993 U.S.A.: Class II and Class IIIB of FDA (21 CFR1040.10)

	Z500-SW2T	Z500-SW6/Z500-SW17
Wavelength	650 nm	658 nm
Maximum pulse duration	10 ms	17.5 ms
Cycle	0.5 to 10 ms	0.5 to 25 ms
Peak power	1 mW max.	15 mW max.
Class	2	$3 B$

(1)Use this product as specified in the operation manual. Otherwise, you may be exposed to hazardous laser radiation.
(2)The Z500 series radiates laser beams in the visible light range. Do not expose your eyes directly to the laser radiation. Ensure that the laser beam path is terminated during use. If a mirror or shiny surface is positioned in the laser beam path, ensure that the reflected beam path is also terminated. If the Unit must be used without terminating the laser beam path, position the laser beam path so that it is not at eye level.
(3)To avoid exposure to hazardous laser radiation, do not displace nor remove the protective housing during operation, maintenance, and any other servicing.
(4)The user should return the product to OMRON for all repair and servicing.
(5)As for countries other than those of Europe and the U.S.A., observe the regulations and standards specified by each country.

## Dimensions (Unit: mm)

## Sensor

## Z500-SW2T



Z500-SW6


## ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.

To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .
Cat. No. Q02E-EN-02 In the interest of product improvement, specifications are subject to change without notice.

## Welding Bead Sensor

## 2510

## In-line Inspection of Welding Beads

- Inspect for welding flaws by measuring the bead shape.
- Accumulate and output the profile data. Greatly simplify the management of welding bead quality.
- The high-speed $10-\mathrm{ms}$ measurement period allows 100\% in-line inspection.
- Automatic light intensity (brightness) adjustment provides stable measurement of fluctuating metal surfaces.
- The compact sensor head contains both the transmitter and receiver, so mounting space is not an issue.


Improve quality by performing 100\% inspection of weld strength uniformity.


Detect Various Bead Flaws



## Specifications

## Controllers:

## Z510-WC10E and Z510-WC15E

General Specifications

Item	Specification
Supply voltage	21.6 to 26.4 VDC
Current consumption	1 A max. (with 2 Sensors connected)
Insulation resistance	$20 \mathrm{M} \Omega$ min. (at 100 V DC ) between DC external terminals and GR terminal (with internal surge absorber removed)
Dielectric strength	1,000 VAC, $50 / 60 \mathrm{~Hz}$ between DC external terminals and GR terminal (with internal surge absorber removed)
Leakage current	10 mA max.
Noise resistance	$\begin{aligned} & \text { 1,500 Vp-p; pulse width: } 0.1 \mu \mathrm{~s} / 1 \mu \mathrm{~s} \text {; rising } \\ & \text { edge: } 1 \text {-ns pulse } \end{aligned}$
Vibration resistance	10 to 150 Hz (double amplitude of 0.1 mm ) for 8 minutes each in the $\mathrm{X}, \mathrm{Y}$, and Z directions
Shock resistance	$200 \mathrm{~m} / \mathrm{s}^{2} 3$ times each in 6 directions
Ambient temperature	Operating: 0 to $50^{\circ} \mathrm{C}$ (with no icing or condensation)   Storage: -15 to $60^{\circ} \mathrm{C}$ (with no icing or condensation)
Ambient humidity	Operating and storage: $35 \%$ to $85 \%$ (with no condensation)
Atmosphere	No corrosive gases
Grounding	Less than $100 \Omega$
Degree of protection	IEC60529 IP20 (In-panel)
Material	Case: ABS

Characteristics

Item	Specification
Number of Sensors	Up to 2 Sensors can be connected.
Number of scenes	16
Light intensity tracking function	Automatic (The light intensity tracking range can be specified.)   Fixed (Select one of 31 stages.)
Measurement items	Select one of the following 6 items: Deviation from reference surface, Bead height, Width, Bead change, Peak/Bottom, Inspection length
Region specification	A region can be specified in the direction of the line beam.
Data storage	2,048 points max.
Trigger function	Free-run, External 1, External 2, or Auto
Results output	- Judgement output -RS-232C output - Terminal block output - Measurement value output (measurement value) —RS-232C output —Analog output
Terminal block	
Monitor interface	1 channel (for pin jack or overscan monitor)
Analog output resolution	The full-scale output can be divided into 40,000 gradations max.   Resolution (See note.): $0.25 \mathrm{mV}( \pm 5 \mathrm{~V})$ $0.4 \mu \mathrm{~A}(4$ to 20 mA$)$
Weight	Approx. 700 g (Controller only)

Note: This resolution is for measurements with an OMRON K3AS Linear Sen-
sor Controller connected and values averaged over 64 measurements.

Sensors: Z510-SW2T, Z510-SW6, and Z510-SW17

Sensor model		Z510-SW2T		Z510-SW6		Z510-SW17	
Measurement mode		Mirror reflection	Diffuse reflection	Diffuse reflection	Mirror reflection	Diffuse reflection	Mirror reflection
			$5$		$4$		
Measurement	distance at center	20 mm (16 mm with beam cover mounted)	5.2 mm	50 mm	44 mm	100 mm	94 mm
Measurement range		$\pm 0.8 \mathrm{~mm}$		$\pm 5 \mathrm{~mm}$	$\pm 4 \mathrm{~mm}$	$\pm 20 \mathrm{~mm}$	$\pm 16 \mathrm{~mm}$
Light source		Visible semiconductor laser (Wavelength: $670 \mathrm{~nm}, 15 \mathrm{~mW}$ max., class 3B)		Visible semiconductor laser   (Wavelength: $658 \mathrm{~nm}, 15 \mathrm{~mW}$ max., class 3B)			
Beam dimensions (See note 1.)		$20 \mu \mathrm{~m} \times 4 \mathrm{~mm}$ typical at the reference distance (2-mm measurement region)		$30 \mu \mathrm{~m} \times 24 \mathrm{~mm}$ typical at the reference distance (6-mm measurement region)		$60 \mu \mathrm{~m} \times 45 \mathrm{~mm}$ typical at the reference distance (17-mm measurement region)	
Linearity		$\begin{array}{\|l\|} \hline \pm 0.1 \% \text { F.S. } \\ \text { (See note 2.) } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \pm 0.1 \% \text { F.S. } \\ \text { (See note 3.) } \\ \hline \end{array}$	$\pm 0.1 \%$ F.S. (See note 4.)			
Resolution		$0.25 \mu \mathrm{~m}$ (See notes 5 and 6.)		$0.3 \mu \mathrm{~m}$ (See notes 7 and 8.)		$1 \mu \mathrm{~m}$ (See notes 7 and 8.)	
Sampling period		9.94 ms					
LED indicator (Laser indicator)		Lit when the laser is ON.					
Temperature characteristic (See note 9.)		0.01\% F.S. $/{ }^{\circ} \mathrm{C}$					
Environmental resistance	Degree of protection	IP64		IP66			
	Ambient operating illumination	Illumination at light-receiver surface: 3,000 Ix max. (incandescent light)					
	Ambient temperature	Operating: 0 to $50^{\circ} \mathrm{C}$ (with no icing or condensation)   Storage: -15 to $60^{\circ} \mathrm{C}$ (with no icing or condensation)					
	Ambient humidity	Operating and storage: $35 \%$ to $85 \%$ (with no condensation)					
	Vibration (destruction)	10 to 150 Hz (double amplitude of 0.35 mm ) for 8 minutes each in the X , Y, and Z directions					
Materials		Controller: Die-cast aluminum Cable sheathing: Heat-resistant PVC Connector: Zinc alloy and brass					
Cable length		0.5 m					
Minimum bending radius		68 mm					
Weight		Approx. 350 g		Approx. 600 g			

Note: 1. The minimum light intensity at the edges of the beam is defined as $1 / \mathrm{e}^{2}(13.5 \%)$ of the intensity at the center of the beam. Some light will scatter beyond this beam region and the measurement may be affected if the immediate vicinity around the workpiece is highly reflective.
2. This is the error with respect to the theoretical line of the displacement output when measuring the standard OMRON quartz glass. The linearity may vary depending on the workpiece being used.
3. This is the error with respect to the theoretical line of the displacement output when measuring a standard OMRON stainless-steel block. The linearity may vary depending on the workpiece being used.
4. This is the error with respect to the theoretical line of the displacement output when measuring the standard OMRON white alumina ceramic. The linearity may vary depending on the workpiece being used.
5. This is the displacement output's peak-to-peak displacement conversion value. These figures are for measurement of the standard OMRON quartz glass (mirror reflection) or standard OMRON stainless-steel block (diffuse reflection) at the center of the measurement region. The resolution performance characteristics may not be met when operating in a magnetic field.
6. These figures are for Sensors connected to a Z510-WC10E or Z510-WC15E and averaged over 16 measurements. The averaged data was transmitted to a PC through an RS-232C connection for storage and processing.
7. This is the displacement output's peak-to-peak displacement conversion value. (These figures are for measurement of the standard OMRON white alumina ceramic at the center of the measurement region.)
The resolution performance characteristics may not be met when operating in a strong magnetic field.
8. These figures are for Sensors connected to a Z510-WC10E or Z510-WC15E and averaged over 64 measurements. The averaged data was transmitted to a PC through an RS-232C connection for storage and calculations.
9. This is the value measured when the gap between the Sensor and workpiece (white alumina ceramic) is fixed with an aluminum jig.

## Multi-Dimensional Sensor

## 2550

- Inline profile inspections for workpieces made of metal, plastic, or other materials all at one time



## Features



## Specifications

## Z550-MC10/MC15 Controller



1. The sampling interval varies depending on the measurement settings. Check the actual sampling interval on the image monitor.
*2. When performing measurement taking the average of every 64 measurements with an OMRON K3AS linear sensor controller connected.

## Z550-SW70 Sensor


*1. For 60-mm measurement range mode
${ }^{*}$ 2. Defined as $1 / \mathrm{e}^{2}(13.5 \%)$ of the central light intensity. Leakage of light is also present in areas other than those defined. Thus, there are some influences in cases where the reflection factor of the area surrounding the workpiece is higher than that of the workpiece itself.
*3. When an OMRON-standard workpiece (alumina ceramics) is placed at 200-mm distance, and edge position is measured. 60-mm measurement range mode is used. The average of 16 measurements is taken. Note that the resolution performance may not be satisfied in the presence of strong magnetic fields
*4. When an OMRON-standard workpiece (alumina ceramics) is placed $200-\mathrm{mm}$ away and the average height of all lines is measured. The measuring range is 60 mm and the average of 16 measurements is taken. Resolution performance, however, may not be satisfied in the presence of strong magnetic fields.
5. The error in relation to an ideal straight line when the average height of all lines on an OMRON-standard workpiece (alumina ceramics) is measured. The measuring range is 60 mm . The degree of linearity may change depending on the workpiece.

60-mm Range Mode


[^23]
## Smart Sensors (Inductive Displacement Type)

## ZX-E Series

> Smart Sensors that use the eddy current method are now available. Develop new applications with sub-micron sensing technology.


## Features

Designed to meet your measurement needs
What's innovative about the ZX-E sensor is that the same amplifer unit can be attached to any one of five sensor headds; It's simply a matter of selecting the sensor head that best suits your measurement application. And there's total compatibility between all sensor heads and the amplifier, making maintenance quick and easy.

## Plug \& Play Concept

All sensor heads are fully compatible to the amplifier unit and can be selected based on application. Also for maintenance reason it is more efficient and cost saving to replace only the sensor head.


Simply Linearity Adjustment
With the ZX-E it is possible to adjust the linearity of the sensor for different types of metals, ferrous and non-ferrous. Using Omron's patented Linearity Adjustment Function you can perform a teaching function at $0 \%, 50 \%$ and $100 \%$ of the measurement distance from the object to the sensor head. The amplifier then confirms the result. This feature greatly reduces setting time.

Mutual interference prevention function
Up to five sensors can be combined very closely together without any mutual interference occurring between them. This is achieved by placing a calculating unit (ZX-CAL2) between each sensor. With this unique feature multiple mea-
 surements can be made in a machine or a process.

## Smart calculation function

By inserting a 'calculation unit' (ZXCAL2) between two amplifiers the thickness and difference measurements are easily obtained, and these results will be
 displayed on the am- Calculation unit for thickness-measurement plifier. This technolo-
gy, patented by Omron, eliminates the need for connecting a digital panel meter and the troubles one wiring and setting up associated with it.

## Easy-to-read resolution display

With Omron's resolution display function (patend pending), the resolution based on the object being measured is displayed and can be verified in realtime. It is easy to learn the margin for threshold values with this resolution display, allowing accurate judgements on whether or not detection is possible.


Easy-to-see resolution (patent pending)

## Intelligent Communiction

SmartMonitor V2 software makes sensor set-up easier! With Omron's interface unit and SmartMonitor V2 software the ZX-E sensor can be easily connected to a Notebook or PC. The software is ideal for quickly and easily setting up parameters and values via the menu screen from a PC or using the serial port of a PLC. It offers full visualisation of all measured values on the spot. Threshold settings can be done using the Position Teach feature or by entering the values directly. All parameters and
modes can be changed within seconds and interrupt time is kept to a minimum, which is very important in production processes. In addition, all settings can be saved on a computer, end reloaded based on production requirements.


Smart Monitor software tool enables easy system set-up via PC or Notebook
Data logging results can be processed using SmartMonitor V2 software and stored automatically (as an Excel csv file) for quality control information, leading to smoother production runs. Data can also be displayed in waveform during logging. Waveforms can be easily monitored and threshold values set simply by dragging an dropping. High-speed waveforms can be obtained and displayed in a one-shot operation. This innovative feature is ideal for use in high-speed processes, where the software can be used to generate a waveform.


Wave form monitoring


Threshold setting by drag \& drop graphic function


## Ordering Information

Sensors
Sensor Heads

Shape	Dimensions	Sensing distance	Accuracy *1	Model
Cylindrical	3 dia. $\times 18 \mathrm{~mm}$	0.5 mm	$1 \mu \mathrm{~m}$	ZX-EDR5T
	5.4 dia. $\times 18 \mathrm{~mm}$	1 mm		ZX-ED01T *2
	8 dia. $\times 22 \mathrm{~mm}$	2 mm		ZX-ED02T *2
Screw-shaped	$\mathrm{M} 10 \times 22 \mathrm{~mm}$	2 mm		ZX-EM02T *2
	$\mathrm{M} 18 \times 46.3 \mathrm{~mm}$	7 mm		ZX-EM07MT *2

*1: For an average count of 4,096 .
*2: Models with Protective Spiral Tubes are also available. Add a suffix of "-S" to the above model numbers when ordering. (Example: ZX-ED01T-S

Amplifier Units

Appearance	Power supply	Output type	Model
	DC	NPN	ZX-EDA11
		PNP	ZX-EDA41

Note: Compatible connection with the Sensor Head

Accessories (Order Separately)
Calculating Unit

*Calculating Units are required to connect three or more Sensors.
Amplifier Mounting Brackets

Appearance	Model	Remarks
	ZX-XBE1	Attached to   each Sensor   Head
	ZX-XBE2	For DIN track   mounting

SmartMonitor Sensor Setup Tool for Personal Computer Connection

Appearance	Name	Model
	ZX-series Communica-   tions Interface Unit	ZX-SF11
	ZX-series Communica-   tions Interface Unit   +   Setup Software	ZX-   SFW11EV3
CD-ROM	ZX-series Sensor Setup   and Logging Software	ZX-   SW11EV3

Cables with Connectors on Both Ends (for Extension)

Cable length	Model	Quantity
1 m	ZX-XC1A	
4 m	ZX-XC4A	
8 m	ZX-XC8A	

## Specifications

Sensor Heads						
		Model	ZX-EDR5T	ZX-ED01T	ZX-ED02T/EM02T	ZX-EM07MT
Measurement range			0 to 0.5 mm	0 to 1 mm	0 to 2 mm	0 to 7 mm
Sensing object			Magnetic metals (Measurement ranges and linearities are different for non-magnetic metals. Refer to Engineering Data on B-67.)			
Standard reference object			$18 \times 18 \times 3 \mathrm{~mm}$		$30 \times 30 \times 3 \mathrm{~mm}$	$60 \times 60 \times 3 \mathrm{~mm}$
			Material: ferrous (S50C)			
Accuracy *1			$1 \mu \mathrm{~m}$			
Linearity *2			$\pm 0.5 \%$ F.S.			
Linear output range			Same as measurement range.			
Temperature characteristic *3 (including Amplifier Unit)			0.15\% F.S. $/{ }^{\circ} \mathrm{C}$	0.07\% F.S. $/{ }^{\circ} \mathrm{C}$		
Ambient temperature	Operating		0 to $50^{\circ} \mathrm{C}$ (with no icing or condensation)	-10 to $60^{\circ} \mathrm{C}$ (with no icing or condensation)		
	Storage		0 to $50^{\circ} \mathrm{C}$ (with no icing or condensation)	20 to $70^{\circ} \mathrm{C}$ (with no icing or condensation)		
Ambient humidity			Operating and storage: 35\% to 85\% (with no condensation)			
Insulation resistance			$50 \mathrm{M} \Omega$ min. (at 500 DC )			
Dielectric strength			1,000 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min between charged parts and case			
Vibration resistance (destruction)			10 to 55 Hz with 1.5-mm double amplitude for 2 h each in $\mathrm{X}, \mathrm{Y}$, and Z directions			
Shock resistance (destruction)			$500 \mathrm{~m} / \mathrm{s}^{2}, 3$ times each in $\mathrm{X}, \mathrm{Y}$, and Z directions			
Degree of protection (Sensor Head)			IEC60529, IP65	IEC60529, IP67		
Connection method			Connector relay (standard cable length: 2 m )			
Weight (packed state)			Approx. 120 g	Approx. 140 g		Approx. 160 g
Materials	Sensor Head	Case	Brass	Stainless steel	Brass	
		Sensing surface	Heat-resistant ABS			
	Preamplifier		PES			
Accessories			Amplifier Mounting Brackets (ZX-XBE1), Instruction Manual			

*1:Accuracy: The resolution is the deviation ( $\pm$ З $\sigma$ ) in the linear output when connected to the ZX-EDA Amplifier Unit. The above values indicate the deviations observed 30 minutes after the power is turned ON.
(The resolution is measured with OMRON's standard reference object at $1 / 2$ of the measurement range with the ZX-EDA set for the maximum average count of 4,096 per period.)
The resolution is given at the repeat accuracy for a stationary workpiece, and is not an indication of the distance accuracy. The resolution may be adversely affected under strong electromagnetic fields.
*2: Linearity: The linearity is given as the error in an ideal straight line displacement output when measuring the standard reference object. The linearity and measurement values vary with the object being measured.
*3: Temperature characteristic: The temperature characteristic is measured with OMRON's standard reference object at $1 / 2$ of the measurement range.

Amplifier Units		
Model	ZX-EDA11	ZX-EDA41
Measurement period	$150 \mu \mathrm{~s}$	
Possible average count settings *1	1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1,024, 2,048, or 4,096	
Linear output *2	Current output: 4 to $20 \mathrm{~mA} / \mathrm{F} . \mathrm{S}$., Max. load resistance: $300 \Omega$ Voltage output: $\pm 4 \mathrm{~V}$ ( $\pm 5 \mathrm{~V}, 1$ to $5 \mathrm{~V} * 3$ ), Output impedance: $100 \Omega$	
Judgement outputs (3 outputs: HIGH/PASS/LOW)	NPN open-collector outputs, $30 \mathrm{VDC}, 50 \mathrm{~mA}$ max. Residual voltage: 1.2 V max.	PNP open-collector outputs, 30 VDC, 50 mA max. Residual voltage: 2 V max.
Zero reset input, timing input, reset input, judgement output hold input	ON: Short-circuited with $0-\mathrm{V}$ terminal or 1.5 V or less   OFF: Open (leakage current: 0.1 mA max.)	ON: Supply voltage short-circuited or supply voltage within 1.5 V   OFF: Open (leakage current: 0.1 mA max.)
Function	- Measurement value display   - Set value/output value/resolution display   - Linearity adjustment (materials selection)   - Scaling   - Display reverse   - Display OFF mode   - ECO mode   - Number of display digit changes   - Sample hold   - Peak hold   - Bottom hold, peak-to-peak hold   - Self-peak hold   - Self-bottom hold   - Average hold   - Delay hold   - Initial reset   - Linearity initialization $\quad$ - Zero relat   - OFF-delay timer   - One-shot timer - Previous value comparison   - Non-measurement setting   - Direct threshold value setting - Position teaching   - Automatic teaching   - Hysteresis width setting   - Timing inputs   - Reset input   - Judgement output hold input - Monitor focus   - Linear output correction   $-(\mathrm{A}-\mathrm{B})$ calculations *4 $\quad-(\mathrm{A}+\mathrm{B})$ calculations *4   - K-(A+B) calculation *4   - Mutual interference prevention *4   - Sensor disconnection detection   - Key lock   - Zero reset memory - Zero reset indicator   - Key lock	
Indications	Judgement indicators: High (orange), pass (green), low (yellow), 7 -segment main digital display (red), 7-segment sub-digital display (yellow), power ON (green), zero reset (green), enable (green)	
Voltage influence (including Sensor)	$0.5 \%$ F.S. of linear output value at $\pm 20 \%$ of power supply voltage	
Power supply voltage	12 to 24 VDC $\pm 10 \%$, Ripple (p-p): $10 \%$ max.	
Current consumption	140 mA max. with power supply voltage of 24 VDC (with Sensor connected)	
Ambient temperature	Operating and storage: 0 to $50^{\circ} \mathrm{C}$ (with no icing or condensation)	
Ambient humidity	Operating and storage: $35 \%$ to $85 \%$ (with no condensation)	
Insulation resistance	$20 \mathrm{M} \Omega$ min. (at 500 DC )	
Dielectric strength	1,000 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min	
Vibration resistance (destruction)	10 to 150 Hz with 0.7-mm double amplitude for 80 min each in $\mathrm{X}, \mathrm{Y}$, and Z directions	
Shock resistance (destruction)	$300 \mathrm{~m} / \mathrm{s}^{2}, 3$ times each in 6 directions (up, down, left, right, forward, backward)	
Connection method	Prewired (standard cable length: 2 m )	
Weight (packed state)	Approx. 350 g	
Materials	Case: PBT (polybutylene terephthalate), Cover: Polycabonate	
Accessories	Instruction Manual	

*1:The response speed of the linear output is calculated as the measurement period $\times$ (average count setting +1 ) (with fixed sensitivity).
The response speed of the judgement outputs is calculated as the measurement period $\times$ (average count setting +1 ) (with fixed sensitivity).
*2: The output can be switched between a current output and voltage output using a switch on the bottom of the Amplifier Unit.
*3: Setting is possible via the monitor focus function.
*4: A Calculating Unit (ZX-CAL or ZX-CAL2) is required.

## Engineering Data (Typical)

Measurement Distance vs. Linearity (with Linearity Adjusted for Standard Sensing Object)


ZX-ED01T


ZX-ED02T/ZX-EM02T


ZX-EM07MT


Size of Sensing Object vs. Linearity (with Linearity Adjusted for Each Sensing Object)

## ZX-EDR5T



ZX-ED01T


ZX-ED02T/ZX-EM02T


## ZX-EM07MT



Size of Sensing Object vs. Linearity (with Linearity Adjusted for Standard Sensing Object)

## ZX-EDR5T



## ZX-ED01T



ZX-ED02T/ZX-EM02T


## ZX-EM07MT



Material of Sensing Object vs. Linearity (with Linearity Adjusted for Each Sensing Object)

## ZX-EDR5T



ZX-ED01T


ZX-ED02T/ZX-EM02T


ZX-EM07MT


Material of Sensing Object vs. Linearity
(with Linearity Adjusted for Standard Sensing
Object and Iron)

## ZX-EDR5T



ZX-ED01T


ZX-ED02T/ZX-EM02T


ZX-EM07MT


NPN Amplifier Unit: ZX-EDA11


PNP Amplifier Unit: ZX-EDA41


## Connections: Amplifier Unit



Note 1. Use a separate stabilized power supply for the Amplifier Unit, particularly when high resolution is required.
2. Wire the Unit correctly. Incorrect wiring may result in damage to the Unit. (Do not allow wiring, particularly the linear output, to come into contact with other lines.)
3. Use the blue $(0-\mathrm{V})$ line for the power supply and use the shield wire (linear output ground) together with the black (linear output) line for linear output. Each of these grounds must be used for the designed purpose. When not using the linear output, connect the linear output ground to the $0-\mathrm{V}$ ground.


Amplifier Units

## ZX-EDA11

## ZX-EDA41



Calculating Unit
ZX-CAL / ZX-CAL2


## Precautions

## Design Precautions

Conform to the specified ratings and performance. Refer to page B-65 Specifications for details.
Objects of certain materials or shapes may not be detectable, or the detection accuracy may not be sufficiently high.

## Environment

Do not operate the product in locations subject to flammable or explosive gases.
In order to ensure safe operation and maintenance, do not install the product in the vicinity of high-voltage devices or power equipment.

Wiring
Do not use the product at voltages exceeding the rated values. Doing so may result in damage.

Do not connect the product to an AC power supply or connect the power supply in reverse.

Do not short-circuit the load for open-collector output.
Do not lay the power cable for the product together with or in the same duct as high-voltage lines or power lines. Doing so may result in incorrect operation or damage due to induction. Do not connect or disconnect connectors while the power is ON. Doing so may result in damage.

## Adjustment

Setting
When setting threshold values, ensure that the Amplifier Unit's judgement output hold input line is ON so that there is no judgement output to external devices.

## Other Precautions

Do not attempt to disassemble, repair, or modify the product. Dispose of the product using standard procedures for industrial waste.

These Sensors are not compatible with the ZX-L $\square \square$ Smart Sensors (laser type). Do not connect combinations of
ZX-E $\square \square$ Smart Sensors and ZX-L $\square \square$ Smart Sensors.

## Correct Use

Design Precautions

## Power Supplies

Allow a warm-up period of approximately 30 minutes after turning ON the power supply.

## Mutual Interference

Up to 5 Sensor Heads can be used together by connecting the ZX-CAL/ZX-CAL2 Calculating Unit between Amplifier Units. When installing Sensor Heads facing each other or in parallel, separate them by the minimum distances given in the table below.


## Mutual Interference

Model	A	B
ZX-EDR5T	5 mm	$20(3.1) \mathrm{mm}$
ZX-ED01T	10 mm	$50(5.4) \mathrm{mm}$
ZX-ED02T	20 mm	$50(8) \mathrm{mm}$
ZX-EM02T	20 mm	$50(10) \mathrm{mm}$
ZX-EM07MT	100 mm	$150(30) \mathrm{mm}$

Note: The figures in parentheses apply when the mutual interference prevention function is used.

## Compatibility

Sensors and Amplifier Units are mutually compatible. Sensors can be added or replaced individually.

## Influence of High-frequency Electromagnetic Fields

Using the product in the vicinity of devices that generate highfrequency electromagnetic fields, such as ultrasonic cleaning equipment, high-frequency generators, transceivers, mobile phones, and inverters, may result in malfunction.

## Influence of Metallic Objects

When installing the product, separate it from metallic objects by the distances shown below.


## Influence of Metallic Objects

Model	d	D
ZX-EDR5T	8 mm	mm
ZX-ED01T	10 mm	
ZX-ED02T/EM02T	12 mm	
ZX-EM07MT	55 mm	20 mm

## Wiring

## Wiring Check

After wiring is completed, before turning ON the power, confirm that the power supply is connected correctly, that there are no faulty connections, such as load short-circuits, and that the load current is correct. Incorrect wiring may result in failure.

## Cable Extension

Do not extend the cable for the Sensor and the Amplifier Unit to a length exceeding 10 m . Use a ZX-XC $\square$ A Extension Cable (sold separately) to extend the Sensor's cable. Extend the
Amplifier Unit's cable using a shielded cable of the same type.

## Power Supply

When using a commercially available switching regulator, ground the FG (frame ground) terminal.
If the power supply line is subject to surges, connect a surge absorber that meets the conditions of the operating environment.

## Calculating Unit

When using a Calculating Unit, connect the linear output ground of the corresponding Amplifier Unit.

## Connectors

Do not connect or disconnect connectors while the power is ON. Be sure hold to connectors by the cover when connecting or disconnecting.
Mounting

## Handling

When mounting the Sensor Head, do not apply excessive shock by, for example, using a hammer. Doing so may result in damage or a reduction in the level of water-proofing. Also, there are screwshaped models that require a toothed washer to allow for a tolerance in the tightening torque for the nut.

## Tightening Torque

Do not apply excessive torque when tightening the nut. Use a toothed washer if necessary.


Note: The above figure applies for use with a toothed washer. Mounting Cylindrical Models:
Tighten set screws with a tightening torque of $0.2 \mathrm{~N} \cdot \mathrm{~m}$ max.


Y92E-F5R4 (for 5.4-dia.
screws), sold separately

Model	A
ZX-EDR5T	9 to 18 mm
ZX-ED01T	
ZX-ED02T	11 to 22 mm

## Installation Location

Do not install the product in the following locations.

- Locations subject to temperatures outside the specified range
- Locations subject to condensation due to sudden temperature changes
- Locations subject to humidity levels outside range $35 \%$ to $85 \%$
- Locations subject to corrosive or flammable gases
- Locations subject to dust, salts, or metallic powder.
- Locations directly subject to vibrations and shocks
- Locations subject to direct sunlight
- Locations subject to splashes of water, oil, or chemicals
- Locations subject to strong electromagnetic or electrical fields


## Maintenance and Inspection

- Be sure to turn OFF the power supply before adjusting or removing the Sensor Head.
- Cleaning:

Do not use thinners, benzine, acetone, or kerosene for cleaning.

## Dimensions

## Sensors

Sensor Heads

## ZX-EDR5T <br> Dimensions with Mounting Bracket Attached



ZX-ED02T
Dimensions with Mounting Bracket Attached


## Dimensions with Mounting Bracket Attached



ZX-EM07MT

Dimensions with Mounting Bracket Attached


Mounting Hole Cutout Dimensions
Two, M3 holes
$\stackrel{-1}{-\infty}-$

## Amplifier Units

## ZX-EDA11

ZX-EDA41


Accessories (Sold Separately)
Preamplifier Mounting Bracket

## ZX-XBE1



Material: Stainless steel (SUS304)

## ZX-XBE2



Calculating Unit

## ZX-CAL/ZX-CAL2



ZX-series Communications Interface Unit
ZX-SF11


Cables with Connectors on Both Ends (for Extension)
ZX-XC1A (1 m)
ZX-XC4A (4 m) ZX-XC8A (8 m)


## Smart Sensor High precision contact type ZX-T Series

## ZX-T Series

## Ordering Information

## Sensors

Sensor Heads

Size	Type	Sensing distance	Resolution (See note.)	Model
6 dia.	Short type	1 mm	$0.1 \mu \mathrm{~m}$	ZX-TDS01T
6 dia.	Standard type	4 mm	$0.1 \mu \mathrm{~m}$	ZX-TDS04T
6 dia.	Low measurement type	4 mm	$0.1 \mu \mathrm{~m}$	ZX-TDS04T-L

Note: The resolution refers to the minimum value that can be read when a ZX-TDA $\square 1$ Amplifier Unit is connected.

## Amplifier Units

Appearance	Power supply	Output type	
	DC	NPN	Model
		PNP	ZX-TDA11

## Accessories (Order Separately)

Calculating Unit

Appearance	Model
	ZX-CAL2

ZX-series Communicationys Interface Unit

Appearance	Model
	ZX-SF11

SmartMonitor Sensor Setup Tool for Personal Computer Connection

Appearance	Name	Model
	ZX-series Communications Interface Unit	ZX-SF11
CD-ROM	ZX-series Communications Interface Unit + ZX-series Sensor Setup Software Basic	ZX-   SFW11EV3   *1, *2
CD-ROM	ZX-series Sensor Setup Software	$\begin{aligned} & \text { ZX-SW11EV3 } \\ & { }_{* 2} \end{aligned}$

Note: *1. When using the ZX-TDA11/41 with the SmartMonitor, either the ZX-SFW11EV3 or the ZX-SW11EV3 SmartMonitor must be used. Earlier versions cannot be used.
Note: *2. The ZX-SFW11EV3 SmartMonitor can be used for parameter setting, data logging and waveform monitoring.

Cables with Connectors on Both Ends (for Extension)*

Cable length	Model	Quantity
1 m	ZX-XC1A	1
4 m	ZX-XC4A	
8 m	ZX-XC8A	

Note: *Robot Cable models are also available
The model numbers are $\mathrm{ZX}-\mathrm{XC} \square \mathrm{R}$.
Preamplifier Mounting Brackets

Appearance	Model	Remarks
	ZX-XBT1	Attached to each   Sensor Head
	ZX-XBT2	For DIN track mount-   ing

Cables with Connectors on Both Ends (for Extension)

Cable length	Model	Quantity
1 m	ZX-XC1A	
4 m	ZX-XC4A	
8 m	ZX-XC8A	

## Specifications

## Sensor Heads

Item		ZX-TDS01T	ZX-TDS04T	ZX-TDS04T-L
Measurement range		1 mm	4 mm	
Maximum actuator travel distance		Approx. 1.5 mm	Approx. 5 mm	
Resolution (See note 1.)		$0.1 \mu \mathrm{~m}$		
Linearity (See note 2.)		0.3\% F.S.		
Operating force (See note 3.)		Approx. 0.7 N		Approx. 0.25 N
Degree of protection (Sensor Head)		IEC60529, IP67		IEC60529, IP54
Mechanical durability		10,000,000 operations min.		
Ambient temperature		Operating: $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ (with no icing or condensation) Storage: $\quad-15^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ (with no icing or condensation)		
Ambient humidity		Operating and storage: 35\% to 85\% (with no icing or condensation)		
Temperature characteristic (See note 4.)	Sensor Head	0.03\% F.S. $/{ }^{\circ} \mathrm{C}$		
	Preamplifier	0.01\% F.S. $/{ }^{\circ} \mathrm{C}$		
Weight (packed state)		Approx. 100 g		
Materials	Sensor Head	Stainless steel		
	Preamplifier	Polycarbonate		
Accessories		Instruction manual, Preamplifier Mounting Brackets (ZX-XBT1)		

Note 1. The resolution is given as the minimum value that can be read when a $Z X-T D A \square 1$ Amplifier Unit is connected. This value is taken 15 minutes after turning ON the power with the average number of operations set to 256.
2. The linearity is given as the error in an ideal straight line displacement output.
3. These figures are representative values that apply for the measurement mid-point, and are for when the provided actuator is used, with the actuator moving downwards. If the actuator moves horizontally or upwards, the operating force will be reduced. Also, if an actuator other than the standard one is used, the operating force will vary with the weight of the actuator itself.
4. These figures are representative values that apply for the mid-point of the measurement range.

## Amplifier Units

Item	ZX-TDA11	ZX-TDA41
Measurement period	1 ms	
Possible average count settings (See note 1.)	1,16,32, $64,128,256,512$, or 1,024	
Linear output (See note 2.)	Current output: 4 to $20 \mathrm{~mA} / \mathrm{F} . S .$, Max. load resistance: $300 \Omega$ Voltage output: $\pm 4 \mathrm{~V}$ ( $\pm 5 \mathrm{~V}, 1$ to 5 V (See note 3.)), Output impedance: $100 \Omega$	
Judgement outputs (3 outputs: HIGH/PASS/ LOW)	NPN open-collector outputs, $30 \mathrm{VDC}, 30 \mathrm{~mA}$ max. Residual voltage: 1.2 V max.	PNP open-collector outputs, 30 VDC, 30 mA max. Residual voltage: 2 V max.
Zero reset input, timing input, reset input, judgement output hold input	ON: Short-circuited with 0-V terminal or 1.5 V or less OFF: Open (leakage current: 0.1 mA max.)	ON: Supply voltage short-circuited or supply voltage of 1.5 V or less   OFF: Open (leakage current: 0.1 mA max.)
Function	- Measurement value display- Present value/set value/output value display   - Display reverse- ECO mode - Number of display digit changes   - Sample hold- Peak hold- Bottom hold, peak-to-peak hold   - Self-peak hold - Self-bottom hold- Zero reset   - Initial reset- Direct threshold value setting- Position teaching   - Hysteresis width setting- Timing inputs- Reset input   - Judgement output hold input - Monitor focus- (A-B) calculations (See note 4.)   - (A+B) calculations (See note 4.) - Sensor disconnection detection   - Zero reset memory- Function lock- Non-measurement setting   - Clamp value setting- Scale inversion- Zero reset indicator   - Span adjustment- Warming-up display- Pressing force alarm	
Indicators	Judgement indicators: High (orange), pass (green), low (yellow), 7 -segment main digital display (red), 7 -segment sub-digital display (yellow), power ON (green), zero reset (green), enable (green)	
Power supply voltage	12 to 24 VDC $\pm 10 \%$, Ripple (p-p): 10\% max.	
Current consumption	140 mA max. (with Sensor connected), For 24-VDC power supply voltage: $140 \mathrm{~mA} \mathrm{max}$. (with Sensor connected)	
Ambient temperature	Operating and storage: 0 to $50^{\circ} \mathrm{C}$ (with no icing or condensation)	
Temperature characteristic	0.03\% F.S. $/{ }^{\circ} \mathrm{C}$	
Connection method	Prewired (standard cable length: 2 m )	
Weight (packed state)	Approx. 350 g	
Materials	Case: PBT (polybutylene terephthalate), Cover: Polycarbonate	

Note 1. The response speed of the linear output is calculated as the measurement period $\times$ (average count setting +1 ).
The response speed of the judgement outputs is calculated as the measurement period $\times$ (average count setting +1 ).
2. The output can be switched between a current output and voltage output using a switch on the bottom of the Amplifier Unit.
3. Setting is possible via the monitor focus function.
4. A Calculating Unit (ZX-CAL2) is required.

## Characteristic Data

Output Characteristics
Voltage/Current Output

## ZX-TDS01T/-S04T/-S04T-L



[^24]ON
OFF
Note:To prevent destroying the Sensor Head, both the high and low judgment outputs will light if $101 \%$ of the upper limit of the measurement distance is reached.

NPN Amplifier Unit: ZX-TDA11


## Connectors

## Amplifier Unit



PNP Amplifier Unit: ZX-TDA41


Note 1. Use a stabilized power supply separate from other devices and power systems for the Amplifier Unit, particularly when
high resolution is required. and power systems for the Amplifier Unit, particularly when
high resolution is required.
2. Always wire correctly. Incorrect wiring may damage the Unit. Use a different ground for the linear output from the normal ground.
3. The blue line $(0 \mathrm{~V})$ is the 0 V power supply line. The shield wire (linear output GND) is used together with the black line (linear output) to connect the linear output. Wire these lines correctly. Always ground the linear output terminal even when the linear output is not used.
Note 1. Use a stabr ized por the Amplifier Unit, particularly whes

## Part Names

## Sensor Heads

ZX-TDS01T
ZX-TDS04T
ZX-TDS04T-L


Amplifier Unit
ZX-TDA11
ZX-TDA41


## Calculating Unit

## ZX-CAL2



Options (Actuators)

Model		Type (material)	Screw section	Appearance	Application	ApplicableSensor(See note.)
D5SN-	TB1	Ball type (steel)	Female screw M2.5 x 0.45		Measuring ordinary flat surfaces (standard actuator supplied with the ZX-TDS Series)	$\bigcirc$
	TB2	Ball type ( carbide steel)	Female screw M2.5 x 0.45	$58$	Measurements where abrasion resistance is critical   Measured objects: Carbide (HR90) or lower.	$\bigcirc$
	TB3	Ball type (ruby)	Female screw M2.5 x 0.45		Measurements where abrasion resistance is critical   Measured objects: Carbide (HR90) or higher.	$\bigcirc$
	TN1	Needle type (carbide steel)	$\begin{aligned} & \text { Male screw } \\ & \text { M2.5 } \times 0.45 \end{aligned}$		Measuring the bottom of grooves and holes	$\triangle$
	TF1	Flat (carbide steel)	Male screw $\text { M2.5 x } 0.45$		Measuring spherical objects	$\triangle$
	TA	Conversion Adapter (stainless steel)	Through-hole female screw $\text { M2.5 x } 0.45$		Mounting D5SN-TN1/-TF1 or commercially available actuators on ZX-TDSseries Sensors	$\bigcirc$

Note: $\bigcirc$ Replacement possible
$\triangle$ Conversion Adapter required

## Dimensions



## Mounting Jigs

Recommended Mounting Jigs
for ZX-TDS Sensors


Tightening torque: 0.6 to $0.8 \mathrm{~N} \cdot \mathrm{~m}$ (M3 screws) Material: Aluminum

Mounting Jigs for an 8-diameter Stand


Material: Brass
Mounting with 3-point Support


## Replacing Actuators

Be careful not to damage the rubber boot with pliers or other tools when replacing the actuator.

## 1. Remove the standard actuator.

- Hold the plunger's D-cut section with radio pliers or a similar tool while removing the actuator.
- If the replacement must be performed by holding the Sensor Head itself, ensure that a torque exceeding $0.15 \mathrm{~N} \cdot \mathrm{~m}$ is not applied. Applying excessive torque may have an adverse affect on plunger operation.


Radio pliers or a similar tool
2. Mount the commercial actuator to the Conversion Adapter.

- Tighten the actuator securely, and ensure that there is no looseness.
- If necessary, apply a screw-locking agent.
(Recommended: Three-Bond 1401B)


3. Mount the Conversion Adapter to the plunger.

- Hold the plunger's D-cut section with radio pliers or a similar tool while mounting and securing the Conversion Adapter.
- If the replacement must be performed by holding the Sensor Head itself, ensure that a torque exceeding $0.15 \mathrm{~N} \cdot \mathrm{~m}$ is not applied. Applying excessive torque may have an adverse affect on plunger operation.



## Precautions

## Design Precautions

- Conform to the specified ratings and performance. Refer to Specifications on page B-78 for details.
- Measurements may not be possible or may not be accurate for some materials and shapes.
- The Sensor will be destroyed if the Actuator is pressed too far. Do not use the Actuator past the point where a pressing force alarm (OVER) is displayed.
- Do not remove the rubber boot. Without the rubber boot, foreign matter may enter the Sensor Head, possibly causing the Sensor Head to malfunction.
- Use suitable torque and force when mounting the Sensor. Refer to page B-81 for details.
- The Sensor may be destroyed if excessive force is applied.


## Environment

- Do not operate the product in locations subject to flammable or explosive gases.
- In order to ensure safe operation and maintenance, do not install the product in the vicinity of high-voltage devices or power equipment.


## Wiring

- Do not use the product at voltages exceeding the rated values. Doing so may result in damage.
- Do not connect the product to an AC power supply or connect the power supply in reverse.
- Do not short-circuit the load for open-collector output.


## Correct Use

## - System Design

## Warming Up

After turning ON the power, allow the Smart Sensor to warm up for 15 minutes minimum prior to use.

## Measurements

Do not expose the plunger to forces exceeding the limits in the following diagram. Doing so may damage the plunger.

## ZX-TDS-Series Sensors



- Adjustments


## Settings

When setting the threshold value with the Smart Sensor connected to an external device, turn ON the Amplifier Unit's judgement output hold input to prevent the judgement from being output to the external device.

- Compatibility

Sensors and Amplifier Units are mutually compatible. Sensors can be added or replaced individually.

- Influence of High-frequency Electromagnetic Fields Using the product in the vicinity of devices that generate high-frequency electromagnetic fields, such as ultrasonic cleaning equipment, high-frequency generators, transceivers, mobile phones, and inverters, may result in malfunction.


## Other Precautions

Do not attempt to disassemble, repair, or modify the product.
Dispose of the product using standard procedures for industrial waste.
These Sensors are not compatible with the ZX-L $\square \square$ Smart Sensors (laser type). Do not connect combinations of ZX-E $\square \square$ Smart Sensors and ZX-T $\square \square$ Smart Sensors.

## Wiring

- Wiring Check

After wiring is completed, before turning ON the power, confirm that the power supply is connected correctly, that there are no faulty connections, such as load short-circuits, and that the load current is correct. Incorrect wiring may result in failure.

- Cable Extension

Do not extend the cable for the Sensor and the Amplifier Unit to a length exceeding 10 m . Use a ZX-XC $\square$ A Extension Cable (sold separately) to extend the Sensor's cable. Extend the Amplifier Unit's cable using a shielded cable of the same type.

- Power Supply

When using a commercially available switching regulator, ground the FG (frame ground) terminal.
If the power supply line is subject to surges, connect a surge absorber that meets the conditions of the operating environment.

## Dimensions

## Sensors

ZX-TDS01T


* Measurement range: 11.2 to 12.2 (TYP)

ZX-TDS04T
ZX-TDS04T-L


Amplifier Unit
ZX-TDA11
ZX-TDA41

5.1 dia., standard length: 100 mm
(conductor cross-section $0.09 \mathrm{~mm}^{2}$, insulator diameter: $0.7-\mathrm{mm}$ dia.),


## Accessories (Order Separately)

Preamplifier Mounting Bracket (Supplied with Each Sensor)

## ZX-XBT1

ZX-XBT2 (For DIN Track Mounting)


Material: Stainless steel

## Mounting Hole Cutout Dimensions




M3 $\times 8$ pan-head screw (with M3 spring washer)


Vision Systems

General purpose	Smart Sensors	ZFV Series	C-3
	Vision Sensor	F150-3	C-11
	Integrated control software for F150-3	Vision Composer	(CD)
	Color-graying vision sensor	F400	(CD)
	Vision Sensor	F160	C-25
	Vision Sensor	F210	C-37
	High-performance Vision Sensor	F250	C-45
	Vision Sensor	F500	C-55
Application Specific	2-Dimensional Code Reader	V530-R150	(CD)
		V530-R160	(CD)
Camera, Lens and Lighting	Camera, Lens, Lighting		C-65

## Smart Sensors (with Ultra-High-Speed CCD Camera)

## ZFV Series



## NEW

## Ordering Information

Sets of Sensor Head and Amplifier Unit

Type	NPN	PNP
Narrow View/Single Function	ZFV-R1010	ZFV-R1015
Narrow View/Standard	ZFV-R1020	ZFV-R1025
Wide View/Single Function	ZFV-R5010	ZFV-R5015
Wide View/Standard	ZFV-R5020	ZFV-R5025

Sensor Heads

Appearance	Type	Working length	Sensing area	Model
	Narrow View	34 to 49 mm (variable)	$\begin{array}{lll} \hline 5 & 4.6 \mathrm{~mm}(\mathrm{H} & \mathrm{V}) \text { to } \\ 9 & 8.3 \mathrm{~mm}(\mathrm{H} & \mathrm{V}) \end{array}$	ZFV-SR10
	Wide View	38 to 194 mm (variable)	10 $9.2 \mathrm{~mm}(\mathrm{H}$   50 $\mathrm{~V})$ to   $46 \mathrm{~mm}(\mathrm{H}$ $\mathrm{V})$	ZFV-SR50

Amplifier Units

Appearance	Type	Power supply	Output type	Model
	Single Function	24 VDC 10\%	NPN	ZFV-A10
			PNP	ZFV-A15
	Standard		NPN	ZFV-A20
			PNP	ZFV-A25

## Accessories (Order Separately)

Data Storage Units

Appearance	Power supply	Output type	Model
	24 VDC	NPN	ZS-DSU11
			ZSN

Controller Link Unit

Appearance	Model
	ZS-XCN

Panel-mounting Adapter

Appearance	Model	
	ZS-XPM1	First Unit
	ZS-XPM2	Additional Units   (for expansion)

Sensor Head Extension Cable

Cable length	Model	Quantity
3 m	ZFV-XC3B (See note.)	1
8 m	ZFV-XC8B	1

Note:ZFV-XC3BR Robot Cable is also available.

## Specifications

## Sensor Heads

Item	ZFV-SR10 (Narrow View)	ZFV-SR50 (Wide View)
Setting distance (L)	34 to 49 mm	38 to 194 mm
Detection range ( $\mathrm{H} \times \mathrm{V}$ )	$5 \times 4.6 \mathrm{~mm}$ to $9 \times 8.3 \mathrm{~mm}$	$10 \times 9.2 \mathrm{~mm}$ to $50 \times 46 \mathrm{~mm}$
Relation between setting distance and detection range		Setting distance
Guide light	Provided (center, sensing area)	
Built-in lens	Focus: f15.65	Focus: f13.47
Object lighting method	Pulse lighting	
Object light source	Eight red LEDs	
Sensing element	1/3-inch CCD, partial scan	
Shutter	Electronic shutter, shutter time: 1/1,000 to 1/4,000	
Power supply voltage	15 VDC (Supplied from Amplifier Unit.)	
Current consumption	Approx. 200 mA	
Dielectric strength	1,000 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min	
Vibration resistance (destruction)	10 to $150 \mathrm{~Hz}, 0.35-\mathrm{mm}$ single amplitude, 10 times each in $\mathrm{X}, \mathrm{Y}$, and Z directions for 8 min	
Shock resistance (destruction)	$150 \mathrm{~m} / \mathrm{s}^{2}$, three times each in six directions (up/down, left/right, forward/backward)	
Ambient temperature	Operating: 0 to 40 C , Storage: 25 to 65 C (with no icing or condensation)	
Ambient humidity	Operating and storage: 35\% to 85\% (with no condensation)	
Ambient atmosphere	Must be free of corrosive gas.	
Connection method	Prewired, Standard cable length: 2 m	
Degree of protection	IEC60529, IP65	
Materials	Case: ABS, Mounting bracket: PBT	
Weight	Approx. 200 g (including mounting bracket and cord)	
Accessories	Mounting bracket (1), Ferrite core (1), Instruction sheet	

## Amplifier Units

Item		Single-function models		Standard models	
		ZFV-A10	ZFV-A15	ZFV-A20	ZFV-A25
Output method		NPN	PNP	NPN	PNP
Inspection items		Pattern (PTRN), Brightness (BRGT)		Patterns (PTRN), Brightness (BRGT), Area (AREA), Width (WID), Position (POSI), Count (CNT), Characters (CHAR)	
Teaching area		Rectangular, one are			
Teaching area size		Pattern (PTRN), Brightness (BRGT): Any rectangular area (256×256 max.)   Area (AREA), Width (WID), Position (POSI), Count (CNT), Characters (CHAR): Any rectangular area (full screen max.)			
Sensing area		Full screen			
Resolution		$468432(\mathrm{H} \quad \mathrm{V})$ max.			
Bank selection		Supported for 8 banks.			
Response time		Pattern (PTRN), Brightness (BRGT): High-speed: 4 ms , Standard: 8 ms , High-precision: 12 ms Area (AREA), Width (WID), Position (POSI), Count (CNT), Characters (CHAR): 128 128: 15 ms max.			
Other functions		Control output switching: ON for OK or ON for NG ON delay/OFF delay, One-shot output, "ECO" mode			
Output signals		(1) Control output (OUTPUT), (2) Enable output (ENABLE), (3) Error output (ERROR)			
Input signals		(1) Simultaneous measurement input (TRIG) or Continuous measurement input (TRIG), Switched by using menu.   (2) Bank selection inputs (BANK1 to BANK3)   (3) Workpiece still teaching (TEACH) or Workpiece moving teaching (TEACH), Switched by using menu.			
Connecti ng to ZSDSU	Image logging trigger	Stores NG images or all images.			
	Sampling rate	ZFV measurement cycle (See note 1.)			
	Number of logged image	Logs up to 128 images in series			
	Number of connected	15 max. (ZFV: 5 Units max., ZS-LDC: 9 Units max., ZS-MDC (See note 2.): 1 Unit max.)			
	External bank function	Amplifier Unit setting data can be saved to the memory card as bank data. Reading bank data enables bank switching.			
Sensor Head interface		Digital interface			
Image display		Compact TFT 1.8-inch LCD (Display dots: 557 234)			
Indicators		Judgement result indicator (OUTPUT) Inspection mode indicator (RUN)			
Operation interface		Cursor keys (up, down, left, right) Setting key (SET) Escape key (ESC) Operating mode switching (slide switch) Menu switching (slide switch) Teaching/Display switching key (TEACH/VIEW)			
Power supply voltage		20.4 to 26.4 VDC (including ripple)			
Current consumption		600 mA max. (with Sensor Head connected)			
Dielectric strength		1,000 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min between leads and Amplifier Unit case			
Noise immunity		1 kV , Pulse rise: 5 ns , Pulse width: 50 ns , Burst duration: 15 ms , Cycle: 300 ms			
Vibration resistance		Destruction: 10 to $150 \mathrm{~Hz}, 0.1-\mathrm{mm}$ single amplitude, 10 times each in $\mathrm{X}, \mathrm{Y}$, and Z directions for 8 min			
Shock resistance		Destruction: $150 \mathrm{~m} / \mathrm{s}^{2}$, three times each in six directions (up/down, left/right, forward/backward)			
Ambient temperature		Operating: 0 to 50 C   Storage: 25 to 65 C (with no icing or condensation)			
Ambient humidity		Operating and storage: 35\% to 85\%			
Ambient atmosphere		Must be free of corrosive gas.			
Degree of protection		IEC60529, IP20			
Materials		Polycarbonate			
Weight		Approx. 300 g (including cord)			
Accessories		Ferrite core (1), Instruction sheet			

Note 1. This is the sampling rate when logging images. To log measurement data only, use the ZS-DSU settings.
2. Image logging is not possible when the ZS-MDC is connected.

Note: All units are in millimeters unless otherwise indicated.

## Sensor Heads

## ZFV-SR $\square$



Mounting Hole Dimensions


Amplifier Units
ZFV-A $\square$

11.7 dia.

## About the I/O cable

The following shows the leads that comprise the I/O cable.

*: Enabled only in the RUN mode

1. Power supply

This connects the power supply.
Supply power from a DC power supply unit that has a countermeasure (safety ultra-low voltage circuit) built-in for preventing high voltages from occurring.
Wire the power supply separately from other devices. Wiring them together or placing them in the same duct may cause induction, resulting in malfunction or damage.
2. GND
3. OUTPUT (control output)

This outputs judgment results.
This lead is interlocked with OUTPUT LED.
4. ENABLE (enable output)
5. ERROR (error output)

This turns ON when an error is generated.
6. TEACH (teaching input)

There are two teaching modes, workpiece stop teaching and workpiece move teaching. These teaching modes can be selected in the menu.
7. TRIG (measurement trigger input)

There are two measurement modes, synchronous measurement and continuous measurement. Which mode of measurement is to be performed in is selected in the menu.
8. BANK1 (bank switching input 1)
9. BANK2 (bank switching input 2)
10. BANK3 (bank switching input 3 )

## I/O Circuit Diagrams

NPN output type (ZFV-A10/A20)


PNP output type (ZFV-A15/A25)


## Timing charts

The following shows the timing charts when communication is performed with external devices.

## Measurement

Continuous measurement
Measurement is performed continuously for the duration that the TRIG signal is ON.
The measurement result is updated, and output to external devices at each measurement cycle.

TRIG

OUTPUT


Tout: Measurement cycle The measurement cycle changes depending on the setting.
ENABLE
Synchronous measurement
Measurement is performed only once in synchronous with the change
in TRIG signal state from OFF to ON, and the result is output.

TRIG

OUTPUT

ENABLE


Tout: Measurement time. The measurement time changes depending on the setting.

- The minimum ON width of the TRIG signal is 1 ms .
- The OUTPUT signal is held until the next measurement result is updated.

Note, however, that when one-shot output is currently set, the OUTPUT signal is held for the preset time.

## Teaching

Workpiece stop teaching
Teaching processing is performed according to TRIG signal input after the TEACH signal is input from the outside.
Measurement is not performed while teaching is being performed. Do not move the workpiece until teaching is completed.


1. Turn the TEACH signal ON.
2. Confirm that the ENABLE signal has turned OFF.
3. Make sure that the workpiece to be taught is in the teaching area.
4. Input the TRIG signal from the outside.
5. The ENABLE signal turns ON after teaching is completed. At this timing, check the state of the ERROR signal.
6. When teaching has been completed successfully, the ERROR signal stays OFF.
7. When teaching fails, the ERROR signal turns ON.
8. Turn the TEACH signal OFF, and end teaching processing. When teaching fails, the state before teaching was initiated is returned to. Perform teaching again. If the TEACH signal is turned OFF midway, teaching is disabled.

Workpiece move teaching
Use this teaching mode when the object cannot be stopped.
Teaching processing is divided up and performed in synchronous with the TRIG signal input after the TEACH signal is input from the outside.
Teaching must be processed six times.
Measurement is not performed while teaching is being performed.


1. Turn the TEACH signal ON from the outside.
2. Confirm that the ENABLE signal has turned OFF.
3. Input the TRIG signal at the timing for measuring the workpiece to be taught
4. Repeat the input in step (3) six times. (Trigger inputs from the seventh time onwards are ignored.)
5. The ENABLE signal turns ON after teaching is completed. Check the state of the ERROR signal at this timing.
6. When teaching has been completed successfully, the ERROR signal stays OFF.
7. When teaching fails, the ERROR signal turns ON.
8. Turn the TEACH signal OFF, and end teaching processing. When teaching fails, the state before teaching was initiated is returned to. Perform teaching again. If the TEACH signal is turned OFF midway, teaching is disabled.

## Bank switching

The bank No. can be switched when BANK1o BANK3 are connected as follows.

Bank No.	BANK1	BANK2	BANK3
BANK1	OFF	OFF	OFF
BANK2	ON	OFF	OFF
BANK3	OFF	ON	OFF
BANK4	ON	ON	OFF
BANK5	OFF	OFF	ON
BANK6	ON	OFF	ON
BANK7	OFF	ON	ON
BANK8	ON	ON	ON

[^25]Cat. No. Z205-E2-02-X
In the interest of product improvement, specifications are subject to change without notice.

## Vision Sensor

## F150-3

> Perform settings in a conversational manner. The dialog menu artist "talks" to you.


## Intelligent lighting

Various types of lighting control make it possible to obtain a clear, stable image suitable for the inspection. The dome shape minimizes the effects of external light and permits damage inspection. Red and green light is mixed to allow inspection of a wide range of work.


## Variety of lighting methods

The direction of lighting and the brightness can be changed. Coaxial lighting is also possible with the F150-SLC20. The optimum lighting method for the work can be selected.

F150-SLC20
(Field of view: 20 mm )
Light intensity can be set separately to one of 8 levels for 5 illuminated areas.


F150-SLC50 (Field of view: 50 mm )
Light intensity can be set separately to one of 8 levels for 8 illuminated areas.


## Control lighting from the menu

- The illumination area and light intensity are controlled from the controller menu. Settings can be easily changed without handling the lighting.
- The lighting is also treated as scene data, and thus can be changed along with other conditions when the model is changed.
- The controller manages the lighting setting as a digital value. This increases the reproducibility of the setting.


## Features

## Integrated camera and lens

Camera setup is easy because the object-imaging camera is integrated into a single unit with the lighting apparatus and lens.

## 2-camera unit

We have made bi-directional, 2 -line inspection easy and inexpensive.


## A variety of image read-in methods

Images from two cameras can be read in at the same time. Read-in methods include successive changeover between the two cameras, and combination of the image from each camera into a single image.


## Example of application using two cameras



PCB Positioning
Determine the coordinates of position marks using


## Image memory function

Up to 23 inspected images can be stored*.
You can check the image to see what kind of defect occurred. This serves as an aid to maintaining and improving the production line.
With respect to a stored image, measurement can be repeated and measurement conditions changed. This enables a dramatic reduction in setup time during initial installation.
*Can be stored before power is turned off. Storage of all images, including "good" images, is also possible.


## Features

## Compact frame shutter camera

- Compact with high resolution.
- An all-pixel reading method and square lattice CCD make it possible to obtain a clear and detailed image suitable for image processing.
- Equipped with an electronic shutter to handle high-speed lines.
- The shutter speed can be adjusted for each scene from the menu. Select the optimum shutter speed for the line speed and work.



## Image pre-processing

- Pre-processing such as smoothing, edge enhancement, edge extraction, and background cut-off allow you to obtain the optimum image for the inspection.
- Pre-processing can be performed in real time (simultaneously with image read-in).



## High-precision gray search

- Position measurement at sub-pixel precision is possible using 256 graduation gray search processing. This feature is ideal for high-precision positioning applications.



## Damage/dirt inspection

- Omron's proprietary algorithm enables fast and detailed inspection for visual defects such as chips, nicks, burrs, and dirt.
- Linear, circular and rectangular areas can be set, enabling inspection for a variety of defect shapes.


Rubber packing flare

inspection

## Gray edge measurement

- High-precision (sub-pixel) measurement of work edge position is possible. Ideal for width and dimension inspection.
- Includes edge number and pitch measurement functions for support of IC and connector lead inspection.


Connector pin-pitch inspection


## Output computation functions

- Measurement data computations such as the four arithmetical operations, minimum, maximum, distance between two points, and angle can be set from the menu.
- Up to 24 computations can be set, and decision and data output can be performed based on the computation results.


Hole-to-hole distance computation


## Camera with lighting

Camera with intelligent lighting


Model

Field of view: 20 mm	F150-SLC20
Field of view: 50 mm	F150-SLC50

*A lens and intelligent lighting are installed on the special camera (F150-S1A) for the F150.

## Camera with lighting



Field of view: 20 mm	F150-SL20A
Field of view: 50 mm	F150-SL50A

*A lens and lighting are installed on the special camera (F150-S1A) for the F150.

Distance to inspection object and field of view
The camera distance is fixed.
Fix the camera at a distance that allows correct imaging of the inspected object.

## F150-SLC20

## F150-SL20A



Field of view ( $20 \times 20 \mathrm{~mm}$ )

## F150-SLC50



Field of view ( $50 \times 50 \mathrm{~mm}$ )


Field of view ( $50 \times 50 \mathrm{~mm}$ )

Ordering Information

Name	Model
Controller	F150-C10E-3 (NPN) F150-C15E-3 (PNP)
	$\begin{aligned} & \text { F150-C10E-3-DRT } \\ & \text { (Compo Bus/D) } \\ & \text { F150-C15E-3-PRT } \\ & \text { (PROFIBUS) } \end{aligned}$
	F150-SLC20
Camera with inteligent lighing	F150-SLC50
$\stackrel{\text { ® }}{ }$	F150-SL20A
O Camera with lighting	F150-SL50A
Camera only	F150-S1A
2-camera unit	F150-A20
Console	F150-KP
LCD monitor	F150-M05L
Video monitor	F150-M09
Camera cable 3 m	F150-VS
Monitor cable 2 m	F150-VM

## Rating/Performance

Controller: F150-C10E-3/C15E-3 and F150-C15E-3-PRT/DRT

Item	Specifications
Number of connected cameras	1 unit / 2 units (using the F150-A20)
Processing resolution	512 (H) x 484 (V)
Number of scenes	16 scenes (can be saved to a computer through the RS-232C)
Image memory function	Up to 23 images can be saved
Processing method	Grey Levels (256) / Binary
Image pre-processing	Smoothing, edge enhancement, edge extraction, background cut-off
Binary Levels	256 levels (per measurement area)
Position correction function	Correction directions: X, Y, Detection modes: binary center of gravity / main axis angle, model position: middle point, edge position
Number of measurement areas	16 areas/scene
Measured data	Area center of gravity, main axis angle, dark-light correlation value, dark-light search position, defect degree, edge position, edge number, density average, relative position
Calculation functions	Four arithmetic operations, distance, maximum value / minimum value, absolute value, others
Result output	Overall decision, computation result (decision) per measurement area, measurement/computation data (RS-232C and parallel output possible)
Monitor	1 ch (supports pin jack and over-scan monitor)
RS-232C	1 ch (Dsub 9-pin, female)
CompoBus/D	1 ch (F150-C10E-3-DRT)
PROFIBUS-DP	1 ch (F150-C15E-3-PRT)
Parallel input/output Power supply voltage	F150-C10E-3 and F150-C15E-3: Inputs: 11 points, outputs: 21 points F150-C10E-3-PRT/DRT: Inputs: 1 point, outputs: 5 points (including control inputs/outputs)   20.4 to 26.4 VDC
Current consumption	Approximately 0.5 A
Ambient temperature	Operating: 0 to $+50^{\circ} \mathrm{C}$, storage: -25 to $+65^{\circ} \mathrm{C}$ (no ice formation or condensation)
Ambient humidity	Operating/storage: 35 to 85\% RH (with no condensation)
Weight   (Packed state)	Approximately 940 g (controller: 390 g )
Accessories	Three manuals, CompoBus/D connector (DRT type only), PROFIBUS-DP connector (PRT type only)

Camera
Camera with intelligent lighting: F150-SLC20/50
Camera with lighting: F150-SLC20A/50A
Camera: F150-SL20A/50A

Item		Specifications
Camera	Image pick-up	1/3 inch CCD
	Effective pixels	659(H) x 494(V)
	Shutter function	Electronic frame shutter Shutter speed: $1 / 100,1 / 500,1 / 2000,1 / 10000 \mathrm{sec}$ (can be changed from the menu)
Lens	Installation distance	F150-SLC20: 15 to 25 mm , F150-SLC50: 16.5 to 26.5 mm , F150-SL20A: 61 to 71 mm , F150-SL50A: 66 to 76 mm
	Field of view	F150-SLC20/SL20A:20 mm, F150-SLC50/SL50A:50 mm ${ }^{\text {b }}$
Lighting unit	Light source	F150-SLC20/50: Red LED - green LED mixed F150-SL20A/50A: Red LED
	Light emission method	Pulse emission (sychronized with camera shutter)
Ambient temperature		Operating: 0 to $+50^{\circ} \mathrm{C}$, storage: -25 to $+60^{\circ} \mathrm{C}$ ( no icing or condensation)
Ambient humidity		Operating/storage: 35 to 85\% RH (with no condensation)
Weight * Unit only		F150-SLC20: Approximately 280 g F150-SLC50: Approximately 370 g F150-SL20A/50A: Approximately 135 g F150-S1A: Approximately 80 g
Accessories		Instruction manual

Two-camera unit: F150-A20

Item	Specifications
Number of   connected   cameras	2 units
Camera mode	Two-camera switching, vertical   division composite, horizontal division   composite $1 / 2$, one camera single-stand   (camera 0/1)
Supply voltage	20.4 to 26.4 VDC
Current con-   sumption	Approximately 0.3 A
Ambient   temperature	Operating: 0 to $+50^{\circ} \mathrm{C}$,   storage: -25 to $+65^{\circ} \mathrm{C}$   (no ice formation or condensation)
Ambient   humidity	Operating/storage: 35 to $85 \%$ RH   (with no condensation)
Weight ${ }^{*}$   Unit only	Approx. 220 g
Accessories	Operation manual, camera unit cable (1)

Note: Can be connected to an F150-C10-3 controller.

Monitor

Item   Prod-   uct   name   Model	LCD monitor F150-M05L	Video monitor F150-MON
Size	5.5 type	9 inches
Type	TFT color LCD	CRT monochrome
Resolution	$320 \times 240$ dots	800 TV or higher (center)
Input signal	NTSC composite video (1.0 V / 75 )	
Supply volt-   age	20.4 to 26.4 VDC	100 to 240 VAC   $(-15 \%,+10 \%)$
Current   consumption	Approx. 700 mA	Approx. 200 mA
Ambient   temperature	Operating: 0 to $+50^{\circ} \mathrm{C}$,   storage: -25 to +65   (no ice formation or   condensation)	Operating: -10 to $+50^{\circ} \mathrm{C}$,   storage: -20 to $+65^{\circ} \mathrm{C}$   (no ice formation or   condensation)
Ambient   humidity	Operating/storage:   35 to $85 \% ~ R H ~(n o ~ i c e ~$   formation or condensation)	10 to $90-R H$   (No condensation)
Weight ${ }^{*}$   Unit only	Approx. 1 kg	Approx. 4.5 kg
Accessories	Operation manual, clamps   (4)	Instruction manual

## Part Names/Functions

F150-C10E-3/F150-C15E-3

(1) Lit while power is ON
(2) Lit while the F150 is in Run Mode.
(3) Lit when an error has occurred
(4) Connects the F150 to external devices such as personal computers or programmable controllers.
(5) Connects the F150 to camera or two-camera unit.
(6) Connects to the power supply.
(7) Connects to the ground wire.
(8) (9) Connects to the F150 to external devices such as synchronous sensors or programmable controllers.
(10) Connects to the monitor.
(11) Connects to the console.

F150-C10E-3-DRT (CompoBus/D (DeviceNet) type)

(1) Lit while power is ON.
(2) Lit while the F150 is in Run Mode.
(3) Lit when an error has occurred.
(4) Connects the F150 to external devices such as personal computers or programmable controllers.
(5) Connects the F150 to camera or two-camera unit.
(6) Connects to the power supply.
(7) Connects to the ground wire.
(8) (9) Connects to the F150 to external devices such as synchronous sensors or programmable controllers.
(10) Connects to the monitor.
(11) Connects to the console.
(12) Indicates the state of F 150 in CompoBus/D communication.
(13) Indicates the state of F 150 in CompoBus/D communication.
(14) Set up the node address and communication speed of CompoBus/D communication.
(15) Connects to the communication cable of a CompoBus/D network.

## F150-C15E-3-PRT (PROFIBUS-DP type)



## Function menu

## Menu structure diagram

Dialog menu


Expert menu


## Dimensions (Unit: mm)

## Controller

F150-C10E-3, F150-C50E-3,
F150-C15E-3-PRT,
F150-C10E-3-DRT


Camera
F150-SLC20 (camera with F150-LTC20 intelligent lighting)


F150-SLC50 (camera with F150-LTC50 intelligent lighting)


Console
F150-KP


## 2-camera unit

F150-A20

LCD monitor

## ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.

To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .

Impressive high speed opens up new possibilities


## C

## Features

Can be applied to ultra-fast manufacturing lines. Full range of detection features within the required cycle time. Contributes to improved detection quality.
The newly developed double-speed camera makes it possible to read in images as much as 4 times faster than previous speeds, and also achieves an impressive image processing speed 2 to 10 times faster than previous speeds. For example, using dark-light search processing in Figure 1, the camera can be used on ultra high-speed lines handling approximately 5000 pieces per minute. Because each single inspection is fast, multiple inspection tasks can be carried out with minimal increase in time. Inspection tasks that were previously impossible due to insufficient time can also be added for a big contribution to inspection quality.


Example: Gray Search Processing (Picture 1)


Example: More than one inspection item


## Features

Equipped with a memory card for low-cost introduction on multi-type lines and a dramatic increase in the number of scenes. Moreover, this is a single-stand system, thus, easily implemented. The F160 unit is equipped with a memory card slot. The scene number can be easily increased by simply inserting a card. For example, a $128-\mathrm{MB}$ card can store approximately 1000 scenes. (*) No more need to build a scene data communication system using computers.


* The number of scenes that can be stored varies depending on the scene settings.


## Enhanced image memory function

Up to 35 measurement images or failure images can be stored. The most recent failure image can be displayed while measurement continues, enabling analysis of the failure without stopping the line.


## Wide range of camera variations

In addition to the double-speed camera, our F150 camera can also be connected. This lets you select the optimum camera for your speed, cost, and lighting needs.

Double-speed camera F160-S1/S2/SLC20/SLC50


Eight shutter speeds can be selected from the controller. An intelligent-lighting type is also available.

F150 camera F150-S1AESLC20/SLC50ESL20A/SL50A


Compact and affordable. Intelligent lighting and small LED lighting types are also available.

## I/O monitor

The status of the input/output terminals can be displayed as a list. This is a big help for a wiring check during adjustment.


## Screen capture function

Menu setting screens, measurement screens, and failure images can be captured and stored in the memory card. These images can be used in manuals and reports created on a computer.


## Features

## Operation

## Menu masking function

Menu items that should not be changed on-site can be hidden to prevent incorrect operation. This also improves operability and saves time when changing menu settings.


## Password function

Operation access can be limited to personnel who have been issued a password. This contributes to increased security.


## Screen

## Screen messages

Change to the language used on-site. Can be displayed in any position on the screen.


Graphic drawing function
This allows you to draw straight lines, rectangles, cross-hair cursors, and other graphics. Graphics can be drawn on measurement positions as well.


Output
RS-232C format
The output format can be changed to meet the specifications of the system.

## Short-cut key function

Frequently used operations can be assigned to special keys on the console. Switch menus at the touch of a key.


The character size can be selected, and even highlighting is possible.


Color display function
Colors can be added to displayed messages and graphics for easier viewing.


## Dialog menu

Dialog-type menus allow even beginners an easy performance of settings.


## Features

## QUEST Character Recognition

F160 uses OMRON's character recognition system - QUEST. Features

- The user does not have to register characters.
- High discrimination level of similar characters.
- Adapts to fluctuations in shape and size.


The measurement area can be set to change automatically when performing inspections for objects with varying sizes, such as electronic chip components. This feature ensures that the optimum measurement areas are always used for inspection.


## Flexible Search

This method performs a matching using more than one reference image and so F160 can perform inspection for objects with varying shapes. This feature helps to reduce incorrect evaluations.


[^26]
## Rotation search

This function rotates the image while searching. Processing speed is 10 times higher than previous models. Angle interpolation enables high-precision angle detection.


## Classification

A search is performed using multiple stored models, and the best-matching model number is output. The flexible search function can also be used for work shapes.
Can handle variations in shape.


## Edge width

The positions of both edges of an object are detected with high accuracy, and from this the width of the object is calculated. It is not necessary to set expressions for calculating the
 width.

## Position displacement

 compensationF160 permits compensation using only the outline of the object, 2-stage position compensation, and setting priorities for the compensation direction.


## Labeling

The number of labels (i.e., objects) inside the measurement area is counted. After they have been sorted according to area or center of gravity, the measurement data for specified labels is output.


Counting gears


Inspecting the position and number of buttons

## Expressions

Evaluation and data output based on a maximum of 32 expressions is possible. Up to 32 variables (representing other expressions) can be used, enabling more complex calculations.


## Ordering information

Name		Model	Remarks
Controller		F160-C10E-2	NPN Input/Output
Controller		F160-C15E-2	PNP Input/Output
Double-speed camera	Camera with intelligent lighting	F160-SLC20	
		F160-SLC50	
	Camera only	F160-S1	
		F160-S2	With partial scan function.
Compatible F150 cameras	Camera with intelligent lighting	F150-SLC20	
		F150-SLC50	
	Camera with light	F150-SL20A	
		F150-SL50A	
	Camera only	F150-S1A	
Console		F160-KP	
		F150-KP	
Color LCD monitor		F150-M05L	
Monochrome CRT Video monitor		F150-M09	
Memory card		F160-N64S(S)	Memory capacity 64 MB
Camera cable		F150-VS	For Double-speed Camera and compatible F150 Cameras. Cable length: $3 \mathrm{~m}^{* 1}$
Monitor cable		F150-VM	Cable length: $2 \mathrm{~m}{ }^{* 1}$
Parallel cable		F160-VP	Loose-wire cable for paralle I I/O connectors. Cable length: 2 m

*1. Other length on request

## Rating/Performance

Controller: F160-C10E-2/F160-C15E-2

Item Specifications			Conversational Menu Mode	Expert Menu Mode
Connectable cameras			F150-S1A/SL20A/SL50A/SLC20/SLC50, F160-S1/S2/SLC20/SLC50, etc.	
Number of cameras connectable			1	2
Number of pixels			$512 \times 484$ (HxV)	
Number of scenes			32 scenes (Expansion possible using Memory Card)	
Image storage function			Maximum of 35 images stored	
Filtering			----	Smoothing (strong/weak), edge enhancement, edge extraction (horizontal, vertical, both horizontal and vertical), dilation, erosion, median, background suppression
Position displacement compensation			Set either automatically or manually Compensation directions: X, Y, and $\left(360^{\circ}\right)$ directions	Compensation directions: $\mathrm{X}, \mathrm{Y}$, and $\left(360^{\circ}\right)$ directions Detection methods: Binary center of gravity, axis angle, labeling, rotation search, gray search, edge position
Number of measurement regions			32 regions per scene	
Applications			7 types available (presence, orientation, dimensions,defects, conformity, position, chips and burs	
Measurement data			Automatically selected according to the application	Gravity and area, gravity and axis, gray search, precise search, rotation search, flexible search, relative search, defect, area (variable box), defect (variable box), edge position, edge pitch, edge width, density average, labeling, OCR for 1 character, classification
Data operation functions (expressions)			---	$\begin{array}{\|ll} \hline \text { Number: } & \begin{array}{l} \text { 32 expressions can be set for judgements, } \\ \text { data, and variables used in other expres- } \end{array} \\ \text { sions. } \\ \text { Operations: Arithmetic operations, square root, absolute } \\ & \text { value, remainder, distance, angle, maximum, } \\ \text { minimum, SIN, COS, ATAN, AND, OR, NOT } \end{array}$
Result output			Overall judgements, judgements for each measurement region	Overall judgements, judgements for each measurement region, expression results, measurement/expresion data
Functions for customizing operations			---	Menu masking, password setting, shortcut keys
Functions for customizing screens			---	Display items: Character strings (measured values, judgement results, times, user-specified characters, measurement region names)   Specified parameters: Display color, position, size
Number of slots for Memory Cards			1	
Monitor interface			1 channel (color, monochrome)	
Serial communications			RS-232C/422A 1 channel	
Parallel I/O			13 inputs and 22 outputs including control I/O points	
Input/ Output type		NPN	F160-C10E	
		PNP	F160-C15E	
Power supply voltage			20.4 to 26.4 VDC	
Current consumption			Approx. 1.6 A (when two F160-SLC50 Cameras connected)	
Ambient temperature			Operating: 0 to $50^{\circ} \mathrm{C}$, Storage: -25 to $65^{\circ} \mathrm{C}$ (with no ice formation or condensation)	
Ambient humidity			Operating and storage: 35 to 85\% (with no condensation)	
Dimensions			$56 \times 160 \times 110(\mathrm{~W} \times \mathrm{H} \times \mathrm{D}) \mathrm{mm}$ (not including connectors and other protruding parts)	
Weight			Approx. 570 g (Controller only)	


Double-speed camera: F160-S1/S2
Picture element $1 / 3^{*}$ Interline CCD   Effective pixels $659 \times 44$ (H $\times$ V)   Scanning method $1 / 60-\mathrm{s}$ non-interlace (frame) mode, $1 / 120-\mathrm{s} 2: 1$ interlace (field) mode   Shutter Electronic shutter; select from 8 shutter-speed settings (1/120 to $1 / 20,000 \mathrm{~s}$ ) using menu   Camera with Intelligent Light-   ing F160-SLC20 (field of vision: 20 mm ), F160-SLC50 (field of vision: 50 mm )   Ambient temperature Operating: $\quad 0$ to $+50^{\circ} \mathrm{C}$   Storage: $\quad-25$ to $+60^{\circ} \mathrm{C}$   (with no icing or condensation)   Ambient humidity Operating and Storage: 35 to $85 \%$ RH (with no condensation)   External Dimensions $31 \times 40 \times 54.5$ (W $\times \mathrm{H} \times \mathrm{D}) \mathrm{mm}$ (not including connectors and other protruding parts)   Weight Approx. 85 g (Camera only)

Monitor

ItemModel number   Name	F150-M05L   Color LCD monitor   Size 5.5 inches	F150-M09   Monochrome CRT Video Monitor
Type	Liquid crystal color TFT	9 inches
Resolution	$320 \times 240$ dots	CRT monochrome
Input signal	NTSC composite video $(1.0 \mathrm{~V} / 75 \quad$ )	800 TV or min. (at center)
Power supply voltage	20.4 to 26.4 VDC	100 to $240 \mathrm{VAC}(-15 \%,+10 \%)$
Current consumption	Approx. 700 mA	Approx. 400 mA
Ambient temperature	Operating: 0 to $+50^{\circ} \mathrm{C}$   Storage: -25 to $+65^{\circ} \mathrm{C}$   (with no icing or condensation)	Operating: -10 to $+50^{\circ} \mathrm{C}$   Storage: -20 to $+65^{\circ} \mathrm{C}$   (with no icing or condensation)
Ambient humidity	Operating or storage: $35 \%$ to $85 \%$   (with no condensation)	Operating or Storage: $10 \%$ to $90 \%$   (with no condensation)
Weight (Monitor only)	Approx. 610 g	Approx. 4.5 kg
Accessories	Instruction manual and 4 mounting brackets	Instruction manual



## Name and function of each part

F160-C10E/F160-C15E


## (1) POWER LED

Illuminates while the power is on.
(2) RUN LED

Illuminates while the system is in measurement mode.

## (3) ERROR LED

Illuminates when a problem occurs.
(4) Input terminal (control line)

Connects to a synchronous sensor or programmable controller.
(5) Input/output connector (data line)

Connects to a synchronous sensor or programmable controller.
(6) Power terminal

Connects to the power supply.
(7) Memory card LED

Illuminates during memory access.
(8) Console connector

Connects to the console.
(9) Memory card slot

A memory card inserts into this slot.
(10) CAMERA 0 connector

Connects to a camera.
(11) CAMERA 1 connector

Connects to a camera.
(12) RS-232C/422 connector

Connects to a computer or programmable controller.
(13) Monitor connector

Connects to a monitor.
(14) Ground terminal

Connect the ground wire to this terminal.

## Function menu

Menu structure diagram
Dialog menu


Expert menu


Dimensions (Unit: mm)

Controller

## F160-C10E/F160-C15E



Double-speed camera
F160-S1/S2


F160-SLC20 (with F150-LTC20 intelligent lighting)


F160-SLC50 (with F150-LTC50 intelligent lighting)


Console
F160-KP


F150-KP


LCD monitor
F150-M05L


Video monitor
F150-M09


## Vision Sensor

F210


## Features

## Flow Menus

Flow Menus select the required processing items from the library, combining and linking them for you
Ideal for the following

- Stabilize measurement images by filtering the required number of times.
- Perform measurements according to workpiece tolerance by changing the measurement area baased on measurement results
- Periodically check for data variations by outputting the maximum and minimum values for each 10 measurements,



## Macros

Augment Flow Menus using a PC text editor. The Software package can be edited using text commands to customize I/ O controls, displays, and GUI
Programs can be created using only a text editor, with no need for any special development environment.
Ideal for the following

- Creating special menus.
- Displaying and outputting the date and time of NG measurements.
- Automatically saving NG images to a Memory Card.
- Changing the number of registered product types.


Special menus using macros

## Customization Manual

The know-how from the past is incorporated in a manual so that Reverse Customization can be used to determine the best method to execute the desired process.


## Ordering information

Name		Model	Remarks
Controller		F210-C10	NPN Input/Output
		F210-C15	PNP Input/Output
Double-speed camera	Camera with intelligent lighting	F160-SLC20	
		F160-SLC50	
	Camera only	F160-S1	
		F160-S2	With partial scan function.
Compatible F150 cameras	Camera with intelligent lighting	F150-SLC20	
		F150-SLC50	
	Camera with light	F150-SL20A	
		F150-SL50A	
	Camera only	F150-S1A	
Console		F160-KP	
		F150-KP	
Color LCD monitor		F150-M05L	
Monochrome CRT Video monitor		F150-M09	
Memory card		F160-N64S(S)	Memory capacity 64 MB
Camera cable		F150-VS	For Double-speed Camera and compatible F150 Cameras. Cable length: $3 \mathrm{~m}^{* 1}$
Monitor cable		F150-VM	Cable length: $2 \mathrm{~m}{ }^{* 1}$
Parallel cable		F160-VP	Loose-wire cable for parallel I/O connectors. Cable length: 2 m

*1. Other length on request.

## Processing Item Support

The F250-UM3FE (UM3ME) Application Software supports approximately 70 different processing items. These can be freely combined for inspections as needed. Image input, measurement support, branch control, results output, and results display can be used in common for all of the models (F210 and F250).

Image Input Functions	Position Compensation Functions				
- Inputting Camera Images   - Switching Cameras   - Changing Filtering   - Filtering Again	Compensation	Processing item	$\begin{array}{r} \text { Con } \\ \text { F210 } \end{array}$	$\begin{aligned} & \text { roller } \\ & \text { F250 } \end{aligned}$	Remarks
	Position compensation in $\mathrm{X}, \mathrm{Y}$, and $\theta$ directions	Binary Position Compensation	YES	YES	---
		Circle Position Compensation	NO	YES	---
		EC Position Compensation	YES	YES	---
		Edge Position Compensation	YES	YES	---
		Model Position Compensation	NO	YES	Enables high-speed processing compared to the model position compensation \#.
		Model Position Compensation \#	YES	YES	---

## General Measurement <br> Functions

Application (measurement)		Processing item	Con	roller	Remarks	
		F210	F250			
Size (area)			Binary Defect	YES	YES	Up to eight regions can be set per Unit, with results displayed in a list.
		Binary Gravity and Area	YES	YES	Only one region can be set per Unit. Menu levels are simple and easy to understand.	
		Binary Area (Variable Box)	YES	YES	Used for inspecting measurement items with varying positions and sizes.	
Position	Center-of-gravity detection (Processing time: Low)	Binary Defect	YES	YES	Up to eight regions can be set per Unit, with results displayed in a list.	
		Binary Gravity and Area	YES	YES	Only one region can be set per Unit. Menu levels are simple and easy to understand.	
		Binary Area (Variable Box)	YES	YES	Used for inspecting measurement items with varying positions and sizes.	
	Coordinate detection (Processing time: High)	Gray Search	YES	YES	Uses gray models to detect positions in pixel units.	
		Precise Search	YES	YES	Uses gray models to detect positions in sub-pixel units.	
		Flexible Search	YES	YES	Multiple models are registered to enable searching even when there is variation.	
		Pattern	NO	YES	Up to 64 regions can be registered per Unit, and high-speed processing is possible. (See note.)	
		ECM Search	YES	YES	Uses edge code models so that processing is not affected by deformation or dirt.	
		EC Positioning	YES	YES	No model registration is required. Searches using shape information such as "round" or "angular."	
	Coordinate detection (Rotation in measurement item)	Rotation Positioning	NO YES	YES	High-speed processing is possible. (See note.)	
		Rotation Search	YES	YES	---	
	Dimensions measurement	Gray Edge Position_8	YES	YES	Up to eight regions can be set per Unit, with results displayed in a list.	
		Gray Edge Position_1	YES	YES	Only one region can be set per Unit. Menu levels are simple and easy to understand.	
		Gray Edge Width	YES	YES	---	
	Position deviation detection	Relative Position	YES	YES	---	

Note: These processing items are most effective when set immediately after image input processing item (Camera image input or Camera switching). Depending on conditions, however, high-speed processing may not be possible.

Application (measurement)	Processing item	Controller		Remarks
		F210	F250	
Defect	Surface Defect	YES	YES	Only one region can be set per Unit. Menu levels are simple and easy to understand.
	Density Defect	NO	YES	Up to eight regions can be set per Unit, with results displayed in a list. The number of Units can be reduced.
	Surface Defect (Variable Box)	YES	YES	Used for inspecting measurement items with varying positions and sizes.
	EC Defect	YES	YES	Uses edge codes for defect inspection so that processing is not affected by deformation or dirt.
	Fine Matching	YES	YES	Accurately detects differences with models.
Characters	QUEST Character Verification	YES	YES	Used to verify multiple characters.
	Lot Number OCR 1	YES	YES	Handles lot numbers that are changed daily, weekly, monthly, or annually.
	OCR for 1 Character	YES	YES	---
Angle	Binary Defect	YES	YES	Up to eight regions can be set per Unit, with results displayed in a list. The number of Units can be reduced.
	Binary Gravity and Angle	YES	YES	Only one region can be set per Unit. Menu levels are simple and easy to understand.
	Rotation Positioning	NO	YES	High-speed processing is possible. (See note.)
	Rotation Search	YES	YES	Used when the measurement item rotates.
	Circular Angle	YES	YES	Used only for circular measurement items. Enables higher-speed processing compared to Rotation Search. (See note.)
Quantities	Labeling	YES	YES	Counts up to 2,500.
	Label Data	YES	YES	Gets label measurement values from other Units.
	Edge Pitch	YES	YES	Gets the number, pitch, and width.
	EC Circle Count	YES	YES	Finds circles using "round" shape information so that processing is not affected even if the circles are deformed or dirty.
Shapes (correlation values)	Pattern	NO	YES	Up to 64 regions can be registered per Unit, enabling highspeed processing. (See note.)
	Flexible Search	YES	YES	Searching can be performed even if there is variation in model images.
	Fine Matching	YES	YES	Accurately detects differences with models.
Classification	Classification	NO	YES	Enables higher-speed processing compared to Classification \#. (See note.)
	Classification \#	YES	YES	---
Brightness	Density Data	YES	YES	---

Note: These processing items are most effective when set immediately after image input processing item (Camera image input or Camera switching). Depending on conditions, however, high-speed processing may not be possible.

## Results Output Functions

- Memory card data out-
put
- DO data output
- Host link data output
- Normal data output
- DO judgement output


## Results Display Functions

- String display
- Measurement display
- Judgement display
- Item display
- Time display
- Figure display
- Line results display
- Box display
- Circle display
- Cursor display
- Newest NG image display



## Rating/Performance

## Controller

Item Specifications	F210-C10/C15	F250-C50/C55
Connectable Cameras	F150-S1A/-SL20A/-SL50A/-SLC20/-SLC50, F160-S1/-S2/-SLC20/-SLC50, F300-S2R/-S3DR, etc.	
Number of Cameras connectable	2	4
Number of pixels	$512 \times 484(\mathrm{H} \times \mathrm{V})$	
Number of scenes	32 (Expansion possible using Memory Cards.)	
Image storage function	Maximum of 35 images stored	
Filtering	Smoothing (strong, weak), edge enhancement, edge extraction (horizontal, vertical, both), dilation, erosion, median, background suppression	
Operation and settings	Installing measurement items using application software, and combining and setting measurement items by menu operations	
Menu language	Japanese or English (Can be switched.)	
Trend monitor function	Supported	
Memory card slots	1	2
Monitor interface	1 channel	Composite video output: 1 channel, S-VIDEO output: 1 channel
Ethernet	Not supported.	10Base-T: 1 channel
Serial communications	RS-232C/422A: 1 channel	
Parallel I/O	13 inputs and 22 outputs	21 inputs and 46 outputs
Strobe interface	2 channels (included in parallel outputs)	4 channels (included in parallel outputs)
Power supply voltage	20.4 to 26.4 VDC	
Current consumption	Approx. 1.6 A (when two F160-SLC50 Cameras are connected)	Approx. 3.7 A (when four F160-SLC50 Cameras are connected)
Ambient temperature	Operating: 0 to $50^{\circ} \mathrm{C}$ Storage: -25 to $65^{\circ} \mathrm{C}$ (with no icing or condensation)	
Ambient humidity	Operating and storage: $35 \%$ to 85\% (with no condensation)	
External dimensions	$56 \times 160 \times 110(\mathrm{~W} \times \mathrm{H} \times \mathrm{D}) \mathrm{mm}$ (not including connectors and other protruding parts)	$270 \times 81 \times 197(\mathrm{~W} \times \mathrm{H} \times \mathrm{D}) \mathrm{mm}$
Weight	Approx. 570 g (Controller only)	Approx. 2.7 kg (Controller only)

Controller
F210-C10/C15


Liquid Crystal Monitor

F150-M05L


High-performance Vision Sensor

## F250

## Advanced algorithm enables ultra high speed and maximum flexibility



## Features

Inspection and positioning that was difficult with previous vision sensors is now surprisingly easy!

ED defect inspection


High-precision detection of minute defects that could not be detected previously .


Detection of low-contrast defects on metal surfaces


Certain detection of rubber packing deformities.
EC positioning

High-precision position measurement even if the inside of the work changes or the view changes.

- Positioning of PWB fiducial marks


Low contrast


Revolution


Internal dirt


## QUEST character checking

Even if the shape or size of a character varies, "QUEST Logic" finds printed characters with certainty. The built-in dictionary makes "simple settings" possible.

- No need to store a character dictionary

Various character fonts for factory automation have been prestored. This eliminates the need to store a dictionary or model names, and allows a dramatic reduction in man-hours for initial setup.


- The "six character variations" can also be recognized with certitude.
Checks characters printed on the production line such as "Best before" dates and lot numbers. Even if there are deviations in shape, size, or line width, the characters are accurately checked.



## Fine matching

Detects differences from the stored "good" image quickly and with high accuracy. Dramatic improvement in ability to inspect characters and patterns with minute border defects.

- Example of application to soft drink cap inspection



## For fast increasing line speeds and ever

 stricter quality demands.
## - Real time Revolution Search is amazing

Executes a real time search of 72 models. Even with works that rotate $360^{\circ}$, positioning corrections are completed at the same time as image read-in.


Inspection functions following camera image read-in are also up to 10 times faster thanks to a newly developed parallel processing technology.


- Fast image read-in

The F160-S1 double-speed camera achieves a maximum image read-in speed of 8.3 ms .

## "Non-stop" adjustment without stopping the line

All settings can be adjusted and reset while inspection continues. There is no need to stop the line for adjustments, subsequently, no capacity drops.


It adjusts checking an inspection history by the trend monitor.


Test measurement is performed as compared with previous NG picture.

- Easy and flexible settings by means of software application 1. Functions needed for inspection are selected and installed from the software application.


2. Combine required inspection functions from the menu.


## Ordering Information

Name		Model	Remarks
Controller		F250-C50	NPN Input/Output
		F250-C55	PNP Input/Output
Double-speed camera	Camera with intelligent lighting	F160-SLC20	
		F160-SLC50	
	Camera only	F160-S1	
		F160-S2	Includes Partial Scan functionality
F150   Compatible cameras	Camera with intelligent lighting	F150-SLC20	
		F150-SLC50	
	Camera with lighting	F150-SL20A	
		F150-SL50A	
	Camera only	F150-S1A	
Console		F160-KP	
		F150-KP	
LCD monitor		F150-M05L	
Video monitor		F150-M09	
Memory card		F160-N64S(S)	Memory capacity 64 MB
Application software		F250-UM3ME	with Macro function
		F250-UM3FE	without Macro function
Camera cable		F150-VS	Length of cable for double-speed camera and F150 common camera: 3 m
Monitor cable		F150-VM	Cable length: 2 m
Parallel cable		F160-VP	Length of pigtail cable for parallel input/output connector: 2 m

## Rating/Performance

Controller: F250-C50/C55

Connected camera	F150-S1A/SL20A/SL50A/SLC20/SLC50, F160-S1/S2/SLC20/SLC50
Number of connectable cameras	4
Processing resolution	512(H) x 484(V)
Number of scenes	32 scenes (expansion possible using memory card)
Image storage function	Maximum 35 images
Image pre-processing	Smoothing (strong/weak), edge enhancement, edge extraction (horizontal, vertical, both), erosion, dilation, median, background deletion
Operation and Settings	Install measurement routines from a software application, combine and establish settings for measurement routines from menus.
Menu language	Japanese/English (changeable)
Operation customization function	Password function, short-cut key function
Screen customization function	Display items: Character strings (measured values, decisions, time, any character string, measurement area names), graphics (straight lines, rectangles, circles, cross-hair cursors) Parameters specified: display color, postion, size
Non-stop adjustment function	Yes
Trend monitor function	Yes
Memory card slot	2 slots
Monitor	Composite video output: 1 CH , S-video output: 1 CH
Ethernet	10Base-T 1CH
Serial communication	RS-232C/422A 1CH
Parallel input/output	Inputs: 21 points, outputs: 46 points
Strobe	4 CH (included in parallel outputs)
Power supply voltage	20.4 to 26.4 VDC
Current consumption	Approximately 3.7 A (when four F160-SLC50 units are connected)
Ambient temperature	Operating: 0 to $+50^{\circ} \mathrm{C}$, storage: -25 to $+65^{\circ} \mathrm{C}$ (no ice formation or condensation)
Ambient humidity	Operating/storage: 35 to 85\% RH (with no condensation)
Dimensions	270(W) x 81(H) x 197(D)
Weight	Approximately 3.1 kg (unit only)

Double-speed camera: F160-S1/S2

Picture element	$1 / 3^{\prime \prime}$ Interline CCD
Effective pixels	$659 \times 44(\mathrm{H} \times \mathrm{V})$
Scanning method	$1 / 60-\mathrm{s}$ non-interlace (frame) mode, $1 / 120-\mathrm{s} 2: 1$ interlace (field) mode
Shutter	Electronic shutter; select from 8 shutter-speed settings (1/120 to $1 / 20,000 \mathrm{~s})$ using menu
Camera with Intelligent Light-   ing	F160-SLC20 (field of vision: 20 mm ), F160-SLC50 (field of vision: 50 mm )
Ambient temperature	Operating: $\quad 0$ to $+50^{\circ} \mathrm{C}$   Storage: -25 to $+60^{\circ} \mathrm{C}$   (with no icing or condensation)
Ambient humidity	Operating and Storage: 35 to $85 \%$ RH (with no condensation)
External Dimensions	$31 \times 40 \times 54.5(\mathrm{~W} \times \mathrm{H} \times \mathrm{D}) \mathrm{mm}$ (not including connectors and other protruding parts)
Weight	Approx. 85 g (Camera only)

Monitor

ItemModel number   Name	F150-M05L   Color LCD monitor   Size 5.5 inches	F150-M09   Monochrome CRT Video Monitor
Type	Liquid crystal color TFT	9 inches
Resolution	$320 \times 240$ dots	CRT monochrome
Input signal	NTSC composite video $(1.0 \mathrm{~V} / 75 \quad$ )	
Power supply voltage	20.4 to 26.4 VDC	100 to $240 \mathrm{VAC}(-15 \%,+10 \%)$
Current consumption	Approx. 700 mA	Approx. 400 mA
Ambient temperature	Operating: 0 to $+50^{\circ} \mathrm{C}$   Storage: -25 to $+65^{\circ} \mathrm{C}$   (with no icing or condensation)	Operating: -10 to $+50^{\circ} \mathrm{C}$   Storage: -20 to $+65^{\circ} \mathrm{C}$   (with no icing or condensation)
Ambient humidity	Operating or storage: $35 \%$ to $85 \%$   (with no condensation)	Operating or Storage: $10 \%$ to $90 \%$   (with no condensation)
Weight (Monitor only)	Approx. 610 g	Approx. 4.5 kg
Accessories	Instruction manual and 4 mounting brackets	Instruction manual

Controller: F250-C50/C55

(1) POWER LED (green)

Illuminates while the power is on.
(2) RUN LED (orange)

Illuminates while the system is in measurement mode.
(3) ERROR LED (red)

Illuminates when a problem occurs.
(4) Input connectors 0,1

Connects to a synchronous sensor or programmable controller.
(5) Power terminal

Connects to a DC power supply.
(6) Console connector

Connects to the console.

## (7) Memory card LEDs 0, 1

Illuminates while power is supplied to the memory card.
(8) Memory card slots $\mathbf{0 , 1}$

A memory card or software application is inserted here.
(9) CAMERA 0-3 connectors

Connects to a camera.
(10) Monitor connector (S-Video output)

Connects to a monitor with an S-Video input
(11) Ethernet connector

Connects to a computer.
(12) RS-232C/422 connector

Connects to a computer or programmable controller.
(13) Monitor connector (composite video output)

Connects to a monitor.
(14) Ground terminal

Connect the ground wire to this terminal.

## Function menu

## Processing routine list

The F250-UME application software contains approximately 50 processing routines.


Camera image input
Camera switch
Pre-processing change
Repeat preprocessing

## Position compensation related

Binary position correction
Model position correction
Circular work position correction
Edge position correction
EC position correction
Scroll return
Scroll

	General measurement   related
QUEST character	Dark-light edge
checking	position
Binary defect	ECM search
inspection	EC positioning
Density defect	Lot number
inspection	checking 1
Fine matching	Dark-light edge
Pattern inspection	number
Sorting	Density average/
EC defect inspection	deviation
EC circular piece	Labeling
count inspection	Label data
Rotation	
positioning	

Set processing unit data
Wait
Elapsed time
Trend monitor

## Result display related

Any character display
Measured value display
Decision character display
Processing task name display
Measurement time display
Fixed graphic display
Straight line result display
Rectangle result display
Circle result display
Cross-hair cursor result display

Condition branch
DI branch
End

## Branch control related

## Result output related

Memory card data output
DO data output
Significant link data output
Non-protocol data output
DO decision output

## Dimensions (Unit: mm)

Controller
F250-C50/C55


Double-speed camera
F160-S1/S2


F160-SLC20 (with F150-LTC20 intelligent lighting)


F160-SLC50 (with F150-LTC50 intelligent lighting)


Console
F160-KP


F150-KP


LCD monitor
F150-M05L


Panel cut figure


Video monitor
F150-M09


## Vision Sensor

## F500

## Network-compatible Sensor supports everything from highprecision detection to production and quality control



## Features

The F500 enables high-precision inspections and measurements in the factory and then goes further to support easy construction of a production and quality control system for quality traceability.

## High-precision Sensing

## 1-million-pixel Digital Interface Camera

Clear images are obtained by greatly reducing noise in highresolution video signals.

## User Customization for Even Simpler Operation

Various applications are supported through features like flow menus that flexibly handle even complicated applications and macros that enable user programming.

## A Wealth of Algorithms to Achieve High-precision Measurements

High-precision measurements are achieved through original algorithms ideal for lowcontrast mark positioning, minute defect detection, and much more.

## Applications Software

## Build Flexible Applications

The F500 provides OMRON's new menu system called Flow Menus, which enable flexible measurements through menu settings including multiple filtering operations and conditional branches based on measurement results.

## Easier to Use, Easy to Program

A Macro programming feature is provided to support measurement functions by enabling screen customization, I/O in-
terface changes, measurement condition changes, and much more. Macros can be easily programmed using a simple text editor.

## Storage for Production and Quality Control

Store inspection and measurement data for safe keeping. Provide feedback to quality control data, or analyze the data to improve quality. The stored data can be used in many ways.

## Large Storage Capacity

Approximately 200 images minimum can be stored right in the Controller. Measurement images are stored without alteration for future use, such as repeating measurements to check measurement accuracy or attaching images to reports.

## Remote Access and Operation across a Network

Easily achieve a production and quality control system using an IT environment that provides easy access to the production site and operating status.

## Remote Access and Operation

Data such as the operating status of the Vision Sensor and images resulting from inspections can be remotely accessed. Measurements, storage, and communications can be executed independently so that measurements will not stop even during random remote access.

## Flexible User Customization for Any Purpose

## Benefits of Increased Resolution

Doubling the horizontal and vertical resolutions increases total resolution by a factor of four, enabling clear images for small or complicated workpieces.


250,000 pixels (previous systems)


1 million pixels

## 1-million-pixel Camera with Digital Interface

The video signal noise that hurt measurement precision has been greatly reduced to enable inspections of minute foreign matter or damage as well as highprecision positioning.


Line Brightness Image from an Analog Interface Camera


Line Brightness Image from a Digital Interface Camera

## Partial Scan Function

Partial scans can be used to reduce the image reading time, which is often the bottleneck in measurement processing time.


## Advanced Algorithms for High-precision Measurements

## Positioning

ECM Searches
Edge code models are used for pattern searches. ECM searches are not easily affected by deformation and dirt, and can thus be very effective with low-contrast workpieces.

## EC Positioning

Model registration is not required for EC positioning. Searching is possible with shape information, such as "circle," "rectangle," or
 "intersection." This achieves higher precision in measurements than conventional pattern matching methods.
Reference data: Repeatability is within $1 / 20$ pixel (OMRON test data)
Appearance Inspections

## EC Defect

Geometric information is used to measure minute defects or lowcontrast scratches in the measurement object at high precision. Stable detection is possible for applications like measuring deformation in O-rings.
EC Circle Count
Circles are searched for based on a circle of a specified size. Stable detection is possible without undue influence by deformation or dirt.

## EC Circle Defect

Defects in circles, such as depressions and
 scorching in molded items, can be easily measured at high precision. The defect in the circle can be extracted even with a patterned background.

## Reduced Work with Simple Operations

Zoom Function for 1-million-pixel Images
Zoom in to see detail clearly for easier setting and adjustment (display enlargement supported).


High-speed Serial USB Interface
A USB interface simplifies high-speed communications between the Vision Sensor and a computer. Communications can be used to handle measurement data, setting data, system data, image data, and more.

## Networking to Access, Save, View and Edit Data

Batched Access and List Viewing of Logged Images ${ }^{1}$


The data stored in the Controller can be displayed in lists.

Access View

## Batched Access and List Viewing of Measurement Data ${ }^{1}$



Links can be created to spreadsheet software to statistically process
measurement results or display graphs. All measurement data can be saved for feedback to trend management or to monitor variations in measurement data. Access View

## Log Production and Quality Control Information ${ }^{1}$



## Managing and Transferring Setting Data ${ }^{1}$



Files containing Vision Sensor setting data (such as scenes and system data) can be sent and received.
The software version of the Vision Sensor can also be easily upgraded.
Access Save View

Batch File Uploading ${ }^{1}$


The data saved in the Controller can be transferred to a computer as a batch upload. This function is useful when determining judgement values for initial settings or to back up data.
And because measurements and communications are executed indepen dently, files can be uploaded without affecting the Vision Sensor's measurement operation.

## Display and Edit Scene Data ${ }^{1}$

Scene data set in Vision Sensors connected to the network can be viewed and edited. The scene data displayed on the computer can also be printed.


[^27]
## Remote Vision Sensor Operation in a Network Environment ${ }^{1}$

Vision Composer Net ${ }^{1}$


## Download Setup Function ${ }^{1}$



[^28]
## Connector and IC Lead Inspections



## Sensing

High-resolution inspection over a wide field of view is enabled by using a 1-million-pixel highresolution camera.
And with macro functions, the statistics on lead pitch data and linear approximations of the lead ends are easily performed.

## Storage \& Network

Combining networking enables changing inspection devices, managing master data, and uploading statistical data files with macros.

## BGA Inspections



## Sensing

High-resolution inspection over a wide field of view is also enabled by using a 1 -million-pixel high-resolution camera with BGA inspection software. Variant BGA processing is also possible.

## Storage \& Network

Quality control data can be used effectively by storing inspection images in relation to lot numbers. Managing all of the product data on the host computer makes frequent changes to settings much smoother.

## Positioning Liquid Crystal Boards



## Storage \& Network

## Sensing

EC processing, based on an original algorithm from OMRON, enables position inspections of low-contrast alignment marks. And using a Digital Interface Camera enables stable processing.
Macros can also be used to easily achieve original calibration methods, inspection data calculations, and much more.

Managing productivity is also possible by saving and reviewing inspection images, detection data, and position compensation data.

## Printing Defects



## Sensing

Using a 1-million-pixel high-resolution camera provides highprecision inspections over a wide field of view.
Using macros enables saving images and inspection data classified by the type of fault.

## Storage \& Network

For initial system startup, data to determine judgement values and to troubleshoot problems can be accessed from a remote computer, reducing costs to a minimum.

## Molded Product Defect Inspections



## Sensing

Misshapen products, as well as contamination and scorching around molded products, can be detected. Setting is as easy as specifying the circle size to detect (i.e., the size of the defects) on limit samples displayed on the monitor.
With macros, statistics on good products, NG products, and fault rates for the inspections performed each day can be calculated and logged in a Memory Card.

Ceramic Board Defect Inspection


## Sensing

Inspect for cracks on the surface of ceramic boards. Even if uneven lighting or rough surfaces show in the images, linear aspects can be consistently detected.
Using the flow menus enables conversion to more stable inspection by repeatedly filtering images.

## Inspecting Electrolytic Capacitor Dimensions



## Sensing

The diameter of round workpieces can be measured at multiple points to determine if they are round or not.
With macros, deviations in inspection values can be stored in memory and statistics, such as minimum values, maximum values, and standard deviations, can be calculated.

## Chip Capacitor Electrode Defect Inspection



## Sensing

Even if the size of the inspection object changes, the size of the inspection area adjusts to the external size to enable measurement. Misshapen products and contamination and scorching around products can be detected.

With macros, production statistics (e.g., number of good products, number of NG products, and fault rates) can be calculated and monitored onscreen.

## List of Processing Items

Higher precision
Processing
Items
Binary
Processing

Gray-scale Processing

## EC Processing

## Positioning



Presence and Direction Inspections
(counting possible)

Density Data
(Average and Deviation)
Gray Search
( $x-y$ : Pixel Level)


## Dimensions



Edge Position_1
Edge Position_8
(Number of areas
drawn differs.)
Edge Width
(Width between edges
measured.)
T-Edge Position


## Appearance (Defect) Inspections

Applications Packages


[^29]Many other measurement functions are also supported by this software. For details, go to http://www.fa.omron.co.jp/sensing/

## Complete Image Processing Items

Image Input	The camera image is read synced on an external signal.		Changing Filtering   Filtering can be performed that is different from that performed when the image was read.
	Switch Camera   The camera can be selected when two cameras are connected.		Filtering Again   Filtering can be performed many times for the same image.
Position Compensation	Binary Position Compensation   Positioning is compensated based on the center of gravity and axis angle found using binary processing.		Model Position Compensation   Positioning is compensated based on search points found by matching with registered models.
	EC Position Compensation EC position compensation is effective for lowcontrast marks that vary in size.		Scroll Images read using $X, Y$ coordinates and angle data found with measurement functions can be scrolled.
	Edge Position Compensation-   Positioning is compensated based on the outline of the workpiece found through edge processing.		Reset Scroll   Images that have been scrolled can be reset to their original positions.
Measurement	Positioning Appearance (Defect) Inspection Applications   Presence and Dimension Inspection    Direction Inspection		
Measurement Support			Branching Control
Calculation   Calculations, such as basic arithmetic, tangent, cosine, and distance calculations, can be performed on the measurement data found using measurement functions.   Macros   Elapsed Time   The processing time to a specified point in the process flow can be measured. This can be used for the required processing, such as canceling measurements for time delays.   Wait   The processing flow can be temporarily paused to place processing on standby for a set period of time.   Set Unit Data   Setting data can be overwritten.   Trend Monitor   Measurement time can be displayed on a graph along a time axis.			ditional Branching   surement conditions can be changed based on surement values and results.   Branching   essing can be branched based on the input s of the parallel interface.   indicates the end of the process flow. (No gs are required.)
Results Output	Memory Card Data   Measurement values can be output to a Memory Card inserted in the Controller.   DO Data   Measurement values can be output as binary or BCD data on the parallel interface.   DO Judgement   The OK/NG judgement results can be output on the parallel interface.		Host Link Data   OMRON's PLC Host Link communications can be used for measurement commands, judgement results, measurement values, and other data without special programming.   Normal Data RS-232C communications can be used for measurement commands, judgement results, measurement values, and other data.   Data Logging   Measurement data and images can be stored inside the Controller.
Results Display	Display String   Display Measure   Display Judge	Display Item   Display Time   Display Figure	Display Line   Display Cursor   Display Box   Display Circle



1
Camera Cable
F500-VS 2M


Optical Chart


1-million-pixel Camera with Digital Interface F500-S1


High-resolution Lens


2
10.4-inch LCD Monitor F500-M10L


4

PC Support Software F500-CD2E Vision Composer Net


Memory Cards
F160-N64S (S) QM300-N128S


Applications Software F500-UM2FE/UM2ME


[^30]
## Specifications

F500-C10-ETN / F500-C15-ETN

Connected Camera	F500-S1
No. of connectable Cameras	2
Processing resolution	$1,024(\mathrm{H}) \times 1,024(\mathrm{~V})$
No. of scenes	32 (Can be increased using Memory Cards)
Image memory function	35 images max
Storage	256 MB non-volatile memory
Operation and setting	Measurement items installed using Applications Software. Menu operations used to combine   measurement items. Vision Composer Net can be used for operation and settings.
Menu language	Japanese or English (switchable)
Serial communications	USB series B: 1 channel   RS-232C/422: 1 channel
Network communications	Ethernet 100Base-TX/10Base-T
Parallel I/O	11 inputs, 22 outputs
Monitor Interface	Composite video output: 1 channel   S-VIDEO output: 1 channel
Memory Card interface	Compact Flash card slot, 1 channel
Power supply voltage	20.4 to 26.4 V DC
Current consumption	2.1 A max. (with two F500-S1 Cameras connected)
Ambient temperature	Operating: 0 to $55^{\circ} \mathrm{C}$   Storage:   Am to $65^{\circ} \mathrm{C}$ with no icing or condensation
Ambient humidity	Operating / Storage: $35 \%$ to 85\% with no condensation
Dimensions	$100 \times 198 \times 134$ mm (W x H D D) (without connectors and other protrusions)
Weight	Approx. 1.6 kg (Controller only)
Accessories	Ferrite core for console (1), Setup Manual

F500-S1

Picture elements	$2 / 3$-inch CCD
Pixel size	$6.45 \mu \mathrm{~m}(\mathrm{H}) \times 6.45 \mu \mathrm{~m} \mathrm{(W)}$
Shutter	Electronic shutter, 10 shutter speeds (1/24 to $1 / 10,000 \mathrm{~s})$, changed via menu
Partial function	Four settings
Communication interface	Conforms to Camera Link
Ambient temperature	Operating: 0 to $50^{\circ} \mathrm{C}$   Storage: -25 to $60^{\circ} \mathrm{C}$   with no icing or condensation
Ambient humidity	Operating / Storage: $30 \%$ to $85 \%$ with no condensation
Dimensions	$50 \times 40 \times 90 \mathrm{~mm}(\mathrm{~W} \times \mathrm{H} \mathrm{x} \mathrm{D)} \mathrm{(without} \mathrm{connectors} \mathrm{and} \mathrm{other} \mathrm{protrusions)}$
Weight	Approx. 270 g
Accessories	Instruction Manual

System Requirements for F500-CD2E Vision Composer Net

CPU	Pentium III 600 MHz min. (Pentium III 1 GHz min. recommended)
OS	Windows 2000 Professional, Service Pack 3 or higher   Windows XP Home Edition, Service Pack 1 or higher   Windows XP Professional, Service Pack 1 or higher
Memory	192 MB min. (256 MB min. recommended)
Hard disk	200 MB min. available space
Monitor	Resolution: 1,024 x 768 min.   Display colors: High Color (16-bit) min. (True Color (32-bit) min. recommended)
Network	10BaseT-compliant network (100Base-TX recommended)
Vision   Sensor	ControllerApplication   Software
F500-C10-ETN/F500-C15-ETN	



## Camera•Lens•Lighting

The performance of the visual sensor varies greatly depending on the combination of camera, lens, and lighting. Refer to the following to create a suitable combination for your inspection purpose.
Camera Details

## Model

Item		F150-S1A	F160-S1/S2	F400-S1
		Shutter camera		
Visual appearance				
Imag	pick-up	$1 / 3$ inch CCD fixed imaging element	1/3 inch color CCD	
Num	r of elements	659(H) x 494(V)		
Sync	ronization method	External synchronization		
Scan	ing method	Non-interlace method	Non-interlace method Interlace method	Non-interlace method
Lens mount		C mount		
Shutter speed (s)		$1 / 100$ $1 / 500$ $1 / 2000$ $1 / 10000$ (factory setting: $1 / 2000$ )	$\begin{gathered} 8 \text { stages } \\ \text { OFF to } \\ 1 / 20000 \text { Changed by menu } \end{gathered}$	$1 / 100$ $1 / 500$ $1 / 2000$ $1 / 10000$ (factory setting: $1 / 2000$ )
Weight (Unit only)		Approx. 70 g	Approx. 85 g	Approx. 70 g
Applicable camera cable				
	F150	0	X	X
	F160	0	0	X
	F210	0	0	X
	F250	0	0	X
	F400	X	X	0
	V530-R150	0	X	X
	V530-R160	0	X	X

## Lens Details

Refer to the following optical graph to select a lens and connecting ring suitable for the field of view and the camera installation distance.
Optical graph


How to read the optical graphs
The horizontal axis of each optical graph is the field of view "L" $(\mathrm{mm}$ ) and the vertical axis is the camera installation distance " A " (mm). Each line represents a lens, and the value " $t$ " is the thickness of the connecting ring.

The values given in the optical graph are only approximate values. It is recommended that the camera distance is adjusted by sliding the Camera forward or backward to get the required field of view for actual operation


## Ordering Information

Lens

Model				lens		
Item	$\begin{aligned} & \text { 3Z4S-LE } \\ & \text { C815B } \end{aligned}$	$\begin{aligned} & \text { 3Z4S-LE } \\ & \text { B1214D-2 } \end{aligned}$	$\begin{aligned} & \text { 3Z4S-LE } \\ & \text { C1614A } \end{aligned}$	$\begin{aligned} & \text { 3Z4S-LE } \\ & \text { B2514D } \end{aligned}$	$\begin{aligned} & \text { 3Z4S-LE } \\ & \text { B5014A } \end{aligned}$	$\begin{aligned} & \text { 3Z4S-LE } \\ & \text { B7514C } \end{aligned}$
Visual appearance	42 dia $\qquad$	42 dia	$30 \text { dia. }$	30 dia.	48 dia.	
Focal length	8.5 mm	12.5 mm	16.0 mm	25.0 mm	50.0 mm	75.0 mm
Brightness	F1.5	F1.4				
Filter size	$\mathrm{M} 40.5 \times \mathrm{P} 0.5$		M27 $\times$ P0.5		M46 x P0.75	M58 x P0.75
Lock mechanism	With focus and aperture lock mechanism					---



## Extension ring

The extension ring is inserted between the lens and camera, and is used to adjust the focus.
Combine 6 sheets for the desired thickness.


Model	Maximum   outer   diameter	Thickness
3Z4S-LE EX-C6	31 mm dia.	Six-point set: $0.5 \mathrm{~mm}, 1 \mathrm{~mm}$,   $5 \mathrm{~mm}, 10 \mathrm{~mm}, 20 \mathrm{~mm}, 40 \mathrm{~mm}$

Thickness: $40 \mathrm{~mm} \quad 20 \mathrm{~mm} \quad 10 \mathrm{~mm} \quad 5 \mathrm{~mm} \quad 1.0 \mathrm{~mm} \quad 0.5 \mathrm{~mm}$


Note 1. Do not use multiple 0.5 mm and/or 1.0 mm extension rings in combination. It will not be possible to tighten the screws sufficiently.
2. Depending on vibration conditions, additional support may be necessary if the extension exceeds 30 mm .

## Camera•Lens•Lighting

## Lighting

For accurate inspection, a stable image must be obtained. Select lighting that is suitable for your purpose and measurement object. Lighting method

## Back lighting



High contrast guarantees a stable image.

Application
Inspection of the shape of the object, positioning inspection, etc.

Reflective lighting


Detection using the difference between regular reflection and diffuse reflection is possible.

Application
Inspection of object surface

Application
Inspection for presence of object surface luster, etc.


There are minimal shadows from bumps and depressions in the measurement object, enabling a stable image to be obtained.

Application
Surface inspection of relatively small objects, positioning, hole inspection, etc.

## Inductive and Capacitive Sensors

Inductive Sensors			
Overview	General Purpose Inductive Proximity Switches		D-3
	Special Purpose Inductive Prox	mity Switches	D-5
General Purpose	General Purpose (metal housing)	E2A	D-9
	General Purpose (plastic housing)	E2F	D-29
	Long Distance	E2A3	D-35
	Small Diameter	E2E	D-45
	General Purpose	TL-W	D-53
	Standard Flat	TL-T	(CD)
	Miniature Square	E2S	D-61
	Long Distance Square	E2Q2	D-69
	Long Distance Square	E2Q4	D-77
Special Function	High precision positioning	E2C-EDA	D-83
	High frequency	E2EL	D-99
Special Shape	Ultra Small diameter	E2EC	D-107
	Smooth barrel	TL	D-115
Special Environment	Oil resistant (Automotive)	E2E	D-119
	Cylindrical Inductive Sensor for Explosive Environments	E2AX	(CD)
	Mobile Usage (vehicles)	E2AU	D-151
	Anti-Aluminum Cut Chips Models	E2EZ	D-161
	Chemical resistance	E2FQ	D-167
	Spatter Immune	E2EQ	D-171
Capacitive Sensors			
	Chemical Resistance	E2KQ-X	D-179
	Long Distance	E2K-C	D-183
	Flat Type	E2K-F	D-189
	Liquid Level Sensor	E2K-L	(CD)

OmROח

## General Purpose Inductive Proximity Switches <br> Overview



Housing	Square			
Model	TL-W	E2S	E2Q2	TL-T
Type	Standard (flat shape)	Miniature	Long distance	Standard (thin shape)
Housing Material	Plastic (ABS)	Plastic (polyarylate)	Plastic (PBT)	Plastic
Features	- High quality consistancy   - High performance and cost efficient solution	- Small shapes where mounting space is crucial	- Long sensing distances   - Changable postition of active face	- Thin shape for saving side-wall mounting
Key specifications	- NO or NC   - DC 3-wire, (DC 2-wire)   - 12-24 VDC   (10-30 VDC)   - IP67	- NO or NC   - DC 3-wire, DC 2-wire   - 12-24 VDC   - (10-30 VDC)   - IP67	- NO or $\mathrm{NO}+\mathrm{NC}$   - DC 3-wire, DC 4-wire   - 10-60 VDC   - IP67	- NO, NC or NO+NC   - DC 3-wire, DC 4-wire   - 12-24 VDC   (10-30 VDC)   - IP67
			里	$\pi_{1}^{x}$
Max sensing distance	$\begin{aligned} & 25 \times 8 \times 5: 1.5 \mathrm{~mm} \\ & 22 \times 8 \times 6: 3 \mathrm{~mm} \\ & 31 \times 18 \times 10: 5 \mathrm{~mm} \\ & 53 \times 40 \times 23: 20 \mathrm{~mm} \end{aligned}$	$19 \times 6 \times 2: 1.6 \mathrm{~mm}$ $23 \times 8 \times 8: 2.5 \mathrm{~mm}$	$\begin{aligned} & 67 \times 40 \times 40: \\ & 20,30 \text { or } 40 \mathrm{~mm} \\ & 118 \times 40 \times 40: \\ & 20,30 \text { or } 40 \mathrm{~mm} \end{aligned}$	xx: 4 mm
Connection	Cable: PVC -	Cable: PVC -	Connector: M12	Cable: PVC, PUR Connector: M8
Page	D-53	D-61	D-69	(CD)

## ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.

To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .

## Special Purpose Inductive Proximity Switches

## Overview

Housing	Cylindrical			
Model	E2AU	E2EZ	E2AX	E2EQ
Type	Vehicle usage certified (e1 mark)	AL and FE chip immune	ATEX 3D certified	Spatter resistance
Housing Material	Brass	Brass   (ABS/ PBT sensing face)	Brass	Teflon coated brass (teflon sensing face)
Features	- E1 mark for mobile usage   - High EMC immunity (additional test up to 100 V/m)   - Cable breakage protection   - Available on request for all E2A types	- Specialized sensing method for immunity against small sized metal objects (e.g. chips)	- ATEX Cat 3D certification	- Teflon coating for preventing the attachment of sputters in welding applications
Application areas	- Utility vehicles   - Mobile construction equipment   - RCVs (refuse collecting vehicles)   - Mobile agricultural equipment (e.g. harvester)	- Metal cutting in machine tool industry	- Powder handling and packaging (flour packaging)   - Wood cutting/ wood chip handling	- Welding applications
Key specifications	- NO   - DC 3-wire   - 12-24 VDC   (10-32 VDC)   - IP67, IP69k	- NO or NC (DC 2-wire only)   - DC 3-wire, DC 2-wire   - 12-24 VDC   (10-30 VDC)   - IP67	- NO   - DC 3-wire   - 12-24 VDC   (10-32 VDC)   - IP67, IP69k	- NO   - DC 2-wire   - 12-24 VDC (10-32 VDC)   - IP67
Max sensing distance	M12: 4 mm   M18: 8 mm   M30: 15 mm	M12: 2 mm   (DC 2-wire only)    M18: 4 mm   M30: 8 mm	M12: 4 mm   M18: 8 mm   M30: 15 mm	M12: 4 mm   M18: 8 mm   M30: 15 mm
Connection	Cable: PVC (2 m) Connector: M12	Cable: PVC Connector: M12	Connector: M12 (amm	Cable: PVC Connector: M12
Page	D-151	D-161	(CD)	D-171


Housing	Cylindrical			
Model	E2F, E2E	E2E	E2C-EDA	E2EL
Type	AC power supply	Oil resistant	High precision positioning	Increased switching frequency for high speed applications
Housing Material	Plastic, brass	Brass	Brass	Brass, stainless steel
Features	- 24-240 VAC direct switching	- tested oil restistance   - designed for automative users	- Accuracy $1 \mu \mathrm{~m}$	- Up to 5 kHz switching frequency
Application areas	- Installations without controller/PLC and 230 VAC power supply	- Automative manufacturing lines	- Precision positioning	- Counting   - Rotation speed control   - CAM
Key specifications	- NO, NC   - AC 2-wire   - 24-240 VAC   - IP67	- NO, NC   - DC 3-wire, DC 2-wire   - 12-24 VDC (10-30 VDL)   - IP 67	- 12-24 VDC (10-30 VDC)   - IP67 (sensing heads)   - IP50 (separate amplifier)	- NO, NC   - DC 3-wire   - 10-35 VDC   - IP67
Max sensing distance	M8: 2 mm   M12: 5 mm   M18: 10 mm   M30: 18 mm	M8: 4 mm   M12: 8 mm   M18: 14 mm   M30: 20 mm	dia $3 \mathrm{~mm}:$ 0.6 mm   dia $5.4 \mathrm{~mm}:$ 1 mm   dia $8 \mathrm{~mm}:$ 2 mm   M10: 2 mm   M18: 7 mm	dia $6.5 \mathrm{~mm}:$ 2 mm   M8: 2 mm
Connection	Cable: PVC Cable: M12 Connector: M12	Cable: PVC   Cable: M12   Connector: M12	Cable: PVC	Cable: PVC   Cable connector:   M8, M12, custom-   er specific Connector: M8
Page	D-29	D-45	D-83	D-99



ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.
To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .

## Cylindrical Proximity Sensor

## High quality for extra long life in daily use

- wide portfolio range through modular concept
- designed and tested for extra long life
- IP67 and IP69k for highest protection in wet environments
- continuously high quality level through specialized manufacturing process
- DC 3-wire and DC 2-wire models
- Normally open (NO), normally closed (NC) and antivalent (NO+NC) models
- up to 30 mm sensing distance
- Stainless steel and brass housings
- Pre-wired versions with different cable materials and diameters, M8 and M12 connector types, pre-wired types with cable end connectors



## Ordering Information

DC 3-wire models (NO + NC: DC 4-wire) *2


	Size	Sensing distance	Connection	Body material	Thread length (overall length)	Output configuration	Operation mode NO	Operation mode NC	Operation mode NO + NC
M12	Shielded	4.0 mm	Pre-wired	Brass*3	34 (50)	PNP	E2A-M12KS04-WP-B1 2M	E2A-M12KS04-WP-B2 2M	E2A-M12KS04-WP-B3 2M
						NPN	E2A-M12KS04-WP-C1 2M	E2A-M12KS04-WP-C2 2M	E2A-M12KS04-WP-C3 2M
					56 (72)	PNP	E2A-M12LS04-WP-B1 2M	E2A-M12LS04-WP-B2 2M	E2A-M12LS04-WP-B3 2M
						NPN	E2A-M12LS04-WP-C1 2M	E2A-M12LS04-WP-C2 2M	E2A-M12LS04-WP-C32M
			M12 connector	Brass*3	34 (48)	PNP	E2A-M12KS04-M1-B1	E2A-M12KS04-M1-B2	E2A-M12KS04-M1-B3
						NPN	E2A-M12KS04-M1-C1	E2A-M12KS04-M1-C2	E2A-M12KS04-M1-C3
					56 (70)	PNP	E2A-M12LS04-M1-B1	E2A-M12LS04-M1-B2	E2A-M12LS04-M1-B3
						NPN	E2A-M12LS04-M1-C1	E2A-M12LS04-M1-C2	E2A-M12LS04-M1-C3
			M8 connector (3-pin)	Brass*3	34 (48)	PNP	E2A-M12KS04-M5-B1	E2A-M12KS04-M5-B2	n.a.
						NPN	E2A-M12KS04-M5-C1	E2A-M12KS04-M5-C2	n.a.
					56 (70)	PNP	E2A-M12LS04-M5-B1	E2A-M12LS04-M5-B2	n.a.
						NPN	E2A-M12LS04-M5-C1	E2A-M12LS04-M5-C2	n.a.
			M8 connector (4-pin)	Brass*3	34 (48)	PNP	E2A-M12KS04-M3-B1	E2A-M12KS04-M3-B2	n.a.
						NPN	E2A-M12KS04-M3-C1	E2A-M12KS04-M3-C2	n.a.
					56 (70)	PNP	E2A-M12LS04-M3-B1	E2A-M12LS04-M3-B2	n.a.
						NPN	E2A-M12LS04-M3-C1	E2A-M12LS04-M3-C2	n.a.
	Non-shielded	8.0 mm	Pre-wired	Brass*3	34 (50)	PNP	E2A-M12KN08-WP-B1 2M	E2A-M12KN08-WP-B2 2M	E2A-M12KN08-WP-B3 2M
						NPN	E2A-M12KN08-WP-C1 2M	E2A-M12KN08-WP-C2 2M	E2A-M12KN08-WP-C3 2M
					56 (72)	PNP	E2A-M12LN08-WP-B1 2M	E2A-M12LN08-WP-B2 2M	E2A-M12LN08-WP-B3 2M
						NPN	E2A-M12LN08-WP-C1 2M	E2A-M12LN08-WP-C2 2M	E2A-M12LN08-WP-C3 2M
			M12   connector	Brass*3	34 (48)	PNP	E2A-M12KN08-M1-B1	E2A-M12KN08-M1-B2	E2A-M12KN08-M1-B3
						NPN	E2A-M12KN08-M1-C1	E2A-M12KN08-M1-C2	E2A-M12KS08-M1-C3
					56 (70)	PNP	E2A-M12LN08-M1-B1	E2A-M12LN08-M1-B2	E2A-M12LS08-M1-B3
						NPN	E2A-M12LN08-M1-C1	E2A-M12LN08-M1-C2	E2A-M12LS08-M1-C3
			M8 connector (3-pin)	Brass*3	34 (48)	PNP	E2A-M12KN08-M5-B1	E2A-M12KN08-M5-B2	n.a.
						NPN	E2A-M12KN08-M5-C1	E2A-M12KN08-M5-C2	n.a.
					56 (70)	PNP	E2A-M12LN08-M5-B1	E2A-M12LN08-M5-B2	n.a.
						NPN	E2A-M12LN08-M5-C1	E2A-M12LN08-M5-C2	n.a.
			M8 connector (4-pin)	Brass*3	34 (48)	PNP	E2A-M12KN08-M3-B1	E2A-M12KN08-M3-B2	n.a.
						NPN	E2A-M12KN08-M3-C1	E2A-M12KN08-M3-C2	n.a.
					56 (70)	PNP	E2A-M12LN08-M3-B1	E2A-M12LN08-M3-B2	n.a.
						NPN	E2A-M12LN08-M3-C1	E2A-M12LN08-M3-C2	n.a.
M18	Shielded	8.0 mm	Pre-wired	Brass*3	39 (59)	PNP	E2A-M18KS08-WP-B1 2M	E2A-M18KS08-WP-B2 2M	E2A-M18KS08-WP-B3 2M
						NPN	E2A-M18KS08-WP-C1 2M	E2A-M18KS08-WP-C2 2M	E2A-M18KS08-WP-C3 2M
					61 (81)	PNP	E2A-M18LS08-WP-B1 2M	E2A-M18LS08-WP-B2 2M	E2A-M18LS08-WP-B3 2M
						NPN	E2A-M18LS08-WP-C1 2M	E2A-M18LS08-WP-C2 2M	E2A-M18LS08-WP-C3 2M
			M12   connector	Brass*3	39 (53)	PNP	E2A-M18KS08-M1-B1	E2A-M18KS08-M1-B2	E2A-M18KS08-M1-B3
						NPN	E2A-M18KS08-M1-C1	E2A-M18KS08-M1-C2	E2A-M18KS08-M1-C3
					61 (75)	PNP	E2A-M18LS08-M1-B1	E2A-M18LS08-M1-B2	E2A-M18LS08-M1-B3
						NPN	E2A-M18LS08-M1-C1	E2A-M18LS08-M1-C2	E2A-M18LS08-M1-C3
			M8 connector (3-pin)	Brass*3	39 (53)	PNP	E2A-M18KS08-M5-B1	E2A-M18KS08-M5-B2	n.a.
						NPN	E2A-M18KS08-M5-C1	E2A-M18KS08-M5-C2	n.a.
					61 (75)	PNP	E2A-M18LS08-M5-B1	E2A-M18LS08-M5-B2	n.a.
						NPN	E2A-M18LS08-M5-C1	E2A-M18LS08-M5-C2	n.a.
			M8 connector (4-pin)	Brass*3	39 (53)	PNP	E2A-M18KS08-M3-B1	E2A-M18KS08-M3-B2	n.a.
						NPN	E2A-M18KS08-M3-C1	E2A-M18KS08-M3-C2	n.a.
					61 (75)	PNP	E2A-M18LS08-M3-B1	E2A-M18LS08-M3-B2	n.a.
						NPN	E2A-M18LS08-M3-C1	E2A-M18LS08-M3-C2	n.a.
	Non-shielded	16.0 mm	Pre-wired	Brass*3	39 (59)	PNP	E2A-M18KN16-WP-B1 2M	E2A-M18KN16-WP-B2 2M	E2A-M18KN16-WP-B3 2M
						NPN	E2A-M18KN16-WP-C1 2M	E2A-M18KN16-WP-C2 2M	E2A-M18KN16-WP-C3 2M
					61 (81)	PNP	E2A-M18LN16-WP-B1 2M	E2A-M18LN16-WP-B2 2M	E2A-M18LN16-WP-B3 2M
						NPN	E2A-M18LN16-WP-C1 2M	E2A-M18LN16-WP-C2 2M	E2A-M18LN16-WP-C3 2M
			M12 connector	Brass*3	39 (53)	PNP	E2A-M18KN16-M1-B1	E2A-M18KN16-M1-B2	E2A-M18KN16-M1-B3
						NPN	E2A-M18KN16-M1-C1	E2A-M18KN16-M1-C2	E2A-M18KS16-M1-C3
					61 (75)	PNP	E2A-M18LN16-M1-B1	E2A-M18LN16-M1-B2	E2A-M18LS16-M1-B3
						NPN	E2A-M18LN16-M1-C1	E2A-M18LN16-M1-C2	E2A-M18LS16-M1-C3
			M8 connector (3-pin)	Brass*3	39 (53)	PNP	E2A-M18KN16-M5-B1	E2A-M18KN16-M5-B2	n.a.
						NPN	E2A-M18KN16-M5-C1	E2A-M18KN16-M5-C2	n.a.
					61 (75)	PNP	E2A-M18LN16-M5-B1	E2A-M18LN16-M5-B2	n.a.
						NPN	E2A-M18LN16-M5-C1	E2A-M18LN16-M5-C2	n.a.
			M8 connector (4-pin)	Brass* ${ }^{*}$	39 (53)	PNP	E2A-M18KN16-M3-B1	E2A-M18KN16-M3-B2	n.a.
						NPN	E2A-M18KN16-M3-C1	E2A-M18KN16-M3-C2	n.a.
					61 (75)	PNP	E2A-M18LN16-M3-B1	E2A-M18LN16-M3-B2	n.a.
						NPN	E2A-M18LN16-M3-C1	E2A-M18LN16-M3-C2	n.a.


Size		Sensing distance	Connection	Body material		Output configuration	Operation mode NO	Operation mode NC	Operation mode NO + NC
M30	Shielded	15.0 mm	Pre-wired	Brass*3	44 (64)	PNP	E2A-M30KS15-WP-B1 2M	E2A-M30KS15-WP-B2 2M	E2A-M30KS15-WP-B3 2M
						NPN	E2A-M30KS15-WP-C1 2M	E2A-M30KS15-WP-C2 2M	E2A-M30KS15-WP-C3 2M
					66 (86)	PNP	E2A-M30LS15-WP-B1 2M	E2A-M30LS15-WP-B2 2M	E2A-M30LS15-WP-B3 2M
						NPN	E2A-M30LS15-WP-C1 2M	E2A-M30LS15-WP-C2 2M	E2A-M30LS15-WP-C3 2M
			M12 connector	Brass*3	44 (58)	PNP	E2A-M30KS15-M1-B1	E2A-M30KS15-M1-B2	E2A-M30KS15-M1-B3
						NPN	E2A-M30KS15-M1-C1	E2A-M30KS15-M1-C2	E2A-M30KS15-M1-C3
					66 (80)	PNP	E2A-M30LS15-M1-B1	E2A-M30LS15-M1-B2	E2A-M30LS15-M1-B3
						NPN	E2A-M30LS15-M1-C1	E2A-M30LS15-M1-C2	E2A-M30LS15-M1-C3
			M8 connector (3-pin)	Brass*3	44 (58)	PNP	E2A-M30KS15-M5-B1	E2A-M30KS15-M5-B2	n.a.
						NPN	E2A-M30KS15-M5-C1	E2A-M30KS15-M5-C2	n.a.
					66 (80)	PNP	E2A-M30LS15-M5-B1	E2A-M30LS15-M5-B2	n.a.
						NPN	E2A-M30LS15-M5-C1	E2A-M30LS15-M5-C2	n.a.
			M8 connector (4-pin)	Brass*3	44 (58)	PNP	E2A-M30KS15-M3-B1	E2A-M3OKS15-M3-B2	n.a.
						NPN	E2A-M30KS15-M3-C1	E2A-M30KS15-M3-C2	n.a.
					66 (80)	PNP	E2A-M30LS15-M3-B1	E2A-M30LS15-M3-B2	n.a.
						NPN	E2A-M30LS15-M3-C1	E2A-M30LS15-M3-C2	n.a.
	Non-shielded	20.0 mm	Pre-wired	Brass*3	44 (64) (See note.)	PNP	E2A-M30KN20-WP-B1 2M	E2A-M30KN20-WP-B2 2M	E2A-M30KN20-WP-B3 2M
						NPN	E2A-M30KN20-WP-C1 2M	E2A-M30KN20-WP-C2 2M	E2A-M30KN20-WP-C3 2M
		30.0 mm			66 (86)	PNP	E2A-M30LN30-WP-B1 2M	E2A-M30LN30-WP-B2 2M	E2A-M30LN30-WP-B3 2M
						NPN	E2A-M30LN30-WP-C1 2M	E2A-M30LN30-WP-C2 2M	E2A-M30LN30-WP-C3 2M
		20.0 mm	M12 connector	Brass*3	$\begin{aligned} & 44 \text { (58) } \\ & \text { (See } \\ & \text { note.) } \end{aligned}$	PNP	E2A-M30KN20-M1-B1	E2A-M30KN20-M1-B2	E2A-M30KN20-M1-B3
						NPN	E2A-M30KN20-M1-C1	E2A-M30KN20-M1-C2	E2A-M30KN20-M1-C3
		30.0 mm			66 (80)	PNP	E2A-M30LN30-M1-B1	E2A-M30LN30-M1-B2	E2A-M30LN30-M1-B3
						NPN	E2A-M30LN30-M1-C1	E2A-M30LN30-M1-C2	E2A-M30LN30-M1-C3
		20.0 mm	M8 connector (3-pin)	Brass*3	$\begin{array}{\|l\|} \hline 44 \text { (58) } \\ \text { (See } \\ \text { note.) } \end{array}$	PNP	E2A-M30KN20-M5-B1	E2A-M30KN20-M5-B2	n.a.
						NPN	E2A-M30KN20-M5-C1	E2A-M30KN20-M5-C2	n.a.
		30.0 mm			66 (80)	PNP	E2A-M30LN30-M5-B1	E2A-M30LN30-M5-B2	n.a.
						NPN	E2A-M30LN30-M5-C1	E2A-M30LN30-M5-C2	n.a.
		20.0 mm	$\begin{aligned} & \text { M8 } \\ & \text { connector } \\ & (4 \text {-pin) } \end{aligned}$	Brass*3	$\begin{aligned} & \hline 44 \text { (58) } \\ & \text { (See } \\ & \text { note.) } \end{aligned}$	PNP	E2A-M30KN20-M3-B1	E2A-M30KN20-M3-B2	n.a.
						NPN	E2A-M30KN20-M3-C1	E2A-M30KN20-M3-C2	n.a.
		30.0 mm			66 (80)	PNP	E2A-M30LN30-M3-B1	E2A-M30LN30-M3-B2	n.a.
						NPN	E2A-M30LN30-M3-C1	E2A-M30LN30-M3-C2	n.a.

*1. Material specifications for stainless steel housing case: 1.4305 (W.-No.), SUS 303 (AISI), 2346 (SS). Please contact your OMRON representative for other stainless steel materials.
*2. Please contact your OMRON representative for DC 2-wire models.
*3. Stainless steel models are also available. Please contact your OMRON representative.
Note:M30 non-shielded Models with double sensing distance and short barrels cannot be mounted due to the necessary separation distance from the surrounding metal. Standard sensing models are thus available.

## Connectivity

The E2A sensors are available with the following connectors and cable materials:

Pre-wired models


Standard cable lengths are 2 m and 5 m .
For other cable lengths please contact your OMRON representative.
Standard cable material: PVC (dia 4mm)
Other available cable materials and sizes:

- PVC (dia 6mm)
- PUR/PVC - PUR jacket (dia 4mm)
- PUR/PVC - PUR jacket (dia 6mm)
- PVC robotic cable (dia 4mm)

Pre-wired models with cable end connectors


All pre-wired models can be fitted with cable and connectors.
Standard cable end connectors:

- M12	M1J
- M8 (4 pin)	M3J
- M8 (3 pin)	M5J

Other cable end connectors are available on request.
Connector models
-WB
-WR
-WA


Standard connectors: M12, M8 (4 or 3 pin) -M1, -M3, -M5

## Model Number Legend

## E2A $\square-\square \square \square \square \square-\square-\square \square-\square \square$ <br> $\begin{array}{lllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 1112\end{array}$

Example: E2A-M12LS04-M1-B1 Standard, M12, long barrel, shielded, Sn=4 mm, M12 connector, PNP-NO
E2A-S08KN04-WP-B1 5M Standard, M8 stainless steel, short barrel, non-shielded, $\mathrm{Sn}=4 \mathrm{~mm}$, pre-wired PVC cable, PNP-NO, cable length=5 m

1. Basic name

E2A
2. Sensing technology

Blank: Standard double distance
3. Housing shape and material

M : $\quad$ Cylindrical, metric threaded, brass
S: Cylindrical, metric threaded, stainless steel
4. Housing size

08: $\quad 8 \mathrm{~mm}$
12: $\quad 12 \mathrm{~mm}$
18: $\quad 18 \mathrm{~mm}$
30: $\quad 30 \mathrm{~mm}$
5. Barrel length

K: Standard length
L: Long body
6. Shield

S: Shielded
N: Non-shielded
7. Sensing distance

Numeral: Sensing distance: e.g. 02=2 mm, 16=16 mm

## 8. Kind of connection

WP: pre-wired, PVC, dia 4 mm (standard)
WS: pre-wired, PVC, dia 6 mm
WR: pre-wired, PVC, robotic cable, dia 4 mm
WA: pre-wired, PUR/PVC (PUR jacket), dia 4 mm
WB: pre-wired, PUR/PVC (PUR jacket), dia 6 mm

M1: M12 connector (4 pin) *
M3: M8 connector (4 pin)
M5: $\quad$ M8 connector (3 pin)

M1J pre-wired with M12 cable end connector (4 pin)
M3J pre-wired with M8 cable end connector (4 pin)
M5J pre-wired with M8 cable end connector (3 pin)
9. Power source and output

B: DC, 3-wire, PNP open collector
C: DC, 3-wire, NPN open collector
D: DC, 2-wire
E: $\quad$ DC, 3-wire, NPN voltage output
F: DC, 3-wire, PNP voltage output

## 10.Operation mode

1: $\quad$ Normally open (NO)
2: $\quad$ Normally closed (NC)
3: $\quad$ Antivalent (NO+NC)
11.Specials (e.g., cable material, oscillating frequency)

## 12.Cable length

Blank: Connector type
Numeral: Cable length
Note: *In case of DC 2-wire models the M12 connector identifier is '-M1G

## Specifications

## DC 3-wire Models / DC 4-wire (NO+NC)

$\begin{array}{r} \hline \text { Size } \\ \hline \text { Type } \\ \hline \end{array}$		M8		M12	
		Shielded	Non-shielded	Shielded	Non-shielded
	Item	$\begin{aligned} & \text { E2A-S08 } \square \text { S02- } \square \square-\mathrm{B} 1 \\ & \text { E2A-S08 } \square \text { S02- } \square-\mathrm{C} \end{aligned}$	$\begin{aligned} & \text { E2A-S08 } \square \text { N04- } \square-\text { - } 1 \\ & \text { E2A-S08 } \square \text { N04- } \square-\mathrm{C} 1 \end{aligned}$	E2A-M12 $\square$ S04- $\square \square-\mathrm{B} \square$ E2A-M12 $\square$ S04- $\square \square-\mathrm{C} \square$ E2A-S12 $\square$ S04- $\square \square-\mathrm{B} \square$ E2A-S12 $\square$ S04- $\square \square$-C $\square$	E2A-M12 $\square$ N08- $\square \square-B \square$ E2A-M12 $\square$ N08- $\square \square-C \square$ E2A-S12 $\square$ N08- $\square \square-B \square$ E2A-S12 $\square$ N08- $\square \square-C$
Sensing distance		$2 \mathrm{~mm} \pm 10 \%$	$4 \mathrm{~mm} \pm 10 \%$	$4 \mathrm{~mm} \pm 10 \%$	$8 \mathrm{~mm} \pm 10 \%$
Setting distance		0 to 1.6 mm	0 to 3.2 mm	0 to 3.2 mm	0 to 6.4 mm
Differential travel		10\% max. of sensing distance			
Target		Ferrous metal (The sensing distance decreases with non-ferrous metal.)			
Standard target (mild steel ST37)		$8 \times 8 \times 1 \mathrm{~mm}$	$12 \times 12 \times 1 \mathrm{~mm}$	$12 \times 12 \times 1 \mathrm{~mm}$	$24 \times 24 \times 1 \mathrm{~mm}$
Response frequency (See note 1.)		$1,500 \mathrm{~Hz}$	$1,000 \mathrm{~Hz}$	$1,000 \mathrm{~Hz}$	800 Hz
Power supply voltage (operating voltage range)		$\begin{aligned} & 12 \text { to } 24 \text { VDC. Ripple (p-p): } 10 \% \text { max. } \\ & \text { (10 to } 32 \text { VDC) } \end{aligned}$			
Current consumption (DC 3-wire)		10 mA max.			
Output type		-B models: PNP open collector -C models: NPN open collector			
Control output	Load current (See note 2.)	200 mA max. (32 VDC max.)			
	Residual voltage	2 V max. (under load current of 200 mA with cable length of 2 m )			
Indicator		Operation indicator (Yellow LED)			
Operation mode (with sensing object approaching)		-B1/-C1 models: NO   -B2/-C2 models: NC   -B3/ -C3 models: NO+NC   For details, refer to the timing charts. (See note 4.)			
Protection circuit		Power source circuit reverse polarity protection, Surge suppressor, Short-circuit protection		Output reverse polarity protection, Power source circuit reverse polarity protection, Surge suppressor, Short-circuit protection	
Ambient air temperature		Operating: $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$, Storage: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (with no icing or condensation)			
Temperature influence (See note 2.)		$\pm 10 \%$ max. of sensing distance at $23^{\circ} \mathrm{C}$ within temperature range of $25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ $\pm 15 \%$ max. of sensing distance at $23^{\circ} \mathrm{C}$ within temperature range of $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$			
Ambient humidity		Operating: 35\% to 95\%, Storage: 35\% to 95\%			
Voltage influence		$\pm 1 \%$ max. of sensing distance in rated voltage range $\pm 15 \%$			
Insulation resistance		$50 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC ) between current carry parts and case			
Dielectric strength		1,000 VAC at 50/60 Hz for 1 min between current carry parts and case			
Vibration resistance		10 to 55 Hz , 1.5-mm double amplitude for 2 hours each in $\mathrm{X}, \mathrm{Y}$ and Z directions			
Shock resistance		$500 \mathrm{~m} / \mathrm{s}^{2}, 10$ times each in $\mathrm{X}, \mathrm{Y}$ and Z directions		$1,000 \mathrm{~m} / \mathrm{s}^{2}, 10$ times each in $X, Y$ and $Z$ directions	
Standard and listings		IP67 after IEC 60529IP69k after DIN 40050EMC after EN60947-5-2UL (CSA) E196555 (See note 3.)			
Connection method		Pre-wired models (standard is dia 4 mm PVC cable with length $=2 \mathrm{~m}$ ).   Please see chapter 'Connectivity' for details on different cable materials and lenghts and M8 or M12 connectors.			
Weight (packaged)	Pre-wired model	Approx. 65 g		Approx. 85 g	
	Connector model	M12 connector models: Approx. 20 g M8 connector models: Approx. 15 g		Approx. 35 g	
Material	Case	Stainless steel		Brass-nickel plated or stainless steel	
	Sensing surface	PBT			
	Cable	Standard cable is PVC dia 4 mm .   For other cable materials or diameters please refer to chapter 'Connectivity'			
	Clamping nut	Brass-nickel plated		Brass-nickel plated for brass models stainless steel for steel models	

Note 1. The response frequency is an average value. Measurement conditions are as follows: standard target, a distance of twice the standard target distance between targets, and a setting distance of half the sensing distance.
2. When using any model at an ambient temperature between $-40^{\circ} \mathrm{C}$ and $-25^{\circ} \mathrm{C}$ and a power voltage between 30 and 32 VDC , use a load current of 100 mA max.,
3. UL (CSA) [E196555]: Use class 2 circuit only.
4. -B3/-C3 NO+NC models are available in M12, M18 and M30 housings with M12 connectors, pre-wired and with cable end connectors.

DC 3-wire Models / DC 4-wire (NO+NC)

$\begin{gathered} \hline \text { Size } \\ \hline \text { Type } \end{gathered}$		M18		M30		
		Shielded	Non-shielded	Shielded	Non-shielded	Non-shielded
	Item	E2A-M18 $\square$ S08- $\square-B \square$ E2A-M18 $\square$ S08- $\square-C$ E2A-S18 $\square \mathbf{S 0 8}-\square \square-B$ E2A-S18 $\square \mathbf{S 0 8}-\square-C$	E2A-M18 $\square$ N16- $\square-\mathrm{B} \square$ E2A-M18 $\square$ N16- $\square-\mathrm{C}$ E2A-S18 $\square$ N16- $\square \square$ E2A-S18 $\square$ N16- $\square-C \square$	E2A-M30 $\square \mathbf{S 1 5}-\square-\mathbf{B} \square$ E2A-M30 $\square$ S15- $\square-\mathbf{C}$ E2A-S30 $\square \mathbf{S 1 5}-\square \square-\mathbf{B}$ E2A-S30 $\square \mathbf{S 1 5 - \square \square - C ~}$	E2A-M30KN20- $\square-\mathrm{B} \square$ E2A-M30KN20- $\square-\mathrm{C}$ E2A-S30KN20- $\square$ E2A-S30KN20- $\square-\mathrm{C}$	E2A-M30LN30- $\square-\mathrm{B}$ E2A-M30LN30- $\square-\mathrm{C}$ E2A-S30LN30- $\square-\mathrm{B}$ E2A-S30LN30- $\square-\mathrm{C}$
Sensing distance		$8 \mathrm{~mm} \pm 10 \%$	$16 \mathrm{~mm} \pm 10 \%$	$15 \mathrm{~mm} \pm 10 \%$	$20 \mathrm{~mm} \pm 10 \%$	$30 \mathrm{~mm} \pm 10 \%$
Setting distance		0 to 6.4 mm	0 to 12.8 mm	0 to 12 mm	0 to 16 mm	0 to 24 mm
Differential travel		10\% max. of sensing distance				
Target		Ferrous metal (The sensing distance decreases with non-ferrous metal.)				
Standard target (mild steel ST37)		$24 \times 24 \times 1 \mathrm{~mm}$	$48 \times 48 \times 1 \mathrm{~mm}$	$45 \times 45 \times 1 \mathrm{~mm}$	$60 \times 60 \times 1 \mathrm{~mm}$	$90 \times 90 \times 1 \mathrm{~mm}$
Response frequency (See note 1.)		500 Hz	400 Hz	250 Hz	100 Hz	100 Hz
Power supply voltage (operating voltage range)		12 to 24 VDC. Ripple (p-p): 10\% max. (10 to 32 VDC)				
Current consumption (DC 3-wire)		10 mA max.				
Output type		-B models: PNP open collector -C models: NPN open collector				
Control output	Load current (See note 2.)	200 mA max. (32 VDC max.)				
	Residual voltage	2 V max. (under load current of 200 mA with cable length of 2 m )				
Indicator		Operation indicator (Yellow LED)				
Operation mode (with sensing object approaching)		-B1/-C1 models: NO   -B2/-C2 models: NC   -B3/ -C3 models: NO+NC   For details, refer to the timing charts.				
Protection circuit		Output reverse polarity protection, Power source circuit reverse polarity protection, Surge suppressor, Short-circuit protection				
Ambient air temperature		Operating: $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$, Storage: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (with no icing or condensation)				
Temperature influence (See note 2.)		$\pm 10 \%$ max. of sensing distance at $23^{\circ} \mathrm{C}$ within temperature range of $25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ $\pm 15 \%$ max. of sensing distance at $23^{\circ} \mathrm{C}$ within temperature range of $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$				
Ambient humidity		Operating: 35\% to 95\%, Storage: 35\% to 95\%				
Voltage influence		$\pm 1 \%$ max. of sensing distance in rated voltage range $\pm 15 \%$				
Insulation resistance		$50 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC ) between current carry parts and case				
Dielectric strength		1,000 VAC at $50 / 60 \mathrm{~Hz}$ for 1 min between current carry parts and case				
Vibration resistance		10 to $55 \mathrm{~Hz}, 1.5-\mathrm{mm}$ double amplitude for 2 hours each in $\mathrm{X}, \mathrm{Y}$ and Z directions				
Shock resistance		$1,000 \mathrm{~m} / \mathrm{s}^{2}, 10$ times each in $\mathrm{X}, \mathrm{Y}$ and Z directions				
Standard and listings		IP67 after IEC 60529IP69k after DIN 40050EMC after EN60947-5-2UL (CSA) E196555 (See note 3.)				
Connection method		Pre-wired models (standard is dia 4mm PVC cable with length $=2 \mathrm{~m}$ ).   Please see chapter 'Connectivity' for details on different cable materials and lenghts and M8 or M12 connectors.				
Weight (pakkaged)	Pre-wired model	Approx. 160 g		Approx. 280 g	Approx. 280 g	Approx. 370 g
	Connector model	Approx. 70 g		Approx. 200 g	Approx. 200 g	Approx. 260 g
Material	Case	Brass-nickel plated or stainless steel				
	Sensing surface	PBT				
	Cable	Standard cable is PVC dia 4mm. For other cable materials or diameters please refer to chapter 'Connectivity'				
	Clamping nut	brass-nickel plated for brass models stainless steel for steel models				

Note 1. The response frequency is an average value. Measurement conditions are as follows: standard target, a distance of twice the standard target distance between targets, and a setting distance of half the sensing distance.
2. When using any model at an ambient temperature between $-40^{\circ} \mathrm{C}$ and $-25^{\circ} \mathrm{C}$ and a power voltage between 30 and 32 VDC, use a load current of 100 mA max.
3. UL (CSA) [E196555]: Use class 2 circuit only.

## DC 2-wire Models

$\begin{gathered} \hline \text { Size } \\ \hline \text { Type } \end{gathered}$		M8		M12	
		Shielded	Non-shielded	Shielded	Non-shielded
	Item	E2A-S08 $\square$ S02-D $\square$	E2A-S08 $\square$ N04-D $\square$	E2A-M12 $\square$ S04-D $\square$ E2A-S12 $\square$ S04-D $\square$	E2A-M12 $\square$ N08-D $\square$ E2A-S12 $\square$ N08-D $\square$
Sensing distance		$2 \mathrm{~mm} \pm 10 \%$	$4 \mathrm{~mm} \pm 10 \%$	$4 \mathrm{~mm} \pm 10 \%$	$8 \mathrm{~mm} \pm 10 \%$
Setting distance		0 to 1.6 mm	0 to 3.2 mm	0 to 3.2 mm	0 to 6.4 mm
Differential travel		10\% max. of sensing distance			
Target		Ferrous metal (The sensing distance decreases with non-ferrous metal.)			
Standard target		$8 \times 8 \times 1 \mathrm{~mm}$	$12 \times 12 \times 1 \mathrm{~mm}$	$12 \times 12 \times 1 \mathrm{~mm}$	$24 \times 24 \times 1 \mathrm{~mm}$
Response frequency (See note 1.)		$1,500 \mathrm{~Hz}$	$1,000 \mathrm{~Hz}$	$1,000 \mathrm{~Hz}$	800 Hz
Power supply voltage (operating voltage range)		12 to 24 VDC. Ripple (p-p): 10\% max. (10 to 32 VDC)			
Leakage current		0.8 mA max.			
Output type		DC 2 wire type			
Control output	Load current (See note 2.)	3 to 100 mA			
	Residual voltage	3 V max. (under load current of 100 mA with cable length of 2 m )			
Indicator (see timing chart)		NO type: Operation indicator (Yellow), Setting indicator (Red) NC type: Operation indicator (Yellow)			
Operation mode		-D1 models: NO   -D2 models: NC			
Protection circuit		Surget suppressor, Short circuit protection			
Ambient temperature		Operating: $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$, Storage: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (with no icing or condensation)			
Temperature influence		$\pm 10 \%$ max. of sensing distance at $23^{\circ} \mathrm{C}$ within temperature range of $25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ $\pm 15 \%$ max. of sensing distance at $23^{\circ} \mathrm{C}$ within temperature range of $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$			
Ambient humidity		Operating: 35\% to 95\%, Storage: 35\% to 95\%			
Voltage influence		$\pm 1 \%$ max. of sensing distance in rated voltage range $\pm 15 \%$			
Insulation resistance		$50 \mathrm{M} \Omega$ min. (at 500 VDC ) between current carry parts and case			
Dielectric strength		1,000 VAC at $50 / 60 \mathrm{~Hz}$ for 1 min between current carry parts and case			
Vibration resistance		10 to $55 \mathrm{~Hz}, 1.5-\mathrm{mm}$ double amplitude for 2 hours each in $\mathrm{X}, \mathrm{Y}$ and Z directions			
Shock resistance		$500 \mathrm{~m} / \mathrm{s}^{2}, 10$ times each in $\mathrm{X}, \mathrm{Y}$ and $Z$ directions		$1,000 \mathrm{~m} / \mathrm{s}^{2}, 10$ times each in $X, Y$ and $Z$ directions	
Standard and listings		IP67 after IEC 60529IP69k after DIN 40050EMC after EN60947-5-2UL (CSA) E196555 (see note 3.)			
Connection method		Pre-wired models (standard is dia 4mm PVC cable with length $=2 \mathrm{~m}$ ).   Please see chapter 'Connectivity' for details on different cable materials and lenghts and M8 or M12 connectors.			
Weight (packaged)	Pre-wired model	Approx. 65 g		Approx. 85 g	
	Connector model	M12 connector models: Approx. 20 g M8 connector models: Approx. 15 g		Approx. 35 g	
Material	Case	Stainless steel		Brass-nickel plated or stainless steel	
	Sensing surface	PBT			
	Cable	Standard cable is PVC dia 4mm. For other cable materials or diameters please refer to chapter 'Connectivity'			
	Clamping nut	Brass-nickel plated		Brass-nickel plated for brass models stainless steel for steel models	

Note 1. The response frequency is an average value. Measurement conditions are as follows: standard target, a distance of twice the standard target distance between targets, and a setting distance of half the sensing distance.
2. When using any model at an ambient temperature between $-40^{\circ} \mathrm{C}$ and $25^{\circ} \mathrm{C}$ and a power voltage between 30 and 32 VDC , use a load current of 50 mA max.
3. UL (CSA) [E196555]: Use class 2 circuit only.

## DC 2-wire Models

$\begin{gathered} \hline \text { Size } \\ \hline \text { Type } \end{gathered}$		M18		M30	
		Shielded	Non-shielded	Shielded	Non-shielded
	Item	E2A-M18 $\square$ S08-D $\square$ E2A-S18 $\square$ S08-D $\square$	E2A-M18 $\square$ N16-D $\square$ E2A-S18 $\square$ N16-D $\square$	E2A-M30 $\square$ S15-D $\square$ E2A-S30 $\square$ S15-D $\square$	E2A-M30 $\square$ N30-D $\square$ E2A-M30 $\square$ N20-D $\square$ E2A-S30 $\square$ N30-D $\square$ E2A-S30 $\square$ N20-D $\square$
Sensing distance		$8 \mathrm{~mm} \pm 10 \%$	$16 \mathrm{~mm} \pm 10 \%$	$15 \mathrm{~mm} \pm 10 \%$	Short body: $20 \mathrm{~m} \pm 10 \%$ Long body: $30 \mathrm{~m} \pm 10 \%$
Setting distance		0 to 6.4 mm	0 to 12.8 mm	0 to 12 mm	Short body: 0 to 16 mm Long body: 0 to 24 mm
Differential travel		10\% max. of sensing distance			
Target		Ferrous metal (The sensing distance decreases with non-ferrous metal.)			
Standard target		$24 \times 24 \times 1 \mathrm{~mm}$	$48 \times 48 \times 1 \mathrm{~mm}$	$45 \times 45 \times 1 \mathrm{~mm}$	Short body: 60x60x1 mm Long body: 90x90x1mm
Response frequency (See note 1.)		500 Hz	400 Hz	250 Hz	100 Hz
Power supply voltage (operating voltage range)		$\begin{aligned} & 12 \text { to } 24 \text { VDC. Ripple (p-p): } 10 \% \text { max. } \\ & \text { (10 to } 32 \text { VDC) } \end{aligned}$			
Leakage current		0.8 mA max.			
Output type		DC 2 wire type			
Control output	Load current (See note 2.)	3 to 100 mA			
	Residual voltage	3 V max. (under load current of 100 mA with cable length of 2 m )			
Indicator (see timing chart)		NO type: Operation indicator (Yellow), Setting indicator (Red) NC type: Operation indicator (Yellow)			
Operation mode		-D1 models: NO -D2 models: NC			
Protection circuit		Surget suppressor, Short circuit protection			
Ambient temperature		Operating: $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$, Storage: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (with no icing or condensation)			
Temperature influence		$\pm 10 \%$ max. of sensing distance at $23^{\circ} \mathrm{C}$ within temperature range of $25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ $\pm 15 \%$ max. of sensing distance at $23^{\circ} \mathrm{C}$ within temperature range of $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$			
Ambient humidity		Operating: $35 \%$ to $95 \%$, Storage: $35 \%$ to 95\%			
Voltage influence		$\pm 1 \%$ max. of sensing distance in rated voltage range $\pm 15 \%$			
Insulation resistance		$50 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC ) between current carry parts and case			
Dielectric strength		1,000 VAC at 50/60 Hz for 1 min between current carry parts and case			
Vibration resistance		10 to 55 Hz , 1.5-mm double amplitude for 2 hours each in $\mathrm{X}, \mathrm{Y}$ and Z directions			
Shock resistance		$500 \mathrm{~m} / \mathrm{s}^{2}, 10$ times each in $\mathrm{X}, \mathrm{Y}$ and Z directions			
Standard and listings		IP67 after IEC 60529IP69k after DIN 40050EMC after EN60947-5-2UL (CSA) E196555 (see note 3.)			
Connection method		Pre-wired models (standard is dia 4 mm PVC cable with length $=2 \mathrm{~m}$ ).   Please see chapter 'Connectivity' for details on different cable materials and lenghts and M8 or M12 connectors.			
Weight (packaged)	Pre-wired model	Approx. 160 g		Approx. 280 g	short body: 280 g   long body: 370 g
	Connector model	Approx. 70 g		Approx. 200 g	short body: 200 g   long body: 260 g
Material	Case	Brass-nickel plated or stainless steel			
	Sensing surface	PBT			
	Cable	Standard cable is PVC dia 4 mm .   For other cable materials or diameters please refer to chapter 'Connectivity'			
	Clamping nut	brass-nickel plated for brass models stainless steel for steel models			

Note 1. The response frequency is an average value. Measurement conditions are as follows: standard target, a distance of twice the standard target distance between targets, and a setting distance of half the sensing distance.
2. When using any model at an ambient temperature between $-40^{\circ} \mathrm{C}$ and $-25^{\circ} \mathrm{C}$ and a power voltage between 30 and 32 VDC , use a load current of 50 mA max.
3. UL (CSA) [E196555]: Use class 2 circuit only.

## Engineering Data

## Operating Range (Typical)



Influence of Sensing Object Size and Materials
Shielded Models


E2A-M30 $\square$ S15/ E2A-S30 $\square$ S15



E2A-M18 $\square$ S08/E2A-S18 $\square$ S08


Non-shielded Models

## E2A-S08 $\square$ N04 <br> 

E2A-M12 $\square$ N08/E2A-S12 $\square$ N08


E2A-M18 $\square$ N16/E2A-S18 $\square$ N16


E2A-M30KN20/E2A-S30KN20


E2A-M30LN30/E2A-S30LN30


## Operation

DC 3-wire models
PNP Output
Operation mode

DC 3-wire models
NPN Output
Operation mode

## DC 2-wire models

Output Circuit Diagrams (Operation)
Operation mode Model

Note: All units are in millimeters unless otherwise indicated.
Pre-wired Models (Shielded)

> E2A-S08KS02-WP- $\square$
> Note 1. 4-dia. vinyl-insulated round cable with 3 conductors (conductor cross section:
> $0.3 \mathrm{~mm}^{2}$; insulator diameter: 1.3 mm ); standard length: 2 m
> 2. Operation indicator (yellow)
> E2A-M12KS04-WP- $\square \square / E 2 A-S 12 K S 04-W P-\square$
> Note 1. 4-dia. vinyl-insulated round cable with 3 conductors (conductor cross section: 0.3 mm 2; insulator diameter: 1.3 mm ); standard length: 2 m
> 2. Operation indicator (yellow)
> 3. for NO+NC (-B3/-C3) models the total length is 4 mm longer

E2A-M18KS08-WP- $\square \square / E 2 A-S 18 K S 08-W P-\square$


Note 1. 4-dia. vinyl-insulated round cable with 3 conductors (conductor cross section: 0.3 mm ; insulator diameter: 1.3 mm ); standard length: 2 m 2. Operation indicator (yellow)

E2A-M30KS15-WP- $\square \square / E 2 A-S 30 K S 15-W P-\square$


Note 1. 4-dia. vinyl-insulated round cable with 3 conductors (conductor cross section: $0.3 \mathrm{~mm}^{2}$; insulator diameter: 1.3 mm ); standard length: 2 m 2. Operation indicator (yellow)

Pre-wired Models (Non-shielded)


E2A-S08KN04-WP- $\square \square$


Note 1. 4-dia. vinyl-insulated round cable with 3 conductors (conductor cross section
$0.3 \mathrm{~mm}^{2}$; insulator diameter: 1.3 mm ); standard length: 2 m
2. Operation indicator (yellow)

E2A-M12KN08-WP- $\square \square / E 2 A-S 12 K N 08-W P-\square$


Note 1. 4-dia. vinyl-insulated round cable with 3 conductors (conductor cross section: 0.3 mm ; insulator diameter: 1.3 mm ); standard length: 2 m
2. Operation indicator (yellow)
3. for $\mathrm{NO}+\mathrm{NC}(-\mathrm{B} 3 /-\mathrm{C} 3)$ models the total length is 4 mm longe

E2A-M18KN16-WP- $\square \square / E 2 A-S 18 K N 16-W P-\square$


Note 1. 4-dia. vinyl-insulated round cable with 3 conductors (conductor cross section: 0.3 mm 2 ; insulator diameter: 1.3 mm ); standard length: 2 m
2. Operation indicator (yellow)

E2A-M30KN20-WP- $\square \square / E 2 A-S 30 K N 20-W P-\square$


Note 1. 4-dia. vinyl-insulated round cable with 3 conductors (conductor cross section: 0.3 mm ; insulator diameter: 1.3 mm ); standard length: 2 m
2. Operation indicator (yellow)

E2A-S08LS02-WP- $\square \square$


Note 1. 4-dia. vinyl-insulated round cable with 3 conductors (conductor cross section. $0.3 \mathrm{~mm}^{2}$; insulator diameter: 1.3 mm ); standard length: 2 m
2. Operation indicator (yellow)

E2A-M12LS04-WP- $\square \square / E 2 A-S 12 L S 04-W P-\square$


Note 1. 4-dia. vinyl-insulated round cable with 3 conductors (conductor cross section: 0.3 mm 2 ; insulator diameter: 1.3 mm ); standard length: 2 m
2. Operation indicator (yellow)

## E2A-M18LS08-WP- $\square \square / E 2 A-S 18 L S 08-W P-\square$



Note 1. 4-dia. vinyl-insulated round cable with 3 conductors (conductor cross section: $0.3 \mathrm{~mm}^{2}$; insulator diameter: 1.3 mm ); standard length: 2 m
2. Operation indicator (yellow)

E2A-M30LS15-WP- $\square \square / E 2 A-S 30 L S 15-W P-\square$


Note 1. 4-dia. vinyl-insulated round cable with 3 conductors (conductor cross section: $0.3 \mathrm{~mm}^{2}$; insulator diameter: 1.3 mm ); standard length: 2 m
2. Operation indicator (yellow)

E2A-S08LN04-WP- $\square \square$


Note 1. 4-dia. vinyl-insulated round cable with 3 conductors (conductor cross section: $0.3 \mathrm{~mm}^{2}$; insulator diameter: 1.3 mm ); standard length: 2 m
2. Operation indicator (yellow)

E2A-M12LN08-WP- $\square \square / E 2 A-S 12 L N 08-W P-\square$


Note 1. 4-dia. vinyl-insulated round cable with 3 conductors (conductor cross section $0.3 \mathrm{~mm}^{2}$; insulator diameter: 1.3 mm ); standard length: 2 m
2. Operation indicator (yellow)

E2A-M18LN16-WP- $\square \square / E 2 A-S 18 L N 16-W P-\square$


Note 1. 4-dia. vinyl-insulated round cable with 3 conductors (conductor cross section: $0.3 \mathrm{~mm}^{2}$; insulator diameter: 1.3 mm ); standard length: 2 m
. Operation indicator (yellow)
E2A-M30LN30-WP- $\square$ /E2A-S30LN30-WP- $\square$


Note 1. 4-dia. vinyl-insulated round cable with 3 conductors (conductor cross section: $0.3 \mathrm{~mm}^{2}$; insulator diameter: 1.3 mm ); standard length: 2 m 2. Operation indicator (yellow)

Mounting Hole Cutout Dimensions


External diameter   of Proximity   Sensor	Dimension F (mm)
M8	8.5 dia. ${ }_{0}^{+0.5}$
M12	12.5 dia. ${ }_{0}^{+0.5}$
M18	18.5 dia..$_{0}^{0.5}$
M30	30.5 dia..$_{0}^{+0.5}$

M12 Connector Models (Shielded)


E2A-S08KS02-M1- $\square \square$

Note: Operation indicator (yellow LED, $4 \times 90^{\circ}$ )

E2A-M12KS04-M1- $\square /$ E2A-S12KS04-M1- $\square$


Note 1: Operation indicator (yellow LED, $4 \times 90^{\circ}$ ) Note 2: for NO+NC (-B3/-C3) models the total length is 4 mm longer

E2A-M18KS08-M1- $\square \square / E 2 A-S 18 K S 08-M 1-\square$



Note: Operation indicator (yellow LED, $4 \times 90^{\circ}$ )

E2A-M30KS15-M1- $\square \square / E 2 A-S 30 K S 15-M 1-\square$


M12 Connector Models (Non-shielded)


E2A-S08KN04-M1- $\square \square$


E2A-M12KN08-M1- $\square \square / E 2 A-S 12 K N 08-M 1-\square$


Note 1: Operation indicator (yellow LED, $4 \times 90^{\circ}$ ) Note 2: for $\mathrm{NO}+\mathrm{NC}(-\mathrm{B} 3 /-\mathrm{C} 3)$ models the total length is 4 mm longer

E2A-M18KN16-M1- $\square \square / E 2 A-S 18 K N 16-M 1-\square$

E2A-M30KN20-M1- $\square \square / E 2 A-S 30 K N 20-M 1-\square$


Note: Operation indicator (yellow LED, $4 \times 90^{\circ}$ )


Note: Please contact your OMRON sales representative for dimension drawings not listed here.

## Safety Precautions

## Power Supply

Do not impose an excessive voltage on the E2A, otherwise it may be damaged. Do not impose AC current (100 to 240 VAC) on any DC model, otherwise it may be damaged.

## Load Short-circuit

Do not short-circuit the load, or the E2A may be damaged.
The E2A's short-circuit protection function will be valid if the polarity of the supply voltage imposed is correct and within the rated voltage range.

## Wiring

Be sure to wire the E2A and load correctly, otherwise it may be damaged.

## Connection with No Load

Be sure to insert loads when wiring. Make sure to connect a proper load to the E2A in operation, otherwise it may damage internal elements.

## Do not expose the product to flammable or explosive gases.

Do not disassemble, repair, or modify the product.

## Correct Use

## Designing

## Power Reset Time

The Proximity Sensor is ready to operate within 100 ms ( 160 ms for NO +NC -B3 / -C3 types) after power is supplied. If power supplies are connected to the Proximity Sensor and load respectively, be sure to supply power to the Proximity Sensor before supplying power to the load.

## Effects of Surrounding Metal

When mounting the E2A within a metal panel, ensure that the clearances given in the following table are maintained.


Type	Dimension	M8	M12	M18	M30	
					Short barrel	Long barrel
Shielded	I	0	0	$\begin{aligned} & 0 \\ & \text { (See note 1.) } \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ \text { (See no } \end{array}$	2.)
	m	4.5	12	24	45	
	d	---	---	27	45	
	D	0	0	1.5	4	
	n	12	18	27	45	
Nonshielded	I	12	15	22	30	40
	m	8	20	48	70	90
	d	24	40	70	90	120
	D	12	15	22	30	40
	n	24	40	70	90	120

Note 1. In the case of using the supplied nuts.
If true flash mounting is necessary, apply a free zone of 1.5 mm .
2. In the case of using the supplied nuts.

If true flush mounting is necessary, apply a free zone of 4 mm .

## Power OFF

The Proximity Sensor may output a pulse signal when it is turned OFF. Therefore, it is recommended that the load be turned OFF before turning OFF the Proximity Sensor.

## Power Supply Transformer

When using a DC power supply, make sure that the DC power supply has an insulated transformer. Do not use a DC power supply with an auto-transformer.
Mutual Interference
When installing two or more Sensors face-to-face or side-by-side, ensure that the minimum distances given in the following table are maintained.

(Unit: mm)

Type	Dimension	M8	M12	M18	M30	
					Short barrel	Long barrel
Shielded	A	20	30	60	110	
	B	15	20	35	70	
Non-shielded	A	80	120	200	300	300
	B	60	100	120	200	300

## Wiring

High-tension Lines
Wiring through Metal Conduit:
If there is a power or high-tension line near the cable of the Proximity Sensor, wire the cable through an independent metal conduit to prevent against Proximity Sensor damage or malfunctioning.

## Cable Extension

Standard cable length is less than 200 m.
The tractive force is 50 N .

## Mounting

The Proximity Sensor must not be subjected to excessive shock with a hammer when it is installed, otherwise the Proximity Sensor may be damaged or lose its water-resistivity.
Do not tighten the nut with excessive force. A washer must be used with the nut.


Type		Torque
M8	Stainless steel type	9 Nm
	Brass type	4 Nm
M12	30 Nm	
M18	70 Nm	
M30	180 Nm	

## Maintenance and Inspection

Periodically perform the following checks to ensure stable operation of the Proximity Sensor over a long period of time.

1. Check for mounting position, dislocation, looseness, or distortion of the Proximity Sensor and sensing objects.
2. Check for loose wiring and connections, improper contacts, and line breakage.
3. Check for attachment or accumulation of metal powder or dust.
4. Check for abnormal temperature conditions and other environmental conditions.
5. Check for proper lighting of indicators (for models with a set indicator.)
Never disassemble or repair the Sensor.

## Environment

Water Resistivity
The Proximity Sensors are tested intensively on water resistance, but in order to ensure maximum performance and life expectancy avoid immersion in water and provide protection from rain or snow.
Operating Environment
Ensure storage and operation of the Proximity Sensor within the given specifications.

## Inrush Current

A load that has a large inrush current (e.g., a lamp or motor) will damage the Proximity Sensor, in which case connect the load to the Proximity Sensor through a relay.

## <SUITABILITY FOR USE>

OMRON shall not be responsible for conformity with any standards, codes, or regulations that apply to the combination of the products in the customer's application or use of the products.
Take all necessary steps to determine the suitability of the product for the systems, machines, and equipment with which it will be used.

## <CHANGE IN SPECIFICATIONS>

Product specifications and accessories may be changed at any time based on improvements and other reasons. Consult with your OMRON representative at any time to confirm actual specifications of purchased product.

```
ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.
To convert millimeters into inches, multiply by 0.03937. To convert grams into ounces, multiply by 0.03527.
```

Cat. No. D03E-EN-02 In the interest of product improvement, specifications are subject to change without notice.

## Cylindrical Proximity Sensor in Plastic Housing

## E2F

- High quality full body plastic housing for high water proof requirements
- Polyarylate housing for light chemical resistance



## Applications



## Ordering Information

## Sensors

Model		Sensing distance			Output specifications	Model				
		Operating status								
		NO	NC							
Shielded	M8				$\square 1.5 \mathrm{~mm}$			DC 3-wire NPN	E2F-X1R5E1	E2F-X1R5E2
							AC 2-wire Models	E2F-X1R5Y1	E2F-X1R5Y2	
						DC 3-wire NPN	E2F-X2E1 *1	E2F-X2E2 *1		
	M12	2 mm			AC 2-wire Models	E2F-X2Y1 *1	E2F-X2Y2 *1			
					DC 3-wire NPN	E2F-X5E1 *1	E2F-X5E2 *1			
	M18	5 mm			AC 2-wire Models	E2F-X5Y1 ${ }_{\text {* }}{ }_{2}$	E2F-X5Y2 *1 ${ }^{\text {* }}$			
	M30				DC 3-wire NPN	E2F-X10E1 *1	E2F-X10E2 *1			
	M30		10 mm		AC 2-wire Models	E2F-X10Y1 ${ }_{\text {*2 }}{ }^{\text {1 }}$	E2F-X10Y2 ${ }_{*}{ }^{\text {1 }}$			

[^31]*2. A short-circuit protection type is available. (E2F-X $\square$ Y $\square-53$; e.g. E2F-X5Y1-53) Power supply voltage: 100 to 120 VAC
Accessories (Order Separately)

## Rating/performance

Item Model		$\begin{aligned} & \text { E2F-X1R5E } \\ & \text { E2F-X1R5Y } \end{aligned}$	$\begin{aligned} & \text { E2F-X2E } \\ & \text { E2F-X2Y } \end{aligned}$	$\begin{aligned} & \text { E2F-X5E } \square \\ & \text { E2F-X5Y } \end{aligned}$	$\begin{aligned} & \text { E2F-X10E } \\ & \text { E2F-X10Y } \end{aligned}$
Sensing distance		$1.5 \mathrm{~mm} \pm 10 \%$	$2 \mathrm{~mm} \pm 10 \%$	$5 \mathrm{~mm} \pm 10 \%$	$10 \mathrm{~mm} \pm 10 \%$
Setting distance		0 to 1.2 mm	0 to 1.6 mm	0 to 4 mm	0 to 8 mm
Differential distance		10\% max.			
Sensing object		Ferrous metal (Sensitivity lowers with non-ferrous metals)			
Standard sensing object		Iron, $8 \times 8 \times 1 \mathrm{~mm}$	Iron, $12 \times 12 \times 1 \mathrm{~mm}$	Iron, $18 \times 18 \times 1 \mathrm{~mm}$	Iron, $30 \times 30 \times 1 \mathrm{~mm}$
Response frequency*1		E models: 2 kHz , Y models: 25 Hz	E models: $1.5 \mathrm{kHz}, \mathrm{Y}$ models: 25 Hz	E models: $600 \mathrm{~Hz}, \mathrm{Y}$ models: 25 Hz	E models: $400 \mathrm{~Hz}, \mathrm{Y}$ models: 25 Hz
Power supply(Operating voltage range)		E models: 12 to 24 VDC ( 10 to 30 VDC), ripple (p-p): $10 \%$ max. Y models: 24 to 240 VAC ( 20 to 264 VAC)			
Current consumption		E models: 17 mA max.			
Leakage current		Y models: 1.7 mA at 200 VAC			
Control output	Switching capacity	E models: 200 mA max. Y models: 5 to 100 mA		E models: 200 mA max. Y models: 5 to 300 mA	
	Residual voltage	E models: 2 V max. (load current: 200 mA with cable length: 2 m ) Y models: Refer to the Specifications			
Indicator lamp		E models: Detection indicator (red LED) Y models: Operation indicator (red LED)			
Operating status (with sensing object approaching)		E1, Y1 models: ON E2, Y2 models: NC			
Protective circuits		E models: Reverse connection protection, load short-circuit protection, surge absorber Y models: None			
Ambient temperature		Operating/Storage: $-25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (with no icing or condensation)			
Ambient humidity		Operating/Storage: $35 \%$ to 95\%RH			
Temperature influence		A maximum fluctuation of $\pm 10 \%$ max. of sensing distance at $23^{\circ} \mathrm{C}$ in temperature range of $-25^{\circ} \mathrm{C}$ and $70^{\circ} \mathrm{C}$			
Voltage influence		E models: $\pm 2.5 \%$ max. of sensing distance within a range of $\pm 15 \%$ of rated power supply voltage Y models: $\pm 1 \%$ max. of sensing distance within a range of $\pm 10 \%$ of rated power supply voltage			
Insulation resistance		$50 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC ) between current carry parts and case			
Dielectric strength		E models: $1,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min between current carry parts and case			
Vibration resistance		10 to $55 \mathrm{~Hz}, 1.5-\mathrm{mm}$ double amplitude for 2 hours each in $\mathrm{X}, \mathrm{Y}$, and Z directions			
Shock resistance		Destruction: $1,000 \mathrm{~m} / \mathrm{s}^{2}$ for 10 times each in $\mathrm{X}, \mathrm{Y}$, and Z directions			
Protective structure		IEC IP67			
Connection method		Pre-wired models (standard length: 2 m )			
Weight (Packed state)		Approx.40g	Approx. 50 g	Approx. 130 g	Approx. 170 g
Material	Case	Polyarylate			
	Sensing surface				
	Clamping nut	Polyallylate resin			
Accessories		Instruction manual			

*1. The response frequencies are average values measured on condition that the distance between each sensing object is twice as large as the size of the sensing object and the sensing distance set is half of the maximum sensing distance.

## Characteristic data (typical)

## Sensing Distance vs. Sensing Object

E2F-X1R5 $\square \square$


E2F-X5 $\square \square$


E2F-X2 $\square$


E2F-X10 $\square \square$


Output Circuit Diagram

Output	Operating status	Model	Timing chart	Output circuit
DC 3wire	NO	$\begin{gathered} \text { E2F-X1R5E1 } \\ \text { E2F-X2E1 } \\ \text { E2F-X5E1 } \\ \text { E2F-X10E1 } \\ \\ \\ \\ \text { E2F-X1R5E2 } \\ \text { E2F-X2E2 } \\ \text { E2F-X5E2 } \\ \text { E2F-X10E2 } \end{gathered}$	Sensing object Yes	*1. 200 mA max. (source current)   *2. When connecting to the transistor circuit.
AC 2wire Models	NC	$\begin{gathered} \text { E2F-X1R5Y1 } \\ \text { E2F-X2Y1 } \\ \text { E2F-X5Y1 } \\ \text { E2F-X10Y1 } \\ \\ \text { E2F-X1R5Y2 } \\ \text { E2F-X2Y2 } \\ \text { E2F-X5Y2 } \\ \text { E2F-X10Y2 } \end{gathered}$		

Correct Use

## Design

Effects of Surrounding Metal
Provide a minimum distance as shown in the table below between the Sensor and the surrounding metal.


Effects of Surrounding Metal(Unit: mm)

Model Item	1	d	D	m	n
E2F-X1R5 $\square \square$	0	8	0	4.5	12
E2F-X2 $\square \square$		12		8	18
E2F-X5 $\square \square$		18		20	27
E2F-X10 $\square \square$		30		40	45

## Mutual Interference

When installing two or more Sensors face-to-face or side-byside, ensure that the minimum distances given in the following table are maintained.


Mutual Interference (Unit: mm)

Model $\quad$ Item	A	B
E2F-X1R5 $\square \square$	20	15
E2F-X2 $\square \square$	$30(20)$	$20(12)$
E2F-X5 $\square \square$	$50(30)$	$35(18)$
E2F-X10 $\square \square$	$100(50)$	$70(35)$

Note: Figures in parentheses are for an E2F used in combination with an E2F (i.e., E2F-X $\square \square \square 5$ ) that is operating at a different frequency.

## Mounting

Do not apply excessive torque when tightening any nuts.

Model	Tensile strength (torque)
E2F-X1R5 $\square$	$0.78 \mathrm{~N} \cdot \mathrm{~m}$
E2F-X2 $\square \square$	$2 \mathrm{~N} \cdot \mathrm{~m}$
E2F-X5 $\square \square$	2

- Maintenance and Inspection

Do not use the AC 2-wire models (sensing surface is broken), where directly exposed to water. There is fear of an electric shock.

## E2F-X1R5E $\square$



E2F-X2E $\square$


## E2F-X5E $\square$



Note:
Oil-and vibration-resistant,
vinyl-insulated round cord, 6 dia.,
0.5 dia. $\times 2$ cores; Standard length: 2 m

The cord can be extended up to 200 m
in an independent metal conduit.

## AC 2-wire Models

## E2F-X1R5Y $\square$



## E2F-X2Y $\square$



## E2F-X5Y $\square$



Note:
Oil-and vibration-resistant,
vinyl-insulated round cord, 6 dia.
0.5 dia. x 2 cores; Standard length: 2 m

The cord can be extended up to 200 m
in an independent metal conduit.

## E2F-X10E $\square$




## Mounting Hole Dimension

Model	E2F-X1R5 $\square \square$	E2F-X2 $\square \square$	E2F-X5 $\square \square$	E2F-X10 $\square \square$
$F(\mathrm{~mm})$	$8.5-\mathrm{mm}$ dia. $\square 0$	$12.5-\mathrm{mm}$ dia. +0	$18.5-\mathrm{mm}$ dia. +0	$30.5-\mathrm{mm}$ dia. +0

[^32]
## Long Distance Cylindrical Proximity Sensor

## E2A3

## Extra long distance for increased protection and sensing performance

- triple distance proximity sensors for flush mounting requirements.
- designed and tested for extra long life.



## Ordering Information

DC 3-wire Models

Size	Type	Sensing distance	Connection	Body material	Thread length	Output	Operation mode: NO	Operation mode: NC
M8	Shielded	3.0mm	Pre-wired	Stainless steel (See note.)	27 (40) mm	PNP	E2A3-S08KS03-WP-B1 2M	E2A3-S08KS03-WP-B2 2M
						NPN	E2A3-S08KS03-WP-C1 2M	E2A3-S08KS03-WP-C2 2M
			M12 connector		27 (44) mm	PNP	E2A3-S08KS03-M1-B1	E2A3-S08KS03-M1-B2
						NPN	E2A3-S08KS03-M1-C1	E2A3-S08KS03-M1-C2
			M8 connector (3-pin)		27 (40) mm	PNP	E2A3-S08KS03-M5-B1	E2A3-S08KS03-M5-B2
						NPN	E2A3-S08KS03-M5-C1	E2A3-S08KS03-M5-C2
M12	Shielded	6.0 mm	Pre-wired	Brass	34 (50) mm	PNP	E2A3-M12KS06-WP-B1 2M	E2A3-M12KS06-WP-B2 2M
						NPN	E2A3-M12KS06-WP-C1 2M	E2A3-M12KS06-WP-C2 2M
			M12 connector		34 (49) mm	PNP	E2A3-M12KS06-M1-B1	E2A3-M12KS06-M1-B2
					34 (49) mm	NPN	E2A3-M12KS06-M1-C1	E2A3-M12KS06-M1-C2
M18	Shielded	11.0 mm	Pre-wired	Brass	39 (60) mm	PNP	E2A3-M18KS11-WP-B1 2M	E2A3-M18KS11-WP-B2 2M
						NPN	E2A3-M18KS11-WP-C1 2M	E2A3-M18KS11-WP-C2 2M
			M12 connector		39 (54) mm	PNP	E2A3-M18KS11-M1-B1	E2A3-M18KS11-M1-B2
					39 (54) mm	NPN	E2A3-M18KS11-M1-C1	E2A3-M18KS11-M1-C2
M30	Shielded	20.0mm	Pre-wired	Brass	44 (65) mm	PNP	E2A3-M30KS20-WP-B1 2M	E2A3-M30KS20-WP-B2 2M
						NPN	E2A3-M30KS20-WP-C1 2M	E2A3-M30KS20-WP-C2 2M
			M12 connector		44 (59) mm	PNP	E2A3-M30KS20-M1-B1	E2A3-M30KS20-M1-B2
						NPN	E2A3-M30KS20-M1-C1	E2A3-M30KS20-M1-C2

Note: Material specifications for stainless steel housing case: 1.4305 (W.-No.), SUS303 (AISI), 2346 (SS).

## Connectivity

E2A3 Sensors are available with the following connectors and cable materials:
Pre-wired Models


Standard cable lengths are 2 m and 5 m .
For other cable lengths, please contact your OMRON representative.

Standard cable material: PVC (4-mm dia.) -WP
Model Number Legend

## E2A $\square-\square \square \square \square \square-\square-\square \square-\square \square$

$\begin{array}{llllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 1112\end{array}$
Example: E2A3-M12KS06-M1-B1 Triple distance, M12, standard barrel, shielded, $\mathrm{Sn}=6 \mathrm{~mm}, \mathrm{M} 12$ connector, PNP-NO
E2A3-S08KS03-WP-B1 2M Triple distance, M8 stainless steel, standard barrel, shielded, $\mathrm{Sn}=3 \mathrm{~mm}$, pre-wired PVC cable, PNP-NO, cable length $=2 \mathrm{~m}$

1. Basic name

E2A
2. Sensing technology

Blank: Standard double distance
3: $\quad$ Triple distance
3. Housing shape and materia

M: Cylindrical, metric threaded, brass
S: Cylindrical, metric threaded, stainless steel
4. Housing size

08: $\quad 8 \mathrm{~mm}$
12: $\quad 12 \mathrm{~mm}$
18: $\quad 18 \mathrm{~mm}$
30: $\quad 30 \mathrm{~mm}$
5. Barrel length

K: Standard length
L: Long body
6. Shield

S: Shielded
N: Non-shielded
7. Sensing distance

Numeral: Sensing distance: e.g., $03=3 \mathrm{~mm}, 11=11 \mathrm{~mm}$

Connector Models


Standard connectors: M12, M8 (3-pin)
-M1, -M5

## Specifications

## DC 3-wire Models

	Size	M8	M12	M18	M30
Type		Shielded	Shielded	Shielded	Shielded
	Item	$\begin{aligned} & \text { E2A3-S08KS03- } \square \square-B \square \\ & \text { E2A3-S08KS03- } \square-\mathrm{C} \end{aligned}$	$\begin{aligned} & \text { E2A3-M12KS06- } \square-\mathrm{B} \\ & \text { E2A3-M12KS06- } \square-\mathrm{C} \end{aligned}$	$\begin{aligned} & \text { E2A3-M18KS11- } \square \square-\mathrm{B} \square \\ & \text { E2A3-M18KS11- } \square \square-\mathrm{C} \end{aligned}$	E2A3-M30KS20- $\square$-B $\square$ E2A3-M30KS20- $\square$ - $\square$
Sensing distance		$3 \mathrm{~mm} \pm 10 \%$	$6 \mathrm{~mm} \pm 10 \%$	$11 \mathrm{~mm} \pm 10 \%$	$20 \mathrm{~mm} \pm 10 \%$
Setting distance	Ambient temp. of -25 to $70^{\circ} \mathrm{C}$	0 to 2.1 mm	0 to 4.2 mm	0 to 7.7 mm	0 to 14 mm
	Ambient temp. of -10 to $60^{\circ} \mathrm{C}$	0 to 2.4 mm	0 to 4.8 mm	0 to 8.8 mm	0 to 16 mm
Differential travel		20\% max. of sensing distance			
Target		Ferrous metal (The sensing distance decreases with non-ferrous metal.)			
Standard sensing object		$9 \times 9 \times 1 \mathrm{~mm}$	$18 \times 18 \times 1 \mathrm{~mm}$	$33 \times 33 \times 1 \mathrm{~mm}$	$60 \times 60 \times 1 \mathrm{~mm}$
Response frequency (See note 1.)		700 Hz	350 Hz	250 Hz	80 Hz
Power supply voltage (operating voltage range)		12 to 24 VDC. Ripple (p-p): 10\% max. ( 10 to 32 VDC)			
Current consumption		10 mA max.			
Output type		-B models: PNP open collector   -C models: NPN open collector			
Control output	Load current	200 mA max. (32 VDC max.)			
	Residual voltage	2 V max. (under load current of 200 mA with cable length of 2 m )			
Indicator		Operation indicator (Yellow LED)			
Operation mode		-B1/-C1 models: NO   -B2/-C2 models: NC   For details, refer to the timing charts.			
Protection circuits		Power source circuit reverse polarity protection, Surge suppressor, Shortcircuit protection	Output reverse polarity pro tion, Surge suppressor, Sh	tection, Power source circ hort-circuit protection	uit reverse polarity protec-
Ambient air temperature		Operating: $25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$, Storage: $25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$			
Temperature influence		$\pm 20 \%$ max. of sensing distance at $23^{\circ} \mathrm{C}$ within temperature range of $25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ $-10 \%$ to $+20 \%$ of sensing distance at $23^{\circ} \mathrm{C}$ within temperature range of $-10^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$			
Ambient humidity		Operating: 35\% to 95\%, Storage: 35\% to 95\%			
Voltage influence		$\pm 1 \%$ max. of sensing distance in rated voltage range $\pm 15 \%$			
Insulation resistance		$50 \mathrm{M} \Omega$ min. (at 500 VDC ) between current-carrying parts and case			
Dielectric strength		1,000 VAC at $50 / 60 \mathrm{~Hz}$ for 1 min between current-carrying parts and case			
Vibration resistance		10 to $55 \mathrm{~Hz}, 1.5-\mathrm{mm}$ double amplitude for 2 hours each in $\mathrm{X}, \mathrm{Y}$, and Z directions			
Shock resistance		$500 \mathrm{~m} / \mathrm{s}^{2}, 10$ times each in $\mathrm{X}, \mathrm{Y}$, and Z directions	$1,000 \mathrm{~m} / \mathrm{s}^{2}, 10$ times each in $X, Y$ and $Z$ directions		
Standards and listings		IP67 after IEC 60529IP69K after DIN 40050EMC after EN60947-5-2UL (CSA) E196555 (See note 2.)			
Connection method		-WP models: Pre-wired Models (4-mm dia. PVC cable with length of 2 m )   -M1 models: M12 4-pin Connector Models   -M5 models: M8 3-pin Connector Models			
Weight (packed state)	Pre-wired Models	Approx. 65 g	Approx. 85 g	Approx. 160 g	Approx. 280 g
	Connector Models	M12 Connector Models: Approx. 20 g	Approx. 35 g	Approx. 70 g	Approx. 200 g
Material	Case	Stainless steel $\quad$ Brass-nickel plated			
	Sensing surface	PBT			
	Cable	PVC			
	Clamping nut	Stainless steel	Brass-nickel plated		

## Engineering Data

Operating Range (Typical)


Influence of Sensing Object Size and Materials

## E2A3-S08KS03



E2A3-M30KS20


E2A3-M12KS06


E2A3-M18KS11


## DC 3-wire Models

PNP Output

Operation mode	Model	Timing chart	Output circuit
NO	E2A3- $\square-\square$-B1		Note 1: With M8 Size Models, there is no output reverse polarity protection diode.   Note 2: Terminal 2 of the M12 connector is not used.
NC	E2A3- $\square-\square$ - ${ }^{\text {- }}$		Note 1: With M8 Size Models, there is no output reverse polarity protection diode.   Note 2: Terminal 4 of the M12 connector is not used.

DC 3-wire Models
NPN Output

Operation mode	Model	Timing chart	Output circuit
NO	E2A3- $\square-\square-\mathrm{C} 1$		Note 1: With M8 Size Models, there is no output reverse polarity protection diode.   Note 2: Terminal 2 of the M12 connector is not used.
NC	E2A3- $\square-\square-\mathrm{C} 2$		Note 1: With M8 Size Models, there is no output reverse polarity protection diode.   Note 2: Terminal 4 of the M12 connector is not used.

## Dimensions

Note: All units are in millimeters unless otherwise indicated.

## Pre-wired Models



E2A3-S08KS03-WP- $\square \square$


Note 1. 4-dia. vinyl-insulated round cable with 3 conductors (Conductor cross section: $0.3 \mathrm{~mm}^{2}$; Insulator diameter: 1.3 mm ),
Standard length: 2 m
2. Operation indicator (yellow)

E2A3-M12KS06-WP- $\square \square$


Note 1. 4-dia. vinyl-insulated round cable with 3 conductors (Conductor cross section: $0.3 \mathrm{~mm}^{2}$; Insulator diameter: 1.3 mm ), Standard length: 2 m
2. Operation indicator (yellow)

## M12 Connector Models



E2A3-S08KS03-M1- $\square \square$


Note: Operation indicator (yellow LED, $4 \times 90^{\circ}$ )
E2A3-M12KS06-M1- $\square \square$


Note: Operation indicator (yellow LED, $4 \times 90^{\circ}$ )

E2A3-M18KS11-WP- $\square \square$


Note 1. 4-dia. vinyl-insulated round cable with 3 conductors (Conductor cross section: $0.3 \mathrm{~mm}^{2}$; Insulator diameter: 1.3 mm ), Standard length: 2 m
2. Operation indicator (yellow)

E2A3-M30KS20-WP- $\square$


Note 1. 4-dia. vinyl-insulated round cable with 3 conductors (Conductor cross section: $0.3 \mathrm{~mm}^{2}$; Insulator diameter: 1.3 mm ), Standard length: 2 m
2. Operation indicator (yellow)

## E2A3-M18KS11-M1- $\square \square$



Note: Operation indicator (yellow LED, $4 \times 90^{\circ}$ )
E2A3-M30KS20-M1- $\square \square$


Note: Operation indicator (yellow LED, $4 \times 90^{\circ}$ )

## M8 Connector Models

E2A3-S08KS03-M5-■



Note: Operation indicator (yellow LED, $4 \times 90^{\circ}$ )

## Mounting Hole Cutout Dimensions



External diameter   of Proximity Sensor	Dimension F (mm)
M8	8.5 dia. ${ }^{+0.5}$
M12	12.5 dia. $^{+0.5}$
M18	18.5 dia. ${ }_{0}^{+0.5}$
M30	30.5 dia. ${ }_{0}^{+0.5}$

## Safety Precautions

## Precautions for Safe Use

## $\triangle$ WARNING

This product is not designed or rated for ensuring safety of persons.
Do not it for such purposes.


## Power Supply

Do not impose an excessive voltage on the E2A3, otherwise it may be damaged. Do not impose AC current (100 to 240 VAC) on any DC Model, otherwise it may be damaged.

## Load Short-circuit

Do not short-circuit the load, or the E2A3 may be damaged.
The E2A3's short-circuit protection function will be valid if the polarity of the supply voltage is correct and within the rated voltage range.

## Wiring

Be sure to wire the E2A3 and load correctly, otherwise it may be damaged.

## Connection with No Load

Be sure to insert a load when wiring. Make sure to connect a proper load to the E2A3 during operation, otherwise it may damage internal elements.
Do not expose the product to flammable or explosive gases.
Do not disassemble, repair, or modify the product.

## Precautions for Correct Use

## Designing

## Power Reset Time

The Proximity Sensor is ready to operate within 100 ms after power is supplied. If separate power supplies are connected to the Proximity Sensor and load, be sure to supply power to the Proximity Sensor before supplying power to the load.

## Effects of Surrounding Metal

When mounting the E2A3 within a metal panel, ensure that the clearances given in the following tables are maintained.


Model	Dimension	M8		M12	
	Material of   surrounding   metal	Ferrous   metal	Non-   ferrous   metal	Ferrous   metal	Non-   ferrous   metal
	1	$0.5\left(^{*}\right)$	$2\left(^{*}\right)$	$2\left(^{*}\right)$	$1\left(^{*}\right)$
	m	9	18		
	d	24	36		
	D	0.5	2	2	1
	n	24	36		


Model	Dimension	M18		M30	
	Material of surrounding metal	Ferrous metal	Nonferrous metal	Ferrous metal	Nonferrous metal
E2A3   Shielded	I	4 (*)	2.5 (*)	6 (*)	4 (*)
	m	33		60	
	d	54		90	
	D	4	2.5	6	4
	n	54		90	

* Using the nuts provided with the E2A3 allows mounting in the way shown below.



## Power OFF

The Proximity Sensor may output a pulse signal when it is turned OFF. Therefore, it is recommended that the load be turned OFF before turning OFF the Proximity Sensor.
Power Supply Transformer
When using a DC power supply, make sure that the DC power supply has an insulated transformer. Do not use a DC power supply with an auto-transformer.
Mutual Interference
When installing two or more Sensors face-to-face or side-by-side, ensure that the minimum distances given in the following table are maintained.


Type	Dimension	M8	M12	M18	M30
Shielded	A	25	35	70	110
	B	20	25	45	70

## Wiring

High-tension Lines
Wiring through Metal Conduit:
If there is a power or high-tension line near the cable of the Proximity Sensor, wire the cable through an independent metal conduit to prevent against Proximity Sensor damage or malfunctioning.

## Cable Extension

The standard cable length is less than 200 m .
The tractive force is 50 N .

## Mounting

The Proximity Sensor must not be subjected to excessive shock with a hammer when it is installed, otherwise the Proximity Sensor may be damaged or lose its water-resistance.
Do not tighten the nut with excessive force. A washer must be used with the nut.


Type		Torque
M8	Stainless Steel Model	$9 \mathrm{~N} \cdot \mathrm{~m}$
	Brass Model	---
M12	$20 \mathrm{~N} \cdot \mathrm{~m}$	
M18	$60 \mathrm{~N} \cdot \mathrm{~m}$	
M30	$150 \mathrm{~N} \cdot \mathrm{~m}$	

## Maintenance and Inspection

Periodically perform the following checks to ensure stable operation of the Proximity Sensor over a long period of time.

1. Check for mounting position, dislocation, looseness, or distortion of the Proximity Sensor and sensing objects.
2. Check for loose wiring and connections, improper contacts, and line breakage.
3. Check for attachment or accumulation of metal powder or dust.
4. Check for abnormal temperature conditions and other environmental conditions.
5. Check for proper lighting of indicators (for models with a set indicator)
Never attempt to disassemble or repair the Sensor.

## Environment

Water Resistivity
The Proximity Sensors are tested intensively on water resistance, but to ensure maximum performance and life expectancy, avoid immersion in water and provide protection from rain or snow.
Operating Environment
Store and operate the Proximity Sensor only within the given specifications.

Inrush Current
A load that has a large inrush current (e.g., a lamp or motor) will damage the Proximity Sensor. Connect the load to the Proximity Sensor through a relay.

## <SUITABILITY FOR USE>

OMRON shall not be responsible for conformity with any standards, codes, or regulations that apply to the combination of the products in the customer's application or use of the products.
Take all necessary steps to determine the suitability of the product for the systems, machines, and equipment with which it will be used.

## <CHANGE IN SPECIFICATIONS>

Product specifications and accessories may be changed at any time based on improvements and other reasons. Consult with your OMRON representative at any time to confirm actual specifications of purchased product.

```
ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.
To convert millimeters into inches, multiply by 0.03937. To convert grams into ounces, multiply by 0.03527.
```

Cat. No. D102-E2-01-X
In the interest of product improvement, specifications are subject to change without notice.

## Miniature Cylindrical Proximity Sensor

## E2E

## High performance in

## small sizes

- pre-wired and M8 connector models
- 4 mm, 5.4 mm and M5 sizes
- response frequency up to 3 kHz


## Ordering Information

Size		Sensing Distance	Connection	Housing Material	Output	Operation mode NO	Operation mode NC
dia 4 mm	shielded	0.8 mm	pre-wired	brass	PNP	E2E-CR8C1	E2E-CR8C2
					NPN	E2E-CR8C1	E2E-CR8C2
			M8 connector		PNP	E2E-CR8C1-M5	E2E-CR8C2-M5
					NPN	E2E-CR8C1-M5	E2E-CR8C2-M5
M5		1 mm	pre-wired		PNP	E2E-X1B1	E2E-X1B2
					NPN	E2E-X1C1	E2E-X1C2
			M8 connector		PNP	E2E-X1B1-M5	E2E-X1B2-M5
					NPN	E2E-X1C1-M5	E2E-X1C2-M5
dia 5.4 mm			pre-wired		PNP	E2E-C1B1	E2E-C1B2
					NPN	E2E-C1C1	E2E-C1C2

E2E-C $\square C \square / B \square$, E2E-X1C $\square / B \square$ DC 3-wire Models


Size		4 dia.	M5	5.4 dia.
	Type		Shielded	
Item		E2E-CR8C $\square$ /B $\square$	E2E-X1C $\square / \mathrm{B} \square$	E2E-C1C $\square / \mathrm{B} \square$
Shock resistance		$500 \mathrm{~m} / \mathrm{s}^{2} 10$ times each in $\mathrm{X}, \mathrm{Y}$, and Z directions		
Degree of protection		IEC 60529 IP67 (Pre-wired models: JEM standard IP67g (waterproof, oil-proof))		
Connection method		Pre-wired models (standard length 2 m ), connector models		
Weight (packed state)	Pre-wired models	Approx. 60 g		
	Connector models	Approx. 12 g	Approx. 15 g	---
Material	Case	Stainless steel (SUS303)	Brass-nickel plated	
	Sensing surface	Heat-resistant ABS		
	Clamping nuts	Brass-nickel plated		
	Toothed washer	Iron-zinc plated		
Accessories		Instruction manual		

Note: The response speed is an average value. Measurement conditions are as follows: standard sensing object, a distance of twice the standard sensing object, and a set distance of half the sensing distance.

## Engineering Data

## E2E

## Operating Range (Typical)

## Shielded Models



Sensing Distance vs. Sensing Object (Typical)

## E2E-CR8 $\square$



Side length of sensing object d (mm)

E2E-X1 ${ }^{[ }$
E2E-C1 $\square$


## Output Circuits and Timing Charts

Output Circuits
DC 3-wire Models
E2E-C/X $\square C \square$
E2E-C/X $\square \mathrm{B} \square$
NPN Open-collector Output


* Pin 4 is an NO contact, and pin 2 is an NC contact.

PNP Open-collector Output


* Pin 4 is an NO contact, and pin 2 is an NC contact.

Timing Charts
E2E-C/X $\square C \square / B \square$
NPN/PNP Open-collector Output


Pin Arrangement
E2E-CR8C $\square / C R 8 B \square / X 1 C \square / X 1 B \square-M 5$ DC 3-wire Models

Connector	Operation mode	Applicable models	Pin arrangement
M8-3pin	$\mathrm{NO} / \mathrm{NC}$	E2E-CR8C $\square-\mathrm{M} 5$	
E2E-X1C $\square-\mathrm{M} 5$			

## Mounting

Do not tighten the nut with excessive force. A washer must be used with the nut.


Note: The table below shows the tightening torques for part $A$ and part B nuts. In the previous examples, the nut is on the sensor head side (part $B$ ) and hence the tightening torque for part $B$ applies. If this nut is in part $A$, the tightening torque for part $A$ applies instead.

Model	Part A		Part B
	Length	Torque	Torque
M5	1 N.m		

Refer to the following to mount the E2E-CR8 and E2E-C1 non-screw models.


Tighten the screw to a torque of $0.2 \mathrm{~N} \cdot \mathrm{~m}$ maximum to secure the E2E-CR8 and a torque of $0.4 \mathrm{~N} \cdot \mathrm{~m}$ maximum to secure the E2E-C1.

## Effects of Surrounding Metal

When mounting the E2E within a metal panel, ensure that the clearances given in the following table are maintained. Failure to maintain these distances may cause deterioration in the performance of the sensor.


Model		Item	4 dia.	M5	5.4 dia.
$\begin{array}{\|l} \hline \mathrm{E} 2 \mathrm{E}-\mathrm{X} \square \mathrm{C} \square \\ \mathrm{E} 2 \mathrm{E}-\mathrm{X} \square \mathrm{~B} \square \\ \mathrm{E} 2 \mathrm{E}-\mathrm{C} \square \mathrm{C} \square \\ \mathrm{E} 2 \mathrm{E}-\mathrm{B} \square \\ \mathrm{DC} 3 \text {-wire } \end{array}$	Shielded	1	0 mm	0 mm	0 mm
		d	4 mm	5 mm	5.4 mm
		D	0 mm	0 mm	0 mm
		m	2.4 mm	3 mm	3 mm
		n	6 mm	8 mm	8 mm

Relationship between Sizes and Models

Model		Model No.
4 dia.	Shielded	$\begin{aligned} & \text { E2E-CR8C } \\ & \text { E2E-CR8B } \end{aligned}$
M5		$\begin{aligned} & \text { E2E-X1C口 } \\ & \text { E2E-X1B } \end{aligned}$
5.4 dia.		$\begin{aligned} & \text { E2E-C1C } \\ & \text { E2E-C1B } \end{aligned}$

## Mutual Interference

When installing two or more Sensors face to face or side by side, ensure that the minimum distances given in the following table are maintained.


Model		Item	4 dia.	M5	5.4 dia.
E2E-X $\square \mathrm{B} \square$	Shielded	A	20 mm		
E2E-X $\square \mathrm{C} \square$					
E2E-C $\square \mathrm{B} \square$					
$\mathrm{E} 2 \mathrm{E}-\mathrm{C} \square \mathrm{C} \square$		B	15 mm		
DC 3-wire					

Note: Values in parentheses apply to Sensors operating at different frequencies.

## $\triangle$ WARNING

This product is not designed or rated for ensuring safety of persons.
Do not use it for such purposes.

## Precautions for Safe Use

The colors in parentheses are previous wire colors.

Item	Examples
Power supply   Do not impose an excessive voltage on the E2E, otherwise it may explode or burn. Do not impose 100 VAC on any E2E DC Model, otherwise it may explode or burn.	DC 3-wire Models
Load short-circuit   Do not short-circuit the load, or the E2E may explode or burn.   The E2E's short-circuit protection function is valid if the polarity of the supply voltage imposed is correct and within the rated voltage range.	DC 3-wire Models (NPN output)
Wiring   Be sure to wire the E2E and load correctly, otherwise it may explode or burn.	DC 3-wire Models (NPN output)
Connection with no load   Make sure to connect a proper load to the E2E in operation, otherwise it may explode or burn.	DC 3-wire Models

## Precautions for Correct Use

## Installation

## Power Reset Time

The Proximity Sensor is ready to operate within 100 ms after power is supplied. If power supplies are connected to the Proximity Sensor and load respectively, be sure to supply power to the Proximity Sensor before supplying power to the load.

## Power OFF

The Proximity Sensor may output a pulse signal when it is turned OFF. Therefore, it is recommended to turn OFF the load before turning OFF the Proximity Sensor.

## Power Supply Transformer

When using a DC power supply, make sure that the DC power supply has an insulated transformer. Do not use a DC power supply with an auto-transformer.

## Sensing Object

Metal Coating:
The sensing distances of the Proximity Sensor vary with the metal coating on sensing objects.

## Wiring

## High-tension Lines

## Wiring through Metal Conduit

If there is a power or high-tension line near the cable of the Proximity Sensor, wire the cable through an independent metal conduit to prevent against Proximity Sensor damage or malfunctioning.

## Cable Tractive Force

Do not pull on cables with tractive forces exceeding the following.

Diameter	Tractive force
4 dia. max.	30 N max.
4 dia. min.	50 N max.

## Mounting

The Proximity Sensor must not be subjected to excessive shock with a hammer when it is installed, otherwise the Proximity Sensor may be damaged or lose its water-resistivity.

## Environment

Water Resistivity
Do not use the Proximity Sensor underwater, outdoors, or in the rain.

## Operating Environment

Be sure to use the Proximity Sensor within its operating ambient temperature range and do not use the Proximity Sensor outdoors so that its reliability and life expectancy can be maintained. Although the Proximity Sensor is water resistive, a cover to protect the Proximity

Sensor from water or water soluble machining oil is recommended so that its reliability and life expectancy can be maintained
Do not use the Proximity Sensor in an environment with chemical gas (e.g., strong alkaline or acid gasses including nitric, chromic, and concentrated sulfuric acid gases).

## Connection to a PLC

## Required Conditions

Connection to a PLC is possible if the specifications of the PLC and the Proximity Sensor satisfy the following conditions. (The meanings of the symbols are given below.)

1. The ON voltage of the PLC and the residual voltage of the Proximity Sensor must satisfy the following. Von $\leq V_{c c}-V_{R}$
2. The OFF current of the PLC and the leakage current of the Proximity Sensor must satisfy the following.
loff $\geq$ leak
(If the OFF current is not listed in the specifications, take it to be 1.3 mA .)
3. The ON current of the PLC and the control output (lout) of the Proximity Sensor must satisfy the following.
lout(min) $\leq$ Ion $\leq$ lout(max)
The ON current of the PLC will vary, however, with the power supply voltage and the input impedance used as shown in the following equation.
Ion $=\left(\mathrm{VCC}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{R}}-\underline{\mathrm{VPC}}\right) / \mathrm{RIN}$

## Example

In this example, the above conditions are checked for when the PLC model is the C200H-ID212, the Proximity Sensor model is the E2E-X7D1-N, and the power supply voltage is 24 V .

1. $\operatorname{Von}(14.4 \mathrm{~V}) \leq \mathrm{Vcc}(20.4 \mathrm{~V})-\mathrm{V}_{\mathrm{R}}(3 \mathrm{~V})=17.4 \mathrm{~V}$ : OK
2. Ioff $(1.3 \mathrm{~mA}) \geq$ leak $(0.8 \mathrm{~mA})$ : OK
3. $\operatorname{lon}=\left[\mathrm{Vcc}(20.4 \mathrm{~V})-\mathrm{V}_{\mathrm{R}}(3 \mathrm{~V})-\mathrm{V}_{\mathrm{PC}}(4 \mathrm{~V})\right] / \operatorname{Rin}(3 \mathrm{k} \Omega)$
$\approx 4.5 \mathrm{~mA}$
Therefore,
lout(min) (3 mA) பon (4.5 mA): OK
Von: ON voltage of PLC ( 14.4 V )
lon: ON current of PLC (typ. 7 mA )
loff: OFF current of PLC ( 1.3 mA )
Rin: Input impedance of PLC (3 k )
VPC: Internal residual voltage of PLC (4 V)
$\mathrm{V}_{\mathrm{R}}$ : Output residual voltage of Proximity Sensor (3 V) lleak: Leakage current of Proximity Sensor ( 0.8 mA )
lout: Control output of Proximity Sensor ( 3 to 100 mA )
Vcc: Power supply voltage (PLC: 20.4 to 26.4 V )
Values in parentheses are for the following PLC model and Proximity Sensor model.
PLC: C200H-ID212
Proximity Sensor: E2E-X7D1-N
Note: please refer to complete E2E/E2E2 datasheet for details on E2E-X7D1-N

Model	Connection type	Method	Description
DC 3-wire	AND (serial connection)	Correct	The Sensors connected together must satisfy the following conditions.   iL + (N-1) x i $\leq$ Upper-limit of control output of each Sensor   $\mathrm{V}_{s}-\mathrm{N} x \mathrm{~V}_{\mathrm{R}} \geq$ Load operating voltage   N: No. of Sensors   $V_{\mathrm{r}}$ : Residual voltage of each Sensor   Vs: Supply voltage   i: Current consumption of the Sensor   it: Load current   If the MY Relay, which operates at 24 VDC, is used as a load for example, a maximum of two Proximity Sensors can be connected to the load.

## Dimensions

Note: All units are in millimeters unless otherwise indicated.
E2E

Model		DC 3-wire		
		Model No.	Figure No.	
Pre-wired	Shielded	4 dia.	E2E-CR8 $\square \square$	1
		M5	E2E-X1 $\square \square$	3
	5.4 dia.	E2E-C1 $\square \square$	2	
Connector (M8-3 pin)	Shielded	4 dia.	E2E-CR8 $\square \square-M 5$	35
		M5	E2E-X1 $\square \square-M 5$	36

## Pre-wired Models

## (Shielded)

Fig. 1 : E2E-CR8 $\square \square$
$\xrightarrow{2 \text { dia. }}$


Operation
indicator $\quad$ 2.9-dia. vinyl-insulated round cable with
(red) $\quad 3$ conductors (Conductor cross section: $0.14 \mathrm{~mm}^{2}$, Insulator diameter: 0.9 mm ),
Standard length: 2 m
Robotics cable Models: 2.9-dia. vinyl-insulated round cable with 3 conductors (Conductor cross section: $0.15 \mathrm{~mm}^{2}$, Insulator diameter: 1.05 mm ), Standard length: 2 m
The cable can be exteded up to 100 m (separate metal conduit).
Fig. 2 : E2E-C1 $\square \square$

Fig. 3 : E2E-X1 $\square \square$
$\xrightarrow{5.4 \text { dia. }}$

Operation $\quad 2.9-d i a$. vinyl-insulated round cable with 3 conductors
indicator
(red) (Conductor cross section: $0.14 \mathrm{~mm}^{2}$, Insulator diameter: 0.9 mm ),
Standard length: 2 m
Robotics cable Models: 2.9-dia. vinyl-insulated round cable with 3 conductors
(Conductor cross section: $0.15 \mathrm{~mm}^{2}$, Insulator diameter: 1.05 mm ),
The cable can be exteded up to 100 m (separate metal conduit).

M8 (3 pin) Connector Models
(Shielded)

Fig. 35 : E2E-CR8 $\square \square$-M5


Fig. 36 : E2E-X1 $\square \square-M 5$


## Mounting Holes



Dimensions	M4	M5	5.4 dia.
$F(\mathrm{~mm})$	$4.2^{+0.5}$ dia.	$5.5^{+0.5}$ dia.	$5.7^{+0.5}$ dia.

## WARRANTY

OMRON's exclusive warranty is that the products are free from defects in materials and workmanship for a period of one year (or other period if specified) from date of sale by OMRON.
OMRON MAKES NO WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, REGARDING NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR PARTICULAR PURPOSE OF THE PRODUCTS. ANY BUYER OR USER ACKNOWLEDGES THAT THE BUYER OR USER ALONE HAS DETERMINED THAT THE PRODUCTS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR INTENDED USE. OMRON DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED.

## LIMITATIONS OF LIABILITY

OMRON SHALL NOT BE RESPONSIBLE FOR SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES, LOSS OF PROFITS OR COMMERCIAL LOSS IN ANY WAY CONNECTED WITH THE PRODUCTS, WHETHER SUCH CLAIM IS BASED ON CONTRACT, WARRANTY, NEGLIGENCE, OR STRICT LIABILITY.
In no event shall responsibility of OMRON for any act exceed the individual price of the product on which liability is asserted.

IN NO EVENT SHALL OMRON BE RESPONSIBLE FOR WARRANTY, REPAIR, OR OTHER CLAIMS REGARDING THE PRODUCTS UNLESS OMRON'S ANALYSIS CONFIRMS THAT THE PRODUCTS WERE PROPERLY HANDLED, STORED, INSTALLED, AND MAINTAINED AND NOT SUBJECT TO CONTAMINATION, ABUSE, MISUSE, OR INAPPROPRIATE MODIFICATION OR REPAIR.

## Application Considerations

## SUITABILITY FOR USE

THE PRODUCTS CONTAINED IN THIS CATALOG ARE NOT SAFETY RATED. THEY ARE NOT DESIGNED OR RATED FOR ENSURING SAFETY OF PERSONS, AND SHOULD NOT BE RELIED UPON AS A SAFETY COMPONENT OR PROTECTIVE DEVICE FOR SUCH PURPOSES. Please refer to separate catalogs for OMRON's safety rated products.
OMRON shall not be responsible for conformity with any standards, codes, or regulations that apply to the combination of products in the customer's application or use of the product.

Take all necessary steps to determine the suitability of the product for the systems, machines, and equipment with which it will be used.
Know and observe all prohibitions of use applicable to this product.
NEVER USE THE PRODUCT FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR PROPERTY WITHOUT ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO ADDRESS THE RISKS, AND THAT THE OMRON PRODUCT IS PROPERLY RATED AND INSTALLED FOR THE INTENDED USE WITHIN THE OVERALL EQUIPMENT OR SYSTEM.

## Disclaimers

## CHANGE IN SPECIFICATIONS

Product specifications and accessories may be changed at any time based on improvements and other reasons. Consult with your OMRON representative at any time to confirm actual specifications of purchased product.

## DIMENSIONS AND WEIGHTS

Dimensions and weights are nominal and are not to be used for manufacturing purposes, even when tolerances are shown.

```
ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.
To convert millimeters into inches, multiply by 0.03937. To convert grams into ounces, multiply by 0.03527.
```

Cat. No. D11E-EN-02 In the interest of product improvement, specifications are subject to change without notice.

Standard Flat Inductive Proximity Sensors

## TL-W

- Front and side facing surface
- IP67
- DC 2-wire and DC 3-wire models



## Ordering Information

DC 2-wire Models

*1. Models with different response frequency are available. These model numbers take the form TL-W5MD $\square 5$ (e.g., TL-
W5MD15)
DC 3-wire Models

Shape	Sensing distance		Output specifications	Model				
			Output and operating status					
			PNP-NO	PNP-NC	NPN-NO	NPN-NC		
	$\square 1.5 \mathrm{~mm}$			DC 3-wire	TL-W1R5MB1	---	TL-W1R5MC1*1	---
	$\square 3 \mathrm{~mm}$				TL-W3MB1	TL-W3MB2	TL-W3MC1*1	TL-W3MC2
	5 mm	20 mm	TL-W5MB1		TL-W5MB2	TL-W5MC1*1	TL-W5MC2	
			---		---	TL-W20ME1*1	TL-W20ME2 ${ }^{* 1}$	
Shielded	5 mm		DC 3-wire	TL-W5F1	TL-W5F2	TL-W5E1	TL-W5E2	

[^33]
## Rating/Performance

DC 2-wire Models


* The response frequencies for DC switching are average values measured under the condition that the distance between each sensing object is twice as large as the size of the sensing object and the sensing distance set is half of the maximum sensing distance.


## DC 3-wire Models

Item	Model	TL-W1R5M $\square 1$	TL-W3M $\square \square$	TL-W5M $\square \square$	TL-W5E $\square / \mathrm{\square} \square$	TL-W20ME $\square$
Sensing distance		$1.5 \mathrm{~mm} \pm 10 \%$	$3 \mathrm{~mm} \pm 10 \%$	$5 \mathrm{~mm} \pm 10 \%$		$20 \mathrm{~mm} \pm 10 \%$
Setting distance		0 to 1.2 mm	0 to 2.4 mm	0 to 4 mm		0 to 16 mm
Differential distance		10\% max.				$1 \%$ to $15 \%$ of sensing distance
Sensing object		Ferrous metal (refer to Engineering Data for non-ferrous metal on page E-55)				
Standard sensing object		Iron, $8 \times 8 \times 1 \mathrm{~mm}$	Iron, $12 \times 12 \mathrm{x}$ 1 mm	Iron, $18 \times 18 \times 1 \mathrm{~mm}$		$\begin{aligned} & \text { Iron, } 50 \times 50 \times \\ & 1 \mathrm{~mm} \end{aligned}$
Response frequency   Power supply (Operating voltage range)		1 kHz min.	600 Hz min.	500 Hz min.	300 Hz min .	40 Hz min.
		12 to 24 VDC (10 to 30 VDC ) ripple (p-p): $10 \%$ max.			10 to 30 VDC with a ripple (p-p) of 20\% max.	12 to 24 VDC ( 10 to 30 VDC) ripple (p-p): 10\% max.
Current consumption		15 mA max. at 24 VDC (no-load)		10 mA max.	15 mA max. at 24 VDC (no-load)	8 mA at 12 VDC , 15 mA at 24 VDC
Control output	Switching capacity	NPN open collector 100 mA max. (30 VDC max.)		NPN open collector 12 VDC 50 mA max. (30 VDC max.) 24 VDC 100 mA max. (30 VDC max.)	200 mA	$\begin{aligned} & 12 \text { VDC } \\ & 100 \mathrm{~mA} \text { max., } \\ & 24 \text { VDC } \\ & 200 \mathrm{~mA} \text { max. } \end{aligned}$
	Residual voltage	1 V max. (under load current of 100 mA with cable length of 2 m )		1 V max. (under load current of 50 mA with cable length of 2 m )	2 V max. (under load current of 200 mA with cable length of 2 m )	1 V max. (under load current of 200 mA with cable length of 2 m )
Indicator lamp		Detection indicator (red LED)				
Operating status (with sensing object approaching)		NO	C1 models: NO C2 type: NC		E1 models, F1 models: NO E2 models, F2 models: NC	
Protective circuits		Reverse connection protection, surge absorber				
Ambient temperature		Operating/Storage: $-25^{\circ} \mathrm{C}$ to $70^{\circ} \wedge \mathrm{C}$ (with no icing or condensation)				
Ambient humidity		Operating/Storage: 35\% to 95\%RH (with no condensation)				
Temperature influence		$\pm 10 \%$ max. of sensing distance at $23^{\circ} \mathrm{C}$ within the temperature range of $-25^{\circ} \mathrm{C}$ and $70^{\circ} \mathrm{C}$				
Voltage influence		$\pm 2.5 \%$ max. of sensing distance within a range of $\pm 10 \%$ of rated power supply voltage		$\pm 2.5 \%$ max. of sensing distance within a range of $\pm 20 \%$ of rated power supply voltage	$\pm 2.5 \%$ max. of sensing distance within a range of $\pm 10 \%$ of rated power supply voltage	
Insulation resistance		50 M min. (at 500 VDC$)$ between energized parts and case				
Dielectric strength		1000 VAC $50 / 60 \mathrm{~Hz}$ for 1 min between energized part and case				
Vibration resistance		10 to $55 \mathrm{~Hz}, 1.5 \mathrm{~mm}$ double amplitude for 2 hours each in $\mathrm{X}, \mathrm{Y}$, and Z directions				
Shock resistance		Destruction: $500 \mathrm{~m} / \mathrm{s}^{2}$ for 3 times each in $\mathrm{X}, \mathrm{Y}$, and Z directions				Destruction: $500 \mathrm{~m} / \mathrm{s} 2$ for 10 times each in $X$, $Y$, and $Z$ directions
Protective structure		IEC60529 IP67				
Connection method		Pre-wired models (standard length: 2 m )				
Weight (Packed state)		30 g		Approx. 45 g	Approx. 70 g	Approx. 180 g
Material	Case	Heat-resistant ABS resin			Diecast aluminum	Heat-resistant ABS resin
	Sensing surface	Heat-resistant ABS resin				
Accessories		Mounting bracket, instruction manual		Instruction manual		

## Characteristic data (typical)

Sensing Distance vs. Sensing Object

## TL-W1R5M $\square$



## TL-W5E $\square$-W5F $\square$-W5MD $\square$



## TL-W3M $\square$



TL-W20 $\square$


## TL-W5MB $\square / C \square$



## Output Circuit Diagram

## DC 2-wire Models

Operating status	Model	Timing chart	Output circuit
NO	TL-W5MD1		
NC	TL-W5MD2	Non-sensing zone Sensing zone   Sensing    object	Note:   The Load can be connected to either the +V and $0-\mathrm{V}$ side.

DC 3-wire Models

\begin{tabular}{|c|c|c|c|}
\hline $$
\begin{aligned}
& \text { Operating } \\
& \text { status }
\end{aligned}
$$ \& Model \& Timing chart \& Output circuit <br>
\hline NO

NC \& | TL-W1R5M $\square 1$ |
| :--- |
| TL-W3M $\square 1$ |
| TL-W5M $\square 1$ |
| TL-W3M $\square 2$ TL-W5MC2 | \&  \& * Maximum load current: 100 mA <br>

\hline NO

NC \& | TL-W1R5B1 TL-W3MB1 TL-W5MB1 |
| :--- |
| TL-W3MB2 TL-W5MB2 | \&  \&  <br>

\hline NO

NC \& \begin{tabular}{l}
TL-W5E1 TL-W20ME1 <br>
TL-W5E2 <br>
TL-W20ME2

 \&  \& 

* Maximum load current: 100 mA <br>
* 2. Current flows in this direction if the circuit incorporates the transistor.
\end{tabular} <br>

\hline
\end{tabular}

Operating status	Model	Timing chart	Output circuit
NO	TL-W5F1		* 1. Maximum load current: 200 mA * 2. Current flows in this direction if the circuit incorporates the transistor.
NC	TL-W5F2		

## Precautions

## Correct Use

## Design

Effects of Surrounding Metal
Provide a minimum distance between the Sensor and the surrounding metal as shown in the table below.
Front Surface Sensing Type (Not exceeding the sensor head height).


Effects of Surrounding Metal(Unit: mm)

Model Length	1	m	n
TL-W1R5M $\square$	2	0	8
TL-W3M $\square$	3		12
TL-W5MD $\square$	5		20
TL-W5M $\square$			
TL-W20ME $\square$	25	16	100
TL-W5E $\square$ /-W5F $\square$	0	0	20

## Mutual Interference

If two or more Sensors are mounted face to face or side by side, keep them separate at the following minimum distance.


Mutual Interference (unit: mm)

Model	Length	A
TL-W1R5M $\square$	$75(50)$	$120(60)$
TL-W3MC $\square$	$90(60)$	$200(100)$
TL-W5MD $\square$	$120(80)$	$60(30)$
TL-W5MC $\square$	$200(100)$	$200(100)$
TL-W20ME $\square$	50	35
TL-W5E $\square$-W5F $\square$		

Note: The above values in parentheses are applicable when using two sensors with different frequencies.
Installation

- Use M3 flat-head screws to install TL-W1R5M $\square$ and
- TL-W3M $\square$.
- Ensure that the resin cover should be tightened with
- a torque according to the following table.

Model	Tensile strength (torque)
TL-W1R5MC1	0.98 Nm
TL-W3MC $\square$	
TL-W5MD $\square$	1.5 Nm
TL-W20M $\square$	

- Adjustment


## Power ON

Please note that the power injection AND connection generate an error pulse for approximately 1 ms .

## TL-W1R5M $\square 1$



## Mounting Bracket <br> (Attachment)



Note:
Mounting dimensions: $17 \pm 0.2$


## TL-W3M $\square \square$





* Vinyl-insulated round cable with three conductors, 2.9 dia. (conductor cross-sectional area: $0.14 \mathrm{~mm}^{2}$,

Note: Mounting dimensions: $17 \pm 0.2$ insulation diameter: 0.9 mm ); standard length: 2 m

## TL-W5M $\square \square$



* 1. TL-W5MC1: Vinyl-insulated round cable with three conductors, 4 dia. (conductor cross-sectional area $0.2 \mathrm{~mm}^{2}$; insulation diameter: 1.2 mm ); standard length: 2 m 4 dia. (conductor cross-sectional area: $0.3 \mathrm{~mm}^{2}$. insulation diameter: 1.3 mm ); standard length: 2 m
* 2. C type: Operation indicator (red)

D type: Operation indicator (red), Setting indicator (green)

## TL-W5E

TL-W5F $\square$


Mounting Holes



## TL-W20ME $\square$



Miniature Square Inductive Proximity Sensor
E2S

- Miniature housing with long sensing ranges
- Front ans side facing sensing surfaces


C

## Features

## 5.5 mm Ultra small housing

The $5.5 \mathrm{~mm} \times 5.5 \mathrm{~mm}$ type permits smaller, space-saving machines and devices.


## 1 kHz High-Speed Response

## IP67 Environment-Resistant Types

Full sealing structure housing, degree of protection IEC60529 IP67.

## 1/20

 Low Current Consumption (Compared to conventional models)Significantly lower current consumption. The 0.8 mA (for 24 VDC) leakage current for the DC 2-wire type has a ratio of approximately $1 / 20$ compared to the conventional DC 3 -wire type. Optimum solution for multiple-sensor applications such as cam switches.

## Ordering Information

Sensors
DC 2-wire Models

Shape	Sensing surface	Sensing distance	Model	
			Operating status	
			NO	NC
Unshielded	Front face	1.6 mm	E2S-W11 *	E2S-W12
	End face		E2S-Q11 *	E2S-Q12
	Front face	2.5 mm	E2S-W21 *	E2S-W22
	End face		E2S-Q21 *	E2S-Q22

* Models with different response frequency are available (NO only). These model numbers take the form E2S- $\square \square \square B$ (e.g., E2S-W11B)

DC 3-wire Models

Shape	Sensing surface	Sensing distance		Output specifications	Model		
				Operating status			
				NO	NC		
Unshielded	Front face	1.6 mm			NPN	E2S-W13*	E2S-W14
	End face			E2S-Q13*		E2S-Q14	
	Front face	2.5 mm				E2S-W23*	E2S-W24
	End face			E2S-Q23*		E2S-Q24	
	Front face	1.6 mm		PNP	E2S-W15*	E2S-W16	
	End face			E2S-Q15*	E2S-Q16		
	Front face	2.5 mm			E2S-W25*	E2S-W26	
	End face			E2S-Q25*	E2S-Q26		

* Models with different response frequency are available (NO only). These model numbers take the form E2S- $\square \square \square B$ (e.g., E2S-W11B)

Accessories (Order Separately)
Mounting Brackets

Shape	Model	Quantity	Remarks
$38$	Y92E-C1R6	1	Provided with E2S-■1 $\square \square$
ros	Y92E-C2R5		Provided with E2S-■2■
50	Y92E-D1R6		---
50	Y92E-D2R5		---

## Nomenclature

 series
2) Sensing direction W: Front face sensing Q: End face sensing
(3) Size and sensing distance (standard sensing object) $1: 5.5 \times 5.5 \mathrm{~mm}, 1.6 \mathrm{~mm}$ (iron) 2: $8 \times 8 \mathrm{~mm}, 2.5 \mathrm{~mm}$ (iron)
(4) Output

1: DC 2-wire NO 2: DC 2-wire NC
3: DC 3-wire NPN NO
4: DC 3-wire NPN NC
5: DC 3-wire PNP NO
6: DC 3-wire PNP NC
(5) Different response frequency No: Standard No: Standard
B: Different response frequency

## Rating/Performance

DC 2-wire Models

Model   Item		$\begin{aligned} & \text { E2S-W11 } \\ & \text { E2S-W12 } \end{aligned}$	$\begin{aligned} & \text { E2S-Q11 } \\ & \text { E2S-Q12 } \end{aligned}$	$\begin{aligned} & \text { E2S-W21 } \\ & \text { E2S-W22 } \end{aligned}$	$\begin{aligned} & \text { E2S-Q21 } \\ & \text { E2S-Q22 } \end{aligned}$
Sensing surface		Front face	End face	Front face	End face
Sensing distance		$1.6 \mathrm{~mm} \pm 10 \%$		$2.5 \mathrm{~mm} \pm 15 \%$	
Setting distance		0 to 1.2 mm		0 to 1.9 mm	
Differential distance		10\% max.			
Sensing object		Ferrous metal (Sensitivity lowers with non-ferrous metals)			
Standard sensing object		Iron, $12 \times 12 \times 1 \mathrm{~mm}$		Iron, $15 \times 15 \times 1 \mathrm{~mm}$	
Response frequency		1 kHz min.			
Rated supply voltage (operating voltage)		12 to 24 VDC (10 to 30 VDC ), ripple (p-p): $10 \%$ max.			
Leakage current		0.8 mA max.			
Control output	Switching capacity	3 to $50 \mathrm{~mA} \mathrm{DC} \mathrm{max}$.			
	Residual voltage	3 V max . (under load current of 50 mA with cable length of 1 m )			
Indicator lamp		$\square \square 1$ models: Operation indicator(red LED), Operation set indicator(green LED) $\square \square 2$ models: Operation indicator(red LED)			
Operating status (with sensing object approaching)		$\square \square 1$ models: NO $\square 2$ models: NC			

* The response frequencies for DC switching are average values measured under the condition that the distance between each sensing object is twice as large as the size of the sensing object and the sensing distance set is half of the maximum sensing distance.

DC 3-wire Models

Item Model		$\begin{aligned} & \text { E2S-W13 } \\ & \text { E2S-W14 } \end{aligned}$	$\begin{aligned} & \text { E2S-Q13 } \\ & \text { E2S-Q14 } \end{aligned}$	$\begin{aligned} & \text { E2S-W23 } \\ & \text { E2S-W24 } \end{aligned}$	$\begin{aligned} & \text { E2S-Q23 } \\ & \text { E2S-Q24 } \end{aligned}$	$\begin{aligned} & \text { E2S-W15 } \\ & \text { E2S-W16 } \end{aligned}$	$\begin{aligned} & \text { E2S-Q15 } \\ & \text { E2S-Q16 } \end{aligned}$	$\begin{aligned} & \text { E2S-W25 } \\ & \text { E2S-W26 } \end{aligned}$	$\begin{aligned} & \text { E2S-Q25 } \\ & \text { E2S-Q26 } \end{aligned}$
Sensing surface		Front face	End face						
Sensing distance		$1.6 \mathrm{~mm} \pm 10 \%$		$2.5 \mathrm{~mm} \pm 15 \%$		$1.6 \mathrm{~mm} \pm 10 \%$		$2.5 \mathrm{~mm} \pm 15 \%$	
Setting distance		0 to 1.2 mm		0 to 1.9 mm		0 to 1.2 mm		0 to 1.9 mm	
Differential distance		10\% max.							
Sensing object		Ferrous metal							
Standard sensing object		Iron, $12 \times 12 \times 1 \mathrm{~mm}$		Iron, $15 \times 15 \times 1 \mathrm{~mm}$		Iron, $12 \times 12 \times 1 \mathrm{~mm}$		Iron, $15 \times 15 \times 1 \mathrm{~mm}$	
Response frequency		1 kHz min.							
Rated supply voltage (operating voltage)		12 to 24 VDC (10 to 30 VDC ), ripple (p-p): $10 \%$ max.							
Current consumption		13 mA max. (24 VDC, unload)							
Control output	Switching capacity	NPN open collector 100 mA max. (30 VDC max.)				PNP open collector 50 mA max. (30 VDC max.)			
	Residual voltage	1 V max. (under load current of 50 mA with cable length of 1 m )							
Indicator lamp		Operation indicator (orange)							
Operating status (with sensing object approaching)		$\square \square 3$ models: NO   $\square \square 4$ models: NC				$\square 5$ models: NO   $\square \square 6$ models: NC			

[^34] size of the sensing object and the sensing distance set is half of the maximum sensing distance.

Item	Model
Protective circuits	Reverse polarity connection and surge absorber
Ambient temperature	Operating: $-25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$, Storage: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (with no icing or condensation)
Ambient humidity	Operating: $35 \%$ to $90 \%$ RH, Storage: $35 \%$ to $95 \%$ RH (with no condensation)
Temperature influence	$\pm 15 \%$ max. of sensing distance at $23^{\circ} \mathrm{C}$ in temperature range of $-25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Voltage influence	$\pm 2.5 \%$ max. of sensing distance within a range of $\pm 10 \%$ of rated supply voltage
Insulation resistance	$50 \mathrm{M} \mathrm{min}. \mathrm{(at} 500$ VDC) between energized parts and case
Dielectric strength	$1,000 \mathrm{VAC}$ for 1 min between energized parts and case
Vibration resistance	10 to $55 \mathrm{~Hz}, 1.5-\mathrm{mm}$ double amplitude for 2 hours each in $\mathrm{X}, \mathrm{Y}$, and Z directions
Shock resistance	Destruction: $500 \mathrm{~m} /$ s2 for 3 times each in $\mathrm{X}, \mathrm{Y}$, and Z directions
Protective structure	IEC60529 IP67
Connection method	Pre-wired models (Standard length: 3 m )
Weight (Packed state)	Approx. 10 g
Material	Case
Accessories	Polyarylate

## Characteristic data (typical)

Sensing Distance vs. Sensing Object

## E2S-W1■/-Q1■



E2S-W2■-Q2 $\square$


## Output Circuit Diagram

## DC 2-wire Models



DC 3-wire Models

\begin{tabular}{|c|c|c|c|c|}
\hline Operating status \& Output specifications \& Model \& Timing chart \& Output circuit <br>
\hline NO

NC \& NPN \& | E2S-W13 |
| :--- |
| E2S-W23 |
| E2S-Q13 |
| E2S-Q23 |
| E2S-W14 |
| E2S-W24 |
| E2S-Q14 |
| E2S-Q24 | \&  \& * Maximum load current: 50 mA <br>

\hline NO

NC \& PNP \& | E2S-W15 E2S-W25 E2S-Q15 E2S-Q25 |
| :--- |
| E2S-W16 |
| E2S-W26 |
| E2S-Q16 |
| E2S-Q26 | \&  \& * Maximum load current: 50 mA <br>

\hline
\end{tabular}

## Precautions

## Correct Use

## Design

Effects of Surrounding Metal

- Provide a minimum distance between the Sensor and the surrounding metal as shown in the table below.
- Front Surface Sensing Type (Not exceeding the sensor head height)

(Unit: mm)

Model Length	A	B	C
E2S-W1 $\square$	0	8	2
E2S-W2 $\square$		15	10

- End Surface Sensing Type

(Unit: mm)

Model Length	A	B	C
E2S-Q1 $\square$	8	3	2
E2S-Q2 $\square$	15	10	3

## Mutual Interference

If more than one Sensor is located face to face or in parallel, be sure to maintain enough space between adjacent Sensors to suppress mutual interference as provided in the following diagram,.

- Front Surface Sens-
- End Surface Sensing Type ing Type

(Unit: mm)

Model Length	A	B
E2S-W(Q)1 $\square$	$50(40)$	$20(5.5)$
E2S-W1 $\square$	$75(50)$	$25(8)$

Note: The above values in parentheses are applicable when using two sensors with different frequencies.

## Mounting

Tightening torgues
Do not tighten the E2S-W(Q)2 $\square$ mounting screws to a torque exceeding 0.7 Nm .

## Dimensions (Unit: mm)

## Sensors

## E2S-W1 $\square$



E2S-W2 $\square$


If mounting bracket is attached

cable, $2 / 3$ cores (conductor
sectional area: $0.14 \mathrm{~mm}^{2}$,
Insulator diameter: 0.9 dia.)
; standard length: 1 m


## E2S-Q1 $\square$



## If mounting bracket is attached

 E2S-Q13 $\square$
E2S-Q14 $\square$
E2S-Q15 $\square$$\quad$ Operation indicator (red)

E2S-Q2


## Accessories (Order Separately*)



Material: Stainless steel (SUS304)

## * Provided with

E2S-■1■

мз

Mounting Brackets Two, R1.6 3.2 Four, R1
Y92E-D1R6


Material: Stainless steel (SUS304)


Mounting Brackets
Y92E-C2R5


Material: Stainless
steel (SUS304)

* Provided with

E2S-■2■


M3 screw depth 8 min. dia. 2.4 screw depth 3 min .

Mounting Brackets
Y92E-D2R5


## Long Distance Square Inductive Proximity Sensor

## E2Q2

- Terminal Housing
- Active face direction changeable
- Easy to install and same mounting dimensions as a standard style electro-mechanical limit switch
- Integrated short circuit and reverse polarity protection
- Robust body with stainless steel screws

Square Proximity Sensor


## Ordering Information

## DC type

Sensing distance	Connection	Active	Output		
		face		NO	$\mathrm{NO}+\mathrm{NC}$
$\begin{array}{\|l\|} \hline 20 \mathrm{~mm} \\ \text { shielded } \end{array}$	Terminals	Changeable	NPN	E2Q2-N20E1-H	E2Q2-N20E3-■
			PNP	E2Q2-N20F1-H	E2Q2-N20F3-■
30 mm			NPN		E2Q2-N30ME3- $\square$
non-shielded			PNP		E2Q2-N30MF3- $\square$
40 mm			NPN		E2Q2-N40ME3- $\square$
non-shielded			PNP		E2Q2-N40MF3- $\square$

$\square=\mathrm{H}$ : terminal conduit M20×1,5
U: terminal conduit 1/2" NPT
AC type

Sensing   distance	Connection	Active   face		NO	Output   NO or NC	
15 mm   shielded	Terminals	Changeable	AC		E2Q2-N15Y4- $\square$	
30 mm   shielded		AC		E2Q2-N30MY4- $\square$		

$\square=\mathrm{H}$ : terminal conduit M20×1,5
U: terminal conduit 1/2" NPT
Weld-Field Immune DC type ( 100 mT )

Sensing   distance	Connection	Active   face		NO	Output
15 mm   shielded	Terminal   conduit $1 / 2$ " NPT	Changeable	PNP	E2Q2-N15F1-51	

Weld-Field Immune AC type (100mT)

Sensing   distance	Connection	Active   face		NO	Output
15 mm   shielded	Terminal   conduit $1 / 2$ " NPT	Changeable	AC		E2Q2-N15Y4-51

## Rating/performance

DC type

Item Model	shielded		non-shielded	
	E2Q2-N15F1-51   weld-immune type	E2Q2-N20 $\square \square-\square$	E2Q2-N30 $\square \square-\square$	E2Q2-N40 $\square \square-\square$
Sensing distance Sn	$15 \mathrm{~mm} \pm 10 \%$	$20 \mathrm{~mm} \pm 10 \%$	$30 \mathrm{~mm} \pm 10 \%$	$40 \mathrm{~mm} \pm 10 \%$
Standard target size, L x W x H, Fe 37	$45 \times 45 \times 1 \mathrm{~mm}$	$60 \times 60 \times 1 \mathrm{~mm}$	$90 \times 90 \times 1 \mathrm{~mm}$	$120 \times 120 \times 1 \mathrm{~mm}$
Setting distance	0 to $12,15 \mathrm{~mm}$	0 to 16,2 mm	0 to $24,3 \mathrm{~mm}$	0 to $32,4 \mathrm{~mm}$
Switching frequency	10 Hz (weld-field immune type)	150 Hz	100 Hz	30 Hz
Sensing object	Ferrous metals			
Differential travel	15\% max. of sensing distance Sn			
Operating voltage	10 to 30 VDC	10 to 60 VDC		
Current consumption	20 mA max.		10 mA max.	20 mA max.
Control output Type	E2Q2-N $\square \square \square E 1-\square \square:$ NPN - NOE2Q2-N $\square \square \square$ E3- $\square \square:$ NPN - NO + NCE2Q2-N $\square \square \square$ F1- $\square \square$ : PNP - NOE2Q2-N $\square \square \square$ F3- $\square \square$ : PNP - NO + NC			
Load	200 mA max.			
On-stage voltage drop	3 VDC max. (at 200 mA load current)			
Circuit protection	Reverse polarity, output short circuit			
Alternating magnetic field	100 mT	---		
Indicator	Operating indicator (yellow LED), operating voltage (green LED)			
Ambient temperature	Operating: $-25^{\circ}$ to $70^{\circ} \mathrm{C}$			
Ambient humidity	35 to 95\% RH			
Influence of temperature	$\pm 10 \%$ max. of Sn at $23^{\circ}$ in temperature range of $-25^{\circ}$ to $70^{\circ} \mathrm{C}$			
Dielectric strength	$1.500 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min . between current carry parts and case			
Electromagnetic compatibility EMC	EN 60947-5-2			
Vibration resistance	10 to 55 Hz , 1 mm amplitude according IEC 60068-2-6			
Shock resistance	Approx. 30 G for 11 ms according to IEC 60068-2-27			
Protection degree	IEC 60529 IP 67			
Connection Terminals	Up to 2,5 mm²			
Material Case    Terminal base	```PBT AI PBT (...-H type)```			
Sensing face	PBT			
Approvals		(1) LISTED		

AC type


## Output Circuit Diagram

NPN output

Model	Operation mode	Timing chart	Output circuit
E2Q2-N20E1-H	NO		
E2Q2-N20E3-E2Q2-N30ME3-E2Q2-N40ME3-	$\mathrm{NO}+\mathrm{NC}$		

PNP output

Model	Operation mode	Timing chart	Output circuit
$\begin{aligned} & \text { E2Q2-N2OF1-H } \\ & \text { E2Q2-N15F1-51 } \end{aligned}$	NO		
E2Q2-N20F3-■ E2Q2-N30MF3-E2Q2-N40ME3-	$\mathrm{NO}+\mathrm{NC}$		

AC output

Model	Operation mode	Timing chart	Output circuit
E2Q2-N15Y4-51	NO or NC		Note: Only one load allowed!



DC type

Connection type	Method	Description
AND   (serial connection)	Correct	The Sensors connected together must satisfy the following conditions:   $\mathrm{i} L+(\mathrm{N}-1) \mathrm{x} \mathrm{i} \leq$ Upper-limit of control output of each Sensor   $\mathrm{V}_{\mathrm{s}}-\mathrm{N} \times \mathrm{V}_{\mathrm{R}} \geq$ Load operating voltage   $N=$ No. of Sensors   $V_{R}=$ Residual voltage of each Sensor   Vs = Supply voltage   i = Current consumption of the Sensor   iL = Load current   If the MY Relay, which operate at 24 VDC , is used as a load for example,   a maximum of two Proximity Sensors can be connected to the load.
OR   (parallel connection)		A minimum of three Sensors with current outputs can be connected in parallel. The number of Sensors connected in parallel varies with the Proximity Sensor model.

AC type

Connection type	Method	Description
AND   (serial connection)		If 100 or 200 VAC is imposed on the Proximity Sensors, $V L$ (i.e., the voltage imposed on the load) will be obtained from the following.   $\mathrm{V}_{\mathrm{L}}=\mathrm{V}_{\mathrm{s}}$ - (residual voltage x no. of Proximity Sensors) (V)   Therefore, if $V_{L}$ is lower than the load operating voltage, the load will not operate.   A maximum of three Proximity Sensors can be connected in series provided that the supply voltage is 100 V minimum.
OR   (parallel connec-   tion)		In principle, more than two Proximity Sensors cannot be connected in parallel.   Provided that Proximity Sensor A does not operate with Proximity Sensor $B$ simultaneously and there is no need to keep the load operating continuously, the Proximity Sensors can be connected in parallel. In this case, however, due to the total leakage current of the Proximity Sensors, the load may not reset properly.   It is not possible to keep the load operating continuously with Proximity Sensors $A$ and $B$ in simultaneous operation to sense sensing objects due to the following reason.   When Proximity Sensor A is ON, the voltage imposed on Proximity Sensor A will drop to approximately 10 V and the load current flows into Proximity Sensor A, and when one of the sensing objects is close to Proximity Sensor B, Proximity Sensor B will not operate because the voltage imposed on Proximity Sensor B is 10 V , which is too low.   When Proximity Sensor A is OFF, the voltage imposed on Proximity Sensor B will reach the supply voltage and Proximity Sensor B will be ON. Then, Proximity Sensor A as well as Proximity Sensor B will be OFF for approximately 10 ms , which resets the load for an instant. To prevent the instantaneous resetting of the load, use a relay as shown on the left.

$\triangle$ Caution

## Power supply

Do not impose an excessive voltage on the E2Q2, otherwise it may explode or burn.
Do not connect an AC power supply to any DC model. If AC power ( 100 VAC or more) is supplied to the sensor, it may explode or burn.


Do not connect the AC types without load to the power supply. The sensor will be damaged.


Be sure to abide by the following precautions for the safe operation of the Sensor.

## Wiring

Power Supply Voltage and Output Load Power Supply Voltage
Make sure that the power supply to the Sensor is within the rated voltage range. If a voltage exceeding the rated voltage range is supplied to the Sensor, it may explode or burn.

## Load Short-circuiting

Do not short-circuit the load, otherwise the Sensor may be damaged.

## Connection without Load

Do not connect the power supply to the Sensor with no load connected, otherwise the internal elements may explode or burn.

## Operating Environment

Do not use the Sensor in locations with explosive or flammable gas.

## Correct Use

## Design

Effects of Surrounding Metal
Provide a minimum distance between the Sensor and the surrounding metal as shown in the table below.


Effects of Surrounding Metal (Unit: mm)

Model	Length	A	B
E2Q2-N15 $\square \square-\square \square$   E2Q2-N20 $\square \square-\square$	45	0	0
E2Q2-N30M $\square \square-\square$	90	250	30
E2Q2-N40M $\square \square-\square$	120	300	40

Mutual Interference
If more than one Sensor is located in parallel, ensure to maintain enough space between adjacent Sensors to suppress mutual interference as provided in the following diagram.


Mutual Interference (Unit: mm)

Model	Length

## Power Reset Time

The Sensor is ready to operate within 300 ms after the Sensor is turned ON. If the load and Sensor are connected to independent power supplies respectively, be sure to turn ON the Sensor before supplying power to the load.

## Power OFF

The Proximity Sensor may output a pulse signal when it is turned OFF. Therefore, it is recommended that the load be turned OFF before turning OFF the Proximity Sensor.

## Power Supply Transformer

When using a DC power supply, make sure that the DC power supply has an insulated transformer. Do not use a DC power supply with an auto-transformer.

## Sensing Object

The sensing distance of the Proximity Sensor vary with the metal coating on sensing objects.

## Wiring

High-tension cables

## Wiring through Metal Conduit:

If there is power or high-tension line near the cable of the Proximity Sensor, wire the cable through an independent metal conduit to prevent against Proximity Sensor damage or malfunction.

## Mounting

Mounting the Sensor
The Proximity Sensor must be subjected to excessive shock with a hammer when it is installed, otherwise the Proximity Sensor may be damaged or lose its water-resistivity.

## Maintenance and Inspection

Periodically perform the following checks to ensure stable operation of the Proximity Sensor over a long period of time.

- Check for mounting position, dislocation, looseness or distortion of the Proximity Sensor and sensing objects.
- Check for loose wiring and connections, improper contacts and line breakage.
- Check for attachment or accumulation of metal powder or dust.
- Check for abnormal temperature conditions and other environmental conditions.
Never disassemble or repair the Sensor.


## Environment

Water Resistivity
Do not use the Proximity Sensor underwater, outdoors or in the rain.

## Operating Environment

Be sure to use the Proximity Sensor within its operating ambient temperature range and do not use the Proximity Sensor outdoors so that its reliability and life expectancy can be maintained. Although the Proximity Sensor is water resistive, a cover to protect the Proximity Sensor from water or water-soluble machining oil is recommended so that its reliability and life expectancy can be maintained.

Do not use the Proximity Sensor in an environment with chemical gas (e.g., strong alkaline or acid gasses including nitric, chromic and concentrated sulfuric acid gases).

## Inrush Current

A load that has a large inrush current (e.g., a lamp or motor) will damage the Proximity Sensor, in this case connect the load to the Proximity Sensor through a Relay

[^35]Cat. No. D01E-EN-02 In the interest of product improvement, specifications are subject to change without notice.

Long Distance Square Inductive Proximity Sensor

## Square Proximity Sensor

- Slim, compact size
- M12 Plug-in connection
- Integrated short circuit and reverse polarity protection
- Active face positioning:
$Y$-axis $15^{\circ}, \mathrm{X}$-axis $90^{\circ}$ incremets



## Ordering Information

DC type

Sensing	Connection	Active	Output		
distance		face		NO	$\mathrm{NO}+\mathrm{NC}$
$\begin{aligned} & 20 \mathrm{~mm} \\ & \text { shielded } \end{aligned}$	Plug-in connector	Changable	NPN	E2Q4-N20E1-M1	E2Q4-N20E3-M1
			PNP	E2Q4-N20F1-M1	E2Q4-N20F3-M1
30 mm			NPN	E2Q4-N30ME1-M1	E2Q4-N30ME3-M1
non-shielded			PNP	E2Q4-N30MF1-M1	E2Q4-N30MF3-M1
40 mm			NPN		E2Q4-N40ME3-M1
non-shielded			PNP		E2Q4-N40MF3-M1

## Rating/performance



## Output Circuit Diagramm

NPN output

Model	$\begin{aligned} & \text { Operation } \\ & \text { mode } \end{aligned}$	Timing chart	Output circuit
E2Q4-N20E1-M1 E2Q4-N30ME1-M1	NO		Note: Terminal 2 is not used
E2Q4-N20E3-M1 E2Q4-N30ME3-M1 E2Q4-N40ME3-M1	$\mathrm{NO}+\mathrm{NC}$		

PNP output

Model	Operation mode	Timing chart	Output circuit
E2Q4-N20F1-M1   E2Q4-N30MF1-M1	NO		Note: Terminal 2 is not used
E2Q4-N20F3-M1 E2Q4-N30MF3-M1 E2Q4-N40MF3-M1	$\mathrm{NO}+\mathrm{NC}$		Connector Pin Arrangement

## Dimensions (Unit:mm)

E2Q4-...-M1 type


Connection
DC type

Connection type	Method	Description
AND   (serial connection)		The Sensors connected together must satisfy the following conditions: $\mathrm{i}_{\mathrm{L}}+(\mathrm{N}-1) \mathrm{x} \mathrm{i} \leq \quad$ Upper-limit of control output of each Sensor   $\mathrm{V}_{\mathrm{S}}-\mathrm{N} \times \mathrm{V}_{\mathrm{R}} \geq$ Load operating voltage   $\mathrm{N}=$ No. of Sensors   $\mathrm{V}_{\mathrm{R}}=$ Residual voltage of each Sensor   $\mathrm{V}_{\mathrm{S}}=$ Supply voltage   $\mathrm{i}=$ Current consumption of the Sensor   $\mathrm{i}_{\mathrm{L}}=$ Load current   If the MY Relay, which operate at 24 VDC, is used as a load for example,   a maximum of two Proximity Sensors can be connected to the load.
OR   (parallel connection)		A minimum of three Sensors with current outputs can be connected in parallel. The number of Sensors connected in parallel varies with the Proximity Sensor model.

## Precautions

$\square$ Caution

## Power supply

Do not impose an exessive voltage on the E2Q2, otherwise it may explode or burn.
Do not connect an AC power supply to any DC model. If AC power ( 100 VAC or more) is supplied to the sensor, it may explode or burn.


Be sure to abide by the following precautions for the safe operation of the Sensor.

## Wiring

Power Supply Voltage and Output Load Power Supply Voltage
Make sure that the power supply to the Sensor is within the rated voltage range. If a voltage exceeding the rated voltage range is supplied to the Sensor, it may explode or burn.

## Load Short-circuiting

Do not short-circuit the load, otherwise the Sensor may be damaged.

## Connection without Load

Do not connect the power supply to the Sensor with no load connected, otherwise the internal elements may explode or burn.

## Operating Environment

Do not use the Sensor in locations with explosive or flammable gas.

## Correct Use

## Design

Effects of Surrounding Metal
Provide a minimum distance between the Sensor and the surrounding metal as shown in the table below.


Effects of Surrounding Metal (Unit: mm)

Model $\quad$ Length	A	B	C
E2Q4-N20 $\square \square-M 1 ~$	45	0	0
E2Q4-N30M $\square \square-$ M1	90	250	30
E2Q4-N40M $\square \square$-M1	120	300	40

## Mutual Interference

If more than one Sensor is located in parallel, ensure to maintain enough space between adjacent Sensors to suppress mutual interference as provided in the following diagram.


Mutual Interference (Unit: mm)

Model	Length



Power Reset Time
The Sensor is ready to operate within 300 ms after the Sensor is turned ON. If the load and Sensor are connected to independent power supplies respectively, be sure to turn ON the Sensor before supplying power to the load.

## Power OFF

The Proximity Sensor may output a pulse signal when it is turned OFF. Therefore, it is recommended that the load be turned OFF before turning OFF the Proximity Sensor.

## Power Supply Transformer

When using a DC power supply, make sure that the DC power supply has an insulated transformer. Do not use a DC power supply with an auto-transformer.

## Sensing Object

The sensing distance of the Proximity Sensor vary with the metal coating on sensing objects.

## Wiring

High-tension cables
Wiring through Metal Conduit:
If there is power or high-tension line near the cable of the Proximity Sensor, wire the cable through an independent metal conduit to prevent against Proximity Sensor damage or malfunction.

## Mounting

Mounting the Sensor
The Proximity Sensor must be subjected to excessive shock with a hammer when it is installed, otherwise the Proximity Sensor may be damaged or lose its water-resistivity.

## Maintenance and Inspection

Periodically perform the following checks to ensure stable operation of the Proximity Sensor over a long period of time.

- Check for mounting position, dislocation, looseness or distortion of the Proximity Sensor and sensing objects.
- Check for loose wiring and connections, improper contacts and line breakage.
- Check for attachment or accumulation of metal powder or dust.
- Check for abnormal temperature conditions and other environmental conditions.
Never disassemble or repair the Sensor.


## Environment

Water Resistivity
Do not use the Proximity Sensor underwater, outdoors or in the rain.

## Operating Environment

Be sure to use the Proximity Sensor within its operating ambient temperature range and do not use the Proximity Sensor outdoors so that its reliability and life expectancy can be maintained. Although the Proximity Sensor is water resistive, a cover to protect the Proximity Sensor from water or water-soluble machining oil is recommended so that its reliability and life expectancy can be maintained.

Do not use the Proximity Sensor in an environment with chemical gas (e.g., strong alkaline or acid gasses including nitric, chromic and concentrated sulfuric acid gases).

## Inrush Current

A load that has a large inrush current (e.g., a lamp or motor) will damage the Proximity Snesor, in this case connect the load to the Proximity Sensor through a Relay

```
ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.
To convert millimeters into inches, multiply by 0.03937. To convert grams into ounces, multiply by 0.03527.
```

Cat. No. D02E-EN-01A
In the interest of product improvement, specifications are subject to change without notice.

High Precision Positioning Inductive Proximity Sensor

## E2C-EDA

- $1 \mu \mathrm{~m}$ resolution
- Precision distance teaching



## Ordering Information

## Sensors

Sensor Heads


Note 1. A Protective Spiral Tube is provided with models ending in the suffix -S. (example: E2C-ED01-S).
2. Two cable lengths are available. (3-dia.: free-cut type, Heat-resistant type: standard-length only).

Overall length of the standard-length type: 2.5 m , Length from the Sensor Head to the Preamplifier: 2.0 m (Example: E2C-ED01) Overall length of the free-cut type: 3.5 m , Length from the Sensor Head to the Preamplifier: 0.5 m for models ending in the suffix -F (example: E2C-ED01F).
3. Models ending in the suffix -S that come with Protective Spiral Tubes and free-cut models ending in the suffix - F are made-to-order products.

## Amplifier Units

Amplifier Units with Cables

	Item	Appearance	Functions		del
				NPN output	PNP output
Advanced models	Twin-output models		Area output, open circuit detection, differential operation	E2C-EDA11	E2C-EDA41
	External-input models		Remote setting, differential operation	E2C-EDA21	E2C-EDA51

Amplifier Units with Connectors

Item		Appearance	Functions	Model		
		NPN output		PNP output		
Advanced models	Twin-output models			Area output, open circuit detection, differential operation	E2C-EDA6	E2C-EDA8
	External-input models		Remote setting, differential operation	E2C-EDA7	E2C-EDA9	

Amplifier Unit Connectors (Order Separately)

Item	Appearance	Cable length	No. of conductors	Model
Master Connector		2 m	4	E3X-CN21
				2

IConnector Ordering Precaution
'Amplifier Units and Connectors are sold separately.
, Refer to the following tables when placing an order.

Amplifier Unit		
Model	NPN output	PNP output
Advanced models	E2C-EDA6	E2C-EDA8
	E2C-EDA7	E2C-EDA9


Applicable Connector (Order Separately)	
Master Connector	Slave Connector
E3X-CN21	E3X-CN22

When Using 5 Amplifier Units

| Amplifier Units (5 Units) |  |
| :--- | :--- | :--- |
| 1 Master Connector | 4 Slave Connectors |

Mobile Console (Order Separately)

Appearance	Model	Remarks
	E3X-MC11-SV2   (model number of set)	Mobile Console with Head,   Cable, and AC adapter pro-   vided as accessories

Note: Use the E3X-MC11-SV2 Mobile Console with E2C-EDA-series Amplifier Units. If you use a Mobile Console like the E3X-MC11-S, some functions may not operate.

## Accessories (Order Separately)

## Mounting Bracket

Appearance	Model	Quantity
	E39-L143	1

End Plate

Appearance	Model	Quantity
	PFP-M	1

## Specifications

## Sensor Heads

Item Model			E2C-EDR6-F	E2C-ED01(-■)	E2C-ED02(-■)	E2C-EM02- $\square$ )	E2C-EM07(-■)	E2C-EV05(-■)	E2C-EM02H
			3 dia . $\times 18 \mathrm{~mm}$	5.4 dia. $\times 18 \mathrm{~mm}$	8 dia. $\times 22 \mathrm{~mm}$	$\mathrm{M} 10 \times 22 \mathrm{~mm}$	$\mathrm{M} 18 \times 46.3 \mathrm{~mm}$	$30 \times 14 \times 4.8 \mathrm{~mm}$	$\mathrm{M} 12 \times 22 \mathrm{~mm}$
Sensing distance			0.6 mm	1 mm	2 mm		7 mm	5 mm	2 mm
Sensing object			Magnetic metal (The sensing distance will decrease when sensing non-magnetic metal. Refer to Engineering Data on 87.)						
Standard sensing object			$5 \times 5 \times 3 \mathrm{~mm}$		$10 \times 10 \times 3 \mathrm{~mm}$		$\begin{aligned} & 22 \times 22 \times 3 \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 15 \times 15 \times 3 \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 20 \times 20 \times 3 \\ & \mathrm{~mm} \end{aligned}$
			Material: iron (S50C)						
Repeat accuracy (See note 1.)			$1 \mu \mathrm{~m}$		$2 \mu \mathrm{~m}$		$5 \mu \mathrm{~m}$	$2 \mu \mathrm{~m}$	
Hysteresis distance			Variable						
$\begin{array}{\|l\|} \hline \text { Temper- } \\ \text { ature } \\ \text { charac- } \\ \text { teristic } \\ \text { (See } \\ \text { note 1.) } \\ \hline \end{array}$	Sensor Head		$0.3 \% /{ }^{\circ} \mathrm{C}$	0.08\%/ ${ }^{\circ} \mathrm{C}$				0.04\%/ ${ }^{\circ} \mathrm{C}$	0.2\%/ ${ }^{\circ} \mathrm{C}$
	Preamplifier and Amplifier		0.08\%/ ${ }^{\circ} \mathrm{C}$						
Ambient temperature (See note 2.)	Operating		$-10^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ (with no icing or condensation)						$\begin{aligned} & -10^{\circ} \mathrm{C} \text { to } 200^{\circ} \mathrm{C} \\ & (\text { See note } 3 .) \end{aligned}$
	Storage		$-10^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$   (with no icing or   condensation)$\quad-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (with no icing or condensation)						
Ambient humidity			Operating/storage: 35\% to 85\% (with no condensation)						
Insulation resistance			$50 \mathrm{M} \Omega$ min. (at 500 VDC )						
Dielectric strength			1,000 VAC at $50 / 60 \mathrm{~Hz}$ for 1 min between current carry parts and case						
Vibration resistance			Destruction: 10 to $55 \mathrm{~Hz}, 1.5-\mathrm{mm}$ double amplitude for 2 hours each in $X, Y$, and $Z$ directions						
Shock resistance			Destruction: $500 \mathrm{~m} / \mathrm{s}^{2}$ for 3 times each in $\mathrm{X}, \mathrm{Y}$, and Z directions						
Degree of protection			IEC60529 IP67						$\begin{aligned} & \text { IEC60529 } \\ & \text { IP60 } \\ & \text { (See note 4.) } \end{aligned}$
Connection method			Connector (standard cable length: 2.5 m ( 2 m between Head and Preamplifier) "-F" model cable length: 3.5 m ( 0.5 m between Head and Preamplifier)						
Weight (packed state)			Approx. 120 g (Models with protective spiral tube ("-S" models) are approx. 90 g heavier.)						
Material	Sensor Head	Case	Brass	Stainless steel	Brass			Zinc	Brass
		Sensing surface	Heat-resistant ABS						PEEK
		Clamping nut	---			Nickel-plated brass		---	Nickel-plated brass
		Toothed washer	---			Zinc-plated iron		---	Zinc-plated iron
	Preamplifier		PES						
Accessories			Preamplifer Mounting Brackets, Instruction Manual						

Note 1. The repeat accuracy and temperature characteristic are for a standard sensing object positioned midway through the rated sensing distance.
2. A sudden temperature rise even within the rated temperature range may degrade characteristics.
3. For the Sensor Head only without the preamplifier ( 10 to $60^{\circ} \mathrm{C}$ ). With no icing or condensation.
4. Do not operate in areas exposed to water vapor because the enclosure is not waterproof.

Amplifier Units

Item Model	Type	Advanced Models with Twin Outputs		Advanced Models with External Inputs	
	NPN output	E2C-EDA11	E2C-EDA6	E2C-EDA21	E2C-EDA7
	PNP output	E2C-EDA41	E2C-EDA8	E2C-EDA51	E2C-EDA9
Supply voltage		12 to 24 VDC $\pm 10 \%$, ripple (p-p): $10 \%$ max.			
Power consumption		1,080 mW max. (current consumption: 45 mA at power supply voltage of 24 VDC )			
Control output		Load power supply voltage: 26.4 VDC max.; NPN/PNP open collector output; load current: 50 mA max. (residual voltage: 1 V max.)			
Response time	Super-high-speed mode	$150 \mu$ s for operation and reset respectively			
	High-speed mode	$300 \mu \mathrm{~s}$ for operation and reset respectively			
	Standard mode	1 ms for operation and reset respectively			
	High-resolution mode	4 ms for operation and reset respectively			
Functions	Differential detection	Switchable between single edge and double edge detection mode Single edge: Can be set to $300 \mu \mathrm{~s}, 500 \mu \mathrm{~s}, 1 \mathrm{~ms}, 10 \mathrm{~ms}$, or 100 ms Double edge: Can be set to $500 \mu \mathrm{~s}, 1 \mathrm{~ms}, 2 \mathrm{~ms}, 20 \mathrm{~ms}$, or 200 ms .			
	Timer function	Select from OFF-delay, ON-delay, or one-shot timer. 1 ms to 5 s ( 1 to 20 ms set in 1 -ms increments, 20 to 200 ms set in $10-\mathrm{ms}$ increments, 200 ms to 1 s set in $100-\mathrm{ms}$ increments, and 1 to 5 s set in 1 s -increments)			
	Zero-reset	Negative values can be displayed. (Threshold is not shifted.)			
	Initial reset	Settings can be returned to defaults as required.			
	Mutual interference prevention	Possible for up to 5 Units. (See note.)   Intermittent oscillation method (Response time $=$ (number of Units connected +1$) \times 15 \mathrm{~ms}$ )			
	Hysteresis settings	Setting range: 10 to 4,000			
	I/O settings	Output setting (Select from channel 2 output, area output, self-diagnosis, or open circuit detection.)		Input setting (Select from teaching, fine positioning, zero-reset, synchronous detection.)	
Digital display		Select from the following: Incident level + threshold, incident level percentage +threshold, incident light peak level + incident light bottom level (updated with output), long bar display, incident level + peak hold, incident level + channel			
Display orientation		Switching between normal/reversed display is possible.			
Ambient temperature		Operating:   When connecting 1 to 2 Units: $-10^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$   When connecting 3 to 5 Units: $-10^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$   When connecting 6 to 16 Units: $-10^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$   When used in combination with an EDR6-F   When connecting 3 to 4 Units: $-10^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$   When connecting 5 to 8 Units: $-10^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$   When connecting 9 to 16 Units: $-10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$   Storage: $-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (with no icing)			
Ambient humidity		Operating/storage: 35\% to 85\% (with no condensation)			
Insulation resistance		$20 \mathrm{M} \Omega$ min. (at 500 VDC )			
Dielectric strength		1,000 VAC at $50 / 60 \mathrm{~Hz}$ for 1 min			
Vibration resistance		Destruction: 10 to $55 \mathrm{~Hz}, 1.5-\mathrm{mm}$ double amplitude for 2 hours each in $\mathrm{X}, \mathrm{Y}$, and Z directions			
Shock resistance		Destruction: $500 \mathrm{~m} / \mathrm{s}^{2}$ for 3 times each in $\mathrm{X}, \mathrm{Y}$, and Z directions			
Degree of protection		IEC60529 IP50			
Connection method		Prewired	Connector	Prewired	Connector
Weight (packed state)		Approx. 100 g	Approx. 55 g	Approx. 100 g	Approx. 55 g
Material	Case	PBT (polybutylene terephthalate)			
	Cover	Polycarbonate			

Note: Communications are disabled if the detection mode is selected during super-high-speed sensing mode, and the communications functions for mutual interference prevention and the Mobile Console will not function.

## Engineering Data

Sensing Distance vs. Display Values

## E2C-EDR6-F



E2C-EM07(-■)


E2C-ED01(-■)


E2C-EV05(- $\square$ )


E2C-ED02(-■)/EM02(-■)


E2C-EM02H


Influence of Sensing Object Size and Material

## E2C-EDR6-F



E2C-EM07(-■)


E2C-ED01(-ロ)


E2C-EV05(-■)


E2C-ED02(-■)/EM02(-■)


E2C-EM02H


Influence of Sensor Head Temperature

## E2C-EDR6-F



E2C-EM07(- $\square$ )


E2C-ED01(-■)


E2C-EV05(- $\square$ )


E2C-ED02(-ロ)/EM02(-ロ)
 E2C-EM02H


## Operation

NPN Output

\begin{tabular}{|c|c|c|c|c|}
\hline Model \& Operation mode \& Timing chart \& Mode selector \& Output circuit \\
\hline \[
\begin{aligned}
\& \text { E2C-EDA11 } \\
\& \text { E2C-EDA6 }
\end{aligned}
\] \& NO (Normally open) \&  \& \begin{tabular}{l}
NO \\
NC
\end{tabular} \&  \\
\hline \[
\begin{aligned}
\& \text { E2C-EDA21 } \\
\& \text { E2C-EDA7 }
\end{aligned}
\] \& NO (Normally open) \&  \& NO

NC \&  <br>
\hline
\end{tabular}

Note 1. Setting Areas for Twin-output Models
Normally open: ON between the thresholds for Channel 1 and Channel 2
Normally closed: OFF between the thresholds for Channel 1 and Channel 2
2. Timing Charts for Timer Settings (T: Set Time)

ON delay	OFF delay	One shot

PNP Output

Model	Operation mode	Timing chart	Mode selector	Output circuit
$\begin{aligned} & \text { E2C-EDA41 } \\ & \text { E2C-EDA8 } \end{aligned}$	NO (Normally open) closed)		NO	
$\begin{aligned} & \text { E2C-EDA51 } \\ & \text { E2C-EDA9 } \end{aligned}$	NO (Normally open)		NO   NC	

Note 1. Setting Areas for Twin-output Models
Normally open: ON between the thresholds for Channel 1 and Channel 2
Normally closed: OFF between the thresholds for Channel 1 and Channel 2
2. Timing Charts for Timer Settings (T: Set Time)

ON delay	OFF delay	One shot

## Nomenclature

## Amplifier Units

Twin-output Models
(E2C-EDA11/EDA41/EDA6/EDA8)


External-input Models
(E2C-EDA21/EDA51/EDA7/EDA9)


Do not use this product in any safety device used for the protection of human lives.

## Precautions for Correct Use

Do not use this product in operating atmospheres or environments outside the specified ratings.

## Amplifier Units

## Design

## Power ON

The Sensor is ready to sense an object within 200 ms after turning the power ON. If the load and Sensor are connected to different power supplies, always turn ON the Sensor power first.

## Connecting Sensor Heads

## Connecting and Disconnecting Sensor Heads

1. Open the protective cover.
2. Making sure that the lock button is up, insert the fibers all the way to the back of the Connector insertion opening.


To disconnect the Sensor Head, pull out the fibers while pressing on the lock button.


Connecting and Disconnecting Connectors

## Connecting Connectors

1. Insert the Master or Slave Connector into the Amplifier Unit until it clicks into place.

2. Apply the supplied seal to the non-connection surface of the Master/Slave Connector.


Note: Apply the seal to the grooved side.

## Disconnecting Connectors

1. Slide the Slave Amplifier Unit.
2. After the Amplifier Unit has been separated, press down on the lever on the Connector and remove it. (Do not attempt to remove Connectors without separating them from other Amplifier Units first.)


Installing and Removing Amplifier Units Installing Amplifier Units

1. Install the Units one by one to the DIN rail.


Sensor Head Connector Clips
2. Slide one Unit toward the other, match the clips at the front ends, and then bring them together until they "click."


## Removing Amplifier Units

Slide one Unit away from the other and remove them one by one. (Do not remove the connected Units together from the DIN rail.)
Note 1. When the Amplifier Units are connected to each other, the operable ambient temperature changes depending on the number of connected Amplifier Units. Check Specifications.
2. Before connecting or disconnecting the Units, always switch power OFF.

## End Plate Mounting (PFP-M)

Mount End Plates on Amplifier Units to avoid movement due to vibration. When a Mobile Console is installed, mount the End Plate facing as shown in the following diagram.


Mounting a Communications Head for the Mobile Console
Leave a space of at least 20 mm on the left side of the Units for a Mobile Console Communications Head.


## EEPROM Write Error

If the data is not written to the EEPROM correctly due to a power failure or static-electric noise, initialize the settings using the keys on the Amplifier Unit.

## Optical Communications

When using more than one Amplifier Unit, mount the Units side-byside. Do not slide or remove Units while they are in use.

## Miscellaneous

## Protective Cover

Be sure to put on the Protective Cover before use.

## Mobile Console

Use the E3X-MC11-SV2 Mobile Console for E2C-EDA-series Amplifier Units. Other Mobile Consoles, such as the E3X-MC11, cannot be used.

## Sensor Head and Amplifier Unit Connection

Be sure to use only specified Sensor Head and Amplifier Unit combinations. The E3C-LDA-series Photoelectric Sensor with Separate Digital Amplifier is not compatible, and the E2C-EDA must not be used with products from that series.

## Warm-up

The digital display will slowly change until the circuits stabilize after the power is turned ON. It takes about 30 minutes after the power is turned ON before the E2C-EDA is ready to sense.

## Maintenance Inspection

- Be sure to turn OFF the power before adjusting, connecting, or disconnecting the Sensor Head.
- Do not use thinner, benzene, acetone, or kerosene to clean the Sensor Head or Amplifier Unit.


## Sensor Heads

## Mounting

## Mounting Sensor Heads

- Use the dimensions from the following table to mount unthreaded cylindrical models (E2C-ED- $\square \square$ ). Do not tighten screws with torque exceeding 0.2 N.m when mounting Sensor Heads.

- Use the torque given in the following table to tighten threaded cylindrical models (E2C-EM $\square \square$ ).

Model	Tightening torque
E2C-EM02 $\square \square$	$15 \mathrm{~N} \cdot \mathrm{~m}$ max.
E2C-EM07M $\square \square$	$15 \mathrm{~N} \cdot \mathrm{~m}$ max.
E2C-EM02H $\square \square$	$5.9 \mathrm{~N} \cdot \mathrm{~m}$ max.

- Do not use torque exceeding 0.5 N•m to tighten screws when mounting flat models (E2C-EV $\square \square$ ).
- Use a bending radius of at least 8 mm for the Sensor Head cable.
- Use only the special extension cable to extend the cable between the Sensor Head and the Amplifier Unit. Consult your OMRON representative for details.

Effects of Surrounding Metal

- Provide a minimum distance between the Sensor and the surrounding metal as shown in the table below.
Effects of Surrounding Metal
(Units: mm)

Model	Counterbore A	Protrusion B
E2C-EDR6-F	3.1	0
E2C-ED01 $\square \square$	5.4	0
E2C-ED02 $\square \square$	8	0
E2C-EM02 $\square \square$	10	0
E2C-EM07M $\square \square$	35	20
E2C-EV05 $\square$	$14 \times 30$	4.8
E2C-EM02H $\square \square$	12	0



## Mutual Interference

- If more than one Sensor Head is installed face to face or in parallel, make sure that the distances between two Units adjacent to each other are the same as or larger than the corresponding values shown in the following table.
- The distance between Sensor Heads may be narrower than specified with these Sensors because the Mutual Interference Prevention Function is used for optical communications between the Amplifier Units.


Mutual Interference
(Units: mm)

Model	Face-to-   face ar-   rangement   A	Parallel ar-   rangement   B	Face-to-face   arrangement   using the Mu-   tual Interfer-   ence   Prevention   Function A'	Parallel ar-   rangement   using the Mu-   tual Interfer-   ence   Prevention   Function B'
E2C-EDR6-F	14	10	3.5	3.1
E2C-ED01 $\square \square$	45	20	9	5.4
E2C-ED02 $\square$	35	30	21	8
E2C-EM02 $\square \square$	36	30	21	10
E2C-EM07M $\square$	140	120	35	18
E2C-EV05 $\square$	65	30	21	14
E2C-EM02H $\square \square$	45	30	21	12

## Dimensions

## Sensors

E2C-EDR6-F
3 dia

$\underset{|-15 \rightarrow|}{\mid-20.6}$


E2C-ED01(-F)


E2C-ED02(-F)


## E2C-EM07M(-F)



E2C-EM02H


## Amplifier Units

Amplifier Units with Cables

## E2C-EDA11 <br> E2C-EDA21 <br> E2C-EDA41 E2C-EDA51



With Mounting Bracket Attached


Amplifier Units with Connectors

## E2C-EDA6

## E2C-EDA7

E2C-EDA8 E2C-EDA9



High Frequency Inductive Proximity Sensor
E2EL

## Increased response frequency for high speed applications

- Max 5 kHz , switching frequency
- M8 or dia
- 6.5 mm housing
- Brass or stainless steel housing



## Ordering Information

## Cable types

Brass housing

Diameter	Length	Mounting	Sensing   Distance	Output			
				NPN / NO	NPN / NC	PNP / NO	PNP / NC
Ø 6,5	30 mm	Shielded	$1,5 \mathrm{~mm}$	E2EL-C1R5E1 2M	E2EL-C1R5E2 2M	E2EL-C1R5F1 2M	E2EL-C1R5F2 2M
	32 mm	Non-shielded	$2,0 \mathrm{~mm}$	E2EL-C2ME1 2M	E2EL-C2ME2 2M	E2EL-C2MF1 2M	E2EL-C2MF2 2M
	45 mm	Shielded	$1,5 \mathrm{~mm}$	E2EL-C1R5E1-L 2M	E2EL-C1R5E2-L 2M	E2EL-C1R5F1-L 2M	E2EL-C1R5F2-L 2M
	47 mm	Non-shielded	$2,0 \mathrm{~mm}$	E2EL-C2ME1-L 2M	E2EL-C2ME2-L 2M	E2EL-C2MF1-L 2M	E2EL-C2MF2-L 2M
M8	30 mm	Shielded	$1,5 \mathrm{~mm}$	E2EL-X1R5E1 2M	E2EL-X1R5E2 2M	E2EL-X1R5F1 2M	E2EL-X1R5F2 2M
	32 mm	Non-shielded	$2,0 \mathrm{~mm}$	E2EL-X2ME1 2M	E2EL-X2ME2 2M	E2EL-X2MF1 2M	E2EL-X2MF2 2M
	45 mm	Shielded	$1,5 \mathrm{~mm}$	E2EL-X1R5E1-L 2M	E2EL-X1R5E2-L 2M	E2EL-X1R5F1-L 2M	E2EL-X1R5F2-L 2M
	47 mm	Non-shielded	2,0 mm	E2EL-X2ME1-L 2M	E2EL-X2ME2-L 2M	E2EL-X2MF1-L 2M	E2EL-X2MF2-L 2M

Stainless steel housing

Diameter	Length	Mounting	Sensing Distance	Output			
				NPN / NO	NPN / NC	PNP / NO	PNP / NC
Ø 6,5	30 mm	Shielded	2,0 mm	E2EL-C2E1-DS 2M	E2EL-C2E2-DS 2M	E2EL-C2F1-DS 2M	E2EL-C2F2-DS 2M
	45 mm	Shielded	$2,0 \mathrm{~mm}$	E2EL-C2E1-DSL 2M	E2EL-C2E2-DSL 2M	E2EL-C2F1-DSL 2M	E2EL-C2F2-DSL 2M
M8	30 mm	Shielded	$2,0 \mathrm{~mm}$	E2EL-X2E1-DS 2M	E2EL-X2E2-DS 2M	E2EL-X2F1-DS 2M	E2EL-X2F2-DS 2M
	45 mm	Shielded	$2,0 \mathrm{~mm}$	E2EL-X2E1-DSL 2M	E2EL-X2E2-DSL 2M	E2EL-X2F1-DSL 2M	E2EL-X2F2-DSL 2M

Plug types
Brass housing

Diameter	Length	Mounting	Sensing   Distance	Output			
				NPN / NO	NPN / NC	PNP / NO	PNP / NC
Ø6,5/ Plug M8	45 mm	Shielded	$1,5 \mathrm{~mm}$	E2EL-C1R5E1-M3	E2EL-C1R5E2-M3	E2EL-C1R5F1-M3	E2EL-C1R5F2-M3
	47 mm	Non-shielded	$2,0 \mathrm{~mm}$	E2EL-C2ME1-M3	E2EL-C2ME2-M3	E2EL-C2MF1-M3	E2EL-C2MF2-M3
	54 mm	Shielded	$1,5 \mathrm{~mm}$	E2EL-C1R5E1-M3L	E2EL-C1R5E2-M3L	E2EL-C1R5F1-M3L	E2EL-C1R5F2-M3L
	56 mm	Non-shielded	$2,0 \mathrm{~mm}$	E2EL-C2ME1-M3L	E2EL-C2ME2-M3L	E2EL-C2MF1-M3L	E2EL-C2MF2-M3L
M8 /   Plug M8	45 mm	Shielded	$1,5 \mathrm{~mm}$	E2EL-X1R5E1-M3	E2EL-X1R5E2-M3	E2EL-X1R5F1-M3	E2EL-X1R5F2-M3
	47 mm	Non-shielded	$2,0 \mathrm{~mm}$	E2EL-X2ME1-M3	E2EL-X2ME2-M3	E2EL-X2MF1-M3	E2EL-X2MF2-M3
	54 mm	Shielded	$1,5 \mathrm{~mm}$	E2EL-X1R5E1-M3L	E2EL-X1R5E2-M3L	E2EL-X1R5F1-M3L	E2EL-X1R5F2-M3L
	56 mm	Non-shielded	$2,0 \mathrm{~mm}$	E2EL-X2ME1-M3L	E2EL-X2ME2-M3L	E2EL-X2MF1-M3L	E2EL-X2MF2-M3L
M8 /   Plug M12	44 mm	Shielded	$1,5 \mathrm{~mm}$	E2EL-X1R5E1-M1	E2EL-X1R5E2-M1	E2EL-X1R5F1-M1	E2EL-X1R5F2-M1
	46 mm	Non-shielded	$2,0 \mathrm{~mm}$	E2EL-X2ME1-M1	E2EL-X2ME2-M1	E2EL-X2MF1-M1	E2EL-X2MF2-M1
	60 mm	Shielded	$1,5 \mathrm{~mm}$	E2EL-X1R5E1-M1L	E2EL-X1R5E2-M1L	E2EL-X1R5F1-M1L	E2EL-X1R5F2-M1L
	62 mm	Non-shielded	2,0 mm	E2EL-X2ME1-M1L	E2EL-X2ME2-M1L	E2EL-X2MF1-M1L	E2EL-X2MF2-M1L

## Specifications

Brass type

Type		Ø 6,5		M8	
Operating voltage		10 to 35 VDC			
Rated supply voltage		24 VDC			
Current consumption		max. 15 mA at 24 VDC			
Sensing object		Ferrous metals			
Mounting ((s)hielded, (n)on-shielded) *1		s	n	s	n
Operating distance in mm		1,5	2,0	1,5	2,
Tolerance of operating distance		$\pm 10 \%$			
Standard target size in mm (L x W x H in mm, FE 37)		6,5x6,5x1		$8 \times 8 \times 1$	
Differential travel		1\% ... $15 \%$ of operating distance			
Max. response frequency in kHz		5,0			
Control output	Type	E2EL-... E1 type: NPN-NO			
		E2 type: NPN-NC			
		F1 type: PNP-NO			
		F2 type: PNP-NC			
	Max-Load	200 mA			
	Max-on-state Voltage drop	2,5 VDC (at 200 mA load current and with 2 m cable)			
Circuit protection		Reverse polarity, output short-circuit			
Indicator		Operating indicator (yellow LED)			
Ambient temperature		Operating: $-25^{\circ}$ to $70^{\circ} \mathrm{C}$			
Humidity		35 to 95 \% RH			
Influence of temperature		$\pm 10 \%$ max. of Sn at $23^{\circ} \mathrm{C}$ in temperature range of $-25^{\circ}$ to $70^{\circ} \mathrm{C}$			
Dielectric strength		1.500 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min . between current carry parts and case			
Electromagnetic compatibility EMC		EN 60947-5-2			
Vibration resistance		Destruction: 10 to $70 \mathrm{~Hz}, 1,5 \mathrm{~mm}$ double amplitude for 1 hour each in $\mathrm{X}, \mathrm{Y}$ and Z directions			
Shock resistance		Destruction: $300 \mathrm{~m} / \mathrm{s}^{2}$ (approx. 30 G ) for 6 times each in $\mathrm{X}, \mathrm{Y}$ and Z directions			
Enclosure rating		IP 67 (EN 60947-1)			
Connection *2	Pre-wired	2 m PVC-cable, $3 \times 0,14 \mathrm{~mm}^{2}$			
	Connector	M8 plug			
Weight in g $\quad$ Pre-wired	long	45		50	
	short	43		48	
	long	10		15	
	short	8		13	
Material	Case	Brass			
	Sensing face	PBTP			

*1. For detailed mounting instruction please refer to page D-105
*2. PUR cable and different length on request.

Stainless steel type

*1. For detailed mounting instruction please refer to page D-105
*2. PUR cable and different length on request.

## Engineering data

Standardized characteristic for lateral approach


Output Circuit Diagram and Timing Chart

```
E2EL- \(\square\) E \(\square\)
NPN Output
```



E2EL- $\square E \square$
NPN Output
Sensing object
Yellow indicator
Control output


Pin Arrangement at Connector Types

## 1. Connector M8 (viewed to plug pins)



E2EL- $\square$ F $\square$
PNP Output


E2EL- $\square \mathrm{F} \square$
PNP Output


## 2. Connector M12 (viewed to plug pins)



Cable types
E2EL-C1 $\square$ R5 2M, E2EL-C2 $\square$-DS 2M


E2EL-C1R5 $\square$-L 2M, E2EL-C2 $\square-D S L 2 M$


E2EL-X1R5 $\square$ 2M, E2EL-X2 $\square$-DS 2M


E2EL-X1R5 $\square-L$ 2M, E2EL-X2 $\square-D S L$ 2M


E2EL-C2M $\square$ 2M


E2EL-C2M $\square$-L 2M


E2EL-X2M $\square 2 M$


E2EL-X2M $\square$-L 2M


Plug types


E2EL-C1R5 $\square-M 3 L$


E2EL-X1R5 $\square-M 3$


E2EL-X1R5 $\square-M 3 L, ~ E 2 E L-X 2 \square D M 3 S$


E2EL-X1R5 $\square-M 1$


E2EL-X1R5 $\square-M 1 L$



E2EL-C2M $\square-M 3 L$


E2EL-X2M $\square-M 3$


E2EL-X2M $\square-M 3 L$


E2EL-X2M $\square-M 1$


## E2EL-X2M $\square-M 1 L$



## Caution

| Item | Examples |
| :--- | :--- | :--- |
| Power Supply <br> Do not impose an excessive voltage on the E2EL, otherwise it may <br> explode or burn. <br> Do not impose 24 VAC on any E2EL model, otherwise it may ex- <br> plode or burn. |  |
| Load short-circuit <br> Do not short-circuit the load, or the E2EL may explode or burn. <br> The E2EL's short-circuit protection function is valid, if the polarity of <br> the supply voltage imposed is incorrect and within the rated voltage <br> range. |  |
| Wiring <br> Be sure to wire the E2EL and load correctly, otherwise it may ex- <br> plode or burn. |  |

## Correct Use

Installation

## Power Reset Time

The Proximity Sensor is ready to operate within 100 ms after power is supplied. If power supplies are connected to the Proximity Sensor and load respectively, be sure to supply power to the Proximity Sensor before supplying power to the load.

## Power OFF

The Proximity Sensor may output a pulse signal when it is turned off. Therefore, it is recommended to turn off the load before turning off the Proximity Sensor.
Power Supply Transformer
When using a DC power supply, make sure that the DC power supply has an insulated transformer. Do not use a DC power supply with an auto-transformer.

## Sensing Object

Metal Coating:
The sensing distance of the Proximity Sensor vary with the metal coating on sensing objects.

## Wiring

High-tension Lines
Wiring through Metal Conduit
If there is a power or high-tension line near the cord of the Proximity Sensor, wire the cord through an independent metal conduit to prevent against Proximity Sensor damage or malfunctioning.

## Core Tractive Force

Do not pull cords with the tractive force exceeding the following: pull force $(\mathrm{N})=20 \times$ cable diameter ( mm )

## Mounting

The Proximity Sensor must not be subjected to excessive shock with a ha mmer when it is installed, otherwise the Proximity Sensor may be damaged or lose the water-resistivity.

## Environment

## Water-Resistivity

Do not use the Proximity Sensor underwater, outdoors or in the rain.

## Operating Environment

Be sure to use the Proximity Sensor within operating ambient temperature range and do not use the Proximity Sensor outdoors so that its reliability and life expectancy can be maintained. Although the Proximity Sensor is water resistive, a cover to protect the Proximity Sensor from water or soluble machining oil is reco mmended so that its reliability and life expectancy can be maintained. Do not use the Proximity Sensor in an environment with chemical gas (e. G., strong alkaline or acid gases including nitric, chromic, and concentrated sulfuric acid gases).

Item	Examples	Item
AND (serial connection)	Correct	The Sensors connected together must satisfy the following conditions:   If the MY Relay, which operate at 24 VDC, is used as a load for example, a maximum of two Proximity Sensors can be connected to the load.
OR (parallel connection)	Correct	The number of Sensors connected in parallel varies with the Proximity Sensor model.

## Effects of Surrounding Metal

Shielded types:
Shielded types allow direct installation on metal plates in an embedded manner without performance change. A minimum distance of 3 sn is required between the active surface and a metallic surface in front of the device. (Fig. 1).
For SUS shielded types the following minimum distances are required to avoid performance change (see Fig. 2 and table below):

Shielded SUS Types	Free zone
E2EL-2口-DS	$0,5 \mathrm{~mm}$



Fig.1: Shielded type (except SUS)


Fig.2: Shielded SUS type

Non-shielded types:
Installation of non-shielded types in metal require the minimum distances according to Fig. 3.


Fig.3: Non-shielded type

```
ALL DIMENSIONS SHOWN ARE IN MILLIMETERS
To convert millimeters into inches, multiply by 0.03937. To convert grams into ounces, multiply by 0.03527.
```

Cat. No. D06E-EN-01 In the interest of product improvement, specifications are subject to change without notice.

## Ultra Small Inductive Proximity Sensor

## E2EC

## Subminiature Sensor for demanding mounting conditions

- 3 mm dia sensing head for most demanding mounting conditions
- 18 mm long ultra short M12 size housing



## Applications

Check of a robot hand chucking
The proximity sensor which can be attached to a moving part like a chucking robot.


Ordering Information

## Sensors

DC 2-wire


Note: A different frequency type is available. (E2EC- $\square \square 5$; e.g.E2EC-CR8D15)
Accessories (Order Separately)
Mounting Brackets

Shape	Model	Applicable models
Y92E-F5R4	E2EC-C1R5D $\square$	

## Rating/performance

Item	Type Model	DC 2-wire			
		E2EC-CR8D $\square$	E2EC-C1R5D $\square$	E2EC-C3D $\square$	E2EC-X4D $\square$
Sensing distance		$0.8 \mathrm{~mm} \pm 15 \%$	$1.5 \mathrm{~mm} \pm 10 \%$	$3 \mathrm{~mm} \pm 10 \%$	$4 \mathrm{~mm} \pm 10 \%$
Setting distance		0 to 0.56 mm	0 to 1.05 mm	0 to 2.1 mm	0 to 2.8 mm
Differential distance		10\% max.			
Sensing object		Ferrous metal (Sensitivity lowers with non-ferrous metals)			
Standard sensing object		Iron, $5 \times 5 \times 1 \mathrm{~mm}$		Iron, $8 \times 8 \times 1 \mathrm{~mm}$	Iron, $12 \times 12 \times 1 \mathrm{~mm}$
Response frequency		1.5 kHz		1 kHz	
Power supply   (Operating voltage range)		12 to 24 VDC (10 to 30 VDC ) ripple (p-p): $10 \%$ max.			
Current consumption		---			
Leakage current		0.8 mA max.			
Control output	Switching capacity	5 to 100 mA			
	Residual voltage	3.0 V max. (under load current of 100 mA with cable length of 2 m )			
Indicator lamp		D1 type: Operation indicator (red LED), Operation set indicator (green LED) D2 type: Operation indicator (red LED)			
Operating status (with sensing object approaching)		D1 models: NO D2 models: NC			
Protective circuits		Surge absorber, short-circuit protection			
Ambient temperature		Operating/Storage: $-25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (with no icing or condensation)			
Ambient humidity		Operating/Storage: $35 \%$ to $95 \%$ RH (with no condensation)			
Temperature influence		$\pm 20 \%$ max. of sensing distance at $23^{\circ}$ in temperature range of $-25^{\circ}$ to $70^{\circ}$			
Voltage influence		$\pm 2.5 \%$ max. of sensing distance within a range of $\pm 15 \%$ of rated power supply voltage			
Insulation resistance		$50 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC ) between current carry parts and case			
Dielectric strength		1,000 VAC for 1 min between current carry parts and case			
Vibration resistance		10 to $55 \mathrm{~Hz}, 1.5-\mathrm{mm}$ double amplitude for 2 hours each in $\mathrm{X}, \mathrm{Y}$, and Z directions			
Shock resistance		Destruction: $1,000 \mathrm{~m} / \mathrm{s}^{2}$ for 10 times each in $\mathrm{X}, \mathrm{Y}$, and Z directions			
Protective structure		IEC60529 IP67			
Connection method		Pre-wired models (standard length: 2 m )			
Weight (Packed state)		Approx. 45 g			
Material	Case	Brass			
	Sensing surface	ABS			
Accessories		Mounting bracket, instruction manual			

* The response frequencies for DC switching are average values measured on condition that the distance between each sensing object is twice as large as the size of the sensing object and the sensing distance set is half of the maximum sensing distance.

Characteristic data (typical)

## Sensing Distance vs. Sensing Object





E2EC-X4D1


## Output Circuit Diagram

DC 2-wire Models

Operating status	Model	Timing chart	Output circuit
NO	E2EC-CR8D1 E2EC-C1R5D1 E2EC-C3D1 E2EC-X4D1		
NC	$\begin{gathered} \text { E2EC-CR8D2 } \\ \text { E2EC-C1R5D2 } \\ \text { E2EC-C3D2 } \\ \text { E2EC-X4D2 } \end{gathered}$		Note: The load can be connected to either the +V or $\mathrm{O}-\mathrm{V}$ side.

## Precautions

Correct Use

## Design

Effects of Surrounding Metal
Provide a minimum distance as shown in the table below between the Sensor and the surrounding metal.


## Effects of Surrounding Metal(Unit: mm)

Model Item	I	d	D	m	n
E2EC-CR8D $\square$	0	3	0	2.4	6
E2EC-C1R5D $\square$		5.4		4.5	10.8
E2EC-C3D $\square$		8		9	16
E2EC-X4D $\square$		12		12	24

## Mutual Interference

If more than one Sensor is located face-to-face or in parallel, be sure to maintain enough space, as provided in the following diagram, between adjacent Sensors to suppress mutual interference.


Mutual Interference(Unit: mm)

Model $\quad$ Item	A	B
E2EC-CR8D $\square$	$18(4)$	$6(3)$
E2EC-C1R5D $\square$	$15(8)$	$10.8(5.4)$
E2EC-C3D $\square$	$30(15)$	$16(8)$
E2EC-X4D $\square$	$40(20)$	$24(12)$

Note: The above values in parentheses are applicable when using two sensors with different frequencies.

## Mounting

- Refer to the following table for the torque and tightening ranges applied to mount unthreaded E2EC-C models.


Permissible Tightening Torque

Model	Tightening range	Set-screw tightening torque
E2EC-CR8D $\square$	6 to 10 mm	$0.49 \mathrm{~N} \bullet \mathrm{~m}$
E2EC-C1R5D $\square$	8 to 16 mm	
E2EC-C3D $\square$		$0.98 \mathrm{~N} \bullet \mathrm{~m}$

- The tightening torque applied to the E2EC-X4D (I.e., models with column screws) must be $120 \mathrm{kgf} \bullet \mathrm{cm}(12 \mathrm{~N} \bullet \mathrm{~m})$ max.


## Mounting Bracket for DC 2-wire Models

Mounting

1. Insert the amplifier into the trapezoidal end (I.e., the fixing side) of the mounting bracket.

2. Press the other end of the amplifier onto the bracket.


## Removal

1. Lightly press the hook of the mounting bracket with a flatblade screwdriver.

2. The amplifier will automatically spring loose from the mounting bracket.



## E2EC-C1R5D $\square$



## With Mounting Blanket Attached

Shielded robot cable with a conductor,


## E2EC-C3D $\square$

## With Mounting Blanket Attached



E2EC-X4D $\square$


## With Mounting Blanket Attached



## Mounting Holes



Model	$\mathrm{F}(\mathrm{mm})$
E2EC-CR8D $\square$	3.3-mm dia. +0.
E2EC-C1R5D $\square$	$5.7-\mathrm{mm}$ dia. +0.
E2EC-C3D $\square$	$8.5-\mathrm{mm}$ dia. +0.
E2EC-X4D $\square$	$12.5-\mathrm{mm}$ dia. +0.

## Mounting Brackets



Note: It is attached to the DC 2-wire sensors.


## Accessories (Order Separately)

## Mounting Brackets

## Y92E-F5R4



Material: Stainless steel (SUS304) Note: E2EC-C1R5D applicable to head of $\square$


[^36]To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527

Smooth Barrel Proximity Sensors
TL

## Cylindrical dia 8 mm

 all－metal housing with M8 plug connection or pre－wired

## C

## Ordering information

## Short barrel type

Versions			$S_{n}(\mathrm{~mm})$	Output				
			NPN	PNP				
Size	Type			NO	NC	NO	NC	
8 mm	Shielded	Connector		1.5	TL－C1R5E1－M3－E1	TL－C1R5E2－M3－E1	TL－C1R5F1－M3－E1	TL－C1R5F2－M3－E1
		Pre－wired	TL－C1R5E1－E1		TL－C1R5E2－E1	TL－C1R5F1－E1	TL－C1R5F2－E1	
	Non－shielded	Connector	2	TL－C2ME1－M3－E1	TL－C2ME2－M3－E1	TL－C2MF1－M3－E1	TL－C2MF2－M3－E1	
		Pre－wired		TL－C2ME1－E1	TL－C2ME2－E1	TL－C2MF1－E1	TL－C2MF2－E1	

Long barrel type

Versions			$\mathrm{S}_{\mathrm{n}}(\mathrm{mm})$	Output				
			NPN	PNP				
Size	Type			NO	NC	NO	NC	
8 mm	Shielded	Connector		1.5	TL－C1R5E1－M3－E2	TL－C1R5E2－M3－E2	TL－C1R5F1－M3－E2	TL－C1R5F2－M3－E2
		Pre－wired	TL－C1R5E1－E2		TL－C1R5E2－E2	TL－C1R5F1－E2	TL－C1R5F2－E2	
	Non－shielded	Connector	2	TL－C2ME1－M3－E2	TL－C2ME2－M3－E2	TL－C2MF1－M3－E2	TL－C2MF2－M3－E2	
		Pre－wired		TL－C2ME1－E2	TL－C2ME2－E2	TL－C2MF1－E2	TL－C2MF2－E2	

## Specifications

Type	8 mm Ø	
	$\begin{aligned} & \hline \text { TL-C1R5■П-E1 } \\ & \text { TL-C1R5■■-E2 } \end{aligned}$	$\begin{aligned} & \text { TL-C2Mロロ-E1 } \\ & \text { TL-C2Mロロ-E2 } \end{aligned}$
Sensing distance（Sn）	$1.5 \mathrm{~mm} \pm 10 \%$	$2 \mathrm{~mm} \pm 10 \%$
Power supply	10 to 35 V DC	
Power consumption	15 mA max．	
Object St 37	$8 \times 8 \times 1 \mathrm{~mm}$	
Switching hysteresis	1 to $15 \%$	
Switching frequency	5 kHz	
Temperature dependency	10\％max．	
Ambient temperature	$-25^{\circ}$ to $70^{\circ} \mathrm{C}$	
Switching output	300 mA max．	
Residual voltage	2.5 V max．	
Function display	1 LED	
Degree of protection	IP 65	
Housing material	Nickel－plated brass	

## Output circuits

## PNP output



## NPN output




Reduction factors (typical values)

Chrome-nickel	Sn $\times 0.9$
Brass	Sn $\times 0.5$
Aluminium	Sn $\times 0.45$
Copper	Sn $\times 0.4$

Dimensions (mm)

$$
\text { TL-C1R5 } \square \square-E 1
$$



TL-C1R5 $\square \square$-E2



## Installation

The minimum clearances indicated below must always be maintained in the case of non-shielded mounted types.


Installation accessories

Type	d1	d2	d3	L1	L2	w	h	d	Material
Y92E-B8-E1	8.0	6.0	3.2	7.5	3.3	20	12	16	Brass
Y92E-B8-E2	8.0	6.0	3.2	7.5	3.3	20	14	16	Plastic



[^37]To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527

Oil resistant Cylindrical Proximity Sensor (Automotive)
E2E

## Designed and tested for Automotive assembly lines

- tested oil resistance on commonly used lubricants in Automotive industry



## Ordering Information

E2E
DC 2-wire/Pre-wired Models

Self-diagnostic output function	Size		Sensing distance	Model		
			NO	NC		
Yes	Shielded	M12		3 mm	E2E-X3D1S (See note 1.)	---
		M18	7 mm	E2E-X7D1S (See note 1.)	---	
		M30	10 mm	E2E-X10D1S (See note 1.)	---	
	Unshielded	M12	8 mm	E2E-X8MD1S (See note 1.)	---	
		M18	14 mm	E2E-X14MD1S (See note 1.)	---	
		M30	20 mm	E2E-X20MD1S (See note 1.)	---	
No	Shielded	M8	2 mm	E2E-X2D1-N (See notes 2 and 3.)	E2E-X2D2-N (See note 3.)	
		M12	3 mm	E2E-X3D1-N (See notes 1, 2 and 3.)	E2E-X3D2-N (See note 3.)	
		M18	7 mm	E2E-X7D1-N (See notes 1, 2 and 3.)	E2E-X7D2-N (See note 3.)	
		M30	10 mm	E2E-X10D1-N (See notes 1, 2 and 3.)	E2E-X10D2-N	
	Unshielded	M8	4 mm	E2E-X4MD1 (See notes 2 and 3.)	E2E-X4MD2	
		M12	8 mm	E2E-X8MD1 (See notes 1, 2 and 3.)	E2E-X8MD2	
		M18	14 mm	E2E-X14MD1 (See notes 1, 2 and 3.)	E2E-X14MD2	
		M30	20 mm	E2E-X20MD1 (See notes 1, 2 and 3.	E2E-X20MD2	

*1. In addition to the above models, E2E-X $\square \square 15$ models (e.g., E2E-X3D15-N), which are different in frequency from the above models, are available.
*2. E2E models with a robotics cable are available as well. The model number of a model with a robotics cable has the suffix "-R" (e.g., E2E-X3D1-R).
*3. Cables with a length of 5 m are also available. Specify the cable length at the end of the model number (e.g., E2E-X3D1-N 5M).

Connector	Self-diagnostic output function	Size		Sensing distance	Model		
				NO	NC		
M12	Yes	Shielded	M12		3 mm	E2E-X3D1S-M1	---
			M18	7 mm	E2E-X7D1S-M1	---	
			M30	10 mm	E2E-X10D1S-M1	---	
		Unshielded	M12	8 mm	E2E-X8MD1S-M1	---	
			M18	14 mm	E2E-X14MD1S-M1	---	
			M30	20 mm	E2E-X20MD1S-M1	---	
	No	Shielded	M8	2 mm	E2E-X2D1-M1G	E2E-X2D2-M1G	
			M12	3 mm	E2E-X3D1-M1G (See note.)	E2E-X3D2-M1G	
			M18	7 mm	E2E-X7D1-M1G (See note.)	E2E-X7D2-M1G	
			M30	10 mm	E2E-X10D1-M1G (See note.)	E2E-X10D2-M1G	
		Unshielded	M8	4 mm	E2E-X4MD1-M1G	E2E-X4MD2-M1G	
			M12	8 mm	E2E-X8MD1-M1G (See note.)	E2E-X8MD2-M1G	
			M18	14 mm	E2E-X14MD1-M1G (See note.)	E2E-X14MD2-M1G	
			M30	20 mm	E2E-X20MD1-M1G (See note.)	E2E-X20MD2-M1G	
M8		Shielded	M8	2 mm	E2E-X2D1-M3G	E2E-X2D2-M3G	
		Unshielded		4 mm	E2E-X4MD1-M3G	E2E-X4MD2-M3G	

Note: In addition to the above models, E2E-X $\square$ D15-M1G models (e.g., E2E-X3D15-M1G), which are different in frequency from the above models, are available.

DC 2-wire/Pre-wired Connector Models

Size		Sensing distance	Operation mode	Polarity	Model
Shielded	M12	3 mm	NO	Yes	E2E-X3D1-M1GJ
				No	E2E-X3D1-M1J-T
	M18	7 mm		Yes	E2E-X7D1-M1GJ
				No	E2E-X7D1-M1J-T
	M30	10 mm		Yes	E2E-X10D1-M1GJ
				No	E2E-X10D1-M1J-T
Unshielded	M12	8 mm		Yes	E2E-X8MD1-M1GJ
	M18	14 mm			E2E-X14MD1-M1GJ
	M30	20 mm			E2E-X20MD1-M1GJ

*1. A model with no polarity has a residual voltage of 5 V , which must be taken into consideration together with the interface condition (the PLC's ON voltage, for example) when connecting the Proximity Sensor to a load
*2. The standard cable length is 300 mm . Models are also available with 500 mm and 1 m cables.

Connector Pin Assignments of DC 2-wire Model
The connector pin assignments of each new E2E DC 2-wire conforms to IEC947-5-2 Table III.
The following E2E models with conventional connector pin assignments are available as well.

Size		Operation mode	Model	Size		Operation mode	Model
Shielded	M8	NO	E2E-X2D1-M1	Unshielded	M8	NO	E2E-X4MD1-M1
		NC	E2E-X2D2-M1			NC	E2E-X4MD2-M1
	M12	NO	E2E-X3D1-M1		M12	NO	E2E-X8MD1-M1
		NC	E2E-X3D2-M1			NC	E2E-X8MD2-M1
	M18	NO	E2E-X7D1-M1		M18	NO	E2E-X14MD1-M1
		NC	E2E-X7D2-M1			NC	E2E-X14MD2-M1
	M30	NO	E2E-X10D1-M1		M30	NO	E2E-X20MD1-M1
		NC	E2E-X10D2-M1			NC	E2E-X20MD2-M1

DC 3-wire/Pre-wired Models

Size		Sensing distance	Output configuration	Model
Shielded	M8	1.5 mm	NPN NO	$\begin{array}{\|l\|} \hline \text { E2E-X1R5E1 } \\ \text { (See notes } 1 \text { and 2.) } \end{array}$
			NPN NC	E2E-X1R5E2
			PNP NO	E2E-X1R5F1
			PNP NC	E2E-X1R5F2
	M12	2 mm	NPN NO	E2E-X2E1   (See notes 1, 2, 3, and 4.)
			NPN NC	$\begin{array}{\|l\|} \hline \text { E2E-X2E2 } \\ \text { (See notes } 3 \text { and 4.) } \end{array}$
			PNP NO	E2E-X2F1
			PNP NC	E2E-X2F2
	M18	5 mm	NPN NO	E2E-X5E1   (See notes 1, 2, 3, and 4.)
			NPN NC	$\begin{array}{\|l\|} \hline \text { E2E-X5E2 } \\ \text { (See notes } 3 \text { and 4.) } \end{array}$
			PNP NO	E2E-X5F1
			PNP NC	E2E-X5F2
	M30	10 mm	NPN NO	E2E-X10E1   (See notes 1, 2, 3, and 4.)
			NPN NC	$\begin{array}{\|l\|} \hline \text { E2E-X10E2 } \\ \text { (See notes } 3 \text { and 4.) } \end{array}$
			PNP NO	E2E-X10F1
			PNP NC	E2E-X10F2
Unshielded	M8	2 mm	NPN NO	$\begin{aligned} & \text { E2E-X2ME1 } \\ & \text { (See note 2.) } \end{aligned}$
			NPN NC	E2E-X2ME2
			PNP NO	E2E-X2MF1
			PNP NC	E2E-X2MF2
	M12	5 mm	NPN NO	$\begin{aligned} & \text { E2E-X5ME1 } \\ & \text { (See notes 1, 2, 3, } \\ & \text { and 4.) } \end{aligned}$
			NPN NC	E2E-X5ME2 (See notes 3 and 4.)
			PNP NO	E2E-X5MF1
			PNP NC	E2E-X5MF2
	M18	10 mm	NPN NO	$\begin{aligned} & \text { E2E-X10ME1 } \\ & \text { (See notes 1, 2, 3, } \\ & \text { and 4.) } \end{aligned}$
			NPN NC	$\begin{array}{\|l\|} \hline \text { E2E-X10ME2 } \\ \text { (see notes } 3 \text { and 4.) } \end{array}$
			PNP NO	E2E-X10MF1
			PNP NC	E2E-X10MF2
	M30	18 mm	NPN NO	E2E-X18ME1   (See notes 1, 2, 3, and 4.)
			NPN NC	$\begin{array}{\|l} \hline \text { E2E-X18ME2 } \\ \text { (See notes } 3 \text { and 4.) } \end{array}$
			PNP NO	E2E-X18MF1
			PNP NC	E2E-X18MF2

Note: 1. Cables with a length of 5 m are also available. Specify the cable length at the end of the model number (e.g., E2E-X2E1 5M).
2. Models with a robotics cable are also available. These models are E2E-X $\square E 1-R$ (e.g., E2E-X5E1-R).
3. Models with a different frequency are also available. These models are E2E-X $\square E \square 5$ (e.g., E2E-X5E15).
4. These models have e-CON connectors ( 0.3 m cable length), which is indicated by the suffix "-ECON" (e.g., E2E-X2E1-ECON).

AC 2-wire/Pre-wired Models

Size		Sensing distance	Operation mode	Model
Shielded	M8	1.5 mm	NO	E2E-X1R5Y1
			NC	E2E-X1R5Y2
	M12	2 mm	NO	E2E-X2Y1   (See notes 1 and 2.)
			NC	E2E-X2Y2
	M18	5 mm	NO	E2E-X5Y1   (See notes 1 and 2.)
			NC	E2E-X5Y2
	M30	10 mm	NO	E2E-X10Y1   (See notes 1 and 2.)
			NC	E2E-X10Y2
Unshielded	M8	2 mm	NO	E2E-X2MY1
			NC	E2E-X2MY2
	M12	5 mm	NO	E2E-X5MY1 (See notes 1 and 2.)
			NC	E2E-X5MY2
	M18	10 mm	NO	$\begin{array}{\|l} \hline \text { E2E-X10MY1 } \\ \text { (See note 1.) } \end{array}$
			NC	E2E-X10MY2
	M30	18 mm	NO	$\begin{aligned} & \text { E2E-X18MY1 } \\ & \text { (See note 1.) } \end{aligned}$
			NC	E2E-X18MY2

Note: 1. Models with a different frequency are also available. These models are E2E-X $\square Y \square 5$ (e.g., E2E-X5Y15).
2. Cables with a length of 5 m are also available. Specify the cable length at the end of the model number (e.g., E2E-X2Y1 5M).

## DC 3-wire/Connector Models

Connector	Size		Sensing distance	Output configuration	Model
M12	Shielded	M8	1.5 mm	NPN NO	E2E-X1R5E1-M1
				NPN NC	E2E-X1R5E2-M1
				PNP NO	E2E-X1R5F1-M1
				PNP NC	E2E-X1R5F2-M1
		M12	2 mm	NPN NO	E2E-X2E1-M1
				NPN NC	E2E-X2E2-M1
				PNP NO	E2E-X2F1-M1
				PNP NC	E2E-X2F2-M1
		M18	5 mm	NPN NO	E2E-X5E1-M1
				NPN NC	E2E-X5E2-M1
				PNP NO	E2E-X5F1-M1
				PNP NC	E2E-X5F2-M1
		M30	10 mm	NPN NO	E2E-X10E1-M1
				NPN NC	E2E-X10E2-M1
				PNP NO	E2E-X10F1-M1
				PNP NC	E2E-X10F2-M1
	Unshielded	M8	2 mm	NPN NO	E2E-X2ME1-M1
				NPN NC	E2E-X2ME2-M1
				PNP NO	E2E-X2MF1-M1
				PNP NC	E2E-X2MF2-M1
		M12	5 mm	NPN NO	E2E-X5ME1-M1
				NPN NC	E2E-X5ME2-M1
				PNP NO	E2E-X5MF1-M1
				PNP NC	E2E-X5MF2-M1
		M18	10 mm	NPN NO	$\begin{aligned} & \hline \text { E2E-X10ME1- } \\ & \text { M1 } \end{aligned}$
				NPN NC	$\begin{aligned} & \text { E2E-X10ME2- } \\ & \text { M1 } \end{aligned}$
				PNP NO	E2E-X10MF1-M1
				PNP NC	E2E-X10MF2-M1
		M30	18 mm	NPN NO	$\begin{array}{\|l} \hline \text { E2E-X18ME1- } \\ \text { M1 } \\ \hline \end{array}$
				NPN NC	$\begin{array}{\|l} \hline \text { E2E-X18ME2- } \\ \text { M1 } \end{array}$
				PNP NO	E2E-X18MF1-M1
				PNP NC	E2E-X18MF2-M1
M8	Shielded	M8	1.5 mm	NPN NO	E2E-X1R5E1-M3
				NPN NC	E2E-X1R5E2-M3
				PNP NO	E2E-X1R5F1-M3
				PNP NC	E2E-X1R5F2-M3
	Unshielded	M8	2 mm	NPN NO	E2E-X2ME1-M3
				NPN NC	E2E-X2ME2-M3
				PNP NO	E2E-X2MF1-M3
				PNP NC	E2E-X2MF2-M3

AC 2-wire/Connector Models

Size		Sensing distance	Operation mode	Model
Shielded   $\square$	M12	2 mm	NO	E2E-X2Y1-M1
			NC	E2E-X2Y2-M1
	M18	5 mm	NO	E2E-X5Y1-M1
			NC	E2E-X5Y2-M1
	M30	10 mm	NO	E2E-X10Y1-M1
			NC	E2E-X10Y2-M1
Unshielded	M12	5 mm	NO	E2E-X5MY1-M1
			NC	E2E-X5MY2-M1
	M18	10 mm	NO	E2E-X10MY1-M1
			NC	E2E-X10MY2-M1
	M30	18 mm	NO	E2E-X18MY1-M1
			NC	E2E-X18MY2-M1

AC/DC 2-wire/Pre-wired Models

Size		Sensing distance	Operation mode	Model
Shielded	M12	3 mm	NO	E2E-X3T1
	M18	7 mm		$\begin{aligned} & \hline \text { E2E-X7T1 } \\ & \text { (See note 2.) } \end{aligned}$
	M30	10 mm		E2E-X10T1

*1. These models do not conform to CE standards.
*2. Cables with a length of 5 m are also available as standard models. Specify the cable length at the end of the model number (e.g., E2E-X7T1 5M).

## Specifications

## Ratings/Characteristics

## E2E

E2E-X $\square \mathrm{D} \square$ DC 2-wire Models

$\begin{gathered} \hline \text { Size } \\ \hline \text { Type } \\ \hline \end{gathered}$		M8		M12		M18		M30	
		Shielded	Unshielded	Shielded	Unshielded	Shielded	Unshielded	Shielded	Unshielded
Item		E2E-X2D $\square$	E2E-X4MD $\square$	E2E-X3D $\square$	E2E-X8MD $\square$	E2E-X7D $\square$	$\begin{gathered} \text { E2E- } \\ \mathrm{X} 14 \mathrm{MDD} \end{gathered}$	E2E-X10D $\square$	$\begin{array}{r} \text { E2E- } \\ \times 20 \mathrm{MD} \end{array}$
Sensing distance		$2 \mathrm{~mm} \pm 10 \%$	$4 \mathrm{~mm} \pm 10 \%$	$3 \mathrm{~mm} \pm 10 \%$	$8 \mathrm{~mm} \pm 10 \%$	$7 \mathrm{~mm} \pm 10 \%$	$14 \mathrm{~mm} \pm 10 \%$	$10 \mathrm{~mm} \pm 10 \%$	$20 \mathrm{~mm} \pm 10 \%$
Set distance (See note 1.)		0 to 1.6 mm	0 to 3.2 mm	0 to 2.4 mm	0 to 6.4 mm	0 to 5.6 mm	0 to 11.2 mm	0 to 8.0 mm	0 to 16.0 mm
Differential travel		15\% max. of sensing distance		10\% max. of sensing distance					
Sensing object		Ferrous metal (The sensing distance decreases with non-ferrous metal, refer to Engineering Data.)							
Standard sensing object		$\begin{aligned} & \text { Iron, } 8 \times 8 x \\ & 1 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \text { Iron, } 20 \times 20 \times \\ & 1 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \text { Iron, } 12 \times 12 \times \\ & 1 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \text { Iron, } 30 \times 30 \times \\ & 1 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \text { Iron, } 18 \times 18 \mathrm{x} \\ & 1 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \text { Iron, } 30 \times 30 \mathrm{x} \\ & 1 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \text { Iron, } 30 \times 30 \times \\ & 1 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \text { Iron, } 54 \times 54 \mathrm{x} \\ & 1 \mathrm{~mm} \end{aligned}$
Response speed (See note 2.)		1.5 kHz	1.0 kHz	1.0 kHz	0.8 kHz	0.5 kHz	0.4 kHz	0.4 kHz	0.1 kHz
Power supply voltage (operating voltage range)		12 to 24 VDC (10 to 30 VDC), ripple (p-p): 10\% max.							
Leakage current		0.8 mA max.							
Control output	Load current	3 to 100 mA Diagnostic output: 50 mA for -D1(5)S models							
	Residual voltage (See note 3.)	3 V max. (Load current: 100 mA , Cable length: 2 m . M1J-T models only: 5 V max.)							
Indicator		D1 Models: Operation indicator (red LED), setting indicator (green LED) D2 Models: Operation indicator (red LED)							
Operation mode (with sensing object approaching)		D1 Models: $\quad \mathrm{NO}$D2 Models: NCFor details, refer to Timing Charts.							
Diagnostic output delay		0.3 to 1 s							
Protection circuits		Surge suppressor, output load short-circuit protection (for control and diagnostic output)							
Ambient temperature		Operating: $-25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$, Storage: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (with no icing or condensation)							
Ambient humidity		Operating/Storage: $35 \%$ to $95 \%$ (with no condensation)							
Temperature influence		$\pm 15 \%$ max. of sensing distance at $23^{\circ} \mathrm{C}$ in the temperature range of $-25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$		$\pm 10 \%$ max. of sensing distance at $23^{\circ} \mathrm{C}$ in the temperature range of $-25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$					
Voltage influence		$\pm 1 \%$ max. of sensing distance in the rated voltage range $\pm 15 \%$							
Insulation resistance		$50 \mathrm{M} \Omega$ min. (at 500 VDC ) between current-carrying parts and case							
Dielectric strength		1,000 VAC at $50 / 60 \mathrm{~Hz}$ for 1 min between current-carrying parts and case							
Vibration resistance		10 to $55 \mathrm{~Hz}, 1.5-\mathrm{mm}$ double amplitude for 2 hours each in $\mathrm{X}, \mathrm{Y}$, and Z directions							
Shock resistance		$500 \mathrm{~m} / \mathrm{s}^{2} 10$ times each in X , $Y$, and $Z$ directions		$1,000 \mathrm{~m} / \mathrm{s}^{2} 10$ times each in $\mathrm{X}, \mathrm{Y}$, and $Z$ directions					
Degree of protection		IEC 60529 IP67 (Pre-wired models, pre-wired connector models: JEM standard IP67g (waterproof and oil-proof))							
Connection method		Pre-wired models (standard length: 2 m ), connector models, pre-wired connector models (standard length: 0.3 m )							
Weight (packed state)	Pre-wired models	Approx. 60 g		Approx. 70 g		Approx. 130 g		Approx. 175 g	
	Pre-wired connector models	---		Approx. 40 g		Approx. 70 g		Approx. 110 g	
	Connector models	Approx. 15 g		Approx. 25 g		Approx. 40 g		Approx. 90 g	
Material	Case	Stainless steel (SUS303)		Brass-nickel plated					
	Sensing surface	PBT (polybutylene terephthalate)							
	Clamping nuts	Brass-nickel plated							
	Toothed washer	Iron-zinc plated							
Accessories		Instruction manual							

Note: 1. Use the E2E within the range in which the setting indicator (green LED) is ON (except D2 models).
2. The response speed is an average value. Measurement conditions are as follows: standard sensing object, a distance of twice the standard sensing object, and a set distance of half the sensing distance.
3. The residual voltage of each E2E model with the model number suffix "-M1J-T" is 5 V . When connecting an E2E model with the suffix "-M1J-T" to a device, make sure that the device can withstand the residual voltage.

E2E-X $\square \mathrm{E} \square / \mathrm{F} \square$ DC 3-wire Models

$\begin{aligned} & \hline \text { Size } \\ & \hline \text { Type } \\ & \hline \end{aligned}$		M8		M12		M18		M30	
		Shielded	Unshielded	Shielded	Unshielded	Shielded	Unshielded	Shielded	Unshielded
Item		$\begin{array}{\|c\|} \hline \text { E2E-X1R5E } \square \\ F \square \end{array}$	$\underset{\mathrm{F} \square}{\mathrm{E} 2 \mathrm{E}-\mathrm{X} 2 \mathrm{ME} \square /}$	$\begin{gathered} \mathrm{E} 2 \mathrm{E}-\mathrm{X2E} \square / \\ \mathrm{F} \square \end{gathered}$	$\begin{gathered} \text { E2E-X5ME } \square / \\ \text { F } \square \end{gathered}$	$\begin{gathered} \hline \mathrm{E} 2 \mathrm{E}-\mathrm{X} 5 \mathrm{E} \square / \\ \hline \square \end{gathered}$	$\begin{gathered} \text { E2E-X10ME } \square / \\ F \square \end{gathered}$	$\begin{gathered} \mathrm{E} 2 \mathrm{E}-\mathrm{X10E} \square / \\ \mathrm{F} \square \end{gathered}$	$\begin{gathered} \text { E2E-X18ME } \square / \\ \text { F } \square \end{gathered}$
Sensing distance		$1.5 \mathrm{~mm} \pm 10 \%$	$2 \mathrm{~mm} \pm 10 \%$	$2 \mathrm{~mm} \pm 10 \%$	$5 \mathrm{~mm} \pm 10 \%$	$5 \mathrm{~mm} \pm 10 \%$	$10 \mathrm{~mm} \pm 10 \%$	$10 \mathrm{~mm} \pm 10 \%$	$18 \mathrm{~mm} \pm 10 \%$
Set distance		0 to 1.2 mm	0 to 1.6 mm	0 to 1.6 mm	0 to 4.0 mm	0 to 4.0 mm	0 to 8.0 mm	0 to 8.0 mm	0 to 14.0 mm
Differential travel		$10 \%$ max. of sensing distance							
Sensing object		Ferrous metal (The sensing distance decreases with non-ferrous metal, refer to Engineering Data.)							
Standard sensing object		$\begin{aligned} & \text { lron, } 8 \times 8 x \\ & 1 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \text { Iron, } 12 \times 12 \times \\ & 1 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \text { Iron, } 12 \times 12 \mathrm{x} \\ & 1 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \text { Iron, } 15 \times 15 \mathrm{x} \\ & 1 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \text { Iron, } 18 \times 18 \mathrm{x} \\ & 1 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \text { Iron, } 30 \times 30 \mathrm{x} \\ & 1 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \text { lron, } 30 \times 30 \mathrm{x} \\ & 1 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \text { lron, } 54 \times 54 \times \\ & 1 \mathrm{~mm} \end{aligned}$
Response speed (See note 1.)		2.0 kHz	0.8 kHz	1.5 kHz	0.4 kHz	0.6 kHz	0.2 kHz	0.4 kHz	0.1 kHz
Power supply voltage (operating voltage range) (See note 2.)		12 to 24 VDC (10 to 40 VDC), ripple (p-p): 10\% max.							
Current consumption		13 mA max.							
Control output	Load current (See note 2.)	200 mA max.							
	Residual voltage	2 V max. (Load current : 200 mA , Cable length: 2 m )							
Indicator		Operation indicator (red LED)							
Operation mode (with sensing object approaching)		E1 F1 Models: NO   E2 F2 Models: NC   For details, refer to Timing Charts.							
Protection circuits		Power supply reverse polarity protection, surge suppressor, output load short-circuit protection							
Ambient temperature (See note 2)		Operating/Storage: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (with no icing or condensation)							
Ambient humidity		Operating/Storage: 35\% to 95\% (with no icing)							
Temperature influence		$\pm 15 \%$ max. of sensing distance at $23^{\circ} \mathrm{C}$ in the temperature range of $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ $\pm 10 \%$ max. of sensing distance at $23^{\circ} \mathrm{C}$ in the temperature range of $-25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$							
Voltage influence		$\pm 1 \%$ max. of sensing distance in the rated voltage range $\pm 15 \%$							
Insulation resistance		$50 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC ) between current-carrying parts and case							
Dielectric strength		$1,000 \mathrm{VAC}$ at $50 / 60 \mathrm{~Hz}$ for 1 min between current-carrying parts and case							
Vibration resistance		10 to $55 \mathrm{~Hz}, 1.5-\mathrm{mm}$ double amplitude for 2 hours each in $\mathrm{X}, \mathrm{Y}$, and Z directions							
Shock resistance		$500 \mathrm{~m} / \mathrm{s}^{2} 10$ times each in $\mathrm{X}, \mathrm{Y}$, and $Z$ directions		1,000 m/s ${ }^{2} 10$ times each in $X, Y$, and $Z$ directions					
Degree of protection		IEC 60529 IP67 (Pre-wired models: JEM standard IP67g (waterproof and oil-proof))							
Connection method		Pre-wired models (standard length 2 m ), connector models							
Weight (packed state)	Pre-wired models	Approx. 65 g		Approx. 75 g		Approx. 150 g		Approx. 195 g	
	Connector models	Approx. 15 g		Approx. 25 g		Approx. 40 g		Approx. 90 g	
Material	Case	Stainless steel (SUS303)		Brass-nickel plated					
	Sensing surface	PBT (polybutylene terephthalate)							
	Clamping nuts	Brass-nickel plated							
	Toothed washer	Iron-zinc plated							
Accessories		Instruction manual							

[^38]E2E-X $\square \mathrm{Y} \square$ AC 2-wire Models

$\begin{array}{r} \hline \text { Size } \\ \hline \text { Type } \end{array}$		M8		M12		M18		M30	
		Shielded	Unshielded	Shielded	Unshielded	Shielded	Unshielded	Shielded	Unshielded
Item		E2E-X1R5Y $\square$	E2E-X2MY $\square$	E2E-X2Y $\square$	E2E-X5MY $\square$	E2E-X5Y $\square$	E2E-X10MY $\square$	E2E-X10Y $\square$	E2E-X18MY $\square$
Sensing distance		$1.5 \mathrm{~mm} \pm 10 \%$	$2 \mathrm{~mm} \pm 10 \%$	$2 \mathrm{~mm} \pm 10 \%$	$5 \mathrm{~mm} \pm 10 \%$	$5 \mathrm{~mm} \pm 10 \%$	$10 \mathrm{~mm} \pm 10 \%$	$10 \mathrm{~mm} \pm 10 \%$	$18 \mathrm{~mm} \pm 10 \%$
Set distance		0 to 1.2 mm	0 to 1.6 mm	0 to 1.6 mm	0 to 4.0 mm	0 to 4.0 mm	0 to 8.0 mm	0 to 8.0 mm	0 to 14.0 mm
Differential travel		10\% max. of sensing distance							
Sensing object		Ferrous metal (The sensing distance decreases with non-ferrous metal, refer to Engineering Data.)							
Standard sensing object		Iron, $8 \times 8 \times$ 1 mm	$\begin{aligned} & \text { Iron, } 12 \times 12 \mathrm{x} \\ & 1 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \text { Iron, } 12 \times 12 \mathrm{x} \\ & 1 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \text { Iron, } 15 \times 15 \mathrm{x} \\ & 1 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \text { lron, } 18 \times 18 \mathrm{x} \\ & 1 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \text { lron, } 30 \times 30 \mathrm{x} \\ & 1 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \text { Iron, } 30 \times 30 \mathrm{x} \\ & 1 \mathrm{~mm} \end{aligned}$	$\begin{array}{\|l} \text { lron, } 54 \times 54 \mathrm{x} \\ 1 \mathrm{~mm} \end{array}$
Response speed		25 Hz							
Power supply voltage (operating voltage range) (See note 1.)		24 to 240 VAC, 50/60 Hz (20 to 264 VAC)							
Leakage current		1.7 mA max.							
Control output	Load current (See note 2.)	5 to 100 mA		5 to 200 mA		5 to 300 mA			
	Residual voltage	Refer to Engineering Data.							
Indicator		Operation indicator (red LED)							
Operation mode (with sensing object approaching)		$\begin{aligned} & \text { Y1 Models: NO } \\ & \text { Y2 Models: NC } \\ & \text { For details, refer to Timing Charts. } \end{aligned}$							
Protection circuit		Surge suppressor							
Ambient temperature (See notes 1 and 2.)		Operating/Storage: $-25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (with no icing or condensation)		Operating/Storage: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (with no icing or condensation)					
Ambient humidity		Operating/Storage: 35\% to 95\% (with no condensation)							
Temperature influence		$\pm 10 \%$ max. of sensing distance at $23^{\circ} \mathrm{C}$ in the temperature range of $-25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$		$\pm 15 \%$ max. of sensing distance at $23^{\circ} \mathrm{C}$ in the temperature range of $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ $\pm 10 \%$ max. of sensing distance at $23^{\circ} \mathrm{C}$ in the temperature range of $-25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$					
Voltage influence		$\pm 1 \%$ max. of sensing distance in the rated voltage range $\pm 15 \%$							
Insulation resistance		$50 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC ) between current-carrying parts and case							
Dielectric strength		4,000 VAC at $50 / 60 \mathrm{~Hz}$ for 1 min between current-carrying parts and case (2,000 VAC for M8 Models)							
Vibration resistance		10 to 55 Hz , 1.5-mm double amplitude for 2 hours each in $X, Y$, and $Z$ directions							
Shock resistance		$500 \mathrm{~m} / \mathrm{s}^{2} 10$ times each in X , Y , and Z directions		$1,000 \mathrm{~m} / \mathrm{s}^{2} 10$ times each in $X, Y$, and $Z$ directions					
Degree of protection		IEC 60529 IP67 (Pre-wired models: JEM standard IP67g (waterproof, oil-proof))							
Connection method		Pre-wired models (standard length 2 m ), connector models							
Weight (packed state)	Pre-wired models	Approx. 60 g		Approx. 70 g		Approx. 130 g		Approx. 175 g	
	Connector models	Approx. 15 g		Approx. 25 g		Approx. 40 g		Approx. 90 g	
Material	Case	Stainless steel (SUS303)		Brass-nickel plated					
	Sensing surface	PBT (polybutylene terephthalate)							
	Clamping nuts	Brass-nickel plated							
	Toothed washer	Iron-zinc plated							
Accessories		Instruction manual							

Note: 1. When supplying 24 VAC to any of the above models, make sure that the operating ambient temperature range is over $-25^{\circ} \mathrm{C}$.
2. When using an M18-or M30-sized E2E within an ambient temperature of $70^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, make sure that the E2E has a control output of 5 to 200 mA max.

## AC/DC 2-wire Models

Size		M12	M18	M30
Type		Shielded		
Item		E2E-X3T1	E2E-X7T1	E2E-X10T1
Sensing distance		$3 \mathrm{~mm} \pm 10 \%$	$7 \mathrm{~mm} \pm 10 \%$	$10 \mathrm{~mm} \pm 10 \%$
Set distance		0 to 2.4 mm	0 to 5.6 mm	0 to 8.0 mm
Differential travel		10\% max. of sensing distance		
Sensing object		Ferrous metal (The sensing distance decreases with non-ferrous metal, refer to Engineering Data.)		
Standard sensing object		Iron, $12 \times 12 \times 1 \mathrm{~mm}$	Iron, $18 \times 18 \times 1 \mathrm{~mm}$	Iron, $30 \times 30 \times 1 \mathrm{~mm}$
Response speed (See note 1.)	DC	1.0 kHz	0.5 kHz	0.4 kHz
	AC	25 Hz		
Power supply voltage (operating voltage range) (See note 2.)		24 to 240 VDC (20 to 264 VDC)/48 to 240 VAC (40 to 264 VAC)		
Leakage current		1 mA DC max., 2 mA AC max.		
Control output	Load current	5 to 100 mA		
	Residual voltage	6.0 VDC max. (Load current: 100 mA , Cable length: 2 m ) 10 VAC max. (Load current: 5 mA , Cable length: 2 m )		
Indicator		Operation indicator (red LED), setting indicator (green LED)		
Operation mode (with sensing object approaching)		NO   For details, refer to Timing Charts.		
Protection circuits		Output load short-circuit protection (at 20 to 40 VDC), Surge suppressor		
Ambient temperature		Operating: $-25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$, Storage: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (with no icing or condensation)		
Ambient humidity		Operating/Storage: 35\% to 95\% (with no condensation)		
Temperature influence		$\pm 10 \%$ max. of sensing distance at $23^{\circ} \mathrm{C}$ in the temperature range of $-25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$		
Voltage influence		$\pm 1 \%$ max. of sensing distance in the rated voltage range $\pm 15 \%$		
Insulation resistance		$50 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC$)$ between current-carrying parts and case		
Dielectric strength		4,000 VAC at $50 / 60 \mathrm{~Hz}$ for 1 min between current-carrying parts and case		
Vibration resistance		10 to $55 \mathrm{~Hz}, 1.5-\mathrm{mm}$ double amplitude for 2 hours each in $\mathrm{X}, \mathrm{Y}$, and Z directions		
Shock resistance		$1,000 \mathrm{~m} / \mathrm{s}^{2} 10$ times each in $\mathrm{X}, \mathrm{Y}$, and $Z$ directions		
Degree of protection		IEC 60529 IP67 (JEM standard IP67g (waterproof, oil-proof))		
Connection method		Pre-wired Models (standard length 2 m )		
Weight (packed state)		Approx. 80 g	Approx. 140 g	Approx. 190 g
Material	Case	Brass-nickel plated		
	Sensing surface	PBT (polybutylene terephthalate)		
	Clamping nuts	Brass-nickel plated		
	Toothed washer	Iron-zinc plated		
Accessories		Instruction manual		

Note: 1. The response speed is an average value. Measurement conditions are as follows: standard sensing object, a distance of twice the standard sensing object, and a set distance of half the sensing distance.
2. Power supply voltage waveform: Use a sine wave for the power supply. Using a rectangular AC power supply may result in faulty reset.

## Engineering Data

E2E
Operating Range (Typical)

## Shielded Models

## E2E-X $\square \mathbf{D}$ E2E-X $\square 1$



## Unshielded Models

E2E-X $\square$ MD $\square$


## Leakage Current (Typical)

E2E-X $\square \square \square$


E2E-X $\square \mathrm{E} \square / \mathrm{F} \square$
E2E-X $\square \square$


E2E-X $\square$ ME $\square / F \square$
E2E-X $\square M Y \square$


E2E-C $\square \square \square / B \square$
E2E-X $\square \mathbf{C} \square / B \square$


Residual Output Voltage (Typical)

## E2E-X $\square \mathrm{D} \square$



E2E-X $\square \mathbf{Y} \square$


E2E-X $\square T 1$


200 VAC


E2E-X2D $\square$


E2E-X10D $\square$
E2E-X10T1


Side length of sensing object d (mm)

## E2E-X14MD $\square$



Side length of sensing object d (mm)

E2E-X3D $\square$ E2E-X3T1


E2E-X4MD $\square$


E2E-X20MD $\square$


Side length of sensing object d (mm)

## E2E-X7D $\square$ <br> E2E-X7T1



E2E-X8MD $\square$


E2E-X1R5E $\square / \mathrm{F} \square$
E2E-X1R5Y $\square$


## E2E-X2E $\square / \mathrm{F} \square$

E2E-X2Y $\square$


Side length of sensing object d (mm)

E2E-X2ME $\square / F \square$ E2E-X2MY $\square$


E2E-X18ME $\square / \square$
E2E-X18MY $\square$


E2E-X5E $\square / F \square$ E2E-X5Y $\square$


E2E-X5ME $\square / \mathrm{F} \square$
E2E-X5MY $\square$


E2E-X1 $\square$


## Output Circuits and Timing Charts

## Output Circuits

## E2E

E2E-X $\square D \square$ DC 2-wire Models


Note: 1. The load can be connected to either the +V or 0 V side
2. The pin numbers in the above diagram are for the $-\mathrm{M} \square \mathrm{G}(\mathrm{J})$. For the -M1, pin 4 is +V and pin 3 is 0 V .

E2E-X $\square$ D1-M1J-T No Polarity


Note: 1. The load can be connected to either the +V or 0 V side.
2. The E2E-X $\square$ D1-M1J-T has no polarity. Therefore, terminals 3 and 4 have no polarity.

E2E-X $\square$ D1S


Note: Connect both the loads to the +V side of the control output and diagnostic output.

E2E-X $\square$ D2
Without Diagnostic Output


Note: 1. The load can be connected to either the +V or 0 V side.
2. The pin numbers in the above diagram are for the -M $\square \mathrm{G}$. For -M 1 models, pin 2 is +V and pin 3 is 0 V .

## DC 3-wire Models

E2E-X $\square \mathrm{E} \square$
NPN Output


* Constant current output is 1.5 to 3 mA .
** Pin 4 is an NO contact, and pin 2 is an NC contact.

E2E-X $\square \mathrm{F} \square$
PNP Output


* Constant current output is 1.5 to 3 mA .
** When connecting to a Tr circuit.
*** Pin 4 is an NO contact, and pin 2 is an NC contact.


## E2E-C/X $\square C \square$ <br> NPN Open-collector Output



E2E-C/X $\square$ B $\square$ PNP Open-collector Output


## E2E-X $\square \mathrm{Y} \square$ AC 2-wire Models



Note: For connector models, the connection between pins 3 and 4 uses an NO contact, and the connection between pins 1 and 2 uses an NC contact.

## E2E-X $\square$ T1 AC/DC 2-wire Models



Note: The load can be connected to either the +V or 0 V side.
There is no need to be concerned about the polarity (Brown/Blue) of the Proximity Sensor

## Timing Charts

E2E
E2E-X $\square D \square$ DC 2-wire Models
E2E-X $\square$ T1 AC/DC 2-wire Models


E2E-X $\square$ D1S


Note: The diagnostic output of the E2E-X $\square$ D1S is ON when there is a coil burnout or the sensing object is located in the unstable sensing range for 0.3 s or more.

DC 3-wire Models
E2E-X $\square E \square$
NPN Output


E2E-X $\square \mathrm{F} \square$
PNP Output


E2E-C/X $\square C \square / B \square$
NPN/PNP Open-collector Output


E2E-X $\square \mathrm{Y} \square$ AC 2-wire Models


Connection
E2E
E2E-X $\square \mathbf{D} \square$
DC 2-wire Models
(Without Diagnostic Output)
E2E-X $\square \mathrm{Y} \square$
AC 2-wire Models
E2E-X $\square$ T1
AC/DC 2-wire Models


Note: The load can be connected as shown above.

Connected to PC


Connected to Relay Load

E2E-X $\square \square$
DC 2-wire Models

E2E-X $\square$ D1S
DC 3-wire Models
(With Diagnostic Output)


Note: The control output and diagnostic output share the negative common terminal Therefore, the loads must be connected to the positive sides of the control output and diagnostic output.

E2E-X $\square$ D1-M1J-T
DC 2-wire Models
(No Polarity)
E2E-X $\square \mathrm{Y} \square$
AC 2-wire Models
E2E-X $\square$ T1
AC/DC 2-wire Models


Note: There is no need to be concerned about the polarity (Brown/Blue) of the
Proximity Sensor.


E2E-X $\square \mathrm{E} \square$
DC 3-wire Models

E2E-X $\square$ F $\square$
DC 3-wire Models


## Pin Arrangement

E2E-X $\square \mathrm{D} \square$-M $\square$ DC 2-wire Models

Connector	Selfdiagnostic output	Operation mode	Applicable models	Pin arrangement
M12	No	NO	$\begin{aligned} & \text { E2E-X } \square \mathrm{D} 1-\mathrm{M} 1 \mathrm{G} \square \\ & \text { (See note.) } \end{aligned}$	Note: Terminals 2 and 3 are not used.
			E2E-X $\square$ D1-M1J-T	Note: 1. Terminals 1 and 2 are not used.   2. Terminals 3 and 4 has no polarity.
			E2E-X $\square$ D1-M1	Note: Terminals 1 and 2 are not used.
		NC	$\begin{aligned} & \text { E2E-X } \square \text { D2-M1G } \\ & \text { (See note.) } \end{aligned}$	Note: Terminals 3 and 4 are not used.
			E2E-X $\square$ D2-M1	Note: Terminal 1 is not used.
	Yes	NO	E2E-X $\square$ D1S-M1	Note: Terminals 1 is not used.
M8	No	NO	E2E-X $\square$ D1-M3G	Note: Terminals 2 and 3 are not used.
		NC	E2E-X $\square$ D2-M3G	Note: Terminals 3 and 4 are not used.

Note: The above pin arrangements conform to IEC standards.

E2E-X $\square E / F \square-M \square$ DC 3-wire Models


E2E-CR8C $\square / C R 8 B \square / X 1 C \square / X 1 B \square-M 5$ DC 3-wire Models

Connector	Operation mode	Applicable models	Pin arrangement
M8-3pin	NO/NC	E2E-X1C $\square$-M5	
	NO/NC	E2E-X1B $\square$-M5	

E2E-X $\square \mathrm{Y} \square$-M1 AC 2-wire Models

| Operation mode | Applicable models | Pin arrangement |
| :--- | :--- | :--- | :--- |
| NO | E2E-X $\square \mathrm{Y} 1-\mathrm{M} 1$ |  |
| NC | E2E-X $\square \mathrm{Y} 2-\mathrm{M} 1$ |  |

## Precautions

## Mounting

Do not tighten the nut with excessive force. A washer must be used with the nut.


Note: The table below shows the tightening torques for part $A$ and part $B$ nuts. In the previous examples, the nut is on the sensor head side (part $B$ ) and hence the tightening torque for part $B$ applies. If this nut is in part $A$, the tightening torque for part A applies instead.

Model	Part A		Part B		
			Length	Torque	Torque
M8	Shielded	9 mm	$\mathrm{~N} \cdot \mathrm{~m}$	$12 \mathrm{~N} \cdot \mathrm{~m}$	
	Unshielded	3 mm			
	$30 \mathrm{~N} \cdot \mathrm{~m}$				
M18	$70 \mathrm{~N} \cdot \mathrm{~m}$				
M30	$180 \mathrm{~N} \cdot \mathrm{~m}$				

## Influence of Surrounding Metal

When mounting the E2E within a metal panel, ensure that the clearances given in the following table are maintained. Failure to maintain these distances may cause deterioration in the performance of the sensor.


Model		Item	M8	M12	M18	M30
E2E-X $\square D \square$DC 2-wireE2E-X $\square$ T1AC/DC 2-wire	Shielded	I	0 mm	0 mm	0 mm	0 mm
		d	8 mm	12 mm	18 mm	30 mm
		D	0 mm	0 mm	0 mm	0 mm
		m	4.5 mm	8 mm	20 mm	40 mm
		n	12 mm	18 mm	27 mm	45 mm
	Unshielded	I	12 mm	15 mm	22 mm	30 mm
		d	24 mm	40 mm	70 mm	90 mm
		D	12 mm	15 mm	22 mm	30 mm
		m	8 mm	20 mm	40 mm	70 mm
		n	24 mm	40 mm	70 mm	90 mm
E2E-X $\square E$   E2E-X $\square$ F $\square$   DC 3-wire   E2E-X $\square \mathrm{Y} \square$   AC 2-wire   DC 3-wire   E2E2-X $\square$ Y $\square$   AC 2-wire	Shielded	1	0 mm	0 mm	0 mm	0 mm
		d	8 mm	12 mm	18 mm	30 mm
		D	0 mm	0 mm	0 mm	0 mm
		m	4.5 mm	8 mm	20 mm	40 mm
		n	12 mm	18 mm	27 mm	45 mm
	Unshielded	1	6 mm	15 mm	22 mm	30 mm
		d	24 mm	40 mm	55 mm	90 mm
		D	6 mm	15 mm	22 mm	30 mm
		m	8 mm	20 mm	40 mm	70 mm
		n	24 mm	36 mm	54 mm	90 mm

## Relationship between Sizes and Models

E2E

Model		Model No.
M8	Shielded	$\begin{aligned} & \hline \text { E2E-X2D } \square \\ & \text { E2E-X1R5E } \square / \square \square \\ & \text { E2E-X1R5Y } \square \\ & \hline \end{aligned}$
	Unshielded	E2E-X4MD $\square$ E2E-X2ME $\square \square$ E2E-X2MY $\square$
M12	Shielded	E2E-X3D $\square$ E2E-X2E $\square / \mathrm{F} \square$ E2E-2Y $\square$ E2E-X3T1
	Unshielded	E2E-X8MD $\square$ E2E-X5ME $\square \square$ E2E-X5MY $\square$
M18	Shielded	E2E-X7D $\square$ E2E-X5E $\square / \mathrm{F} \square$ E2E-5Y $\square$ E2E-X7T1
	Unshielded	E2E-X14MD $\square$ E2E-X10ME $/$ F $\square$ E2E-X10MY $\square$


Model		Model No.
M30	Shielded	E2E-X10D E2E-X10E $\square / \mathrm{F} \square$ E2E-X1OY $\square$ E2E-X10T1
	Unshielded	$\begin{array}{\|l\|} \hline \text { E2E-X20MDD } \\ \text { E2E-X18ME } \square / F \square \\ \text { E2E-X18MY } \square \end{array}$

## Mutual Interference

When installing two or more Sensors face to face or side by side, ensure that the minimum distances given in the following table are maintained.


Model		Item	M8	M12	M18	M30
$\begin{aligned} & \mathrm{E} 2 \mathrm{E}-\mathrm{X} \square \mathrm{D} \square \\ & \mathrm{DC} 2 \text {-wire } \\ & \text { E2E-X } \square \text { T1 } \\ & \text { AC/DC 2-wire } \end{aligned}$	Shielded	A	20 mm	30 (20) mm	50 (30) mm	100 (50) mm
		B	15 mm	20 (12) mm	35 (18) mm	70 (35) mm
	Unshielded	A	80 mm	120 (60) mm	200 (100) mm	300 (100) mm
		B	60 mm	100 (50) mm	110 (60) mm	200 (100) mm
$\begin{aligned} & \text { E2E-X } \square \mathrm{E} \square \\ & \text { E2E-X } \square \text { F } \square \\ & \text { DC 3-wire } \\ & \text { E2E-X } \square \mathrm{Y} \square \\ & \text { AC 2-wire } \end{aligned}$	Shielded	A	20 mm	30 (20) mm	50 (30) mm	100 (50) mm
		B	15 mm	20 (12) mm	35 (18) mm	70 (35) mm
	Unshielded	A	80 mm	120 (60) mm	200 (100) mm	300 (100) mm
		B	60 mm	100 (50) mm	110 (60) mm	200 (100) mm

## 4 WARNING

This product is not designed or rated for ensuring safety of persons.
Do not use it for such purposes.

## Precautions for Safe Use

The colors in parentheses are previous wire colors.

| Item |
| :--- | :--- |
| Power supply <br> Do not impose an excessive voltage on the <br> E2E, otherwise it may explode or burn. Do <br> not impose 100 VAC on any E2E DC Model, <br> otherwise it may explode or burn. |

## Precautions for Correct Use

## Installation

## Power Reset Time

The Proximity Sensor is ready to operate within 100 ms after power is supplied. If power supplies are connected to the Proximity Sensor and load respectively, be sure to supply power to the Proximity Sensor before supplying power to the load.

## Power OFF

The Proximity Sensor may output a pulse signal when it is turned OFF. Therefore, it is recommended to turn OFF the load before turning OFF the Proximity Sensor.

## Power Supply Transformer

When using a DC power supply, make sure that the DC power supply has an insulated transformer. Do not use a DC power supply with an auto-transformer.

## Sensing Object

Metal Coating:
The sensing distances of the Proximity Sensor vary with the metal coating on sensing objects.

## Wiring

## High-tension Lines

## Wiring through Metal Conduit

If there is a power or high-tension line near the cable of the Proximity Sensor, wire the cable through an independent metal conduit to prevent against Proximity Sensor damage or malfunctioning.

## Connecting Load to AC/DC 2-wire Sensor

Refer to the following before using AC or DC 2-wire Proximity Sensors.

## Surge Protection

Although the Proximity Sensor has a surge absorption circuit, if there is any machine that has a large surge current (e.g., a motor or welding machine) near the Proximity Sensor, connect a surge absorber to the machine.

## Leakage Current

When the Proximity Sensor is OFF, the Proximity Sensor has leakage current. Refer to page 127 Leakage Current Characteristics. In this case, the load is imposed with a small voltage and the load may not be reset. Before using the Proximity Sensor, make sure that this voltage is less than the load reset voltage. The AC 2-wire Proximity Sensor cannot be connected to any card-lift-off relay (e.g., the G2A) because contact vibration of the relay will be caused by the leakage current and the life of the relay will be shortened.
Loads with Large Inrush Currents (E2E-X $\square \square \square$ )
Connecting a load that has a large inrush current (e.g., a lamp or motor) may result in a malfunction due to the inrush current causing a load short-circuit.

## Countermeasures Against Leakage Current

## AC 2-wire Models

Connect a bleeder resistor as the bypass for the leakage current so that the current flowing into the load will be less than the load reset current.
As shown in the following diagram, connect the bleeder resistor so that the current flowing into the Proximity Sensor will be 10 mA minimum and the residual voltage imposed on the load will be less than the load reset voltage.


Refer to the following to calculate the bleeder resistance and the allowable power of the bleeder resistor.
$R \leq V s /(10-I)(k \Omega)$
$\mathrm{P}>\mathrm{Vs}^{2} / \mathrm{R}(\mathrm{mW})$

Cable Tractive Force
Do not pull on cables with tractive forces exceeding the following.

Diameter	Tractive force
4 dia. max.	30 N max.
4 dia. min.	50 N max.

## Mounting

The Proximity Sensor must not be subjected to excessive shock with a hammer when it is installed, otherwise the Proximity Sensor may be damaged or lose its water-resistivity.

## Environment

## Water Resistivity

The Proximity Sensors are tested intensively on water resistance, but in order to ensure maximum performance and life expectancy avoid immersion in water and provide protection from rain or snow.

## Operating Enviroment

Ensure the usage of the Proximity Sensor within its operating ambient temperature range and do not use the Proximity Sensor outdoors so that its reliability and life expectancy can be maintained. Although the Proximity Sensor is water resistive, a cover to protect the Proximity Sensor from water or water soluble machining oil is recommended so that its reliability and life expectancy can be maintained.
Do not use the Proximity Sensor in an environment with chemical gas (e.g., strong alkaline or acid gasses including nitric, chromic, and concentrated sulfuric acid gases).

P: The allowable power of the bleeder resistor. (The actual power capacity of the bleeder resistor must be at least a few times as large as the allowable power of the bleeder resistor.)
I: Load current (mA)
The following resistors are recommended.
100 VAC (supply voltage): A resistor with a resistance of $10 \mathrm{k} \Omega$ maximum and an allowable power of 3 W minimum
200 VAC (supply voltage): A resistor with a resistance of $20 \mathrm{k} \Omega$ maximum and an allowable power of 10 W minimum
If these resistors generate excessive heat, use a resistor with a resistance of $10 \mathrm{k} \Omega$ maximum and an allowable power of 5 W minimum at 100 VAC and a resistor with a resistance of $20 \mathrm{k} \Omega$ maximum and an allowable power of 10 W minimum at 200 VAC instead.

## DC 2-wire Models

Connect a bleeder resistor as the bypass for the leakage current so that the current flowing into the load will be less than the load reset current.


Refer to the following to calculate the bleeder resistance and the allowable power of the bleeder resistor.
$\mathrm{R} \leq \mathrm{V} /$ /(iR - ioff) $(\mathrm{k} \Omega)$
$\mathrm{P}>\mathrm{Vs}^{2} / \mathrm{R}(\mathrm{mW})$
$P$ : The allowable power of the bleeder resistor. (The actual power capacity of the bleeder resistor must be at least a few times as large as the allowable power of the bleeder resistor.)
ir: Leakage current of Sensors (mA)
ioff: Release current of load (mA)
The following resistors are recommended.
12 VDC (supply voltage): A resistor with a resistance of $15 \mathrm{k} \Omega$ maximum and an allowable power of 450 mW minimum
24 VDC (supply voltage): A resistor with a resistance of $30 \mathrm{k} \Omega$ maximum and an allowable power of 0.1 W minimum

## Connection to a PLC

## Required Conditions

Connection to a PLC is possible if the specifications of the PLC and the Proximity Sensor satisfy the following conditions. (The meanings of the symbols are given below.)

1. The ON voltage of the PLC and the residual voltage of the Proximity Sensor must satisfy the following.
Von $\leq \mathrm{Vcc}-\mathrm{V}_{\mathrm{R}}$
2. The OFF current of the PLC and the leakage current of the Proximity Sensor must satisfy the following.
loff $\geq$ leak
(If the OFF current is not listed in the specifications, take it to be 1.3 mA .)
3. The ON current of the PLC and the control output (lout) of the Proximity Sensor must satisfy the following.
lout(min) $\leq$ on $\leq$ lout(max)
The ON current of the PLC will vary, however, with the power supply voltage and the input impedance used as shown in the following equation.
$\mathrm{I}_{\mathrm{N}}=\left(\mathrm{V} C \mathrm{CC}-\mathrm{V}_{\mathrm{R}}-\underline{\mathrm{VPCC}}\right) / \mathrm{RIN}$

## Example

In this example, the above conditions are checked for when the PLC model is the C200H-ID212, the Proximity Sensor model is the E2E-X7D1-N, and the power supply voltage is 24 V .

1. $\mathrm{Von}^{(14.4 \mathrm{~V})} \leq \mathrm{V}_{\mathrm{cc}}(20.4 \mathrm{~V})-\mathrm{V}_{\mathrm{R}}(3 \mathrm{~V})=17.4 \mathrm{~V}$ : OK
2. Ioff $(1.3 \mathrm{~mA}) \geq$ leak $(0.8 \mathrm{~mA})$ : OK
3. $\operatorname{loN}=\left[\mathrm{V}_{\mathrm{CC}}(20.4 \mathrm{~V})-\mathrm{V}_{\mathrm{R}}(3 \mathrm{~V})-\underline{\mathrm{V}_{\mathrm{PC}}(4 \mathrm{~V})}\right] / R \mathrm{RIN}(3 \mathrm{k} \Omega)$
$\approx 4.5 \mathrm{~mA}$
Therefore,
lout(min) (3 mA) $\leq$ on ( 4.5 mA ): OK
Von: ON voltage of PLC (14.4 V)
lon: ON current of PLC (typ. 7 mA )
loff: OFF current of PLC ( 1.3 mA )
Rin: Input impedance of PLC (3 k )
VPC: Internal residual voltage of PLC (4 V)
$\mathrm{V}_{\mathrm{R}}$ : Output residual voltage of Proximity Sensor (3 V)
leak: Leakage current of Proximity Sensor ( 0.8 mA )
lout: Control output of Proximity Sensor (3 to 100 mA )
Vcc: Power supply voltage (PLC: 20.4 to 26.4 V )
Values in parentheses are for the following PLC model and Proximity Sensor model.
PLC: C200H-ID212
Proximity Sensor: E2E-X7D1-N

## Precautions for AC/DC 2-wire Proximity Sensors in Operation

Connection

Model	Connection type	Method	Description
DC 2-wire	AND (serial connection)	Correct	The Sensors connected together must satisfy the following conditions.   $V_{s}-N x V_{R} \geq$ Load operating voltage   N: No. of Sensors   $V_{R}$ : Residual voltage of each Sensor   Vs: Supply voltage   If each Proximity Sensor is not supplied with the rated voltage and current, the indicator will not be lit properly or unnecessary pulses may be output for approximately 1 ms .
	OR   (parallel connection)	Correct	The Sensors connected together must satisfy the following conditions.   $\mathrm{N} \times \mathrm{i} \leq$ load reset current   N: No. of Sensors   i: Leakage current of each Sensor   If the MY Relay, which operates at 24 VDC, is used as a load for example, a maximum of four Proximity Sensors can be connected to the load.
AC 2-wire	AND (serial connection)		If 100 or 200 VAC is imposed on the Proximity Sensors, VL (i.e., the voltage imposed on the load) will be obtained from the following.   $V_{L}=V_{s}-$ (residual voltage $\times$ No. of Proximity Sensors) (V)   Therefore, if $\mathrm{V}_{\mathrm{L}}$ is lower than the load operating voltage, the load will not operate.   A maximum of three Proximity Sensors can be connected in series provided that the supply voltage is 100 V minimum.


Model	Connection type	Method	Description
AC 2-wire	OR   (parallel connection)	Correct	In principle, more than two Proximity Sensors cannot be connected in parallel.   Provided that Proximity Sensor A does not operate with Proximity Sensor B simultaneously and there is no need to keep the load operating continuously, the Proximity Sensors can be connected in parallel. In this case, however, due to the total leakage current of the Proximity Sensors, the load may not reset properly.   It is not possible to keep the load operating continuously with Proximity Sensors A and B in simultaneous operation to sense sensing objects due to the following reason.   When Proximity Sensor A is ON, the voltage imposed on Proximity Sensor A will drop to approximately 10 V and the load current flows into Proximity Sensor A, and when one of the sensing objects is close to Proximity Sensor B, Proximity Sensor B will not operate because the voltage imposed on Proximity Sensor B is 10 V , which is too low. When Proximity Sensor A is OFF, the voltage imposed on Proximity Sensor $B$ will reach the supply voltage and Proximity Sensor B will be ON. Then, Proximity Sensor $A$ as well as Proximity Sensor $B$ will be OFF for approximately 10 ms , which resets the load for an in- stant. To prevent the instantaneous resetting of the load, use a relay as shown on the left.
DC 3-wire	AND (serial connection)	Correct	The Sensors connected together must satisfy the following conditions.   iL + $(\mathrm{N}-1) \times \mathrm{i} \leq$ Upper-limit of control output of each Sensor   $\mathrm{V}_{\mathrm{s}}-\mathrm{N} x \mathrm{~V}_{\mathrm{R}} \geq$ Load operating voltage   N : No. of Sensors   $\mathrm{V}_{\mathrm{R}}$ : Residual voltage of each Sensor   Vs: Supply voltage   i: Current consumption of the Sensor   iL: Load current   If the MY Relay, which operates at 24 VDC , is used as a load for example, a maximum of two Proximity Sensors can be connected to the load.

## Dimensions

Note: All units are in millimeters unless otherwise indicated.
E2E

Model			DC 2-wire		DC 3-wire		AC 2-wire		AC/DC 2-wire	
			Model No.	Figure No.						
Pre-wired	Shielded	M8	E2E-X2D $\square$-N	4	E2E-X1R5ED/F口	4	E2E-X1R5Y $\square$	6		
		M12	E2E-X3D $\square$-N	8	E2E-X2E■/F■	8	E2E-X2Y $\square$	10	E2E-X3T1	12
		M18	E2E-X7D $\square$-N	13	E2E-X5E $\square / \mathrm{F} \square$	13	E2E-X5Y $\square$	13	E2E-X7T1	13
		M30	E2E-X10D■-N	15	E2E-X10E $\square / \mathrm{F} \square$	15	E2E-X10Y $\square$	15	E2E-X10T1	15
	Unshielded	M8	E2E-X4MD $\square$	5	E2E-X2ME $\square / \mathrm{F} \square$	5	E2E-X2MY $\square$	7	---	---
		M12	E2E-X8MD $\square$	9	E2E-X5ME $\square / \mathrm{F} \square$	9	E2E-X5MY■	11		
		M18	E2E-X14MD $\square$	14	E2E-X10ME $\square$ /F $\square$	14	E2E-X10MY $\square$	14		
		M30	E2E-X20MD $\square$	16	E2E-X18ME $\square / \mathrm{F} \square$	16	E2E-X18MY $\square$	16		
Connector (M12)	Shielded	M8	E2E-X2D $\square$-M1(G)	17	$\begin{aligned} & \text { E2E-X1R5E } \square-\mathrm{M} 1 / \\ & \text { F } \square-\mathrm{M} 1 \end{aligned}$	17	---	---	---	---
		M12	E2E-X3D $\square-\mathrm{M} 1$ (G)	19	$\begin{aligned} & \mathrm{E} 2 \mathrm{E}-\mathrm{X} 2 \mathrm{E} \square-\mathrm{M} 1 \\ & \text { /F } \square-\mathrm{M} 1 \end{aligned}$	19	E2E-X2Y $\square-\mathrm{M} 1$	21		
		M18	E2E-X7D $\square-\mathrm{M} 1$ (G)	23	$\begin{aligned} & \text { E2E-X5ED-M1 } \\ & \text { /F } \square-\mathrm{M} 1 \end{aligned}$	23	E2E-X5Y $\square-\mathrm{M} 1$	23		
		M30	E2E-X10D $\square-\mathrm{M1}(\mathrm{G})$	25	$\begin{aligned} & \text { E2E-X10E } \square-M 1 \\ & \text { /F } \square \text {-M1 } \end{aligned}$	25	E2E-X10Y $\square$-M1	25		
	Unshielded	M8	E2E-X4MD $\square$-M1(G)	18	$\begin{aligned} & \mathrm{E} 2 \mathrm{E}-\mathrm{X} 2 \mathrm{ME} \square-\mathrm{M} 1 \\ & \text { /F } \square-\mathrm{M} 1 \end{aligned}$	18	---	---	---	---
		M12	E2E-X8MD $\square$-M1(G)	20	$\begin{aligned} & \text { E2E-X5ME } \square-\mathrm{M} 1 \\ & \text { /F } \square-\mathrm{M} 1 \end{aligned}$	20	E2E-X5MY $\square$-M1	22		
		M18	$\begin{aligned} & \hline \text { E2E-X14MD } \square- \\ & \text { M1(G) } \end{aligned}$	24	$\begin{aligned} & \text { E2E-X10ME } \square-M 1 / \\ & \text { F } \square-M 1 \end{aligned}$	24	E2E-X10MY $\square-\mathrm{M} 1$	24		
		M30	$\begin{array}{\|l} \hline \text { E2E-X20MD } \square \text { - } \\ \text { M1(G) } \\ \hline \end{array}$	26	$\begin{aligned} & \text { E2E-X18ME } \square-\mathrm{M} 1 / \\ & \text { F } \square-\mathrm{M} 1 \end{aligned}$	26	E2E-X18MY $\square-\mathrm{M} 1$	26		
Connector (M8)	Shielded	M8	E2E-X2D $\square$-M3G	27	$\begin{aligned} & \text { E2E-X1R5E } \square-M 3 / \\ & \text { F } \square-M 3 \end{aligned}$	27	---	---	---	---
	Unshielded		E2E-X4MD $\square$-M3G	28	$\begin{aligned} & \text { E2E-X2ME } \square-\mathrm{M} 3 \\ & \text { /F■-M3 } \end{aligned}$	28				
Pre-wired connector	Shielded	M12	E2E-X3D1-M1GJ	29	---	---	---	---	---	---
		M18	E2E-X7D1-M1GJ	31						
		M30	E2E-X10D1-M1GJ	33						
	Unshielded	M12	E2E-X8MD1-M1GJ	30	---	---	---	---	---	---
		M18	E2E-X14MD1-M1GJ	32						
		M30	E2E-X20MD1-M1GJ	34						
Pre-wired connector (no polarity)	Shielded	M12	E2E-X3D1-M1J-T	29	---	---	---	---	---	---
		M18	E2E-X7D1-M1J-T	31						
		M30	E2E-X10D1-M1J-T	33						

Note: 1. Two clamping nuts and one toothed washer are provided with M8 to M30 Models.
2. The model numbers of Pre-wired M8 to M30 Models are laser-marked on the milled section and cable section.

## Pre-wired Models

## (Shielded)

Fig. 4 : E2E-X2D $\square$-N
E2E-X1R5E $\square / F \square$

 2 conductors (D Models) 3 conductors
( $\mathrm{E}, \mathrm{F}$ Models)(Conductor cross section Standard length. 2 m
Note: D Models: Operation indicator (red), setting indicator (green)
E, F Models: Operation indicator (red)
vinyl-insulated round cable with
2 conductors (D Models)/3 conductors
(E Models)(Conductor cross section.
Standard length: m eter: 1.27 mm )
Standard length: 2 m
can exteded up to 200 m (separate metal conduit).
Fig. 6 : E2E-X1R5Y $\square$


Fig. 8 : E2E-X3D $\square-N$


Operation indicator (red),
setting indicator (green), E, F Models:
Operation indicator (red)

## Pre-wired Models

(Unshielded)
Fig. 5 : E2E-X4MD $\square$
E2E-X2ME $\square / F \square$


Fig. 9 : E2E-X8MD $\square$
E2E-X5ME $\square / \mathrm{F} \square$
Pre-wired e-CON connector Model


Connector:
Product code 37104-3163-000FL Sumitomo 3M)

4-dia. vinyl-insulated round cable with 2 conductors (D Models)/3 conductors
(D■S, E, F Models) (Conductor cross section: (D $\square \mathrm{S}, \mathrm{E}, \mathrm{F}$ Models) (Conductor cross
$0.3 \mathrm{~mm}^{2}$, Insulator diameter: 1.3 mm ), Standard length: 2 m Robotics cable models: 4-dia. vinyl-insulated round cable with 2 conductors (D Models)/3 conductors (E Models) (Conductor cross section: $0.3 \mathrm{~mm}^{2}$, Insulator diameter: 1.27 mm ),
Standard length: 2 m
The cable can be extended (separate metal conduit) up to 200 m (control output) or up to 100 m (diagnostic output).

Pre-wired Models
(Shielded)
Fig. 10 : E2E-X2Y $\square$


## Pre-wired Models

(Unshielded)
Fig. 11: E2E-X5MY $\square$



Fig. 13: E2E-X7D $\square-\mathrm{N} /$
E2E-X5E $\square / F \square$ E2E-X5Y $\square / E 2 E-X 7 T 1$


Pre-wired e-CON connector Model


Connector:
Product code 37104-2206-000FL (Sumitomo 3M)

6-dia. vinyl-insulated round cable with 2 conductors (D, Y, T Models)/3 conductors ( $D \square S, E, F$ Models) (Conductor cross section $0.5 \mathrm{~mm}^{2}$, Insulator diameter: 1.9 mm ) Standard length: 2 m

Robotics cable models: 6 -dia. vinyl-insulated round cable with 2 conductors (D Models)/
 section: $0.5 \mathrm{~mm}^{2}$, Insu
Standard length: 2 m
Standard length: 2 m . conduit) up to 200 m (control output) or up to 100 m (diagnostic output).

Fig. 14 : E2E-X14MD $\square /$

Note. D Models: Operation indicator (red), setting indicator (green); E, F,
Operation indicator (red)


Pre-wired e-CON connector Model


6-dia. vinyl-insulated round cable with 2 conductors (D, Y, T Models)/3 conductors (D $\square \mathrm{S}, \mathrm{E}, \mathrm{F}$ Models) (Conductor cross section: $0.5 \mathrm{~mm}^{2}$,
Insulator diameter: 1.9 mm ) Standard length: 2 m Robotics cable Models: 6-dia. vinylinsulated round cable with 2 conductor (D Models)/3 conductors (E Models)
(Conductor cross section: $0.5 \mathrm{~mm}^{2}$, Insulator diameter: 1.74 mm ) Standard length: 2 m
The cable can be extended (separate metal conduit) up to 200 m (control metal conduit) up to 200 m (contro output).

Fig. 15 : E2E-X10D $\square-\mathrm{N} /$
E2E-X10E $\square / \mathrm{F} \square$ E2E-X10Y $\square /$ E2E-X10T1

Pre-wired e-CON connector Model Pre-wired e-CON connector Mode


## Connector:

 setting indicator (green) E,F,Y Models: Operation indicator (red)

Product code 37104-2206-000FL (Sumitomo 3M)

6-dia. vinyl-insulated round ) cable with 2 conductors (D, Y, T Models)/3 conductors (D $\square$ S, E, F Models) (Conductor cross section: $0.5 \mathrm{~mm}^{2}$, Insulator diameter: 1.9 mm ), Standard length: 2 m
Robotics cable Models: 6-dia. vinylinsulated round cable with 2 conductors (D Models)/ conductors (E Models) (Conductor cross section: $0.5 \mathrm{~mm}^{2}$, Insulator diameter: 1.74 mm ), Standard length: 2 m
The cable can be extended
(separate metal conduit) up to 200 m
(control output) or up to 100 m
(diagnostic output).

Fig. 16: E2E-X20MD $\square /$ E2E-X18ME $\square / \mathrm{F} \square$ E2E-X18MY $\square$

M12 Connector Models
(Shielded)

Fig. 17 : E2E-X2D $\square$-M1(G)
E2E-X1R5E $\square-M 1 / F \square-M 1$


Toothed washer
Note: D Models: Operation indicator (red), setting indicator (green) E, F Model: Operation indicator (red)

Fig. 19 : E2E-X3D $\square-M 1(G)$
E2E-X2E $\square-M 1 / F \square-M 1$


Note: D Models: Operation indicator (red), setting indicator (green) E, F Model: Operation indicator (red)

Fig. 21 : E2E-X2Y $\square-M 1$


Fig. 23 : E2E-X7D $\square-M 1(G) / E 2 E-X 5 E \square-M 1 / F \square-M 1$ E2E-X5Y $\square-M 1$


Note: D Models: Operation indicator (red), setting indicator (green) E, F, Y Model: Operation indicator (red)

Fig. 25 : E2E-X10D $\square-M 1(G) / E 2 E-X 10 E \square-M 1 / F \square-M 1$ E2E-X10Y $\square$-M1


Note: D Models: Operation indicator (red), setting indicator (green) E, F, Y Model: Operation indicator (red)

## M12 Connector Models

 (Unshielded)Fig. 18 : E2E-X4MD $\square-\mathrm{M} 1(\mathrm{G})$


Note: D Models: Operation indicator (red), setting indicator (green) E, F Model: Operation indicator (red)

Fig. 20 : E2E-X8MD $\square$-M1(G)


Note: D Models: Operation indicator (red), setting indicator (green) E, F Model: Operation indicator (red)

Fig. 22 : E2E-X5MY $\square$-M1


Fig. 24 : E2E-X14MD $\square-M 1(G) / E 2 E-X 10 M E \square-M 1 / F \square-M 1$ E2E-X10MY $\square-M 1$


Note: D Models: Operation indicator (red), setting indicator (green) E, F, Y Model: Operation indicator (red)

Fig. 26 : E2E-X20MD $\square-M 1(G) / E 2 E-X 18 M E \square-M 1 / F \square-M 1$ E2E-X18MY $\square$-M1


Note: D Models: Operation indicator (red), setting indicator (green) E, F, Y Model: Operation indicator (red)

M8 Connector Models
(Shielded)
Fig. 27 : E2E-X2D $\square-M 3 G / E 2 E-X 1 R 5 E \square-M 3 / F \square-M 3$


Note: D models: Operation indicator (red), setting indicator (green) E, F model: Operation indicator (red)

M8 Connector Models (Unshielded)

Fig. 28 : E2E-X4MD $\square-M 3 G / E 2 E-X 2 M E \square-M 3 / F \square-M 3$


Note: D models: Operation indicator (red), setting indicator (green) E, F model: Operation indicator (red)

## Pre-wired M12 Connector Models

Fig. 29 : E2E-X3D1-M1GJ
E2E-X3D1-M1J-T


Fig. 30 : E2E-X8MD1-M1GJ



Fig. 31 : E2E-X7D1-M1GJ E2E-X7D1-M1J-T


## Pre-wired M12 Connector Models

Fig. 32 : E2E-X14MD1-M1GJ



Fig. 33 : E2E-X10D1-M1GJ E2E-X10D1-M1J-T



Fig. 34 : E2E-X20MD1-M1GJ



Mounting Holes


Dimensions	M8	M12	M18	M30
F (mm)	$8.5^{+0.5} / 0$ dia.	$12.5^{+0.5} / \mathrm{dia}$.	$18.5^{+0.5} / 0$ dia.	$30.5^{+0.5} / 0 \mathrm{dia}$.

## Warranties and Limitations of Liability

## WARRANTY

OMRON's exclusive warranty is that the products are free from defects in materials and workmanship for a period of one year (or other period if specified) from date of sale by OMRON.
OMRON MAKES NO WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, REGARDING NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR PARTICULAR PURPOSE OF THE PRODUCTS. ANY BUYER OR USER ACKNOWLEDGES THAT THE BUYER OR USER ALONE HAS DETERMINED THAT THE PRODUCTS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR INTENDED USE. OMRON DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED.

## LIMITATIONS OF LIABILITY

OMRON SHALL NOT BE RESPONSIBLE FOR SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES, LOSS OF PROFITS OR COMMERCIAL LOSS IN ANY WAY CONNECTED WITH THE PRODUCTS, WHETHER SUCH CLAIM IS BASED ON CONTRACT, WARRANTY, NEGLIGENCE, OR STRICT LIABILITY.
In no event shall responsibility of OMRON for any act exceed the individual price of the product on which liability is asserted. IN NO EVENT SHALL OMRON BE RESPONSIBLE FOR WARRANTY, REPAIR, OR OTHER CLAIMS REGARDING THE PRODUCTS UNLESS OMRON'S ANALYSIS CONFIRMS THAT THE PRODUCTS WERE PROPERLY HANDLED, STORED, INSTALLED, AND MAINTAINED AND NOT SUBJECT TO CONTAMINATION, ABUSE, MISUSE, OR INAPPROPRIATE MODIFICATION OR REPAIR.

## Application Considerations

## SUITABILITY FOR USE

THE PRODUCTS CONTAINED IN THIS CATALOG ARE NOT SAFETY RATED. THEY ARE NOT DESIGNED OR RATED FOR ENSURING SAFETY OF PERSONS, AND SHOULD NOT BE RELIED UPON AS A SAFETY COMPONENT OR PROTECTIVE DEVICE FOR SUCH PURPOSES. Please refer to separate catalogs for OMRON's safety rated products.
OMRON shall not be responsible for conformity with any standards, codes, or regulations that apply to the combination of products in the customer's application or use of the product.
Take all necessary steps to determine the suitability of the product for the systems, machines, and equipment with which it will be used. Know and observe all prohibitions of use applicable to this product.
NEVER USE THE PRODUCT FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR PROPERTY WITHOUT ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO ADDRESS THE RISKS, AND THAT THE OMRON PRODUCT IS PROPERLY RATED AND INSTALLED FOR THE INTENDED USE WITHIN THE OVERALL EQUIPMENT OR SYSTEM.

## Disclaimers

CHANGE IN SPECIFICATIONS
Product specifications and accessories may be changed at any time based on improvements and other reasons. Consult with your OMRON representative at any time to confirm actual specifications of purchased product.

## DIMENSIONS AND WEIGHTS

Dimensions and weights are nominal and are not to be used for manufacturing purposes, even when tolerances are shown.

To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527

Cylindrical Proximity Sensor for Mobile Usage

## E2AU

## Designed and tested to keep your machines moving



IP69k tested and certified for highest water resistance

e1 type approval (according to automotive directive 95/54/EC)


## EMC

 $100 \mathrm{~V} / \mathrm{m}$EMC noise tested up to $100 \mathrm{~V} / \mathrm{m}$ (ISO 11452-2)

## Ordering Information

## DC 3-wire models

Size		Sensing distance	Connection	Body material	Thread length (overall length)	Output configuration	Operation mode NO
M12	Shielded	4.0 mm	Pre-wired	Brass	34 (50)	PNP	E2AU-M12KS04-WP-B1 2M
					56 (72)	PNP	E2AU-M12LS04-WP-B1 2M
			M12 connector	Brass	34 (48)	PNP	E2AU-M12KS04-M1-B1
					56 (70)	PNP	E2AU-M12LS04-M1-B1
M18	Shielded	8.0 mm	Pre-wired	Brass	39 (59)	PNP	E2AU-M18KS08-WP-B1 2M
					61 (81)	PNP	E2AU-M18LS08-WP-B1 2M
			M12 connector	Brass	39 (53)	PNP	E2AU-M18KS08-M1-B1
					61 (75)	PNP	E2AU-M18LS08-M1-B1
M30	Shielded	15.0 mm	Pre-wired	Brass	44 (64)	PNP	E2AU-M30KS15-WP-B1 2M
					66 (86)	PNP	E2AU-M30LS15-WP-B1 2M
			M12 connector	Brass	44 (58)	PNP	E2AU-M30KS15-M1-B1
					66 (80)	PNP	E2AU-M30LS15-M1-B1

## Model Number Legend

## E2A $\square-\square \square \square \square-\square-\square \square-\square \square$ <br> $\begin{array}{llllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12\end{array}$

Example: E2A-M12LS04-M1-B1 Standard, M12, long barrel, shielded, Sn=4 mm, M12 connector, PNP-NO E2A-S08KN04-WP-B1 5M Standard, M8 stainless steel, short barrel, non-shielded, $\mathrm{Sn}=4 \mathrm{~mm}$, pre-wired PVC cable, PNP-NO, cable length=5 m

1. Basic name

E2A
2. Sensing technology

Blank: Standard double distance
3: $\quad$ Triple distance
U: Mobile Usage
X: Explosion hazarduous environments
3. Housing shape and material

M : $\quad$ Cylindrical, metric threaded, brass
S: Cylindrical, metric threaded, stainless steel
4. Housing size

08: $\quad 8 \mathrm{~mm}$
12: $\quad 12 \mathrm{~mm}$
18: $\quad 18 \mathrm{~mm}$
30: $\quad 30 \mathrm{~mm}$
5. Barrel length

K: Standard length
L: Long body
6. Shield

S: Shielded
N: Non-shielded
7. Sensing distance

Numeral: Sensing distance: e.g. 02=2 mm, 16=16 mm
8. Kind of connection

WP: pre-wired, PVC, dia 4 mm (standard)
WS: pre-wired, PVC, dia 6 mm
WR: pre-wired, PVC, robotic cable, dia 4 mm
WA: pre-wired, PUR/PVC (PUR jacket), dia 4 mm
WB: pre-wired, PUR/PVC (PUR jacket), dia 6 mm

M1: M12 connector (4 pin) *
M3: $\quad$ M8 connector (4 pin)
M5: M8 connector (3 pin)

M1J pre-wired with M12 cable end connector (4 pin)
M3J pre-wired with M8 cable end connector (4 pin)
M5J pre-wired with M8 cable end connector (3 pin)
9. Power source and output

B: DC, 3-wire, PNP open collector
C: DC, 3-wire, NPN open collector
D: DC, 2-wire
E: DC, 3-wire, NPN voltage output
F: DC, 3-wire, PNP voltage output

## 10.Operation mode

1: $\quad$ Normally open (NO)
2: $\quad$ Normally closed (NC)
3: $\quad$ Antivalent (NO+NC)
11.Specials (e.g., cable material, oscillating frequency)

## 12.Cable length

Blank: Connector type
Numeral: Cable length
Note: *In case of DC 2-wire models the M12 connector identifier is '-M1G'

## Specifications

## DC 3-wire Models

$\begin{gathered} \hline \text { Size } \\ \hline \text { Type } \end{gathered}$		M12
		Shielded
Item		E2A-M12 $\square$ S04- $\square \square$-B1
Sensing distance		$4 \mathrm{~mm} \pm 10 \%$
Setting distance		0 to 3.2 mm
Differential travel		10\% max. of sensing distance
Target		Ferrous metal (The sensing distance decreases with non-ferrous metal.)
Standard target (mild steel ST37)		$12 \times 12 \times 1 \mathrm{~mm}$
Response frequency (See note 1.)		$1,000 \mathrm{~Hz}$
Power supply voltage (operating voltage range)		12 to 24 VDC. Ripple (p-p): 10\% max. (10 to 32 VDC)
Current consumption (DC 3-wire)		10 mA max.
Output type		PNP open collector
Control output	Load current (See note 2.)	200 mA max. (32 VDC max.)
	Residual voltage	2 V max. (under load current of 200 mA with cable length of 2 m )
Indicator		Operation indicator (Yellow LED)
Operation mode (with sensing object approaching)		-B1
Protection circuit		Output reverse polarity protection, Power source circuit reverse polarity protection, Surge suppressor, Short-circuit protection
Ambient air temperature		Operating: $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$, Storage: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (with no icing or condensation)
Temperature influence (See note 2.)		$\pm 10 \%$ max. of sensing distance at $23^{\circ} \mathrm{C}$ within temperature range of $25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ $\pm 15 \%$ max. of sensing distance at $23^{\circ} \mathrm{C}$ within temperature range of $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Ambient humidity		Operating: 35\% to 95\%, Storage: 35\% to 95\%
Voltage influence		$\pm 1 \%$ max. of sensing distance in rated voltage range $\pm 15 \%$
Insulation resistance		$50 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC ) between current carry parts and case
Dielectric strength		1,000 VAC at $50 / 60 \mathrm{~Hz}$ for 1 min between current carry parts and case
Vibration resistance		10 to 55 Hz , 1.5-mm double amplitude for 2 hours each in $\mathrm{X}, \mathrm{Y}$ and Z directions
Shock resistance		$1,000 \mathrm{~m} / \mathrm{s}^{2}, 10$ times each in $\mathrm{X}, \mathrm{Y}$ and Z directions
Standard and listings		IP67 after IEC 60529   IP69k after DIN 40050   EMC after EN60947-5-2   UL (CSA) E196555 (See note 3.)   EMC after 95/54/EC   EMC after ISO11452-2
Connection method		Pre-wired models (dia 4mm PVC cable with length $=2 \mathrm{~m}$ ). M12 connector models
Weight (packaged)	Pre-wired model	Approx. 85 g
	Connector model	Approx. 35 g
Material	Case	Brass-nickel plated
	Sensing surface	PBT
	Cable	Standard cable is PVC dia 4mm.
	Clamping nut	Brass-nickel plated

Note 1. The response frequency is an average value. Measurement conditions are as follows: standard target, a distance of twice the standard target distance between targets, and a setting distance of half the sensing distance.
2. When using any model at an ambient temperature between $-40^{\circ} \mathrm{C}$ and $25^{\circ} \mathrm{C}$ and a power voltage between 30 and 32 VDC , use a load current of 100 mA max.,
3. UL (CSA) [E196555]: Use class 2 circuit only.

## DC 3-wire Models / DC 4-wire

Size		M18	M30
Type		Shielded	Shielded
Item		E2A-M18 $\square$ S08- $\square \square$-B1	E2A-M30 $\square$ S15- $\square \square$-B1
Sensing distance		$8 \mathrm{~mm} \pm 10 \%$	$15 \mathrm{~mm} \pm 10 \%$
Setting distance		0 to 6.4 mm	0 to 12 mm
Differential travel		10\% max. of sensing distance	
Target		Ferrous metal (The sensing distance decreases with non-ferrous metal.)	
Standard target (mild steel ST37)		$24 \times 24 \times 1 \mathrm{~mm}$	$45 \times 45 \times 1 \mathrm{~mm}$
Response frequency (See note 1.)		500 Hz	250 Hz
Power supply voltage (operating voltage range)		$\begin{aligned} & 12 \text { to } 24 \text { VDC. Ripple (p-p): } 10 \% \text { max. } \\ & \text { (10 to } 32 \text { VDC) } \end{aligned}$	
Current consumption (DC 3-wire)		10 mA max.	
Output type		PNP open collector	
Control output	Load current (See note 2.)	200 mA max. (32 VDC max.)	
	Residual voltage	2 V max. (under load current of 200 mA with cable length of 2 m )	
Indicator		Operation indicator (Yellow LED)	
Operation mode (with sensing object approaching)		-B1	
Protection circuit		Output reverse polarity protection, Power source circuit reverse polarity protection, Surge suppressor, Short-circuit protection	
Ambient air temperature		Operating: $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$, Storage: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (with no icing or condensation)	
Temperature influence   (See note 2.)		$\pm 10 \%$ max. of sensing distance at $23^{\circ} \mathrm{C}$ within temperature range of $25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ $\pm 15 \%$ max. of sensing distance at $23^{\circ} \mathrm{C}$ within temperature range of $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	
Ambient humidity		Operating: 35\% to 95\%, Storage: 35\% to 95\%	
Voltage influence		$\pm 1 \%$ max. of sensing distance in rated voltage range $\pm 15 \%$	
Insulation resistance		$50 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC ) between current carry parts and case	
Dielectric strength		1,000 VAC at $50 / 60 \mathrm{~Hz}$ for 1 min between current carry parts and case	
Vibration resistance		10 to $55 \mathrm{~Hz}, 1.5-\mathrm{mm}$ double amplitude for 2 hours each in $\mathrm{X}, \mathrm{Y}$ and Z directions	
Shock resistance		$1,000 \mathrm{~m} / \mathrm{s}^{2}, 10$ times each in $\mathrm{X}, \mathrm{Y}$ and Z directions	
Standard and listings		```IP67 after IEC 60529 IP69k after DIN 40050 EMC after EN60947-5-2 UL (CSA) E196555 (See note 3.) EMC after 95/94/EC EMC after ISO11452-2```	
Connection method		Pre-wired models (dia 4mm PVC cable with length $=2 \mathrm{~m}$ ). M12 connector models.	
Weight (pakkaged)	Pre-wired model	Approx. 160 g	Approx. 280 g
	Connector model	Approx. 70 g	Approx. 200 g
Material	Case	Brass-nickel plated	
	Sensing surface	PBT	
	Cable	Standard cable is PVC dia 4 mm .	
	Clamping nut	brass-nickel plated for brass models stainless steel for steel models	

Note 1. The response frequency is an average value. Measurement conditions are as follows: standard target, a distance of twice the standard target distance between targets, and a setting distance of half the sensing distance.
2. When using any model at an ambient temperature between $-40^{\circ} \mathrm{C}$ and $25^{\circ} \mathrm{C}$ and a power voltage between 30 and 32 VDC , use a load current of 100 mA max
3. UL (CSA) [E196555]: Use class 2 circuit only.

## Engineering Data

## Operating Range (Typical)



Influence of Sensing Object Size and Materials
Shielded Models

E2AU-M12 $\square$ S04/ E2A-S12 $\square$ S04


E2AU-M18 $\square$ S08/E2A-S18 $\square$ S08


E2AU-M30 $\square$ S15/ E2A-S30 $\square$ S15


## Operation

DC 3-wire models
PNP Output

Operation mode	Model	Timing chart	Output circuit
NO	E2AU- $\square-\square-\mathrm{B1}$		Note 1: With M8 connector models, there is no output reverse polarity protection diode.   M12 Connector Pin Arrangement (See note 2.)   Note 2: Terminal 2 of the M12 connector is not used.

## Dimensions

Note: All units are in millimeters unless otherwise indicated.
Pre-wired Models (Shielded)


E2AU-M12KS04-WP- $\square \square$


Note 1. 4-dia. vinyl-insulated round cable with 3 conductors (conductor cross section: $0.3 \mathrm{~mm}^{2}$; insulator diameter: 1.3 mm ); standard length: 2 m
2. Operation indicator (yellow)

E2AU-M18KS08-WP- $\square \square$


Note 1. 4-dia. vinyl-insulated round cable with 3 conductors (conductor cross section: $0.3 \mathrm{~mm}^{2}$; insulator diameter: 1.3 mm ); standard length: 2 m
2. Operation indicator (yellow)

E2AU-M30KS15-WP- $\square$


Note 1. 4-dia. vinyl-insulated round cable with 3 conductors (conductor cross section: $0.3 \mathrm{~mm}^{2}$; insulator diameter: 1.3 mm ); standard length: 2 m
2. Operation indicator (yellow)

## E2A-M12LS04-WP- $\square$



Note 1. 4-dia. vinyl-insulated round cable with 3 conductors (conductor cross section:
$0.3 \mathrm{~mm}^{2}$; insulator diameter: 1.3 mm ); standard length: 2 m
2. Operation indicator (yellow)

E2AU-M18LS08-WP- $\square \square$


Note 1. 4-dia. vinyl-insulated round cable with 3 conductors (conductor cross section: $0.3 \mathrm{~mm}^{2}$; insulator diameter: 1.3 mm ); standard length: 2 m
2. Operation indicator (yellow)

E2AU-M30LS15-WP- $\square$



Note 1. 4-dia. vinyl-insulated round cable with 3 conductors (conductor cross section:
0.3 mm 2 ; insulator diameter: 1.3 mm ); standard length: 2 m
2. Operation indicator (yellow)

## Mounting Hole Cutout Dimensions



External diameter   of Proximity Sensor	Dimension F (mm)
M12	12.5 dia. ${ }^{+0.5}$
M18	18.5 dia. ${ }_{0}^{+0.5}$
M30	30.5 dia..$_{0}^{0.5}$

M12 Connector Models (Shielded)


## E2AU-M12KS04-M1- $\square \square$



Note 1: Operation indicator (yellow LED, $4 \times 90^{\circ}$ )

E2AU-M18KS08-M1- $\square \square$


Note: Operation indicator (yellow LED, $4 \times 90^{\circ}$

## E2AU-M30KS15-M1- $\square \square$




Note: Operation indicator (yellow LED, $4 \times 90^{\circ}$ )

E2AU-M12LS04-M1- $\square \square$


E2AU-M18LS08-M1- $\square \square$


Note: Operation indicator (yellow LED, $4 \times 90^{\circ}$ )

E2AU-M30LS15-M1- $\square \square$


Note: Operation indicator (yellow LED, $4 \times 90^{\circ}$ )

## Precautions

## Safety Precautions

## Power Supply

Do not impose an excessive voltage on the E2AU, otherwise it may be damaged. Do not impose AC current ( 100 to 240 VAC) on any DC model, otherwise it may be damaged.

## Load Short-circuit

Do not short-circuit the load, or the E2AU may be damaged.
The E2AU's short-circuit protection function will be valid if the polarity of the supply voltage imposed is correct and within the rated voltage range.

## Wiring

Be sure to wire the E2AU and load correctly, otherwise it may be damaged.

## Connection with No Load

Be sure to insert loads when wiring. Make sure to connect a proper load to the E2AU in operation, otherwise it may damage internal elements.

## Do not expose the product to flammable or explosive gases.

Do not disassemble, repair, or modify the product.

## Correct Use

## Designing

## Power Reset Time

The Proximity Sensor is ready to operate within 100 ms after power is supplied. If power supplies are connected to the Proximity Sensor and load respectively, be sure to supply power to the Proximity Sensor before supplying power to the load.
Effects of Surrounding Metal
When mounting the E2AU within a metal panel, ensure that the clearances given in the following table are maintained.

(Unit: mm )

Type	Dimension	M12	M18	M30	
				Short barrel	Long barrel
Shielded	1	0	(See note 1.)	$\begin{array}{\|l\|} \hline 0 \\ \text { (See no } \end{array}$	2.)
	m	12	24	45	
	d	---	27	45	
	D	0	1.5	4	
	n	18	27	45	
Nonshielded	I	15	22	30	40
	m	20	48	70	90
	d	40	70	90	120
	D	15	22	30	40
	n	40	70	90	120

Note 1.In the case of using the supplied nuts.
If true flash mounting is necessary, apply a free zone of 1.5 mm .
2.In the case of using the supplied nuts. If true flush mounting is necessary, apply a free zone of 4 mm .

## Power OFF

The Proximity Sensor may output a pulse signal when it is turned OFF. Therefore, it is recommended that the load be turned OFF before turning OFF the Proximity Sensor.

## Power Supply Transformer

When using a DC power supply, make sure that the DC power supply has an insulated transformer. Do not use a DC power supply with an auto-transformer.
Mutual Interference
When installing two or more Sensors face-to-face or side-by-side, ensure that the minimum distances given in the following table are maintained.


Type	Dimension	M12	M18	M30	
				Short barrel	Long barrel
Shielded	A	30	60	110	
	B	20	35	70	
Non-shielded	A	120	200	300	300
	B	100	120	200	300

## Wiring

High-tension Lines
Wiring through Metal Conduit:
If there is a power or high-tension line near the cable of the Proximity Sensor, wire the cable through an independent metal conduit to prevent against Proximity Sensor damage or malfunctioning.

## Cable Extension

Standard cable length is less than 200 m .
The tractive force is 50 N .

## Mounting

The Proximity Sensor must not be subjected to excessive shock with a hammer when it is installed, otherwise the Proximity Sensor may be damaged or lose its water-resistivity.
Do not tighten the nut with excessive force. A washer must be used with the nut.


Type	Torque
M12	30 Nm
M18	70 Nm
M30	180 Nm

## Maintenance and Inspection

Periodically perform the following checks to ensure stable operation of the Proximity Sensor over a long period of time.

1. Check for mounting position, dislocation, looseness, or distortion of the Proximity Sensor and sensing objects.
2. Check for loose wiring and connections, improper contacts, and line breakage.
3. Check for attachment or accumulation of metal powder or dust.
4. Check for abnormal temperature conditions and other environmental conditions.
5. Check for proper lighting of indicators (for models with a set indicator.)
Never disassemble or repair the Sensor.

## Environment

Water Resistivity
The Proximity Sensors are tested intensively on water resistance, but in order to ensure maximum performance and life expectancy avoid immersion in water and provide protection from rain or snow.
Operating Environment
Ensure storage and operation of the Proximity Sensor within the given specifications.

## Inrush Current

A load that has a large inrush current (e.g., a lamp or motor) will damage the Proximity Sensor, in which case connect the load to the Proximity Sensor through a relay.

## <SUITABILITY FOR USE>

OMRON shall not be responsible for conformity with any standards, codes, or regulations that apply to the combination of the products in the customer's application or use of the products.
Take all necessary steps to determine the suitability of the product for the systems, machines, and equipment with which it will be used.

## <CHANGE IN SPECIFICATIONS>

Product specifications and accessories may be changed at any time based on improvements and other reasons. Consult with your OMRON representative at any time to confirm actual specifications of purchased product.

```
ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.
To convert millimeters into inches, multiply by 0.03937. To convert grams into ounces, multiply by 0.03527.
```

Cat. No. D10E-EN-01 In the interest of product improvement, specifications are subject to change without notice.

Anti-Aluminum Cut Chips Models
E2EZ

## Specialized sensing

 method for immunity against small sized metal objects (e.g. aluminium chips)

Applications


## Ordering Information

## Sensors

Pre-wired Models

Shape		Sensing distance	Output specifications	Model		
		Operating status				
		NO		NC		
Shielded	M18		4 mm	DC 3-wire NPN	E2EZ-X4C1	---
				DC 2-wire	E2EZ-X4D1-N	E2EZ-X4D2-N
		AC 2-wire Models		E2EZ-X4Y1	---	
	M30	8mm	DC 3-wire NPN	E2EZ-X8C1	---	
			DC 2-wire	E2EZ-X8D1-N	E2EZ-X8D2-N	
			AC 2-wire Models	E2EZ-X8Y1		

Connector Models

Shape		Sensing distance	Output specifications	Model		
		Operating status				
		NO		NC		
Shielded	M18		4 mm	DC 2-wire models (3) and (4) pin arrangement	E2EZ-X4D1-M1J NEW	--
				DC 2-wire models (1) and (4) pin arrangement	E2EZ-X4D1-M1GJNEW	---
	M30	8 mm	DC 2-wire models (3) and (4) pin arrangement	E2EZ-X8D1-M1J NEW	---	
			DC 2-wire models (1) and (4) pin arrangement	E2EZ-X8D1-M1G_NEW	---	

Accessories (Order Separately)
Sensor I/O Connectors

Shape	Cable length	Sensor I/O Connectors	Applicable proximity sensor models
Straight type	2 m	XS2F-D421-DD0	E2EZ-X4D $\square$-M1J
	5 m	XS2F-D421-GD0	
L type	2 m	XS2F-D422-DD0	E2EZ-X8D $\square$-M1J
	5 m	XS2F-D422-GD0	
Straight type	2 m	XS2F-D421-DA0-A	E2EZ-X4D $\square$-M1GJ
	5 m	XS2F-D421-GA0-A	
L type	2 m	XS2F-D422-DA0-A	E2EZ-X8D $\square$-M1GJ
	5 m	XS2F-D422-GD0-A	

## Characteristic data (typical)

Sensing Distance vs. Sensing Object

E2EZ-X4 $\square$


E2EZ-X8 $\square$


Rating/performance

Item Model		$\begin{aligned} & \text { E2EZ-X4C1 } \\ & \text { E2EZ-X4Y1 } \end{aligned}$	$\begin{aligned} & \text { E2EZ-X8C1 } \\ & \text { E2EZ-X8Y1 } \end{aligned}$	$\begin{gathered} \text { E2EZ-X4D } \square-\mathrm{N} \\ \text { E2EZ-X4D } \square-\mathrm{M} 1 \mathrm{~J} \\ \text { E2EZ-X4D } \square-\mathrm{M} 1 \mathrm{GJ} \end{gathered}$	$\begin{gathered} \text { E2EZ-X8D■-N } \\ \text { E2EZ-X8D■-M1J } \\ \text { E2EZ-X8D■-M1GJ } \end{gathered}$
Sensing distance		$4 \mathrm{~mm} \pm 10 \%$	$8 \mathrm{~mm} \pm 10 \%$	$4 \mathrm{~mm} \pm 10 \%$	$8 \mathrm{~mm} \pm 10 \%$
Setting distance*1		0 to 3.2 mm	0 to 6.4 mm	0 to 3.2 mm	0 to 6.4 mm
Differential distance		20\% max. of sensing distance			
Sensing object		Ferrous metal (Sensitivity lowers with non-ferrous metals)			
Standard sensing object		Iron, $30 \times 30 \times 1 \mathrm{~mm}$	Iron, $54 \times 54 \times 1 \mathrm{~mm}$	Iron, $30 \times 30 \times 1 \mathrm{~mm}$	Iron, $54 \times 54 \times 1 \mathrm{~mm}$
Response frequency*2		C models: 12 Hz   Y models: 5 Hz	C models: 8 Hz   Y models: 5 Hz	100 Hz	30 Hz
Rated supply voltage (operating voltage)		C models: 12 to 24 VDC, ripple (p-p) : 10\% max., (10 to 30 VDC)		12 to 24 VDC (10 to 30 VDC) ripple (p-p): $10 \%$ max.	
Current consumption		C models: 15 mA max.		---	
Leakage current		Y models: 2 mA max. (at 100 VAC), 3 mA max. (at 200 VAC)		0.8 mA max.	
Control output	Switching capacity	C models: NPN open collector output 12 VDC 100 mA max. (30 VDC max.)   Y models: 10 to 200 mA		3 to 100 mA	
	Residual voltage	C models: 2 V max. (load current: 200 mA with cable length: 2 m )   Y models: Refer to the Specifications		3.0 V max. (under load current of 100 mA with cable length of 2 m )	
Indicator lamp		C models: Detection indicator (red LED)   Y models: Operation indicator (red LED)		D1 models: Operation indicator (red LED), Operation set indicator (green LED) D2 models: Operation indicator (red LED)	
Operating status (with sensing object approaching)		NO		D1 models: NO D2 models: NC NO	
Protective circuits		C models: Reverse connection protection, load shortcircuit protection, surge absorber Y models: None		Surge absorber, short-circuit protection	
Ambient temperature		Operating/Storage: $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ (with no icing or condensation)			
Ambient humidity		Operating/Storage: 35\% to 95\%RH (with no condensation)			
Temperature influence		$\pm 20 \%$ max. of sensing distance within a temperature range of $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ based on the sensing distance at a temperature of $23^{\circ} \mathrm{C}$.			
Voltage influence		E models: $\pm 2.5 \%$ max. of sensing distance within a range of $\pm 10 \%$ of rated power supply voltage Y models: $\pm 1 \%$ max. of sensing distance within a range of $\pm 10 \%$ of rated power supply voltage		$\pm 2.5 \%$ max. of sensing distance within a range of $\pm 10 \%$ of rated power supply voltage	
Insulation resistance		$50 \mathrm{M} \Omega$ min. (at 500 VDC ) between current carry parts and case			
Dielectric strength		C type: 1,000 VAC, 50/60 Hz for 1 min . )		1000 VAC $50 / 60 \mathrm{~Hz}$ for 1 min between current carrying part and case	
Vibration resistance		10 to $55 \mathrm{~Hz}, 1.5-\mathrm{mm}$ double amplitude for 2 hours each in $\mathrm{X}, \mathrm{Y}$, and Z directions			
Shock resistance		Destruction: $1,000 \mathrm{~m} / \mathrm{s}^{2}$ for 10 times each in $\mathrm{X}, \mathrm{Y}$, and Z directions			
Protective structure		IEC60529 IP67			
Connection method		Pre-wired (standard length: 2 m ) Connector Extension Models			
Weight (Packed state)		Approx. 170 g	Approx. 270 g	```E2EZ-X4D\square-N Approx. 160 g E2EZ-X4D\square-M1J Approx. 90 g E2EZ-X4D\square-M1GJ Ap- prox. }90\mathrm{ g```	$\begin{aligned} & \text { E2EZ-X8D } \square-\mathrm{N} \text { Approx. } \\ & 220 \mathrm{~g} \\ & \text { E2EZ-X8D } \square-M 1 \mathrm{~J} \text { Approx. } \\ & 160 \mathrm{~g} \\ & \text { E2EZ-X8D } \square-M 1 G \text { Ap- } \\ & \text { prox. } 160 \mathrm{~g} \end{aligned}$
Material		Case: Brass, Sensing face: Heat-resistant ABS resin Screw: Brass, Mounting nut: Steel			
Accessories		Instruction manual			

*1. Use within a range where the green indicator is lit.
*2. The response frequencies for DC switching are average values measured on condition that the distance between each sensing object is twice as large as the size of the sensing object and the sensing distance set is half of the maximum sensing distance.

## Output Circuit Diagram

DC 2-wire Models

Operating status	Model	Timing chart	Output circuit
NO	$\begin{aligned} & \text { E2EZ-X4D1-N } \\ & \text { E2EZ-X8D1-N } \end{aligned}$	Unstable $\downarrow$ Setting position	Note:   The load can be connected to either the +V or the $0-\mathrm{V}$ line.
	$\begin{aligned} & \text { E2EZ-X4D1-M1J } \\ & \text { E2EZ-X4D1-M1GJ } \\ & \text { E2EZ-X8D1-M1J } \\ & \text { E2EZ-X8D1-M1GJ } \end{aligned}$		(M1J)   Pin arrangement   Note:   Terminals (1) and (2) are not used.   Note:   The load can be connected to either the +V or the $0-\mathrm{V}$ line.   (M1GJ)   Pin arrangement   Note:   Terminals (2) and (3) are not used.   Note:   The load can be connected to either the +V or the $0-\mathrm{V}$ line.
NC	$\begin{aligned} & \text { E2EZ-X4D2-N } \\ & \text { E2EZ-X8D2-N } \end{aligned}$		Note:   The load can be connected to either the +V or the $0-\mathrm{V}$ line.

DC 3-wire Models

Operating status	Model	Timing chart	Output circuit
NO	$\begin{aligned} & \text { E2EZ-X4C1 } \\ & \text { E2EZ-X8C1 } \end{aligned}$		* Load current: 100mA max. at 12 V and 200 mA max. at 24 V

AC 2-wire Models

Correct Use

## Design

Effects of Surrounding Metal
Provide a minimum distance as shown in the table below between the Sensor and the surrounding metal.


Effects of Surrounding Metal (Unit: mm)

| Model | $\begin{array}{r}\text { Item }\end{array}$ | Surround- |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |$)$

Mutual Interference
When installing two or more E2EZ face to face or side by side, ensure that the minimum distances given in the following table maintained.

Mutual Interference (Unit: mm)

Model	Item	A	B
E2EZ-X4 $\square$	40	50	
E2EZ-X8 $\square$	60	100	



## Aluminum and Cast Iron Cut Chips

A detection signal will not be output if aluminum or cast iron cut chips are stuck to the sensing face. Under the following conditions, however, the proximity sensor may output detection signals, in which case remove the cut chips from the sensing face.
(1) About the external diameter (d) of a cut chip and the diameter (D) of the sensing surface If the external diameter (d) of a cut chip is two-thirds the diameter (D) of the sensing face as shown in the illustration.


## (Unit: mm)

Model	Length
E2EZ-X4 $\square$	D
E2EZ-X8 $\square$	16

(2) If cut chips are pressed onto the
 sending face as shown in the illustration.

## Mounting

Do not tighten the nut with excessive force. A washer must be used with the nut.


Note: 1. The table below shows the tightening torques for part A and part B nuts. In the previous examples, the nut is on the sensor head side (part $B$ ) and hence the tightening torque for part $B$ applies. If this nut is in part $A$, the tightening torque for part $A$ applies instead.
2 . The table below shows the value of tightening torques when using toothed washers.

Tightening torgues	Part A		Part B
	Length   $(\mathrm{mm})$	Tensile strength   (torque)	Tensile strength   (torque)
E2EZ-X4C1   E2EZ-X4Y1	20	$15 \mathrm{~N} \bullet \mathrm{~m}$	$29 \mathrm{~N} \cdot \mathrm{~m}$
E2EZ-X8C1   E2EZ-X8Y1	22	$29 \mathrm{~N} \cdot \mathrm{~m}$	$39 \mathrm{~N} \cdot \mathrm{~m}$
E2EZ-X4D $\square-\square$	29	$15 \mathrm{~N} \bullet \mathrm{~m}$	---
E2EZ-X8D $\square-\square$	26	$39 \mathrm{~N} \bullet \mathrm{~m}$	$78 \mathrm{~N} \cdot \mathrm{~m}$

## E2EZ-X4C1

 E2EZ-X4Y1


A 6 dia., 3 -conductor, vinyl-insulated round cable (conductor cross-sectional
area: $0.5 \mathrm{~mm}^{2}$; insulation diameter: 1.9 mm ) is used.
Standard length: 2 m

## E2EZ-X4Y1

A 6 dia., 2 -conductor, vinyl-insulated round cable (conductor cross-sectional
area: $0.5 \mathrm{~mm}^{2}$; insulation diameter: 1.9 mm ) is used.
Standard length: 2 m
2. B, C Type: Detection indicator (red) Y Type: Operation indicator (red)


## E2EZ-X4D $\square-N$



Connector relay type (-M1J/M1GJ)


E2EZ-X8D $\square-N$


Note:
A 6 dia., 2-conductor, vinyl-insulated round cable (conductor cross-sectional area: 0.5
$\mathrm{mm}^{2}$; insulation diameter: 1.9 mm ) is used.
Cable extension (through a single metal conduit): 200 m max
. D1 type: Operation indicator (red);
D2 type: Operation set indicator (green)

Connector relay type(-M1J/M1GJ)


## Mounting Holes



Model	$\mathrm{F}(\mathrm{mm})$
E2EZ-X4 $\square$	$18.5-\mathrm{mm}$ dia. +0
E2EZ-X8 $\square$	$30.5-\mathrm{mm}$ dia. +0

[^39]Cat. No. D028-E2-04-X In the interest of product improvement, specifications are subject to change without notice.

## Chemical Resistant Inductive Proximity Sensor

E2FQ

## Teflon* housing for increased chemical and detergent resistance

* Teflon is a registered trademark of Dupont Company and Mitsui Dupont Chemical Company for their fluoride resin.


## Ordering Information

Shape		Sensing distance	DC 3-wire models			DC 2-wire models		AC 2-wire models		
		PNP (NO)	NPN (NO)	Response frequency	NO	Response frequency	NO	Response frequency		
Shielded	M12		$\square 2 \mathrm{~mm}$	E2FQ-X2F1	E2FQ-X2E1	1.5 kHZ	E2FQ-X2D1	800 Hz	---	---
	M18	5 mm	E2FQ-X5F1	E2FQ-X5E1	600 Hz	E2FQ-X5D1	500 Hz	E2FQ-X5Y1	25 HZ	
	M30	10 mm	E2FQ-X10F1	E2FQ-X10E1	400 Hz	E2FQ-X10D1	300 Hz	E2FQX10Y1		

## Characteristic data (typical)

Sensing Distance vs. Sensing Object

## E2FQ-X2 $\square$



## E2FQ-X5 $\square$



E2FQ-X10 $\square$


Note: 1. CE mark certification in progress at time of catalog printing. Please contact your OMRON representative for the current status.

## Rating/Performance

Item	Model	E2FQ-X2 $\square$	E2FQ-X5 $\square$	E2FQ-X10 $\square$	
Sensing distance		$2 \mathrm{~mm} \pm 10 \%$	$5 \mathrm{~mm} \pm 10 \%$	$10 \mathrm{~mm} \pm 10 \%$	
Setting distance		0 to 1.6 mm	0 to 4 mm	0 to 8 mm	
Differential distance		E1, F1, Y1 models: $10 \%$ max. of sensing distance			
Sensing object		Ferrous metal (Sensitivity lowers with non-ferrous metals)			
Standard sensing object (mild steel)		$12 \times 12 \times 1 \mathrm{~mm}$	$18 \times 18 \times 1 \mathrm{~mm}$	$30 \times 30 \times 1 \mathrm{~mm}$	
Response frequency*1		E1, F1 models: 1.5 kHz   D1 models: 800 Hz	E1, F1 models: 600 Hz , D1 models: 500 Hz	E1, F1 models: 400 Hz , D1 models: 300 Hz	
		Y1 models: 25 Hz			
Power supply (Operating voltage range)			E1, F1 models: 12 to 24 VDC, ripple (p-p) : 10\% max., (10 to 30 VDC) D1 models: 12 to 24 VDC, ripple ( $p-p$ ) : 20\% max., ( 10 to 36 VDC)		
Current consumption		E1, F1 models: 17 mA max.			
Leakage current		D1 models: 0.8 mA max., Y models: 5 to 300 mA			
Control output	Switching capacity	E1, F1 models: 200 mA max., D1 models: 5 to $100 \mathrm{~mA} \mathrm{DC} ,\mathrm{Y} \mathrm{models:} 5$ to 300 mA			
	Residual voltage	E1, F1 models: 2 V max. (load current: 200 mA with cable length: 2 m )   Y models: Refer to the Specifications.   D1 models: 4.0 V max. (under load current of 100 mA with cable length of 2 m )			
Indicator lamp		E,D models: detection indicator (red), Y models: operation indicator (red)			
Operating status (with sensing object approaching)		E1, F1 models, D1 models and Y1 models: NO			
Protective circuits		E1, F1 models: Protection for reverse polarity, load short circuit, surge voltage			
Ambient temperature		Operating/Storage: $-25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (with no icing or condensation)			
Ambient humidity		Operating/Storage: $35 \%$ to $95 \%$ RH (with no condensation)			
Temperature influence		$10 \%$ max. of sensing distance at $23^{\circ} \mathrm{C}$ within temperature range of $-25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$			
Voltage influence		E1, F1 models: $\pm 2.5 \%$ max. of sensing distance within rated voltage range $\pm 15 \%$			
Insulation resistance		50 M min . (at 500 VDC ) between energized parts and case			
Dielectric strength		E1, F1, D1 models: 1,000 VAC $50 / 60 \mathrm{~Hz}$ for 1 min between energized parts and case			
Vibration resistance		Destruction: 10 to $55 \mathrm{~Hz}, 1.5 \mathrm{~mm}$ double amplitude for 2 hours each in $\mathrm{X}, \mathrm{Y}$, and Z directions			
Shock resistance		Destruction: $500 \mathrm{~m} / \mathrm{s}^{2}$ for 10 times each in $X, Y$, and $Z$ directions	Destruction: $1,000 \mathrm{~m} / \mathrm{s}^{2}$ for 10 times each in $\mathrm{X}, \mathrm{Y}$, and Z directions		
Protective structure		IEC60529 IP67			
Connection method		Pre-wired models (standard length: 2 m )			
Weight (Packed state)		Approx. 70 g	Approx. 130 g	Approx. 170 g	
Material	Case	Teflon *2			
	Sensing surface				
Accessories		Instruction manual			

*1. The response frequencies for DC switching are average values measured on condition that the distance between each sensing object is twice as large as the size of the sensing object and the sensing distance set is half of the maximum sensing distance.
*2. Teflon is a registered trademark of Dupont Company and Mitsui Dupont Chemical Company for their fluoride resin.

## Output Circuit Diagram

Operating status	Output specifications	Model	Timing chart	Output circuit
NO	PNP	E2FQ-X $\square$ F1	Sensing Yes   object $\quad$ No	
	NPN	E2FQ-X $\square$ E1		Note:   1. 200 mA max.(load current)   2. When a transistor is connected
	DC 2-wire	E2FQ-X $\square$ D1		Note:   The load can be connected to either the +V or the $0-\mathrm{V}$ line.
	AC 2-wire Models	E2FQ-X $\square \mathrm{Y} 1$		

## Precautions

Correct Use

## Design

Effects of Surrounding Metal
Provide a minimum distance between the Sensor and the surrounding metal as shown in the table below.


Effects of Surrounding Metal

Model Item	1	d	D	m	n
E2FQ-X2 $\square$	0	12	0	8	18
E2FQ-X5 $\square$		18		20	27
E2FQ-X10 $\square$		30		40	45

## Mutual Interference

If more than one Proximity Sensor is installed face to face or in parallel, ensure that the distances between two Units adjacent to each other are the same as or larger than the corre-
sponding values shown in the following table.


Installation
Do not tighten the nut with excessive force. A washer must be used with the nut.


Note: The table below shows the value of tightening torques when using toothed washers.

Model	Torque
Tensile strength   (torque)	
E2FQ-X2 $\square$	0.98 Nm
E2FQ-X5 $\square$	2 Nm
E2FQ-X10 $\square$	

## Others

Chemical resistance

## Dimensions (Unit: mm)



## Mounting Holes



Model	F (mm)
E2FQ-X2 $\square$	12.5 mm dia. ${ }^{+0.5}$
E2FQ-X5 $\square$	18.5 mm dia. ${ }^{+0.5}$
E2FQ-X10 $\square$	30.5 mm dia. ${ }^{+0.5}$

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.
To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .
Cat. No. D029-E2-04-X
In the interest of product improvement, specifications are subject to change without notice.

## Spatter Immune Proximity Sensors

E2EQ

## A Series of Spatter-resistant Proximity Sensors with a Teflon-coated Metal Housing

* Teflon is a registered trademark of Dupont Company and Mitsui Dupont Chemical Company for their fluoride resin.



## Ordering Information

Sensors

- Pre-wired Models

Extended-distance type

Shape		Sensing distance	Output specifications	Operating status	Model
Shielded	M12	4 mm	DC 2-wire	NO	E2EQ-X4X1
	M18	8 mm			E2EQ-X8X1
	M30	15 mm			E2EQ-X15X1

Standard

Shape		Sensing distance	Output specifications	Operating status	Model
Shielded   $\xrightarrow{4}$	M12	3 mm	DC 2-wire	NO	E2EQ-X3D1
	M18	7 mm			E2EQ-X7D1
	M30	10 mm			E2EQ-X10D1

- Plug-in Models

Extended-distance type

Shape		Sensing distance	Output specifications	Operating status	Model
Shielded	M12	4 mm	DC 2-wire models (3) and (4) Pin arrangement	NO	E2EQ-X4X1-M1J
	M18	8mm			E2EQ-X8X1-M1J
	M30	15 mm			E2EQ-X15X1-M1J

Standard

Standard		Sensing distance	Output specifications	Operating status	Model
Shielded	M12	3 mm	DC 2-wire models (1) and (4) Pin arrangement	NO	E2EQ-X3D1-M1GJ
	M18	7 mm			E2EQ-X7D1-M1GJ
	M30	10 mm			E2EQ-X10D1-M1GJ

## Accessories (Order Separately)

Sensor I/O Connectors

Shape	Cable length	Sensor I/O Connectors	Applicable proximity sensor models
Straight type	2 m	XS2F-D421-DCO-A	E2EQ-X $\square \mathrm{X} 1-\mathrm{M} 1 \mathrm{~J}$
	5 m	XS2F-D421-GCO-A	
L type	2 m	XS2F-D422-DCO-A	
	5 m	XS2F-D422-GCO-A	
Straight type	2 m	XS2F-D421-DA0-A	E2EQ-X $\square$ D1-M1GJ
	5 m	XS2F-D421-GA0-A	
L type	2 m	XS2F-D422-DA0-A	
	5 m	XS2F-D422-GA0-A	

## Rating/Performance

Long-distance type

Item	Model	$\begin{aligned} & \hline \text { E2EQ-X4X1 } \\ & \text { E2EQ-X4X1-M1J } \end{aligned}$	$\begin{aligned} & \hline \text { E2EQ-X8X1 } \\ & \text { E2EQ-X8X1-M1J } \end{aligned}$	$\begin{aligned} & \hline \text { E2EQ-X15X1 } \\ & \text { E2EQ-X15X1-M1J } \\ & \hline \end{aligned}$
Sensing distance		$4 \mathrm{~mm} \pm 10 \%$	$8 \mathrm{~mm} \pm 10 \%$	$15 \mathrm{~mm} \pm 10 \%$
Setting distance*1		0 to 3.2 mm	0 to 6.4 mm	0 to 12 mm
Differential distance		$15 \%$ max. of sensing distance		
Standard sensing object (mild steel)		$12 \times 12 \times 1 \mathrm{~mm}$	$18 \pm 18 \pm 1 \mathrm{~mm}$	$30 \pm 30 \pm 1 \mathrm{~mm}$
Response frequency*2		1 kHz	0.5 kHz	0.25 kHz
Control output	Switching capacity	3 to 100 mA		
	Residual voltage*3	5.0 V max. (under load current of 100 mA with cable length of 2 m )		
Operating status (with sensing object approaching)		C1 models: NO		
Protective circuits		Surge absorber, load short-circuit protection		
Ambient temperature		Operating: $-25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$, Storage: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (with no icing or condensation)		
Temperature influence		$\pm 15 \%$ max. of sensing distance at $23^{\circ} \mathrm{C}$ within temperature range of $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C} \pm 10 \%$ max. of sensing distance at $23^{\circ} \mathrm{C}$ within temperature range of $-25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$		$\pm 15 \%$ max. of sensing distance at $23^{\circ} \mathrm{C}$ within temperature range of $-25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Voltage influence		$\pm 1 \%$ max. of Sensing distance in rated voltage range $\pm 15 \%$.		
Shock resistance		Destruction: $1,000 \mathrm{~m} / \mathrm{s}^{2}$ for 10 times each in $\mathrm{X}, \mathrm{Y}$, and Z directions		
Connection method		Pre-wired (standard length: 2 m ) Connector Extension Models		
Weight (Packed state)	Pre-wired	65 g	Approx. 140 g	Approx. 190 g
	Junction connector	Approx. 20 g	Approx. 40g	Approx. 90 g

*1. Use within a range where the green indicator is lit.
*2. The response frequencies for DC switching are average values.
*3. Since residual voltage is 5 V , use it after checking interface requirements with the connection devices

## Standard

Item	Model	$\begin{aligned} & \hline \text { E2EQ-X3D1 } \\ & \text { E2EQ-X3D1-M1GJ } \end{aligned}$	$\begin{aligned} & \hline \text { E2EQ-X7D1 } \\ & \text { E2EQ-X7D1-M1GJ } \end{aligned}$	$\begin{aligned} & \text { E2EQ-X10D1 } \\ & \text { E2EQ-X10D1-M1GJ } \end{aligned}$
Sensing distance		$3 \mathrm{~mm} \pm 10 \%$	$7 \mathrm{~mm} \pm 10 \%$	$10 \mathrm{~mm} \pm 10 \%$
Setting distance		0 to 2.4 mm	0 to 5.6 mm	0 to 8 mm
Differential distance		10\% max.		
Standard sensing object (mild steel)		$12 \times 12 \times 1 \mathrm{~mm}$	$18 \times 18 \times 1 \mathrm{~mm}$	$30 \times 30 \times 1 \mathrm{~mm}$
Response frequency		1 kHz	500 Hz	400 Hz
Control output	Switching capacity	3 to 100 mA		
	Residual voltage	3.0 V max. (under load current of 100 mA with cable length of 2 m )		
Operating status (with sensing object approaching)		NO		
Protective circuits		Surge absorber, short-circuit protection		
Ambient temperature		Operating/Storage: $-25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (with no icing or condensation)		
Temperature influence		$\pm 10 \%$ max. of sensing distance at $23^{\circ} \mathrm{C}$ within temperature range of $-25^{\circ} \mathrm{C}$ and $70^{\circ} \mathrm{C}$		
Voltage influence		$\pm 2.5 \%$ max. of Sensing distance within rated voltage range $\pm 15 \%$.		
Shock resistance		Destruction: $1,000 \mathrm{~m} / \mathrm{s}^{2}$ for 10 times each in $\mathrm{X}, \mathrm{Y}$, and Z directions		
Connection method		E2EQ-X $\square$ D1: Pre-wired models (Standard length: 2 m )   E2EQ-X $\square$ D1-M1GJ type: Connector relay models (Standard length: 300 mm )		
Weight (Packed state)	Pre-wired	Approx. 120 g	Approx. 160 g	Approx. 220 g
	Junction connector	Approx. 80 g	Approx. 110 g	Approx. 190 g

* The response frequencies for DC switching are average values measured on condition that the distance between each sensing object is twice as large as the size of the sensing object and the sensing distance set is half of the maximum sensing distance.


## General

Model						E2EQ-X4X1   E2EQ-X4X1-M1J   E2EQ-X3D1   E2EQ-X3D1-M1GJ	E2EQ-X8X1   E2EQ-X8X1-M1J   E2EQ-X7D1   E2EQ-X7D1-M1GJ	E2EQ-X15X1   E2EQ-X15X1-M1J   E2EQ-X10D1   E2EQ-X10D1-M1GJ
Sensing object	Ferrous metal (Sensitivity lowers with non-ferrous metals)							

* Teflon is a registered trademark of Dupont Company and Mitsui Dupont Chemical Company for their fluoride resin.


## Characteristic data (typical)

Sensing Distance vs. Sensing Object
E2EQ-X4X1(-M1J)


E2EQ-X3D1(-M1GJ)


## E2EQ-X8X1(-M1J)



E2EQ-X7D1(-M1GJ)


E2EQ-X15X1(-M1J)


E2EQ-X10D1(-M1GJ)


## Output Circuit Diagram

## Extended-distance type

Model	Operating status	Timing chart	Output circuit
E2EQ-X4X1   E2EQ-X8X1   E2EQ-X15X1   E2EQ-X4X1-M1J   E2EQ-X8X1-M1J   E2EQ-X15X1-M1J	NO		Note:   1. The load can be connected to either the +V or the $0-\mathrm{V}$ line. 2. Since there is no polarity, there is no need to pay attention to the brown or blue polarity.   Note:   Terminals (2) and (3) are not used.

## Standard

Model	Ope-   rating   status	Timing chart	Output circuit
E2EQ-X3D1   E2EQ-X7D1   E2EQ-X10D1   E2EQ-X3D1-M1GJ   E2EQ-X7D1-M1GJ   E2EQ-X10D1-M1GJ	NO		Note:   The Load can be connected to either the +V or the $0-\mathrm{V}$ line.   Note:   Terminals (2) and (3) are not used.

## Connecting Plug-in models


Correct Use

## Design

Effects of Surrounding Metal
Provide a minimum distance between the Sensor and the surrounding metal as shown in the table below.


Effects of Surrounding Metal (Unit: mm)

Model Item	1	d	D	m	n
E2EQ-X4X1(-M1J)	2.4	18	2.4	12	18
E2EQ-X8X1(-M1J)	3.6	27	3.6	24	27
E2EQ-X15X1(-M1J)	6	45	6	45	45
E2EQ-X3D11(-M1GJ)	0	12	0	8	18
E2EQ-X7D1(-M1GJ)		18		20	27
E2EQ-X10D1(-M1GJ)		30		40	45

## Mutual Interference

If more than one Proximity Sensor is installed face to face or in parallel, make sure that the distances between two Units adjacent to each other are the same as or larger than the corresponding values shown in the following table.


Mutual Interference(Unit: mm)

Model	Item	A
E2EQ-X4X1(-M1J)	30	20
E2EQ-X8X1(-M1J)	60	35
E2EQ-X15X1(-M1J)	110	90
E2EQ-X3D1(-M1GJ)	30	20
E2EQ-X7D1(-M1GJ)	50	35
E2EQ-X10D1(-M1GJ)	100	70

## Mounting

Do not tighten the nut with excessive force. A washer must be used with the nut.


Note: 1 . The table below shows the tightening torques for part A and part B nuts. In the previous examples, the nut is on the sensor head side (part B) and hence the tightening torque for part B applies. If this nut is in part A, the tightening torque for part A applies instead.
2 . The table below shows the value of tightening torques when using toothed washers.

Model Torque	Part A		Part B
	Length (mm)	Torque	Torque
E2EQ-X4X1(-M1J)	---	30 Nm	
E2EQ-X8X1(-M1J)		70 Nm	
E2EQ-X15A(-M1J)		180 Nm	
E2EQ-X3D1(-M1GJ)	24	15 Nm	---
E2EQ-X7D1(-M1GJ)	29		
E2EQ-X10D1(-M1GJ)	26	39 Nm	78 Nm

## Dimensions (Unit: mm)

- Pre-wired Models

Extended-distance type


## Plug-in Models

Extended-distance type


E2EQ-X4X1-M1J

*1: Vinyl-insulated round cable (flame-resistant), 4 dia. (Conducting cross-sectional area: $0.3 \mathrm{~mm}^{2}$; insulator
diameter: 1.3 mm
Standard length 300 mm
*2: Operation indicator (red) and setting indicator (green).

E2EQ-X8X1-M1J

*1: Vinyl-insulated round cable (flame-resistant), 5 dia (Conducting cross-sectional area: $0.5 \mathrm{~mm}^{2}$; insulator diameter: 1.9 mm )
tandard length: 300 mm
2: Operation indicator (red) and setting indicator (green).

E2EQ-X15X1-M1J


Standard


## ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.

To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .
Cat. No. D055-E2-03-X In the interest of product improvement, specifications are subject to change without notice.

## Inductive Proximity Sensor

## E2KQ-X

Proximity Sensor with Easy Sensing Distance Adjustment and Teflon* Coating Effective Oil and Chemical Resistance

- Oil and chemical-resistant Teflon case.
- Sensitivity adjuster ensures easy sensing distance adjustment according to the sensing object.
- Incorporates a cord connector with an indicator providing high visibility.
* Teflon is a registered trademark of Dupont Company and Mitsui Dupont Chemical Company for their fluoride resin.


## Ordering Information

Shape	Sensing distance		Output	Operating   status	Model	
Unshielded   K/	M18		$\square$	6 to   10 mm	DC 3-wire   NPN	NO *

* NC models available (E2KQ-X10ME2)


## Characteristic data (typical)

## Output Circuit Diagram

DC 3-wire Models


## Rating/Performance

Item	Model	E2KQ-X
Sensing distance *		10 mm
Sensing distance adjustable range		6 to 10 mm
Differential distance		$4 \%$ to $20 \%$ of sensing distance
Sensing object		Conductors and dielectrics
Standard sensing object		with grounded metal: $50 \times 50 \times 1 \mathrm{~mm}$
Response frequency		35 Hz
Rated supply voltage (operating voltage)		12 to 24 VDC (10 to 30 VDC ), ripple (p-p): 10\% max.
Current consumption		15 mA max.
Control output	Switching capacity	100 mA
	Residual voltage	1.5 V max. (under load current of 100 mA with cable length of 2 m )
Indicator lamp		Detection indicator (red LED)
Operating status (with sensing object approaching)		Refer to previous pages for details of operating chart of output circuits.
Protective circuits		Reverse connection protection, surge absorber
Ambient temperature		Operating: $-10^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$, Storage: $-25^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ (with no icing or condensation)
Ambient humidity		Operating/Storage: $35 \%$ to $85 \%$ RH (with no condensation)
Temperature influence		$\pm 15 \%$ max. of sensing distance at $23^{\circ} \mathrm{C}$ in the temperature range of $-10^{\circ} \mathrm{C}$ and $55^{\circ} \mathrm{C}$
Voltage influence		$2 \%$ max. sensing distance within a range of $80 \%$ to $120 \%$ of the rated supply voltage.
Insulation resistance		50 M min . (at 500 VDC ) between energized parts and case
Dielectric strength		500 VAC $50 / 60 \mathrm{~Hz}$ for 1 min between energized part and case
Vibration resistance		10 to $55 \mathrm{~Hz}, 1.5 \mathrm{~mm}$ double amplitude for 2 hours each in $\mathrm{X}, \mathrm{Y}$, and Z directions
Shock resistance		Destruction: $500 \mathrm{~m} / \mathrm{s}^{2}$ for 3 times each in $\mathrm{X}, \mathrm{Y}$, and Z directions
Protective structure		IEC IP66
Connection method		Pre-wired models (standard length: 2 m )
Weight (Packed state)		Approx. 150 g
Material	Case, Sensing surface	Fluororesin
	Clamping nut	
Accessories		Instruction sheet and screwdriver for adjustment

* This sensing distance is possible with a standard sensing object. Refer to Engineering Data for sensing distances of other materials.
Correct Use


## Design

Effects of Surrounding Metals
If E2K-X is embedded in metal, maintain at least the following distances between E2K-X and the metal.


* Ensure to ground the metal object, otherwise E2KQ-X will not be in stable operation.


## Effects of Surrounding Metal

(Unit: mm)

Model	Length	l	d	m	n
E2KQ-X10ME1	30	75	18	90	

If a mounting bracket is used, be sure that at least the following distances are maintained.

Effects of Surrounding Metal (Unit: mm)

Model	Length	G	H
E2KQ-X10ME1	30	35	



## Mutual Interference

If more than one Sensor is located face to face or in parallel, provide sufficient space between adjacent Sensors to suppress mutual interference as indicated in the following diagram.


Mutual Interference
(Unit: mm)

Model	Length	A	B
E2KQ-X10ME1	200	32	

## Effect of High-frequency Electro-magnetic Field

E2KQ-X may malfunction if there is an ultrasonic washer, high-frequency generator, transceiver, or inverter nearby. For a typical measure refer to the "Noise" with Common precautions of a photoelectric sensor in Rear B-page.

## Installation

The tightening torque must not exceed the following value.


## - Adjustment

Sensing object
The maximum sensing distance will decrease if the sensing object is a metal or dielectric object that is not grounded.

- Sensing Object Material E2K-C can detect almost any type of object. The sensing distance of E2K-C, however, will vary with the electrical characteristics of the object, such as the conductance and inductance of the object, and the water content and capacity of the object. The maximum sensing distance of E2K-C will be available if the object is made of grounded metal.
- Ensure a constant ambient operating temperature during the indirect detection of objects.


## Miscellaneous

## Ambient Conditions

Ensure that the E2K-X is free from sprayed water, oil, chemical, or condensation, otherwise E2K-X may malfunction by detecting them as sensing objects.
Environment
E2KQ-X has a water-resistant design. To increase the reliability of E2KQ-X in operation, however, it is recommended that E2KQ-X is free from sprayed water or machining oil.
The cord is not coated with Teflon, which must be taken into consideration when installing the E2KQ-X.

## Dimensions

## E2KQ-X10ME1



To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527

## Long-distance Capacitive Proximity Sensor

## E2K-c

## Capacitive Proximity Sensor with Adjustable Sensitivity

- Detects both metallic and non-metallic objects (glass, lumber, water, oil, plastic, etc.) without direct contact.
- DC models acquire CE marking



## Ordering Information

## Sensors

Shape	Sensing distance	Model		
		Output specifications	Operating status	
			NO	NC
Unshielded   34 dia.	$\square$ 3 to 25 mm	DC 3-wire NPN DC 3-wire PNP	$\begin{aligned} & \text { E2K-C25ME1 } \\ & \text { E2-KC25MF1 } \end{aligned}$	$\begin{aligned} & \text { E2K-C25ME2 } \\ & \text { E2K-C25MF2 } \end{aligned}$

Accessories (Order Separately)
Mounting Brackets

Shape	Model	Quantity	Remarks
Y92E-A34	1	Supplied with the product.	

## Rating/Performance

Item Model		E2K-C25M $\square 1$	E2K-C25M■2
Sensing distance *		25 mm	
Sensing distance adjustable range		3 to 25 mm	
Sensing object		Conductors and dielectrics	
Standard sensing object		with grounded metal: $50 \times 50 \times 1 \mathrm{~mm}$	
Differential distance		$15 \%$ max. of sensing distance (when adjusted to $25 \mathrm{~mm} \pm 10 \%$ with standard object)	
Response frequency		70 Hz	
Power supply(Operating voltage range)		12 to 24 VDC, ripple (p-p): $10 \%$ max.,(10 to 40 VDC)	
Current consumption		E models: 10 mA max. at $12 \mathrm{VDC}, 16 \mathrm{~mA} \mathrm{max}$. at 24 VDC	
Leakage current		Y models: 1 mA max. at 100 VAC ( $50 / 60 \mathrm{~Hz}$ ) with output turned OFF., 2 mA max. at 200 VAC ( $50 / 60 \mathrm{~Hz}$ ) with output turned OFF.	
Control output	Switching capacity	200 mA max.	
	Residual voltage	2 V max. (under load current of 200 mA with cable length of 2 m )	
Indicator lamp		Detection indicator (red LED)	
Operating status (with sensing object approaching)		E1, Y1 models: NO E2, Y2 models: NC	
Protective circuits		Reverse connection protection, surge absorber	
Ambient temperature		Operating/Storage: $-25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (with no icing or condensation)	
Ambient humidity		Operating/Storage: $35 \%$ to $95 \%$ RH (with no condensation)	
Temperature influence		$\pm 15 \%$ max. of sensing distance at $23^{\circ}$ within temperature range $-10^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$	
Voltage influence		$\pm 2 \%$ max. of sensing distance at a voltage between $85 \%$ and $115 \%$ of the rated power supply voltage	
Insulation resistance		$50 \mathrm{M} \mathrm{min}. \mathrm{(at} 500 \mathrm{VDC}$ ) between current carry parts and case	
Dielectric strength		1000 VAC $50 / 60 \mathrm{~Hz}$ for 1 min between energized part and case	
Vibration resistance		10 to $55 \mathrm{~Hz}, 1.5 \mathrm{~mm}$ double amplitude for 2 hours each in $\mathrm{X}, \mathrm{Y}$, and Z directions	
Shock resistance		Destruction: $500 \mathrm{~m} / \mathrm{s}^{2}$ for 10 times each in $\mathrm{X}, \mathrm{Y}$, and Z directions	
Protective structure		IEC 60529 IP66	
Connection method		Pre-wired models (standard length: 2 m )	
Weight (Packed state)		Approx. 200 g	
Material	Case	Heat-resistant ABS resin	
	Sensing surface		
Accessories		Mounting bracket, instruction manual	

* The set distances are sensing distances applicable to standard sensing objects. Refer to Engineering Data for sensing distances applicable to other types of objects.

Characteristic data (typical)
Sensing Distance Change by Sensing Object (Typical)


## Output Circuit Diagram

DC 3-wire Models

\begin{tabular}{|c|c|c|c|}
\hline Operating status \& Model \& Timing chart \& Output circuit <br>
\hline NO

NC \& E2K-C25ME1

E2K-C25ME2 \&  \& | * 1. 200 mA max. (load current) |
| :--- |
| * 2. When a transistor is connected | <br>

\hline NO

NC \& E2K-C25MF1

E2K-C25MF2 \&  \& | * 1. Maximum load current: 200 mA |
| :--- |
| * 2. Current flows in this direction if the circuit incorporates the transistor. | <br>

\hline
\end{tabular}

## Operation

## Sensitivity adjustment

Remove the rear rubber cap of the E2K-C and turn the potentiometer in the hole to adjust the sensitivity of the E2K-C.


The sensing distance increases by turning the potentiometer clockwise and decreases by turning the potentiometer counterclockwise. The potentiometer can make $15 \pm 3$ valid turns and then make slip turns because the potentiometer does not have a stopper. The slip turns will not, however, damage the potentiometer.

1. Slowly turn the potentiometer clockwise until the E2K-C turns on with no sensing object.

2. Turn the potentiometer counterclockwise until the E2K-C turns off with the sensing object located within the sensing distance.

3. The E2K-C will be in stable operation if there is a difference of 1.5 turns or more between the points the E2K-C is turned on and off, otherwise the E2K-C will not be in stable operation.

4. Set the potentiometer midway between the two points.

5. If the distance of each sensing object varies, take step 2 with the sensing object located at the farthest sensing distance to be applied.

## Correct Use

## Design

## Effects of Surrounding Metal

During Proximity Sensor installation provide a distance of 80 mm min. from the surrounding metal objects to prevent the Sensor from being affected by metal objects other than the sensing object.
If installing the Sensor with the L-shaped mounting bracket, provide a distance of 20 mm min . between the face of the sensing head and the mounting bracket.


## Mutual Interference

Space the two Sensors at a distance exceeding 100 mm to prevent mutual interference.

Face-to-dace Mounting


Effect of High-frequency Electro-magnetic Field
The E2K-C may malfunction if there is an ultrasonic washer, high-frequency generator, transceiver, or inverter nearby.

## Sensing Object

- Sensing Object Material. The E2K-C can detect almost any type of object. The sensing distance of the E2K-C, however, will vary with the electrical characteristics of the object, such as the conductance and inductance of the object, and the water content and capacity of the object. The maximum sensing distance of E2K-C will be available if the object is made of grounded metal.
- Indirect Detection. In the case of the detection of objects in metal containers, each metal container must have a nonmetallic window.


## Miscellaneous

Organic Solvents
E2K-C has a case made of heat-resistant ABS resin. Be sure that the case is free from organic solvents or solutions containing organic solvents.

## Dimensions (Unit: mm)

## Sensors

## E2K-C25M $\square$



## Accessories (Order Separately)*

## L-shaped Mounting Bracket

## Y92E-A34



[^40]Flat Type Capacitive Proximity Sensor
E2K-F

## Low-profiled Capacitive Proximity Sensor providing Flexible Installation

## Ordering Information

Shape	Sensing distance	Output specifications	Operating status	Model
	10 mm	DC 3-wire NPN	NO	E2K-F10MC1
			NC	E2K-F10MC2
	4 to 10 mm		NO	E2K-F10MC1-A
			NC	E2K-F10MC2-A

## Rating/Performance

Item		$\begin{aligned} & \text { E2K-F10MC1 } \\ & \text { E2K-F10MC2 } \end{aligned}$	$\begin{aligned} & \text { E2K-F10MC1-A } \\ & \text { E2K-F10MC2-A } \end{aligned}$
Sensing distance		$10 \mathrm{~mm} \pm 10 \%$	4 to $10 \mathrm{~mm} \pm 10 \%$
Setting distance		0 to 7.5 mm	
Differential distance		15\% max. sensing distance	
Sensing object		Conductors and dielectrics	
Standard sensing object		with grounded metal: $50 \times 50 \times$	
Response frequency		100 Hz	
Rated supply voltage (operating voltage)		12 to 24 VDC (10 to 30 VDC ), rip	
Current consumption		$10 \mathrm{~mA} \mathrm{max}$. (24VDC)	
Control output	Switching capacity	NPN open collector 100 mA max	
	Residual voltage	1.5 V max. (under load current	le length of 2 m )
Indicator lamp		Detection indicator (red LED)	
Operating status (with sensing object approaching)		NO	
Protective circuits		Reverse connection protection,	
Ambient temperature		Operating/Storage: $-10^{\circ} \mathrm{C}$ to $55^{\circ}$	r condensation)
Ambient humidity		Operating/Storage: $35 \%$ to $95 \%$	
Temperature influence		$\pm 15 \%$ max. of sensing distance	temperature range of $-10^{\circ} \mathrm{C}$ and $55^{\circ} \mathrm{C}$
Voltage influence		$\pm 2.5 \%$ max. of sensing distance	$\pm 10 \%$ of rated supply voltage
Insulation resistance		$50 \mathrm{M} \mathrm{min}. \mathrm{(at} 500 \mathrm{VDC})$ betwe	s and case
Dielectric strength		500 VAC $50 / 60 \mathrm{~Hz}$ for 1 min be	art and case
Vibration resistance		Malfunction: 10 to $55 \mathrm{~Hz}, 1.5 \mathrm{~mm}$	e for 2 hours each in $\mathrm{X}, \mathrm{Y}$, and Z directions
Shock resistance		Destruction: $500 \mathrm{~m} / \mathrm{s}^{2}$ for 3 time	$\mathrm{d} Z$ directions
Protective structure		IEC 60529 IP66	IEC 60529 IP64
Connection method		Pre-wired models (standard len	
Weight (Packed state)		Approx. 35 g	
Material	Case	Heat-resistant ABS resin	
	Sensing surface	Heat-resistant ABS resin	
Accessories		Instruction manual	

## Characteristic data (typical)

Sensing Distance vs. Sensing Object


## Output Circuit Diagram



## Precautions

## Correct Use

## Design

## Sensing Object Material

E2K-F can detect almost any type of object. The sensing distance of E2K-F, however, will vary with the electrical characteristics of the object, such as the conductance and inductance of the object, as well as the water content and capacity of the object. The maximum sensing distance of E2K-F will be available if the object is made of grounded metal. There are objects that cannot be detected indirectly. Therefore test E2K-F in a trial operation with the objects before using E2K-F in actual applications.

## Effects of Surrounding Metal

Separate E2K-F from ambient metals as shown below.


Mutual Interference
If installing more than one E2K-F face to face or side by side, separate them as shown below.


## Effect of High-frequency Electro-magnetic Field

E2K-F may malfunction if an ultrasonic washer, high-frequency generator, transceiver, or inverter are nearby.
For a typical measure, refer to the "Noise" with Common precautions of a photoelectric sensor in Rear B-page.

## Wiring Considerations

The characteristics of E2K-F will not change if the cord is extended. Keep in mind that voltage drops may occur due to the cord extension, thus, ensure that the total cord length does not exceed 200 m .


[^41]To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527

## Rotary Encoders

Incremental	25 dia.	E6A2-C	E-3
	40 dia.	E6B2-C	E-5
	50 dia.	E6C2-C/E6C3-C	E-7
	60 dia.	E6F-C	E-9
	40 dia. (Hollow Shaft)	E6H-C	(CD)
Absolute	50 dia.	E6C3-A	E-11
	60 dia.	E6F-A	E-13
Easy Scale	Linear Encoder	E6L	(CD)

## Incremental Rotary Encoder OD 25 dia.

## E6A2-C

## Compact with an External Diameter of 25 mm

- Meets positioning requirements. It is a lineup type with a starting point output (phase Z).
- Ensures maximum measurement precision.
- An additional series of models with 25 dia. ensuring a resolution of $500 \mathrm{P} / \mathrm{R}$.
- Shock resistance strengthened by metal disk. (600 P/R max.) Patent



## Ordering Information

Sensors

Output phase	Power supply voltage	Output form	Resolution (pulse/rotation)	Model
A	5 to 12 VDC	NPN voltage output	10, 60, 100, 200, 300, 360	E6A2-CS3E
			500	
		NPN open collector	10, 60, 100, 200, 300, 360	E6A2-CS3C
			500	
	12 to 24VDC		10, 60, 100, 200, 300, 360	E6A2-CS5C
			500	
A, B	5 to 12 VDC	NPN voltage output	100, 200, 360	E6A2-CW3E
			500	
		NPN open collector	100, 200, 360	E6A2-CW3C
			500	
	12 to 24VDC		100, 200, 360	E6A2-CW5C
			500	
A, B, Z	5 to 12 VDC	NPN voltage output	100, 200, 360	E6A2-CWZ3E
			500	
		NPN open collector	100, 200, 360	E6A2-CWZ3C
			500	
	12 to 24VDC		100, 200, 360	E6A2-CWZ5C
			500	

Note: For order placement add the resolution (pulses per revolution) between the part number. For example, E6A2-CS3E 60 P/R.

## Accessories (Order Separately)

Item	Model	Remarks
Coupling	E69-C04B	Supplied with the product.
Servo Mounting   Bracket	E69-1	Provided with the E6A2-CWZ $\square$

## Dimensions (Unit: mm)

## E6A2



Note:
Vinyl-insulated round cable of 4 dia. 5 cores conductor cross-sectional
area: $0.15 \mathrm{~mm}^{2}$. insulation diameter: 0.9 mm Standard length: 500 mm area: $0.15 \mathrm{~mm}^{2}$; insulation diameter: 0.9 mm Standard length: 500 mm

## Incremental Rotary Encoder OD 40 dia.

## E6B2-C

## General-Purpose

Incremental Rotary Encoder
With Large Shaft 40 dia.

- A wide operating voltage range from 5 to 24 VDC (open collector model).
- High resolution models (2000 pulses per revolution) substantially improve measuring accuracy
- Easy-to-adjust zero index (phase Z) with origin indicating function
- A large load of 30 N in the radial direction and 20 N in the thrust direction are permitted.
- The load short-circuit and reversed connection protecting circuit assure high operation reliability.
- Available with Line Driver output ( 100 m max. extension available)
- Shock resistance strengthened by metal disk. (600 P/ R max.) Patent


## Ordering Information

Sensors

Power supply   voltage	Output form	Resolution (pulse/rotation)	Model
5 to 24 VDC	NPN open collector output	$10,20,30,40,50,60,100,200,300,360,400,500,600,720$,   $800,1,000,1,024,1,200,1,5001,800,2,000$	E6B2-CWZ6C
12 to 24 VDC	PNP open collector output	$100,200,360,500,600,1,000,2,000$	E6B2-CWZ5B
5 to 12 VDC	NPN voltage output	$10,20,30,40,50,60,100,200,300,360,400,500,600,1,000$,   $1,200,1,5001,800,2,000$	E6B2-CWZ3E
5 VDC	Line driver output	$10,20,30,40,50,60,100,200,300,360,400,500,600,1,000$,   $1,024,1,200,1,5001,800,2,000$	E6B2-CWZ1X

Note: When ordering, add the resolution (pulses per revolution) between the part number. For example, E6B2-CWZ6C 100 P/R.
Accessories (Order Separately)

Item	Model	Remarks
Coupling	E69-C06B	Attachment
	E69-C68B	Different end diameter
	E69-C610B	Different end diameter
	E69-C06M	Metal construction
Flanges	E69-FBA	---
	E69-FBA02	E69-2 Mounting Bracket included
	E69-2	---

## Sensors

E6B2


ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.
To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .
Cat. No. Q085-E2-03-X In the interest of product improvement, specifications are subject to change without notice.

## Incremental Rotary Encoder OD 50 dia. (thin)

## E6C2-C/E6C3-C

## Tough \& Easy

- Drip-proof, oil-proof construction meets IP64F standards
- Shaft withstanding heavy loads, 80 N radially, 50 N thrust (axially)
- Protective Circuit Output Shorting
- Space-saving, A-slant cable protrusion for easy installation
- Shock resistance strengthened by metal disk. E6C2-C: 600P/R max.
E6C3-C $\square H: 500 \mathrm{P} / \mathrm{R}$ max.



## Ordering Information

## Sensors

	Powersupply voltage	Output form	Resolution (pulse/rotation)	Model
Stan dard models	5 to 24 VDC	NPN open collector output	10, 20, 30, 40, 50, 60, 100, 200, 300, 360, 400, 500, 600	E6C2-CWZ6C
			720, 800, 1,000, 1,024, 1,200, 1,500, 1,800, 2,000	
	12 to 24VDC	PNP open collector output	100, 200, 360, 500, 600	E6C2-CWZ5B
			1,000, 2,000	
	5 to 12 VDC	NPN voltage output	10, 20, 30, 40, 50, 60, 100, 200, 300, 360, 400, 500, 600	E6C2-CWZ3E
			720, 800, 1,000, 1,024, 1,200, 1,500, 1,800, 2,000	
	5 VDC	Line driver output	10, 20, 30, 40, 50, 60, 100, 200, 300, 360, 400, 500, 600	E6C2-CWZ1X
			720, 800, 1,000, 1,024, 1,200, 1,500, 1,800, 2,000	
8 dia. tough model	12 to 24VDC	Complimentary output	100, 200	E6C3-CWZ5GH
			$\begin{aligned} & 300,360,500,600,720,800,1,000,1,024,1,200,1,500 \\ & 1,800,2,000,2,048,2,500,3,600 \end{aligned}$	
	5 to 12 VDC	NPN voltage output	100, 200	E6C3-CWZ3EH
			$\begin{aligned} & 300,360,500,600,720,800,1,000,1,024,1,200,1,500 \text {, } \\ & 1,800,2,000,2,048,2,500,3,600 \end{aligned}$	
	5 to 12 VDC	Line driver output	100, 200	E6C3-CWZ3XH
			$\begin{aligned} & 300,360,500,600,720,800,1,000,1,024,1,200,1,500, \\ & 1,800,2,000,2,048,2,500,3,600 \end{aligned}$	

Note: For order placement add the resolution (pulses per revolution) between the part number. For example, E6C2-CWZ6C 100P/R.
Accessories (Order Separately)

Item	Model	Applicable Rotary Encoders	Remarks
Coupling	E69-C06B	E6C2-CWZ $\square$	---
	E69-C68B	E6C3-CWZ $\square / \square \mathrm{H}$	Diameter of ends: 6 to 8 dia.
	E69-C06M	E6C2-CWZ $\square$	Metal construction
	E69-C08B	E6C3-CWZ $\square$ H	---
Flanges	E69-FCA	E6C2-CWZ $\square$	
	E69-FCA02		
	E69-FCA03	E6C3-CWZ $\square \mathrm{H}$	
	E69-FCA04		
Mounting Bracket	E69-2	---	Provided with the E69-FCA02 and E69-FCA04 Flange.

## Sensors

## Standard

E6C2-CWZ $\square \square$


## Solid 8 dia. Shaft Model

## E6C3-CWZ $\square$ H



To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .
Cat. No. F01E-EN-01+E6C2(3)- In the interest of product improvement, specifications are subject to change without notice.

Incremental Rotary Encoder 60 mm dia.

## E6F-C

## The Strongest Shaft for Tough Jobs

- The strongest shaft of any OMRON Incremental Encoder ( 120 N in radial direction and 50 N in thrust direction).
- Water- and oil-proof structure (IP65f)
- Output short-circuit protection circuit to reduce risks from incorrect wiring.
- Complementary output model can be used with extension cable
- Shock resistance strengthened by metal disk. (600
 P/R max.) Patent


## Ordering Information

## Sensors

Supply voltage	Output form	Resolution (pulse/rotation)	Model
12 to 24 VDC	Complimentary output	$100,200,360,500,600$	
		1000	

Accessories (Order Separately)

Item	Model	Remarks
Coupling	E69-C10B	---
	E69-C610B	Different end diameter
	E69-C10M	Metal construction
Mounting Bracket	E69-2	Three brackets in a set; included with the Encoder.

## Dimensions (Unit: mm)

## Sensors

## E6F-CWZ5G



## Accessories (Order Separately)

Servo Mounting Bracket

## E69-2



## Absolute Rotary Encoder

## E6C3-A

## An Encoder That Offers Durability and Convenience

- IP65f drip-proof, oil-proof construction achieved with seal bearing.
- 8-mm-dia stainless steel shaft withstands a shaft loading of 80 N and 50 N respectively in the radial and thrust directions.
- Absolute Rotary Encoders have a metal slit plate to ensure high resistance to shock.
- Combining Absolute Rotary Encoders with a Programmable Controller or Cam Positioner allows ideal angle control.
- Bears CE markings (EMC Directives) and conforms to EN/IEC standards, making it suitable for the European market.


## Ordering Information

## Sensors

Supply voltage	Output form	Output code	Resolution (pulse/rotation)	Connection method	Model
12 to 24VDC	NPN open collector output		256	Connector type	E6C3-AG5C-C
			256, 360, 720, 1,024	Pre-wired type	E6C3-AG5C
		Binary	32, 40		E6C3-AN5C
		BCD	6, 8, 12		E6C3-AB5C
	PNP open collector output	Gray code	256, 360, 720, 1,024		E6C3-AG5B
		Binary	32, 40		E6C3-AN5B
		BCD	6, 8, 12		E6C3-AB5B
5 VDC	NPN voltage output	Binary	256		E6C3-AN1E
12 VDC					E6C3-AN2E

Note: 1. When ordering, specify the resolution in addition to the model numbers. (Example: E6C3-AG5C 360P/R 1M)
2 . Models with $2-\mathrm{m}$ cables are also available as standard products. Specify the cable length at the end of the model number. (Example: E6C3-AG5C 360P/R 2M)
3. When connecting to the H8PS, be sure to use the E6C3-AG5C-C 256P/R.

## Accessories (Order Separately)

Item	Model	Remarks
Coupling	E69-C08B	---
	E69-C68B	Diameters of ends: 6 to 8 dia.
Flange	E69-FCA03	- --
	E69-FCA04	E69-2 Servo Mounting Bracket provided.
Servo Mounting Bracket	E69-2	Provided with the E69-FCA04 Flange.
	E69-DF5	5 m
	E69-DF10	10 m
	Applicable for the E6C3-AG5C-C. 15- and 98-m-long Exten-	
	E69-DF20	30 m

## Sensors

E6C3-A $\square \square$

## E6C3-AN $\square E$



Note: E69-C08B is sold separately.
E6C3-AG5C-C


Note: E69-C08B is sold separately.

## Absolute Rotary Encoder

## E6F-A

## Rugged construction providing high-precision timing detection for automatic machines operation

- Stronger shaft and higher durability ( 120 N in radial direction and 50 N in thrust direction) than previous E6F Encoders.
- Drip-proof construction meets IP64F standards
- High resolution models (1024 pulses max. per revolution)

- Faster response for high-speed control applications (grey code: 20 kHz ).
- Shock resistance strengthened by metal disk. Patent


## Ordering Information

Sensors

Supply voltage	Output form	Output code	Resolution (pulses/revolution)	Connection method	Model
12 to 24 VDC	NPN open collector	BCD	360	Pre-wired	E6F-AB5C
	$N$ open collector			Connector type	E6F-AB5C-C
	PNP open collector			Pre-wired	E6F-AB5B
		Gray code	256, 360, 720, 1,024	Pre-wired	E6F-AG5B

Note: 1. For order placement add the resolution (pulses per revolution) between the part number. For example, E6F-AG5B 256 P/R.
2 . E6F-AB5C-C applied for rotary positioner connection.
Accessories (Order Separately)

Item	Model	Remarks
Coupling	E69-C10B	Supplied with pre-wired models
	E69-C610B	Different end diameter
	E69-C10M	Metal construction
Mounting Bracket	E69-2	Supplied with the product (set of 3)
Extension Cable	E69-DF5	Standard stock models: $5 \mathrm{~m}, 10 \mathrm{~m}$.   In addition to this $15 \mathrm{~m}, 20 \mathrm{~m}$ and 98 m   are available.

## Sensors

E6F-AB5C
E6F-AG5B
E6F-AB5B


Standard length: 2 m

E69-C10B is attached.

## E6F-AB5C-C



E69-C10B is sold separately.

## Pressure Sensors

Safety Sensors			
Safety Light Curtain	Safety Light Curtain	F3SN-A	G-3
	Multi-Beam Safety Sensor	F3SH-A	G-3
	Safety Light Curtain	F3S-B	G-31
	Safety sensor for Palletisers	F3S-TGR-SB	G-49
	Safety light curtain for long distance detection	F3SL	G-59
Safety Single Beam	Safety Single Beam Sensor + Controller	E3FS	G-63
	Single beam safety sensor for long distance detection	F3SS	(CD)
Muting Controller	Muting Controller for Safety Light Curtain	F3SP-U4P	G-73
Safety   Networks	DeviceNet Safety System	NE1A/DST1	G-77
Safety Laser Scanner	Safety Laser Scanner	F3G-C	(CD)
Safety Units / Relay Units			
Flexible Safety Unit	Safety Relay Unit	G9SX	G-89
Expandable Safety Unit	Safety Relay Unit	G9SA	G-109
Slim Size Safety Unit	Safety Relay Unit	G9SB	G-123
Safety Door / Guard Lock Switches			
Safety Door Switch	Safety-door Switch	D4NS	G-131
		D4BS	G-143
		D4GS-N	(CD)
Safety Guard Lock	Guard Lock Safety-door Switch	D4NL	G-153
		D4GL	G-171
		D4BL	G-185
Non-contact Switch	Compact Non-contact Door Switch	D40B	G-197
Safety-door Hinge Switch	Miniature Safety-door Hinge Switch	D4NH	G-207
Other Safety Switches			
Safety Limit Switch	Safety Limit Switches	D4N-	G-219
		D4B-_N	G-243
		D4F	G-259
	Manual Reset Limit Switches	D4N-_R	G-267
E-Stop Switch	Emergency Stop Switch	A22E	(CD)
		A165E	G-283
Force Guide Relay /	Relays with Forcibly Guided Contacts	G7SA	G-291
Enabling	Safety Relay	G7S	(CD)
Switch	Enabling Switch	A4E	G-299
Precaution			G-305
Standards			G-318
Approvals			G-321
Non safety line Sensor for picking applications			
	Non Safety Picking Sensor	F3WD	(CD)
	Non Safety Area Sensor	F3ZN	(CD)

## Safety Light Curtain / Multi-Beam Safety Sensor

## F3SN-A/F3SH-A

- Type 4 sensor complying with IEC and EN standards (IEC61496-1, -2, EN61496-1). Complies with EU machine directives (certified by BG/DEMKO).
- Detection height $=$ Sensor length meets the user's requirements
- Detection height 189 to 1822 mm. Sensing distance 7 and 10 m .
- Various functions can be set by means of setting console.
- Equipped with a LED bar for easy adjustment of the optical axis and quick detection of failures.



## Features

Select the optimum safety sensor for the application. Omron provides two safety types, the "Safety Light Curtain" and the "Multi-Beam Safety Sensor".

## Finger protection

Safety light curtain F3SN-A $\square \square \square \mathrm{P} 14$ (H)
Sensing distance : 7 m

- Minimum detectable object: 14 mm dia. ( 9 mm optical axis pitch)
- Detection height: 189 to 1611 mm


## Hand protection

Safety light curtain F3SN-A $\square \square \square$ P25
Sensing distance : 10 m

- Minimum detectable object: 25 mm dia. ( 15 mm optical axis pitch)
- Detection height: 217 to 1822 mm


For presence inspection with a horizontal installation, types with minimum detectable object sizes of 40 mm (optical axis pitch: 30 mm ) and 70 mm (optical axis pitch: 60 mm ) can also be manufactured. (Please contact your OMRON Representative.)

## Body protection

Multi-beam safety curtain
F3SH-A09P03
Sensing distance : 10 m

- Number of optical axes: 4 beams ( 300 mm optical axis pitch)



## Features

## A superior standard of safety design prevents machine accidents.

Wide-range implementation of fail-safe design.
Self-failure diagnosis triggers output shut off.


## Technology-supported safety design

Safety is top priority based on the maximum standards of safety design and FMEA analysis.
Fail-safe design based on dual CPUs for mutual checking and duplex signal processing and output circuits. Relentless pursuit of safety based FMEA analysis * to prove safe operation.

* FMEA: Failure Mode and Effects Analysis


Meets global safety standards for safety sensors.
Type 4 sensors complying with IEC and EN standards Complies with international standards IEC61496-1 and IEC61496-2, and EN standard EN61496-1, which are state-of-the-art "musts" for safety sensors.

## Complies with EU directives

Certification of compliance with EC testing and EMC directives received from DEMKO and BG.

Received UL certification for models for the U.S. and Canada.
(Can be used in machines subject to OSHA rules and ANSI standards.)
Received UL listing and UL listing for Canadian safety standards based on UL508 and IEC61496-1/2. Can be used in machines subject to OSHA directives (29 CFR 1910.212), which are directives related to labor safety in the U.S. Meets also the requirements of ANSI/RIA R15.06-1999, a U.S. standard for industrial robots.


## Features

We provide the perfect size for use in hazardous areas.
A new concept that perfectly fits the needs of the user.

The detection height equals to the sensor length.
Excess space has been minimized.


Up to 3 sets can be connected in series. Mutual interference can be prevented.
A standard type and a link-up type with a connector can be combined to connect up to 3 sets in series.

Select the optimum length


The setting console--the first in the industry--allows you an easy and safe setting of various functions.


## Includes two types of blanking functions

Blanking function for changing the detection pattern of the safety light curtain.
Basic pattern 1: Floating blanking function
This function allows you to disable an unspecified 1, 2, or 3 optical axes. If more than the set optical axes is interrupted, the output shuts off.
(Example of floating blanking function)


Basic pattern 2: Fixed blanking function
Specific optical axes are masked by teaching and disabled.
(Example of fixed blanking function)


Other functions to be set with the setting console

- Auxiliary outputs: Outputs such as ON at Dark, ON at Light, light intensity diagnosis, and lockout can be selected.
- Large indicator lamp outputs: large indicator lamp outputs can be selected from ON at Dark, ON at Light, light intensity diagnosis, and lockout.
- External device monitoring function: Allows you to monitor the feedback of external devices.
- Interlock function: Interlocks can be set at power-on and restart.
- Setting copy function: Allows you to copy the settings of one sensor to another sensor.
- Protect function: Changing of sensor settings can be prohibited and restricted.


## F3SH-A Multi-beam safety sensor

Recommended dimensions of EN standard for F3SH-A (4-optical axis multi-beam) Human body detection achieved 4 optical axes at a 300 mm pitch. Detects break by entire body.
In EN Standard EN999 (machine safety: positioning of protective devices in relation to the approach speed of human body parts), the values in the following table are recommended as the most effective regarding the height from the reference surface (floor, etc.) of each optical axis of the 4 optical axis multibeam sensor.
The optical axis pitch of the F3SH-A matches the recommended pitch, and, thus, in the installation shown in the following diagram, every type of intrusion is detected, including intrusion by passing under the lowest optical axis and intrusion by passing over the highest optical axis.
(Installation example based on EN999 recommended dimensions for multi-beam safety sensors)


## Easy safety application

Various safety functions are implemented.
Can be adapted to various safety circuit system configurations.

- Interlock function
- Auto reset / manual reset can be selected
- External device monitoring function

Equipped with LED bar for easy use.
Easy optical axis adjustment using LED displays. Enables certain installation.

- Optical axis adjustment indicator (green only)


Error modes can be clearly indicated to provide a safety backup.
Error display example (red only)


Full lineup of accessories (optional)


When connecting, a series connection model (model end number -01) is required. The the kind of signal.

- Protective tube
- Slit cover
- Free location brackets
- Muting controller
- PSDI controller


## Ordering information

## Sensors

Safety light curtain $\quad \square$ Infrared ray

Minimum detection object	Optical axis pitch	Shape	Sensing distance	Number of optical axes	Detection width	$\begin{gathered} \text { Series } \\ \text { connection, } \\ \text { connector } \end{gathered}$	Model*1
14 mm dia. (Finger protection)	9 mm			21 to 179	$\begin{array}{\|l\|} \hline 189 \text { to } \\ 1,611 \mathrm{~mm} \end{array}$	No	$\begin{aligned} & \text { F3SN-A } \square \square \square \mathrm{P} 14 \\ & \text { F3SN-A } \square \square \square \mathrm{P} 14 \mathrm{H} \end{aligned}$
			0.2	bers only)	( 18 mm each)	Yes	F3SN-A $\square \square \square \mathrm{P} 14-01 * 2$ F3SN-A $\square \square \square \mathrm{P} 14 \mathrm{H}-01$
25 mm dia. (Hand protection)	15 mm				$217 \text { to }$	No	F3SN-A $\square \square \square \square$ P25
						Yes	F3SN-A $\square \square \square \mathrm{P} 25-01$
40 mm dia. (for presence protection)	30 mm					No	F3SN-A $\square \square \square \mathrm{P} 40$
						Yes	F3SN-A $\square \square \square \mathrm{P} 40-01$
70 mm dia. (for presence detection)	60 mm					No	F3SN-A $\square \square \square \square P 70$
						Yes	F3SN-A $\square \square \square \square 70-01$

*1. $\square \square \square \square$ in the model name indicates the detection width (mm).
*2. F3SN-A $\square \square \square \mathrm{P} 14-01$ is a customized model. For order placement, please contact your OMRON representative.
Multi-beam safety sensor

Optical axis pitch	Shape	Sensing distance	Number of   optical axes	Distance   between   optical   axes at   each end	Series   connection,   connector	Model	
Body protection							No
F3SH-A09P03							

## Accessories (Order Separately)

Control Unit

Appearance	Output	Model	Remarks
	Relay, 3NO + 1NC	F3SP-B1P	For connection with the F3SN-A, and   F3SH-A, use F39-JCDB cables fitted with   connectors at both ends.


Appearance	Output	Model	Remarks
$25$	Relay, 3NO	G9SA-300-SC	For connection with the F3SN-A, and F3SH-A, use F39-JC $\square$ C cables fitted with connectors at both ends.

Muting Controller

Appearance	Model	
	F3SP-U2P-TGR   F3SP-U4P-TGR	For connection with the F3SN-A, and F3SH-A, use F39-JC $\square$ A cables   fitted with connectors at single end.

Setting Console

Appearance	Model	Accessories
	F39-MC11	

Branching Connector

Appearance	Model	Remarks
	F39-CN1	Purchase this connector when needed additionally for installing the   F39-MC11.

Single-ended Connector Cable (For Emitter and Receiver Set)

Appearance	Cable length	Specification	Model
	3 m	M 12 connector (8 pin)	F39-JC3A
	7 m		F39-JC7A
	10 m		F39-JC10A
	15 m		F39-JC15A

Double-ended Connector Cable (For Emitter and Receiver Set)

Appearance	Cable length	Specification	Model	Application
	0.2 m	M12 connector (8 pins)	F39-JCR2B	Series connection or connection with F3SP-B1P
	0.5 m		F39-JCR5B	
	3 m		F39-JC3B	
	5 m		F39-JC5B	Connection with F3SP-B1P (see note 1)
	7 m		F39-JC7B	
,	10 m		F39-JC10B	
	15 m		F39-JC15B	
	20 m		F39-JC20B	
	0.2 m	M12 connector (8 pins)	F39-JCR2C	Connection with G9SA-300-SC (see notes 1 and 2)
	1 m		F39-JC1C	
	3 m		F39-JC3C	
	7 m		F39-JC7C	
	10 m		F39-JC10C	
	15 m		F39-JC15C	

Note: 1. Cannot be used for series-connection purpose.
2. When two or more cables have to be used for connection with the G9SA-300-SC, connect the necessary number of F39-JC $\square \mathrm{B}$ cables to one F39-JC $\square$ C cable.
(Example) When a 35 m long cable is required, connect two F39-JC $\square \mathrm{B}$ cables to one F39-JC $\square \mathrm{C}$.

External Indicators（Separate Models for Emitters and Receivers）

Appearance	Specification	Indicator	Type	Model
	M12 connector for PNP output	Red	Emitter	F39－A01PR－L
			Receiver	F39－A01PR－D
		Green	Emitter	F39－A01PG－L
			Receiver	F39－A01PG－D

Note：These indicators are used for connecting with series－connection type emitters／receivers（models ending in－01）．The desired turn－ON timing （type of signal）can be selected on setting console．

Spatter protection covers（ 1 set of 2 covers for both Emitter and receiver）

Shape	Applicable models	Model
	F3SN－A $\square \square \square P 14 ~$	F39－HNロロロロ－14
	F3SN－A $\square \square \square \square P 25 ~$	F39－HNロロロロ－25
	F3SN－A■ロロP25－01	F39－HH09－03

Note：$\square \square \square \square$ in the model name indicates the 4－digit sensor detection width（in sensor models）．
Refection mirror（ $15 \%$ sensing distance attenuation）

Mirror material	Width（mm）	Thickness（mm）	Length（mm）	Model
Glass mirror	125	31	310	F39－MDG0310
			460	F39－MDG0460
			607	F39－MDG0607
			750	F39－MDG0750
			907	F39－MDG0907
			1，057	F39－MDG1057
			1，207	F39－MDG1207
			1，357	F39－MDG1357
			1，500	F39－MDG1500
			1，657	F39－MDG1657

Note：Other sizes are available upon request
IP67 environment－resistant Enclosure（A Package of tube，Gasket，and Bracket；see note）

Appearance	Applicable sensor	Model
	F3SN－A $\square \square \square \square \mathrm{P} 14(-01)$	F39－HP $\square \square \square \square$－14
	F3SN－A $\square \square \square \square \mathrm{P} 25(-01)$ F3SN－A $\square \square \square \square \mathrm{P} 40(-01)$ F3SN－A $\square \square \square \square \mathrm{P} 70(-01)$	F39－HP $\square \square \square \square-25$
	F3SH－A09P03（－01）	F39－HPH09－03

Note：Purchase 2 sets when using both an emitter and a receiver．

Mounting Bracket for Sensor (Optional)
Appearance Specification Model RemarksWall mounting bracket   Material: Iron (zinc plating) (see note)
Free-location bracket   Materials: Zinc die-cast (zinc plating)   Note: Not provided with an angle deflection   mechanism for beam control.
:---
For receiver: 2 pcs.
Total: $4 \mathrm{pcs./set}$

Note: Use these brackets for sensors having an operating range where no intermediate bracket is required (with an operating range of less than 640 mm )

## List of Safety Light Curtains

F3SN-A $\square \square \square \mathrm{P} 14$, F3SN-A $\square \square \square \mathrm{P} 14-01$, F 3 SN-A $\square \square \mathrm{P} 14 \mathrm{H}-01$

Model	Detec-   tion   height	Number   of optical   axes
F3SN-A0189P14 (-01)	189	21
F3SN-A0207P14 (-01)	207	23
F3SN-A0225P14 (-01)	225	25
F3SN-A0243P14 (-01)	243	27
F3SN-A0261P14 (-01)	261	29
F3SN-A0279P14 (-01)	279	31
F3SN-A0297P14 (-01)	297	33
F3SN-A0315P14 (-01)	315	35
F3SN-A0333P14 (-01)	333	37
F3SN-A0351P14 (-01)	351	39
F3SN-A0369P14 (-01)	369	41
F3SN-A0387P14 (-01)	387	43
F3SN-A0405P14 (-01)	405	45
F3SN-A0423P14 (-01)	423	47
F3SN-A0441P14 (-01)	441	49
F3SN-A0459P14 (-01)	459	51
F3SN-A0477P14 (-01)	477	53
F3SN-A0495P14 (-01)	495	55
F3SN-A0513P14 (-01)	513	57
F3SN-A0531P14 (-01)	531	59
F3SN-A0549P14 (-01)	549	61
F3SN-A0567P14 (-01)	567	63
F3SN-A0585P14 (-01)	585	65
F3SN-A0603P14 (-01)	603	67
F3SN-A0621P14 (-01)	621	69
F3SN-A0639P14 (-01)	639	71
F3SN-A0657P14 (-01)	657	73


Model	Detec-   tion   height	Number   of optical   axes
F3SN-A0675P14 (-01)	675	75
F3SN-A0693P14 (-01)	693	77
F3SN-A0711P14 (-01)	711	79
F3SN-A0729P14 (-01)	729	81
F3SN-A0747P14 (-01)	747	83
F3SN-A0765P14 (-01)	765	85
F3SN-A0783P14 (-01)	783	87
F3SN-A0801P14 (-01)	801	89
F3SN-A0819P14 (-01)	819	91
F3SN-A0837P14 (-01)	837	93
F3SN-A0855P14 (-01)	855	95
F3SN-A0873P14 (-01)	873	97
F3SN-A0891P14 (-01)	891	99
F3SN-A0909P14 (-01)	909	101
F3SN-A0927P14 (-01)	927	103
F3SN-A0945P14 (-01)	945	105
F3SN-A0963P14 (-01)	963	107
F3SN-A0981P14 (-01)	981	109
F3SN-A0999P14 (-01)	999	111
F3SN-A1017P14 (-01)	1,017	113
F3SN-A1035P14 (-01)	1,035	115
F3SN-A1053P14 (-01)	1,053	117
F3SN-A1071P14 (-01)	1,071	119
F3SN-A1089P14 (-01)	1,089	121
F3SN-A1107P14 (-01)	1,107	123
F3SN-A11125P14 (-01)	1,125	125


Model	Detec-   tion   height	Number   ofoptical   axes
F3SN-A1143P14H(-01)	1143	127
F3SN-A1161P14H(-01)	1161	129
F3SN-A1179P14H(-01)	1179	131
F3SN-A1197P14H(-01)	1197	133
F3SN-A1215P14H(-01)	1215	135
F3SN-A1233P14H(-01)	1233	137
F3SN-A1251P14H(-01)	1251	139
F3SN-A1269P14H(-01)	1269	141
F3SN-A1287P14H(-01)	1287	143
F3SN-A1305P14H(-01)	1305	145
F3SN-A1323P14H(-01)	1323	147
F3SN-A1341P14H(-01)	1341	149
F3SN-A1359P14H(-01)	1359	151
F3SN-A1377P14H(-01)	1377	153
F3SN-A1395P14H(-01)	1395	155
F3SN-A1413P14H(-01)	1413	157
F3SN-A1431P14H(-01)	1431	159
F3SN-A1449P14H(-01)	1449	161
F3SN-A1467P14H(-01)	1467	163
F3SN-A1485P14H(-01)	1485	165
F3SN-A1503P14H(-01)	1503	167
F3SN-A1521P14H(-01)	1521	169
F3SN-A1539P14H(-01)	1539	171
F3SN-A1557P14H(-01)	1557	173
F3SN-A1575P14H(-01)	1575	175
F3SN-A1593P14H(-01)	1593	177
F3SN-A1611P14H(-01)	1611	179

Highlighted products are prefered stock types

Model	$\begin{aligned} & \hline \text { Detec- } \\ & \text { tion } \\ & \text { height } \end{aligned}$	Number of optical axes	Model	Detection height	Number of optical axes	Model	Detection height	Number of optical axes
F3SN-A0217P25 (-01)	217	13	F3SN-A0757P25 (-01)	757	49	F3SN-A1297P25 (-01)	1,297	85
F3SN-A0232P25 (-01)	232	14	F3SN-A0772P25 (-01)	772	50	F3SN-A1312P25 (-01)	1,312	86
F3SN-A0247P25 (-01)	247	15	F3SN-A0787P25 (-01)	787	51	F3SN-A1327P25 (-01)	1,327	87
F3SN-A0262P25 (-01)	262	16	F3SN-A0802P25 (-01)	802	52	F3SN-A1342P25 (-01)	1,342	88
F3SN-A0277P25 (-01)	277	17	F3SN-A0817P25 (-01)	817	53	F3SN-A1357P25 (-01)	1,357	89
F3SN-A0292P25 (-01)	292	18	F3SN-A0832P25 (-01)	832	54	F3SN-A1372P25 (-01)	1,372	90
F3SN-A0307P25 (-01)	307	19	F3SN-A0847P25 (-01)	847	55	F3SN-A1387P25 (-01)	1,387	91
F3SN-A0322P25 (-01)	322	20	F3SN-A0862P25 (-01)	862	56	F3SN-A1402P25 (-01)	1,402	92
F3SN-A0337P25 (-01)	337	21	F3SN-A0877P25 (-01)	877	57	F3SN-A1417P25 (-01)	1,417	93
F3SN-A0352P25 (-01)	352	22	F3SN-A0892P25 (-01)	892	58	F3SN-A1432P25 (-01)	1,432	94
F3SN-A0367P25 (-01)	367	23	F3SN-A0907P25 (-01)	907	59	F3SN-A1447P25 (-01)	1,447	95
F3SN-A0382P25 (-01)	382	24	F3SN-A0922P25 (-01)	922	60	F3SN-A1462P25 (-01)	1,462	96
F3SN-A0397P25 (-01)	397	25	F3SN-A0937P25 (-01)	937	61	F3SN-A1477P25 (-01)	1,477	97
F3SN-A0412P25 (-01)	412	26	F3SN-A0952P25 (-01)	952	62	F3SN-A1492P25 (-01)	1,492	98
F3SN-A0427P25 (-01)	427	27	F3SN-A0967P25 (-01)	967	63	F3SN-A1507P25 (-01)	1,507	99
F3SN-A0442P25 (-01)	442	28	F3SN-A0982P25 (-01)	982	64	F3SN-A1522P25 (-01)	1,522	100
F3SN-A0457P25 (-01)	457	29	F3SN-A0997P25 (-01)	997	65	F3SN-A1537P25 (-01)	1,537	101
F3SN-A0472P25 (-01)	472	30	F3SN-A1012P25 (-01)	1,012	66	F3SN-A1552P25 (-01)	1,552	102
F3SN-A0487P25 (-01)	487	31	F3SN-A1027P25 (-01)	1,027	67	F3SN-A1567P25 (-01)	1,567	103
F3SN-A0502P25 (-01)	502	32	F3SN-A1042P25 (-01)	1,042	68	F3SN-A1582P25 (-01)	1,582	104
F3SN-A0517P25 (-01)	517	33	F3SN-A1057P25 (-01)	1,057	69	F3SN-A1597P25 (-01)	1,597	105
F3SN-A0532P25 (-01)	532	34	F3SN-A1072P25 (-01)	1,072	70	F3SN-A1612P25 (-01)	1,612	106
F3SN-A0547P25 (-01)	547	35	F3SN-A1087P25 (-01)	1,087	71	F3SN-A1627P25 (-01)	1,627	107
F3SN-A0562P25 (-01)	562	36	F3SN-A1102P25 (-01)	1,102	72	F3SN-A1642P25 (-01)	1,642	108
F3SN-A0577P25 (-01)	577	37	F3SN-A1117P25 (-01)	1,117	73	F3SN-A1657P25 (-01)	1,657	109
F3SN-A0592P25 (-01)	592	38	F3SN-A1132P25 (-01)	1,132	74	F3SN-A1672P25 (-01)	1,672	110
F3SN-A0607P25 (-01)	607	39	F3SN-A1147P25 (-01)	1,147	75	F3SN-A1687P25 (-01)	1,687	111
F3SN-A0622P25 (-01)	622	40	F3SN-A1162P25 (-01)	1,162	76	F3SN-A1702P25 (-01)	1,702	112
F3SN-A0637P25 (-01)	637	41	F3SN-A1177P25 (-01)	1,177	77	F3SN-A1717P25 (-01)	1,717	113
F3SN-A0652P25 (-01)	652	42	F3SN-A1192P25 (-01)	1,192	78	F3SN-A1732P25 (-01)	1,732	114
F3SN-A0667P25 (-01)	667	43	F3SN-A1207P25 (-01)	1,207	79	F3SN-A1747P25 (-01)	1,747	115
F3SN-A0682P25 (-01)	682	44	F3SN-A1222P25 (-01)	1,222	80	F3SN-A1762P25 (-01)	1,762	116
F3SN-A0697P25 (-01)	697	45	F3SN-A1237P25 (-01)	1,237	81	F3SN-A1777P25 (-01)	1,777	117
F3SN-A0712P25 (-01)	712	46	F3SN-A1252P25 (-01)	1,252	82	F3SN-A1792P25 (-01)	1,792	118
F3SN-A0727P25 (-01)	727	47	F3SN-A1267P25 (-01)	1,267	83	F3SN-A1807P25 (-01)	1,807	119
F3SN-A0742P25 (-01)	742	48	F3SN-A1282P25 (-01)	1,282	84	F3SN-A1822P25 (-01)	1,822	120

Highlighted products are prefered stock types
F3SN-A $\square \square \square \square \mathrm{P} 40$, F3SN-A $\square \square \square \square \mathrm{P} 40-01$

Model	Detec-   tion   height	Number   of optical   axes
F3SN-A0217P40(-01)	217	7
F3SN-A0247P40(-01)	247	8
F3SN-A0277P40(-01)	277	9
F3SN-A0307P40(-01)	307	10
F3SN-A0337P40(-01)	337	11
F3SN-A0367P40(-01)	367	12
F3SN-A0397P40(-01)	397	13
F3SN-A0427P40(-01)	427	14
F3SN-A0457P40(-01)	457	15
F3SN-A0487P40(-01)	487	16
F3SN-A0517P40(-01)	517	17
F3SN-A0547P40(-01)	547	18
F3SN-A0577P40(-01)	577	19
F3SN-A0607P40(-01)	607	20
F3SN-A0637P40(-01)	637	21
F3SN-A0667P40(-01)	667	22
F3SN-A0697P40(-01)	697	23
F3SN-A0727P40(-01)	727	24


Model	Detec-   tion   height	Number   of optical   axes
F3SN-A0757P40(-01)	757	25
F3SN-A0787P40(-01)	787	26
F3SN-A0817P40(-01)	817	27
F3SN-A0847P40(-01)	847	28
F3SN-A0877P40(-01)	877	29
F3SN-A0907P40(-01)	907	30
F3SN-A0937P40(-01)	937	31
F3SN-A0967P40(-01)	967	32
F3SN-A0997P40(-01)	997	33
F3SN-A1027P40(-01)	1027	34
F3SN-A1057P40(-01)	1057	35
F3SN-A1087P40(-01)	1087	36
F3SN-A1117P40(-01)	1117	37
F3SN-A1147P40(-01)	1147	38
F3SN-A1177P40(-01)	1177	39
F3SN-A1207P40(-01)	1207	40
F3SN-A1237P40(-01)	1237	41
F3SN-A1267P40(-01)	1267	42


Model	Detection height	Number of optical axes
F3SN-A1297P40(-01)	1297	43
F3SN-A1327P40(-01)	1327	44
F3SN-A1357P40(-01)	1357	45
F3SN-A1387P40(-01)	1387	46
F3SN-A1417P40(-01)	1417	47
F3SN-A1447P40(-01)	1447	48
F3SN-A1477P40(-01)	1477	49
F3SN-A1507P40(-01)	1507	50
F3SN-A1537P40(-01)	1537	51
F3SN-A1567P40(-01)	1567	52
F3SN-A1597P40(-01)	1597	53
F3SN-A1627P40(-01)	1627	54
F3SN-A1657P40(-01)	1657	55
F3SN-A1687P40(-01)	1687	56
F3SN-A1717P40(-01)	1717	57
F3SN-A1747P40(-01)	1747	58
F3SN-A1777P40(-01)	1777	59
F3SN-A1807P40(-01)	1807	60

F3SN-A $\square \square \square P 70$, F3SN-A $\square \square \square P 70-01$

Model	Detection height	Number of optical axes	Model	Detection height	Number of optical axes
F3SN-A0277P70(-01)	277	5	F3SN-A0877P70(-01)	877	15
F3SN-A0337P70(-01)	337	6	F3SN-A0937P70(-01)	937	16
F3SN-A0397P70(-01)	397	7	F3SN-A0997P70(-01)	997	17
F3SN-A0457P70(-01)	457	8	F3SN-A1057P70(-01)	1057	18
F3SN-A0517P70(-01)	517	9	F3SN-A1117P70(-01)	1117	19
F3SN-A0577P70(-01)	577	10	F3SN-A1177P70(-01)	1177	20
F3SN-A0637P70(-01)	637	11	F3SN-A1237P70(-01)	1237	21
F3SN-A0697P70(-01)	697	12	F3SN-A1297P70(-01)	1297	22
F3SN-A0757P70(-01)	757	13	F3SN-A1357P70(-01)	1357	23
F3SN-A0817P70(-01)	817	14	F3SN-A1417P70(-01)	1417	24


Model	Detec-   tion   height	Number   of optical   axes
F3SN-A1477P70(-01)	1477	25
F3SN-A1537P70(-01)	1537	26
F3SN-A1597P70(-01)	1597	27
F3SN-A1657P70(-01)	1657	28
F3SN-A1717P70(-01)	1717	29
F3SN-A1777P70(-01)	1777	30
F3SN-A1657P70(-01)	1657	28
F3SN-A1717P70(-01)	1717	29
F3SN-A1777P70(-01)	1777	30

## Rating/Performance (see the operation manual for details)

## Sensors

F3SN-A/F3SH-A

ModelItem	Stand-alone	F3SN-A $\square$ प $\square$ P14 (see notes 1 and 8)	$\begin{gathered} \hline \text { F3SN-A } \square \square \square P 25 \\ \text { (see note 1) } \end{gathered}$	$\begin{aligned} & \hline \text { F3SN-A } \square \square \square \square \mathrm{P} 40 \\ & \text { (see note 1) } \end{aligned}$	$\begin{aligned} & \text { F3SN-A } \square \square \square \square P 70 \\ & \text { (see note 1) } \end{aligned}$	F3SH-A09P03
	Series connection	F3SN-A $\square \square \square \square \mathrm{P} 14-01$ (see notes 1, 2 and 8 )	$\begin{gathered} \text { F3SN-A } \square \square \square P 25-01 \\ \text { (see note 1) } \end{gathered}$	$\begin{gathered} \text { F3SN-A } \square \square \square \square \mathrm{P} 40-01 \\ \text { (see note 1) } \end{gathered}$	F3SN-A $\square \square \square \square P 70-01$ (see note 1)	F3SH-A09P03-01
Sensor type		Type 4 Safety Light Curtain				
Applicable safety category		4, 3, 2, 1, B				
Operating range		0.2 to 7 m	0.2 to 10 m			
Beam pitch (P)		9 mm	15 mm	30 mm	60 mm	300 mm
Number of beams ( n )		$\begin{array}{\|l\|} \hline 21 \text { to } 179 \\ \text { (odd numbers only) } \\ \hline \end{array}$	13 to 120	7 to 60	5 to 30	4
Protective height (PH)		$\begin{aligned} & 189 \text { to } 1611 \mathrm{~mm} \\ & \mathrm{PH}=\mathrm{n} \times \mathrm{P} \\ & \hline \end{aligned}$	$\begin{aligned} & 217 \text { to } 1822 \mathrm{~mm} \\ & \mathrm{PH}=(\mathrm{n}-1) \times \mathrm{P}+37 \end{aligned}$	$\begin{aligned} & 217 \text { to } 1807 \mathrm{~mm} \\ & \mathrm{PH}=(\mathrm{n}-1) \times \mathrm{P}+37 \end{aligned}$	$\begin{aligned} & 277 \text { to } 1777 \mathrm{~mm} \\ & \mathrm{PH}=(\mathrm{n}-1) \times \mathrm{P}+37 \end{aligned}$	-
Outermost beam gap		-				900 mm
Detection capability		Non-transparent: 14 mm in diameter	Non-transparent: 25 mm in diameter	Non-transparent: 40 mm in diameter	Non-transparent: 70 mm in diameter	-
Effective aperture angle (EAA)		Within $\pm 2.5^{\circ}$ for the emitter and receiver at a detection distance of at least 3 m according to IEC 61496-2				
Light source (luminous wavelength)		Infrared LED (870 nm)				
Supply voltage (Vs)		24 VDC $\pm 10 \%$ (ripple p-p 10\% max.)				
Current consumption (under no-load conditions)	Emitter	Up to 50 beams: 140 mA max., 51 to 85 beams: 155 mA max., 86 beams and more: 170 mA max., 210 mA max. for 179 beams				140 mA max.
	Receiver	Up to 50 beams: 100 mA max., 51 to 85 beams: 110 mA max., 86 beams and more: 120 mA max., 140 mA max. for 179 beams				100 mA max.
OSSD		Two PNP transistor outputs, load current 300 mA max., residual voltage 2 V max. (except for voltage drop due to cable extension)				
Auxiliary output (non-safety output)		One PNP transistor output, load current 50 mA max., residual voltage 2 V max. (except for voltage drop due to cable extension)				
External indicator output (non-safety output) (see note 3)		One PNP transistor output, load current 40 mA max., residual voltage 2 V max. (except for voltage drop due to cable extension)				
Output operation mode		OSSD output: Light-ON   Auxiliary output: Dark-ON (can be changed by the F39-MC11)   External indicator output: Light-ON (can be changed by the F39-MC11) (see note 3)				
Input voltage		For test input, interlock selection input, reset input, and external relay monitor input voltages; ON voltage: 9 to 24 V (with a sink current of 3 mA max.), OFF voltage: 0 to 1.5 V or open				
Test functions		Self-test (after power ON, and during operation, one cycle during response time) External test (light emission stop function by test input)				
Mutual interference prevention function (see note 3)		Time-shared beam projection system by series connection Number of series connected light curtains: Up to 3 sets Number of beams: Up to 240 beams Length of the series connection cable: 3 m max.				
Safety-related functions		Auto reset/manual reset (interlock) (see note 4)   EDM (External Device Monitoring)   Fixed blanking (see note 5)   Floating blanking (see note 5)				Auto reset mode/manual reset mode (interlock) (see note 4)   EDM (External Device Monitoring)
Protection		Output short-circuit protection, reverse polarity protection				
Response time (under stable light incident condition)		ON to OFF: 10 to 15.5 ms max., $19,5 \mathrm{~ms}$ max. for 179 beams OFF to ON: 40 to 78 ms max.				ON to OFF: 10 ms max. OFF to ON: 40 ms max.
Startup waiting time		1 s max.				
Ambient light intensity		Incandescent lamp: 3000 Ix max. (light intensity on the receiver surface) Sunlight: 10000 Ix max. (light intensity on the receiver surface)				
Ambient temperature		Operating: -10 to $+55^{\circ} \mathrm{C}$, storage: -30 to $+70^{\circ} \mathrm{C}$ (with no icing or condensation)				
Ambient humidity		Operating/storage: 35 to 95\% RH (with no condensation)				
Insulation resistance		$20 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC )				
Dielectric strength voltage		1000 VAC $50 / 60 \mathrm{~Hz} 1 \mathrm{~min}$.				
Vibration resistance (malfunction)		10 to 55 Hz , double amplitude: $0.7 \mathrm{~mm}, \mathrm{X}, \mathrm{Y}$ and Z directions: 20 sweeps				
Shock resistance (malfunction)		$100 \mathrm{~m} / \mathrm{s}^{2}, \mathrm{X}, \mathrm{Y}$ and Z directions: 1000 times				
Degree of protection		IP65 (IEC60529)				
Connection method		M12 connector (8 pins)				
Weight (in packaging)		Calculate with the following equation:   Weight of light curtain with protective height of 189 mm to $738 \mathrm{~mm}:(\mathrm{g})=($ Protective height +100$) \times 2+1300$   Weight of light curtain with protective height of 747 mm to $1402 \mathrm{~mm}:(\mathrm{g})=($ Protective height +100$) \times 2+1700$   Weight of light curtain with protective height of 1417 mm to $1822 \mathrm{~mm}:(\mathrm{g})=($ Protective height +100$) \times 2+2100$				
Materials		Case: Aluminum, cap: Zinc die-cast, optical cover: PMMA (acrylic resin)				
Accessories		Test rod (see note 6), instruction manual, error mode label, mounting brackets (top and bottom), mounting brackets (intermediate) (see note 7)				


Model	Stand-alone	F3SN-A $\square \square \square \square$ P14 (see notes 1 and 8)	$\begin{gathered} \text { F3SN-A } \square \square \square P 25 \\ \text { (see note 1) } \end{gathered}$	$\begin{gathered} \hline \text { F3SN-A } \square \square \square \mathrm{P} 40 \\ \text { (see note 1) } \end{gathered}$	$\begin{gathered} \hline \text { F3SN-A } \square \square \square \square P 70 \\ (\text { see note 1) } \end{gathered}$	F3SH-A09P03
Item	Series connection	F3SN-A $\square \square \square \square \mathrm{P} 14-01$ (see notes 1, 2 and 8 )	F3SN-A $\square \square \square \square$ P25-01 (see note 1)	F3SN-A $\square \square \square \square$ P40-01 (see note 1)	F3SN-A $\square \square \square \square$ P70-01 (see note 1)	F3SH-A09P03-01
Applicable standard		IEC61496-1, EN61496-1 Type 4 ESPE (Electro-Sensitive Protective Equipment) IEC61496-2 Type 4 AOPD (Active Opto-electronic Protective Devices)				

Note: 1 . The 4 digits in $\square \square \square \square$ in the model number represent the protective height. Use the formula given in the information on protective height specifications to calculate the height.
For example, if the beam gap is 9 mm , and the No. of beams is 21 , the protective height will be $9 \times 21=189 \mathrm{~mm}$. The model with this protective height is F3SN-A0189P14.
2. F3SN-A $\square \square \square \square$ P14-01 is a customized model. Consult with your OMRON representative when ordering this model.

3 . Models ending in -01 only.
4 .For the factory setting, the manual reset mode is set to the "start/restart" interlock
Using the F39-MC11 can select either the start interlock or the restart interlock.
5 .For the factory setting, the function is not set. It can be enabled with the F39-MC11.
6 . Not provided with the F3SN-A $\square \square \square \square$ P70 and F3SH-A.
7 .The intermediate mounting bracket is supplied with the following types:
Types which have the total length of the light curtain from 640 mm to 1280 mm : 1 set for each of emitter and receiver.
Types which have the total length of the light curtain over 1280 mm : 2 sets for each of emitter and receiver.
8 . For sizes above 1,125 mm add „H" after P14, e.g. F3SN-A1143P14H. Ask for supplemental manual.

## Accessories

Control unit

Item	Model	F3SP-B1P	G9SA-300-SC (See note)
Applicable sensor		F3SN-A, F3SH-A	
Supply voltage		24 VDC $\pm 10 \%$	
Power consumption		1.7 W DC max. (does not include the sensor's current consumption)	24 VDC: 0.7 WDC max. (does not include the sensor's current consumption)
Operating time		100 ms max. (does not include the sensor's response time)	300 ms max. (does not include the sensor's response time and bouncetime)
Response time		10 ms max. (does not include the sensor's response time)	10 ms max. (does not include the sensor's response time and bouncetime)
Relay output	No. of contact	$3 \mathrm{NO}+1 \mathrm{NC}$	3 NO
	Rated load	$25 \mathrm{VAC}, 5 \mathrm{~A}(\cos$ diameter = 1), $30 \mathrm{VDC}, 5 \mathrm{AL} / \mathrm{R}=0 \mathrm{~ms}$	250 VAC, 5 A
	Rated carry voltage	5 A	
Connection method	Between sensor's	M12 connector (8 pins)	
	Other	Terminal block	
Weight (in packaging)		Approx. 280 g	Approx. 300 g
Accessory		Instruction manual	

Note: 1 .For further details on the G9SA-300-SC, refer to the G9SA catalogue.

Setting console

Item Model	F39-MC11
Applicable sensor	F3SN-A, F3SH-A
Supply   voltage	$24 \mathrm{~V} \mathrm{DC} \pm 10 \%$ (supplied from sensor)
Connection   method	Special cable (accessory)
Weight   (Packed state)	360 g
Accessories	Branch connector (1), special cable (2 m),   connector cap (1), operation manual

> For details on the setting console, see the manual included with the product.

Large indicator lamps

Model   Item	F39-A01PR-L (for emitter) F39-A01PR-D (for light receiver)	F39-A01PG-L (for emitter) F39-A01PG-D (for light receiver)
Applicable sensor	F3SN-A $\square \square \square \square \mathrm{P} \square \square-01$ F3SH-A09P03-01	
Light source	Red LED	Green LED
Supply voltage	24 V DC $\pm 10 \%$ (supplied by sensor)	
Current consumption	40 mA or less (supplied by sensor)	
Connection method	M12 connector (8-pin)	
Weight (Packed state)	80 g	

Environment-resistant Enclosure

Item	Model	F39-HP $\square \square \square \square-14$
Applicable sensor	F3SN-A $\square \square \square \square \mathrm{P} 14(-01)$	F39-HP $\square \square \square \square-25$   F39-HPH09-03
Operating range characteristics	0.2 to 6 m	F3SN-A $\square \square \square P 25(-01) / P 40(-01) / P 70(-01), ~$   F3SH-A09P03(-01)
Degree of protection (see note)	IP67 (IEC60529)	0.2 to 10 m
Materials	Case: Acrylic resin, rubber: NBR60, mounting bracket: SUS316L, screw: SUS316L	

Note: To conform to IP67, tighten the screws according to the "Cautions for Use" as described in the manual packaged together with the product.

## Connection

Using a manual reset function and an external device monitoring function


When using a auto reset function


S1: External test switch
S2: Interlock/lockout reset switch
S3: Lock-out reset switch (if the switch is not needed, connect to 24 V DC)
K1, K2: Relays for control of dangerous parts of machine.
K3: Load, PLC, etc. (for monitor)
Note: If you do not intend to use the external relay monitor, connect the auxiliary output that is set for dark: ON operation to the external relay monitor input, or use F39-MC11 to disable the external relay monitor function.

## Correct Usage

This catalog is intended as a guide for product selection. Be sure to use the instruction manual provided with the product for actual operation.

## Regulations and Standards

1. "Type Approval" specified in the Chapter 44. 2 of the Industrial Safety and Health Law in Japan does not apply to independent units of the F3SN-A/F3SH-A sensors. This law applies to systems incorporated with the sensor's.
When using the F3SN-A/F3SH-A sensor in Japan as "safety devices for presses or shearing machines" as specified in the Chapter 42 of the same law, apply for approval as a system.
2. (1) The $\mathrm{F} 3 \mathrm{SN}-\mathrm{A} / \mathrm{F} 3 \mathrm{SH}-\mathrm{A}$ is electro-sensitive protective equipment (ESPE) in accordance with European Union (EU) Machinery Directive Annex IV, B, Safety Components, Item 1.
(2) The F3SN-A/F3SH-A complies with the following regulations and standards:
3. EU Regulations

- Machinery Directive: Directive 98/37/EC
- EMC Directive: Directive 89/336/EEC

2. European standards: EN61496-1 (TYPE 4 ESPE), prEN61496-2 (TYPE 4 AOPD)
3. International standards: IEC61496-1 (TYPE 4 ESPE), IEC61496-2 (TYPE 4 AOPD)
4. American standards: UL61496-1 (type 4 ESPE), UL61496-2 (type 4 AOPD), UL508, UL1998, CAN/CSA22.2 No. 14, CAN/CSA22.2 No. 0.8
5. JIS standards: JIS B9704-1 (type 4 ESPE), JIS B9704-2 (type 4 AOPD)
(3) The F3SN-A/F3SH-A received the following approvals from the EU accredited body DEMKO A/S:

- EC Type-Examination in accordance with the EU Machinery Directive (TYPE 4 ESPE)
- Certificate of a competent body for EMC
- DEMKO Type Approval

Type 4 ESPE (EN61496-1)
Type 4 AOPD (prEN61496-2)
(4) The F3SN-A/F3SH-A received the following approvals from the Third Party Assessment Body UL:

- Certificate of UL listing for US and Canadian safety standards Both of which are: TYPE 4 ESPE (UL61496-1),
TYPE 4 AOPD (UL61496-2)
(5) The F3SN-A/F3SH-A received the following approvals from BG-PRUFZERT of Germany:

> BG test and approval mark License
> Type 4 ESPE (EN61496-1)

Type 4 AOPD (prEN61496-2)
3. The F3SN-A/F3SH-A is designed according to the following standards. To make sure that the F3SN-A/F3SH-A complies with the following standards and regulations, you are asked to design and use it as provided by any other related standards, laws, and regulations. (Underlined regulations are applicable to the F3SN-A only.)
Consult UL or other standardization bodies if you have any questions.

- EN415-4, prEN691, EN692, prEN693 (European standards)
- OSHA 29 CFR 1910. 212 (US Industrial Safety and Health Regulation)
- OSHA 29 CFR 1910. 217 (US Industrial Safety and Health Regulation)
- ANSI B11. 1-B11. 19 (US standard)
- ANSI/RIA 15. 06 (US standard)


## Detection zone and intrusion path

F3SN-A Safety Light Curtain
Install protective structures around the machine so that you must pass through the detection zone of the F3SN-A to reach a hazardous part of the machine.
Install the F3SN-A so that some part of the operator's body remains in the detection zone at all times when the operator works in a hazardous area. Failure to do so may result in serious injury.

## Correct Installation

A hazardous part of a machine can be reached only by passing through the sensor detection zone.


## Incorrect Installation

A hazardous part of a machine can be reached without passing through the sensor detection zone.


Some part of the operator's body remains in the detection zone while they are working.


A worker is between the sensor detection zone and a hazardous part of a machine.


F3SH-A Multi-beam Safety Sensor
Install protective structures around the machine so that you must pass through the detection zone of the F3SH-A to reach a hazardous part of the machine.
If it is possible for an operator to get between the sensor's detection zone and the hazardous part of the machine, design the system so that machinery cannot start up automatically. Make sure that machinery cannot restart while the operator is in the hazardous area. Position the switch for restarting machinery in a location from which the status of the hazardous area can be seen clearly. The switch position location must be a place where the switch cannot be operated from within the hazardous area.
Failure to do so may result in serious injury.

## Use of the fixed blanking function

After setting the fixed blanking, check that the F3SN-A detects a test rod at any position in the detection zone through which a person can reach the hazardous part of the machine. If any positions are found by check above, install protective structures to prevent intrusion, which the F3SN-A can not detect.
Failure to do so may result in serious injury.

## Distances from reflective surfaces

Be sure to install the F3SN-A/F3SH-A to minimize the effects of reflection from nearby surfaces.
Failure to do so may cause detection to fail and may result in serious injury.


Install the F3SN-A/F3SH-A with minimum Distance D shown above from reflective surfaces (highly reflective surfaces) such as metal walls, floors, ceilings, and work pieces.

Distance between   emitter and receiver   (Operating range L)	Minimum installation distance D
	F3SN-A/ F3SH-A
0.2 to 3 m	0.13 m
over 3 m	$\mathrm{~L} / 2 \times \tan 2.5^{\circ}=\mathrm{L} \times 0.044(\mathrm{~m})$

## Safety distance

Always maintain a safe distance (S) between the light curtain and a hazardous part of a machine.
Failure to do so causes the machine to fail to stop before an operator reaches the dangerous area and may result in serious injury.

Use of the floating blanking increases the size of the detection capability. To calculate a safety distance, be sure to use the increased size of the detection capability.
Failure to do so causes the machine to fail to stop before an operator reaches the dangerous area and may result in serious injury.

The "safety distance" is the minimum distance that must be maintained between the F3SN-A/F3SH-A and a hazardous part of a machine in order to stop the machine before someone or something reaches it. The safety distance is calculated based on the following equation when a person moves perpendicular to the detection zone of a light curtain.

Safety distance (S) = Intrusion speed into the detection zone (K)
$\times$ Total response time for the machine and light curtain (T)

+ Additional distance calculated based on the detection capability of the light curtain (C) $\qquad$
The safety distance varies with national standards and individual machine standards. The equation is also different if the direction of intrusion is not perpendicular to the detection zone of the light curtain. Be sure to refer to related standards.


## F3SN-A Safety Light Curtain

## Reference

Method for calculating safety distance as provided by European Norm EN999 (for intrusion perpendicular to the detection zone)

## Detection capaibility: 40 mm or less

Substitute $K=2000 \mathrm{~mm} / \mathrm{s}$ and $\mathrm{C}=8(\mathrm{~d}-14 \mathrm{~mm})$ in equation (1) and calculate as shown below.
$\mathrm{S}=2000 \mathrm{~mm} / \mathrm{s} \times(\mathrm{Tm}+\mathrm{Ts})+8(\mathrm{~d}-14 \mathrm{~mm})$
Where: $S=$ Safety distance (mm)
Tm = Machine response time (s) (See note 1)
Ts = Light curtain response time (s) (See note 2)


Detection zone
e. g.:
$\mathrm{Tm}=0.05 \mathrm{~s}, \mathrm{Ts}=0.01 \mathrm{~s}, \mathrm{~d}=14 \mathrm{~mm}$ :
$\mathrm{S}=2000 \mathrm{~mm} / \mathrm{s} \times(0.05 \mathrm{~s}+0.01 \mathrm{~s})+8(14 \mathrm{~mm}-14 \mathrm{~mm})=$ 120 mm
Use $S=100 \mathrm{~mm}$ if the result of equation (2) is less than 100 mm . Recalculate using the following equation with $\mathrm{K}=1600 \mathrm{~mm} / \mathrm{s}$ if the result is over 500 mm .

$$
\begin{equation*}
\mathrm{S}=1600 \mathrm{~mm} / \mathrm{s} \times(\mathrm{Tm}+\mathrm{Ts})+8(\mathrm{~d}-14 \mathrm{~mm}) . \tag{3}
\end{equation*}
$$

Use $S=500 \mathrm{~mm}$ if the result from equation (3) is less than 500 mm .

## Detection capability: over 40mm

Substitute $K=1600 \mathrm{~mm} / \mathrm{s}$ and $\mathrm{C}=850 \mathrm{~mm}$ in equation (1) and calculate as shown below.

$$
\mathrm{S}=1600 \mathrm{~mm} / \mathrm{s} \times(\mathrm{Tm}+\mathrm{Ts})+850
$$

Where: $S=$ Safety distance ( mm )
$\mathrm{Tm}=$ Machine response time (s) (See note 1)
Ts = Light curtain response time (s) (See note 2)
e. g.:
$\mathrm{Tm}=0.05 \mathrm{~s}, \mathrm{Ts}=0.01 \mathrm{~s}$ :
$\mathrm{S}=1600 \mathrm{~mm} / \mathrm{s} \times(0.05 \mathrm{~s}+0.01 \mathrm{~s})+850 \mathrm{~mm}=946 \mathrm{~mm}$
Note: 1 .The machine response time refers to the maximum time from the moment the machine receives a stop signal to the moment the hazardous part of the machine stops. The machine response time should be measured on actual machines. The machine response time should be measured and confirmed periodically.

## Response Time Table

Model	Protective height (mm)	Number of beams	Response time	
			ON to OFF	OFF to ON
F3SNAP14(-01)	180 to 450	20 to 50	10.0 ms	40 ms
	459 to 765	51 to 85	12.5 ms	50 ms
	774 to 1080	86 to 120	15.0 ms	60 ms
	1089 to 1125	121 to 125	15.5 ms	62 ms
Model	Protective height (mm)	Number of beams	Response time	
			ON to OFF	OFF to ON
$\begin{aligned} & \text { F3SN-A } \square \square \square \square \\ & \text { P25(-01) } \end{aligned}$	217 to 772	13 to 50	10.0 ms	40 ms
	787 to 1297	51 to 85	12.5 ms	50 ms
	1312 to 1822	86 to 120	15.0 ms	60 ms
Model	Protective height (mm)	Number of beams	Response time	
			ON to OFF	OFF to ON
$\begin{aligned} & \text { F3SN-A } \\ & \text { P40(-01) } \end{aligned}$	217 to 757	7 to 25	10.0 ms	40 ms
	787 to 1297	26 to 43	12.5 ms	50 ms
	1327 to 1807	44 to 60	15.0 ms	60 ms


Model	Protective   height   (mm)	Number   of beams	Response time   ON to   OFF	
OFF to   ON				
	277 to 757	5 to 13	10.0 ms	40 ms
	817 to 1297	14 to 22	12.5 ms	50 ms
	1357 to 1777	23 to 30	15.0 ms	60 ms

- Response time for series connected types is calculated as follows: (F3SN-A)


## For 2 sets:

Response time (ON to OFF): Response time of Light curtain 1 + Response time of Light curtain $2+3 \mathrm{~ms}$ Response time (ON to OFF): Response time of Light curtain $1+$ Response time of Light curtain $2+12 \mathrm{~ms}$ For 3 sets:
Response time (ON to OFF): Response time of Light curtain $1+$ Response time of Light curtain $2+$ Response time of Light curtain $3+4 \mathrm{~ms}$
Response time (ON to OFF): Response time of Light curtain 1 + Response time of Light curtain 2 + Response time of Light curtain $3+16 \mathrm{~ms}$

- Response time of F3SP-B1P is 10 ms , operation time is 100 ms .

1. The light curtain response time refers to the time required for output to change from ON to OFF.
2. When using the F3SP-B1P, determine the safety distance by adding the response time of the F3SP-B1P to that of the F3SN given in the table above.

## Reference

Method for calculating the safety distance as provided by ANSI B11. 19 (US)
Safety distance $(\mathrm{S})=$ Intrusion speed into the detection zone (K)
Response time (Ts + Tc + Tr + Tbm) + Additional distance (Dpf)
Where:
$\mathrm{K}=\quad$ Intrusion speed (Recommended value in OSHA standards is $1600 \mathrm{~mm} / \mathrm{s}$ )
ANSI B11. 19. does not define Intrusion speed (K). When determining K , consider possible factors including physical ability of operators.
Ts = Time required for machine to stop (s)
$\mathrm{Tr}=$ Light curtain response time (s) (See note)
Tc $=\quad$ Maximum response time required for machine control circuit to apply brake (s)
Tbm = Additional time (s)
If the machine is provided with a brake monitor, $\mathrm{Tbm}=$ brake monitor setting time - (Ts + Tc). If not provided with a brake monitor, it is recommended to determine a value more than $20 \%$ of $(\mathrm{Ts}+\mathrm{Tc})$ as the additional time.
Dpf $=$ Additional distance.
Dpf is calculated as follows based on ANSI standards:
Dpf $=3.4 \times(\mathrm{d}-7.0)$ where d is the detection capability of the light curtain (mm).
e. g.:

Assume that: $\mathrm{K}=1600 \mathrm{~mm} / \mathrm{s}$, $\mathrm{Ts}+\mathrm{Tc}=0.06 \mathrm{~s}$,
Brake monitor setting time $=0.1 \mathrm{~s}, \mathrm{Tr}=0.01 \mathrm{~s}, \mathrm{~d}=14 \mathrm{~mm}$.
Then:
$\mathrm{Tbm}=0.1-0.06=0.04 \mathrm{~s}$
Dpf $=3.4-(14-7.0)=23.8 \mathrm{~mm}$
$S=1600 \times(0.06+0.01-0.04)+23.8=199.8 \mathrm{~mm}$
Note: The light curtain response time refers to the time required for output to change from ON to OFF.

## Reference

Method for calculating the safety distance as provided by ANSI/RIA R15.06 (US) (for intrusion perpendicular to the detection zone) Safety distance (Ds) $=\mathrm{K} \times(\mathrm{Ts}+\mathrm{Tc}+\mathrm{Tr})+\mathrm{Dpf}$

Where:
$\mathrm{K}=$ Intrusion speed: $1600 \mathrm{~mm} / \mathrm{s} \mathrm{min}$.
Ts = Maximum stop time of machine/equipment (s)
Tc = Maximum stop time of control system (s)
$\mathrm{Tr}=$ Light curtain response time (s)
Os = Diameter of the smallest detectable object (mm)
Dpf = Additional distance (mm)
Assume that the sensor is installed with the lowest beam height above the floor at 300 mm and the highest beam height above the floor at 1200 mm , with the diameter of the smallest detectable object being 64 mm or less. Then, Dpf is determined from:

Dpf $=3.4 \times(\mathrm{Os}-6.875 \mathrm{~mm})$.
If the diameter of the smallest detectable object is more than 64 mm , Dpf is calculated to be 900 mm .
e. g.:

- F3SN-A $\square \square \square \square$ P40 Safety Light Curtain

Assume that $\mathrm{K}=1600 \mathrm{~mm} / \mathrm{s}$, $\mathrm{Ts}+\mathrm{Tc}=0.06 \mathrm{~s}, \mathrm{Tr}=0.01 \mathrm{~s}$, and $\mathrm{Os}=40 \mathrm{~mm}$
Then:
$S=1600 \times(0.06+0.01)+D p f$
$=1600 \times(0.06+0.01)+3.4(40-6.875)$
$=225 \mathrm{~mm}$

- F3SN-A $\square \square \square \square$ P70 Safety Light Curtain

Assume that $\mathrm{K}=1600 \mathrm{~mm} / \mathrm{s}$, $\mathrm{Ts}+\mathrm{Tc}=0.06 \mathrm{~s}, \mathrm{Tr}=0.01 \mathrm{~s}$, and Dpf $=900 \mathrm{~mm}$.
Then:
$S=1600 \times(0.06+0.01)+900$
$=1012 \mathrm{~mm}$
Note: The light curtain response time refers to the time required for output to change from ON to OFF

F3SH-A Multi-beam Safety Sensor

## Reference

Method for calculating safety distance as provided by European Norm EN999 (for intrusion perpendicular to the detection zone)
Substitute $K=1600 \mathrm{~mm} / \mathrm{s}$ and $C=850 \mathrm{~mm}$ in equation (1) and calculate as shown below.
$\mathrm{S}=1600 \mathrm{~mm} / \mathrm{s} \times(\mathrm{Tm}+\mathrm{Ts})+850$
Where:
$\mathrm{S}=$ Safety distance (mm)
Tm = Machine response time (s) (See note 1)
Ts = Sensor response time (s) (See note 2)
e. g.:
$\mathrm{Tm}=0.05 \mathrm{~s}, \mathrm{Ts}=0.01 \mathrm{~s}:$
$\mathrm{S}=1600 \mathrm{~mm} / \mathrm{s} \times(0.05 \mathrm{~s}+0.01 \mathrm{~s})+850 \mathrm{~mm}=946 \mathrm{~mm}$
Note: 1 . The machine response time refers to the maximum time from the moment the machine receives a stop signal to the moment the hazardous part of the machine stops. The machine response time should be measured on actual machines. The machine response time should be measured and confirmed periodically
2 .The sensor response time refers to the time required for output to change from ON to OFF

## Installation <br> How to prevent mutual interference

The emitter and the receiver to be set facing each other should be a pair of the same set. Erroneous combination may create a zone where objects cannot be detected.

Do not use the sensors for a system where the beam is reflected, or object detection may be disabled. In such an application, use a beam path diversion mirror to prevent the beam reflected from an object from entering the receiver.

When installing two or more pairs of the F3SN-A/F3SN-B/F3SH-A, take necessary measures to prevent mutual interference. Examples of such measures include electrical interconnection and the use of baffle plates.

## Installation <br> How to prevent mutual interference

Series connection (Up to 3 sets, 240 beams, sensor models ending in $-01,-03,-04$, and -05 are required for series connection)

Two or more pairs of the F3SN-A can be connected in series. When connected in series, the F3SN-A sensors generate beams in a timesharing manner. Thus, they prevent mutual interference and ensure safety.


## When not connected

When installing two or more pairs of light curtains independently from each other due to inconvenience of wiring or other reason, take proper measures to prevent mutual interference. If mutual interference occurs, a lockout condition will result for the F3SN-A/F3SH-A.

- Installation which may cause mutual interference



## - Installation to prevent mutual interference

(1) Install so that the two light curtains emit in the opposite directions (staggered).

(2) Install a light interrupting wall in between sensors.

(3) Install the light curtains facing away from the one another to eliminate mutual interference.


| Distance between |
| :--- | :---: |
| emitter and receiver |
| (Operating range L ) |$\quad$ Minimum installation distance D

(4) Use a F39-HS spatter protection slit cover

## Operating range

If the distance between the emitter and the receiver is less than 0.2 m , there is a possibility of chattering. Be sure to use the sensors within the rated operating range.

## Names and Functions of Parts

Emitter (F3SN-A/ F3SH-A)


Receiver (F3SN-A)


Receiver (F3SH-A)


Function

Power indicator	Lit when power is supplied (always lit) ........................................... F3SN-A, F3SH-A Emitter   Lit when power is supplied, flashing when the F39-MC11 is connected ...... F3SH-A Receiver (see note)
Interlock indicator	Lit during interlock condition
Lockout indicator	Flashing during lockout condition
Test indicator	Lit during external test (see note)
ON-state indicator	Lit when OSSD outputs are in ON-state
OFF-state indicator	Lit when OSSD outputs are in OFF-state
Blanking indicator (F3SN-A only)	Lit when blanking is set, flashing when the F39-MC11 is connected (see note)
Note: As a preventive maintenance feature, these indicators will flash after a   lapse of 30000 hours.	



## Installation

How to attach mounting bracket (F39-L19/L20)
To fully utilize the performance of sensors, locate the F39-L19/L20 mounting brackets in the number satisfying the dimensions " $A$ " and " $B$ " in the sensor longitudinal direction.

- For the F39-L19

Spacing "A": 670 mm max.

- For the F39-L20

Spacing "B": 400 mm max.
Note: When installing sensors at locations susceptible to vibration and shock, increase the number of mounting brackets.


Mounting   bracket	Screw $\times$ length (mm)	Tightening torque
F39-L19	M5 $\times 12$ screw	$2.0 \mathrm{~N} \cdot \mathrm{~m}$
F39-L20	M4 $\times 8$ screw	$1.2 \mathrm{~N} \cdot \mathrm{~m}$

F39-L20


Brackets and screws included in one set

- Mounting bracket (1) ..... 1
- Mounting bracket (2) ..... 1
- M5 $\times 12$ screw .............. 1
- Mounting bracket (3) ...
- M4 $\times 8$ screw
- Toothed washer


## Main unit

F3SN-A $\square \square \square \square \mathbf{P} \square \square$ F3SN-A $\square \square \square \square \mathrm{P} \square \square$-01


Mounting screw holes


Dimensions according to the model can be calculated by using the following equations.

- F3SN-A $\square \square \square \square$ P14(-01)

Dimension C2 (protective height): 4 digits in the model name
Dimension $\mathrm{A}=\mathrm{C} 2+86$
Dimension $\mathrm{B}=\mathrm{C} 2+54$
Dimension $D=15.5$
Dimension $\mathrm{E}=\mathrm{C} 2-9$
Dimension F: See the table below
Dimension $\mathrm{P}=9$

C2 (protective height)	Number of intermediate   mounting bracket	Dimension F   (see note)
to 0620	0	-
0621 to 1125	1	$\mathrm{~F}=\mathrm{B} / 2$

Note: If value $F$ obtained from the above equation is not used, set $F$ to 670 mm or less.
-F3SN-A $\square \square \square \square$ P25(-01)/P40(-01)/P70(-01), F3SN-B $\square \square \square \square P 25 / P 40 / P 70$
Dimension C 1 (protective height): 4 digits in the model name
Dimension $\mathrm{A}=\mathrm{C} 1+64$
Dimension $B=C 1+32$
Dimension $D=18.5$
Dimension $\mathrm{E}=\mathrm{C} 1-37$
Dimension F: See the table below.

C1 (protective height)	Number of intermediate   mounting bracket	Dimension F   (see note)
to 0640	0	-
0641 to 1280	1	$\mathrm{~F}=\mathrm{B} / 2$
1281 to 1822	2	$\mathrm{~F}=\mathrm{B} / 3$

Dimension P: See the table below

Detection capability	Dimension P
25	15
40	30
70	60

F3SH-A09P03 F3SH-A09P03-01


## Mounting Precautions

Note: 1 . The mounting bracket (3) (see Mounting brackets (intermediate)) is shown on the left-hand side of the sensor as an example. If the mounting bracket ( 3 ) is on the right-hand side of the sensor then the mounting holes must also be on the right-hand side.
2 . When using with the cable bent, allow at least the dimensions shown on the right.
(Minimum bending radius of cable: R36 mm.)


## Accessories

Mounting brack
et (top and bottom)

Material: Iron (zinc plating)

Note: Provided with the product.


Mounting brackets (intermediate)


Material: Iron (zinc plating)

Note: Provided with the product. The number of brackets required depends on the total length of the Sensor.


## Accessories (Optional)

Single-ended connector cable
F39-JC3A ( $\mathrm{L}=3 \mathrm{~m}$ )
F39-JC10A $(\mathrm{L}=10 \mathrm{~m})$

F39-JC7A (L = 7 m )
F39-JC15A (L = 15 m )


Color: Emitter (gray)
Receiver (black)
Double-ended connector cable


Control unit
F3SP-B1P


## Mounting screw holes



Safety relay unit G9SA-300-SC


Setting console


External indicator
F39-A01PR-L/D
F39-A01PG-L/-D


Branching connector
(supplied with F39-MC11)
F39-CN1


Spatter protection cover
F39-HN $\square \square \square \square$-14
F39-HN $\square \square \square \square-25$


## Protection cover


Note: L is as follows.

F39-HN $\square \square \square \square-\mathbf{- 1 4}$	$\mathrm{L}=\square \square \square \square \mathrm{mm}$
F39-HN $\square \square \square \square-25$	$\mathrm{~L}=\square \square \square \square-22 \mathrm{~mm}$
F39-HH09-03	$\mathrm{L}=915 \mathrm{~mm}$

Materials: PC (transparent area) ABS (non-transparent area)

## Mounting dimensions

Fixing bracket


Materials: SUS

Environment-resistant enclosure
F39-HP $\square \square \square \square$-14
F39-HP $\square \square \square \square-25$
F39-HPH09-03


Wall mounting bracket

F39-L18



Free-location bracket
F39-L19




## Mounting



Free-location bracket

F39-L20



## Back mounting



ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.
To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .
Cat. No. E700-EN2-01-X In the interest of product improvement, specifications are subject to change without notice.

## Safety Light Curtain

F3S-B

## Safety Design for Category 2.

Suitable for
Detecting Human
Bodies in a Dangerous Area


## Features

- The F3S-B is a type 2 Safety Light curtain intended to be used as or with the safety related parts of the control system of a machine to category 2,1 or $B$ as defined in the European standard EN954-1.
- Compliance with IEC 61496-2, EN 61496-1 standards and machine and EMC directive.
- Received certificates from Notified Bodies as Type 2 ESPE (Electro-Sensitive-Protective-Equipment).
- UL/CSA approved.
- Pursuing safety with high level of safety design and FMEA.
- Series configuration of two units is possible.
- Units available with an axis pitch of 25 mm (hand protection), 50 mm (arm protection) or 75 mm (body protection) in protective height ranging from 300 mm to 1650 mm .
- Human body detection system without a dedicated control box.
- M12 Connector


## Ordering Information



Stand-alone	Master unit	Slave unit	Optical resolution	No. of optical axes	Protective height	Weight (without accessories)
F3S-B122P	F3S-BM122P■ $\square$	F3S-BS122	30 mm	12	300 mm	0.9 kg
F3S-B182P	F3S-BM182P■ $\square$	F3S-BS182		18	450 mm	1.2 kg
F3S-B242P	F3S-BM242P■ $\square$	F3S-BS242		24	600 mm	1.5 kg
F3S-B302P	F3S-BM302P■	F3S-BS302		30	750 mm	1.8 kg
F3S-B362P	F3S-BM362P■ $\square$	-		36	900 mm	2.1 kg
F3S-B422P	F3S-BM422P■ $\square$	-		42	$1,050 \mathrm{~mm}$	2.5 kg
F3S-B482P	F3S-BM482P $\square \square$	-		48	1,200 mm	2.8 kg
F3S-B542P	F3S-BM542P■ $\square$	-		54	$1,350 \mathrm{~mm}$	3.1 kg
F3S-B602P	F3S-BM602P $\square \square$	-		60	$1,500 \mathrm{~mm}$	3.4 kg
F3S-B662P	F3S-BM662P $\square \square$	-		66	1,650 mm	3.7 kg
F3S-B065P	F3S-BM065P■ $\square$	F3S-BS065	55 mm	6	300 mm	0.9 kg
F3S-B095P	F3S-BM095P■ $\square$	F3S-BS095		9	450 mm	1.2 kg
F3S-B125P	F3S-BM125P■ $\square$	F3S-BS125		12	600 mm	1.5 kg
F3S-B155P	F3S-BM155P $\square \square$	F3S-BS155		15	750 mm	1.8 kg
F3S-B185P	F3S-BM185P $\square \square$	-		18	900 mm	2.1 kg
F3S-B215P	F3S-BM215P■	-		21	$1,050 \mathrm{~mm}$	2.5 kg
F3S-B245P	F3S-BM245P■	-		24	1,200 mm	2.8 kg
F3S-B275P	F3S-BM275P■ $\square$	-		27	$1,350 \mathrm{~mm}$	3.1 kg
F3S-B305P	F3S-BM305P $\square \square$	-		30	$1,500 \mathrm{~mm}$	3.4 kg
F3S-B335P	F3S-BM335P $\square \square$	-		33	1,650 mm	3.7 kg
F3S-B047P	F3S-BM047P■ $\square$	F3S-BS047	80 mm	4	300 mm	0.9 kg
F3S-B067P	F3S-BM067P■ $\square$	F3S-BS067		6	450 mm	1.2 kg
F3S-B087P	F3S-BM087P口 $\square$	F3S-BS087		8	600 mm	1.5 kg
F3S-B107P	F3S-BM107P $\square \square$	F3S-BS107		10	750 mm	1.8 kg
F3S-B127P	F3S-BM127P $\square \square$	-		12	900 mm	2.1 kg
F3S-B147P	F3S-BM147P■ $\square$	-		14	$1,050 \mathrm{~mm}$	2.5 kg
F3S-B167P	F3S-BM167P■ $\square$	-		16	1,200 mm	2.8 kg
F3S-B187P	F3S-BM187P $\square \square$	-		18	$1,350 \mathrm{~mm}$	3.1 kg
F3S-B207P	F3S-BM207P $\square \square$	-		20	$1,500 \mathrm{~mm}$	3.4 kg
F3S-B227P	F3S-BM227P $\square \square$	-		22	1,650 mm	3.7 kg

## Nomenclature

## Protective height

The F3S-B can detect in the area indicated by "Protective height" in the figure below. The protective height is from "the Optical-axis line mark above the indicator area" to "the end of the yellow metal case".

Optical-axis line mark
The center line for optical axes is indicated by the triangle mark. This position is a reference line for measuring safety distance.


Stand-alone type
This is the most common configuration, and it is used to protect a hazardous part of a machine when approached from one direction only.


## Series connection types

When your application requires an additional protective zone, for example, to prevent someone from staying behind a primary detection zone, the F3S-B may be connected in series. The system consists of a master unit, a slave unit, and a series connection cable, type F39-JB1B.
The series connection allows up to 96 axes and 2.4 m of protective height in total.
Series connection types have the same characteristics as a stand-alone types. When the detection zone of the master unit or that of the slave unit is interrupted, the outputs of the master unit go to the OFF-state.


Note: Slave unit does not have indicators.
Master unit and slave unit need to be ordered separately.

Type	F3S-B $\square \square \square P^{* 1}$Stand-alone			F3S-BMロपПPロ~"1   Master unit for series connection			F3S-BS $\square \square^{*}$   Slave unit for series connection		
No. of optical axes	12 to 66	6 to 33	4 to 22	12 to 66	6 to 33	4 to 22	12 to 30	6 to 15	4 to10
Optical-axis pitch	25 mm	50 mm	75 mm	25 mm	50 mm	75 mm	25 mm	50 mm	75 mm
Optical resolution	Non-transparent: in diameter								
(Detection capability)	30 mm	55 mm	80 mm	30 mm	55 mm	80 mm	30 mm	55 mm	80 mm
Protective height	$\begin{aligned} & 300 / 450 / 600 / 750 / 900 / 1,050 / 1,200 / 1,350 / 1,500 / \\ & 1,650 \mathrm{~mm} \end{aligned}$						300 / 450 / 600 / 750 mm		
Detection distance	0.3 to 5.0 m , up to 8 m on request								
Response time	ON to OFF: See table "Response Time" OFF to ON*2: Default 100 ms (selectable with F39-U1E, 80 to 400 ms )								
Startup waiting time	2 s max.								
Supply voltage: Vs	$24 \mathrm{VDC} \pm 20 \%$ (including $5 \mathrm{Vp}-\mathrm{p}$ ripple)								
Current consumption	400 mA max. (under no-load conditions)								
Light source	Infrared LED (880 nm wavelength). Lifetime: 50,000 hrs. at $25^{\circ} \mathrm{C}$.								
Effective aperture angle	Within $\pm 5^{\circ}$ for the emitter and receiver at a detection distance of at least 3 m according to IEC 61496-2								
Operating mode	Light ON								
Control output	Two PNP transistor outputs, load current 200 mA max., residual voltage 2 V max. (except for voltage drop due to cable extension)								
Instability output	PNP transistor output (not safety-related control output), activated during an insufficient light detection, failure detection and connection with F39-E1, load current 100 mA max., residual voltage 2 V max. (except for voltage drop due to cable extension)								
Protection circuit	Output short-circuit protection, power supply reverse connection protection								
Start/restart interlock function	Mode selection before power ON by connecting "Interlock selection input" line to: Active: No connection or 0 to $2.5 \mathrm{VDC}, 3 \mathrm{~mA}$ max.   Inactive: Instability output line   Reset of start/restart interlock by connecting "Interlock selection input" line to: Interlock reset: 17 VDC to Vs, 20 mA max. Duration time 15 to $2,500 \mathrm{~ms}$								
External test function	Mode selection by connecting "External test input" line to: Active: 17 VDC to Vs, 10 mA max. Duration time at least 15 ms Inactive: No connection or 0 to $2.5 \mathrm{VDC}, 2 \mathrm{~mA}$ max.								
Relay monitoring function (optional)	Default inactive, selectable with F39-U1E   Relay monitoring input line with NC contact connected, Available level: 17 VDC to Vs, 10 mA max.   Allowed relay delay time ${ }^{* 3}$ : Selectable between 20 and 300 ms Termination when not selected: No connection or 0 to 2.5 VDC, 2 mA max.								
Start interlock function (optional)	Default inactive, selectable with F39-U1E								
Blanking function (optional)	Default inactive, selectable with F39-U1E								
Indicator	See "Indicators"						No indicators		
Connection method	For Extension cable: 8 pins, M12 connector   For Series connection cable: 6 pins, M12 connector								
Ambient temperature	During operation: -10 to $55^{\circ} \mathrm{C}$ (with no freezing) During storage: -25 to $70^{\circ} \mathrm{C}$								
Ambient humidity	During operation: 35 to 85 \%RH (with no condensation) During storage: 35 to 95 \%RH								
Insulation resistance	$20 \mathrm{M} \Omega$ min. (at 500 VDC )								
Dielectric strength voltage	1,000 VAC 50/60 Hz for 1 min								
Degree of protection	IEC60529 IP65								
Vibration resistance	Normal operation: 10 to 55 Hz , double-amplitude: $0.7 \mathrm{~mm}, \mathrm{X}, \mathrm{Y}$ and Z directions 20 sweeps								
Shock resistance	Normal operation: $100 \mathrm{~m} / \mathrm{s}^{2}[10 \mathrm{G}], \mathrm{X}, \mathrm{Y}$ and Z directions: 1000 times								
Materials	Case: Aluminum   Front cover: PMMA (acrylic resin)   End caps: PA6								
Size (cross section)	$30 \times 40 \mathrm{~mm}$								


Type	F3S-B $\square \square \square P^{* 1}$   Stand-alone	F3S-BM $\square \square P \square \square{ }^{* 1}$   Master unit for series connection	F3S-BS $\square \square \square^{* 1}$   Slave unit for series connection
Accessories	Test rod ${ }^{* 3}$, mounting brackets (top and bottom), mounting brackets (intermediate) ${ }^{* 4}$, mounting   plates ${ }^{* 5}$, Instruction manual ${ }^{* 5}$		
Applicable standard	IEC(EN)61496-1 TYPE 2 ESPE (Electro-Sensitive Protective Equipment)   IEC 61496-2 TYPE 2 AOPD (Active Opto-electronic Protective Devices)		

Note: 1.For detailed type names and optical specifications, see „Type Naming Rule"
2 . Nominal value (set time). The accuracy is $-0 \ldots+70 \%$ of the ON to OFF response time.
3. Only with F3S-B $\square \square \square 2 P$ and $\mathrm{BM} \square \square \square 2 \mathrm{P} \square \square$.

4 . For the $1,050 \mathrm{~mm}$ protective height and longer types.
5 . Only with $\mathrm{F} 3 \mathrm{~S}-\mathrm{B} \square \square \square \mathrm{P} \square$ and $\mathrm{BM} \square \square 2 \mathrm{P} \square \square$.

## Indicators



Emitter	IR-power indicator:   Interlock indicator:   External test/ blanking indicator:	Lit when emitting.   Lit during start/restart interlock or start interlock.   Lit during external test. / Flashing when using blanking function.
Receiver	ON-state indicator:   OFF-state indicator:	Lit when receiving light.   Lit with interrupted light.
	Instability indicator:	Flashing during connection with F39-E1 or with failure.   Lit with an insufficient light reception or failure.   Flashing during connection with F39-E1.

Table of Response Time
Stand-alone type

	Response time [ms ]		Response time [ms ]		Response time [ms ]
F3S-B122P	20	F3S-B065P	20	F3S-B047P	20
F3S-B182P	20	F3S-B095P	20	F3S-B067P	20
F3S-B242P	20	F3S-B125P	20	F3S-B087P	20
F3S-B302P	23	F3S-B155P	20	F3S-B107P	20
F3S-B362P	27	F3S-B185P	20	F3S-B127P	20
F3S-B422P	30	F3S-B215P	21	F3S-B147P	20
F3S-B482P	34	F3S-B245P	22	F3S-B167P	20
F3S-B542P	37	F3S-B275P	24	F3S-B187P	20
F3S-B602P	41	F3S-B305P	26	F3S-B207P	20
F3S-B662P	45	F3S-B335P	28	F3S-B227P	21

## Series connection types

The following chart shows the response time of combinations of a master unit and a slave unit connected in series. For example, the response time of the combination of F3S-BM122P30 and F3S-BS302 is 30 ms .

	Response time [ms]			
Slave unit F3S-   Master unit	BS122	BS182	BS242	BS302
F3S-BM122P $\square$	20	23	27	30
F3S-BM182P $\square$	23	27	30	34
F3S-BM242P $\square$	27	30	34	37
F3S-BM302P $\square$	30	34	37	41
F3S-BM362P $\square$	34	37	41	45
F3S-BM422P $\square$	37	41	45	49
F3S-BM482P $\square$	41	45	49	54
F3S-BM542P $\square$	45	49	54	57
F3S-BM602P $\square$	49	54	57	61
F3S-BM662P $\square$	54	57	61	65


	Response time [ms]			
Slave unit F3S-   Master unit	BS047	BS067	BS087	BS107
F3S-BM047P $\square \square$	20	20	20	20
F3S-BM067P $\square \square$	20	20	20	20
F3S-BM087P $\square \square$	20	20	20	20
F3S-BM107P $\square \square$	20	20	20	20
F3S-BM127P $\square \square$	20	20	20	21
F3S-BM147P $\square$	20	20	21	23
F3S-BM167P $\square \square$	20	21	23	24
F3S-BM187P $\square \square$	21	23	24	25
F3S-BM207P $\square$	23	24	25	26
F3S-BM227P $\square \square$	24	25	26	27


	Response time [ms]			
Slave unit F3S-   Master unit	BS065	BS095	BS125	BS155
F3S-BM065P $\square \square$	20	20	20	21
F3S-BM095P $\square \square$	20	20	21	22
F3S-BM125P $\square \square$	20	21	22	24
F3S-BM155P $\square \square$	21	22	24	26
F3S-BM185P $\square \square$	22	24	26	28
F3S-BM215P $\square \square$	24	26	28	30
F3S-BM245P $\square$	26	28	30	32
F3S-BM275P $\square$	28	30	32	34
F3S-BM305P $\square$	30	32	34	35
F3S-BM335P $\square \square$	32	34	35	37

## F3S-B122P

Parapendicular to Center Line of Lenses


F3S-B662P
Parapendicular to Center Line of Lenses


Parallel to Center Line of Lenses


Parallel to Center Line of Lenses



## Dimensions

## Safety Light Curtain

F3S-B


Type	A   Protective   height	B   Full length
F3S-B122, -B065, -B047	300	343
F3S-B182, -B095, -B067	450	493
F3S-B242, -B125, -B087	600	643
F3S-B302, -B155, -B107	750	793
F3S-B362, -B185, -B127	900	943
F3S-B422, -B215, -B147	1050	1093
F3S-B482, -B245, -B167	1200	1243
F3S-B542, -B275, -B187	1350	1393
F3S-B602, -B305, -B207	1500	1543
F3S-B662, -B335, -B227	1650	1693

Note:All units are in Millimeters unless otherwise indicated.


Intermediate Mounting Bracket
Only needed for types which have a protective height of 1050 mm or longer


## Options (Order Separately)

Extension Cable
(Set of 2: Emitter > gray, Receiver > black)
F39-JB1A ( $\mathrm{L}=3 \mathrm{~m}$ )
F39-JB2A ( $\mathrm{L}=7 \mathrm{~m}$ )
F39-JB3A ( $\mathrm{L}=10 \mathrm{~m}$ )


Unit: mm

## Series Connection Cable

(Set of 2: Emitter > gray, Receiver > black)
F39-JB1B


Unit: mm

## Optional Function Kit

F39-EU1E

This set includes the following items:

- F39-U1E OptionalFunction Software
- F39-E1 Interface Unit
- F39-JB1C Interface Cable

The F39-U1E Optional Function Software is the WINDOWS® -based software for use with the F39-E1 Interface Unit to program the F3S-B Safety Light Curtain, and provided with one 3.5 inch floppy disk. This software has the following features:

- Set the following functions to the F3S-B
- Start interlock function
- Relay monitoring function
- Blanking function
- Display each axis and each input line condition of the F3S-B
- Change the ON delay time

Note: The F3S-B is not in normal operation during connection with the F39-E1. The control outputs are held in their OFF-state. For detailed information please refer to "Details of F39-EU1E" in this data sheet.

## 1 WARNING

After setting the blanking function, check that the F3S-B detects a test rod at any position in the F3S-B detection zone through which a person reaches the hazardous part of the machine. If any positions are found by check above, install protective structures to there to prevent intrusion which F3S-B can not detect. Failure to do so may result in serious injury.
Perform the installation check and the periodical inspection described in the F3S-B manual.
Disconnect the outputs of the F3S-B from the load when programming it using the F39-U1E software and with F39-E1 interface unit. Failure to do so may result in serious injury.
Do not connect the F39-E1 to a power supply with a voltage higher than 24 VDC +20 \%. Do not connect the F39-E1 to an AC power supply.

## Installation

Wiring
Disconnect all sources of power before wiring the F3S-B to a machine.

- Connect the emitter extension cable (F39-JBxA-L optional, gray color outer jacket) to the emitter. (The emitter uses gray color plastic caps.)
- Connect the receiver extension cable (F39-JBxA-D optional, black color outer jacket) to the receiver. (The receiver unit uses black color plastic caps.)
- Connect the 0 V line of the power supply directly to protective earth (PE).
Note: Note:Be sure to wire correctly. Failure to do so may damage the F3S-B.

Front View	Pin No.	Signal Name		Wire Color of Extension Cable
		Receiver	Emitter	
	1	Control output 2	Relay monitoring input	White
	2	24 VDC	24 VDC	Brown
	3	Control output 1	External test input	Green
	4	Instability output	Interlock selection input	Yellow
	5	RS-485 (A)	RS-485 (A)	Grey
	6	RS-485 (B)	RS-485 (B)	Pink
	7	0 V	0 V	Blue
	8	N.C. / reserved*1	N.C. / reserved	Red

*1. N.C. / reserved: do not connect


## When using START/RESTART FUNCTION



## Details of F39-EU1E Optional Function Kit

## 1. Installation

### 1.1 Preparation

## $\triangle$ WARNING

Perform the installation check and the periodical inspection described in the F3S-B manual.

Do not disassemble, repair or modify the F39-E1.
Do not use the F39-E1 in flammable or explosive environments.

To use the F39-U1E software, the following items are necessary.

- Personal Computer (not included)
- Windows® 95, Windows® 98, or Windows NT®
-133 MHz Pentium® processor or better
- 32MB RAM or higher for Windows ${ }^{\circledR} 95$ and Windows ${ }^{\circledR} 98$
- 64MB RAM or higher for Windows NT®
- A 115kBd RS-232 serial interface port or better

F39-E1 Interface Unit


When using optional RELAY MONITORING FUNCTION


F39-JB1C Interface cable 5 m cable length, M8 connector (4 pins)


- RS-232C cable (not included)
1.2 Component Names and Functions of the F39-E1 Interface Unit


SEND to RS-485 Indicator (Red)
Lit when the F39-E1 sends data to the F3S-B via RS-485.
SEND to RS-232C Indicator (Yellow)
Lit when the F39-E1 sends data to the PC via RS-232C.
COMMUNICATION Indicator (Green)
Flashing during communication between the F3S-B and the F39-E1.

### 1.3 Hardware Connection

## 4. WARNING

Disconnect the outputs of the F3S-B from the load when programming it using the F39-U1E software and with F39-E1 interface unit. Failure to do so may result in serious injury.
Do not connect the F39-E1 to a power supply with a voltage higher than 24 VDC +20 \%.
Do not connect the F39-E1 to an AC power supply.

### 1.3.1 Wiring Diagram



Note 1: See the instruction manual of F3S-B for wiring

### 1.3.2 Wiring Procedure

1. Connect the F3S-B (see the instruction manual of the F3SB for wiring.)
2. Connect the Interface cable (F39-JB1C) to the Interface unit (F39-E1).
3. Connect the 4 wires of the Interface cable to each appropriate line of the F3S-B.
4. Connect an RS-232C cable to the PC and the Interface unit.
1.4 Software-Installation

Copy the file „F39-U1E_ver\#.\#.exe" and F39-U1E_ver\#.\#dat from the enclosed 3.5 -inch floppy disk onto the hard disk of the PC.

## 2. Function Description

### 2.1 Start Interlock

When the Start interlock function is used, the F3S-B does not go to the ON-state automatically after power ON. Interrupting one or more axes resets the start interlock condition of the F3S-B then starts normal operation. The duration of the interruption must be equal or shorter as defined in the „Max. interruption time (sec)".

## Max. Interruption Time

The max interruption time can be set between 0.3 and 2 s .
Note: In the case both the Start interlock and the Start/restart interlock are selected, only the Start/restart interlock will be activate.

Start/Restart interlock is a function which is selected by wiring. Refer to the instruction manual of the F3S-B for more detailed information.

### 2.2 Relay Monitoring

MPCEs (Machine Primary Control Elements) are usually relays or contactors used to control hazardous movement directly. The state of the MPCEs can be checked with the Relay monitoring function.
A voltage of 17 VDC to Vs (Supplied voltage to F3S-B) has to be applied to the Relay monitoring input through the NC contacts of the MPCEs when the F3S-B control outputs are in the OFF-state (see the F3S-B manual for wiring information). To ensure this logic relation, the MPCEs must be safety approved types, with forcibly guided contacts.
Allowed Relay Delay Time
The allowed relay delay time can be set between 20 and 300 ms. This delay time has to be set at least 20 milliseconds shorter than the Outputs ON delay time.

### 2.3 Outputs ON Delay

You can set the ON delay time of control outputs between 80 and 400 ms . This corresponds to the time which the control outputs go to ON -state after the detection zone is not interrupted.
Note: 1 . When the Relay monitoring function is also used, the ON delay time must meet the formula below.
2. ON delay time Allowed relay delay time +20 ms After the Relay monitoring function is set, if the ON delay time does not meet the above formula, the ON delay time will be changed automatically into "Allowed relay delay time" + 20 ms .

### 2.4 Blanking

With the Blanking function, one or more axes can be disabled. This function is useful in an application where a part of the F3S-B detection zone is always interrupted. The Manual-setting and the Teaching-setting are available to select the blanked axes.
Note: 1 . In the case the blanked zone is not filled with structure completely and remains some opening, the opening must be filled with the protective structure.
2 . All axes can not be disabled. At least one axis needs to be active.
3. Ratings and Performance

Type	F39-E1 Interface unit
Supply voltage	$24 \mathrm{VDC} \pm 20 \%$ (including 5 Vp -p ripple)
Current Consumption	120 mA max.
Interface	RS-232C interface, RS-485 interface
Indicator	See 1-2
Connection method	RS-485: 4pins, M 8 connector
	RS-232C: D-SUB connector, 9 pins
Protection circuit	RS 485 protection against wrong wiring
Ambient Temperature	During operation: -10 to $55^{\circ} \mathrm{C}$ (with no freezing)
	During storage: -25 to $70^{\circ} \mathrm{C}$
Ambient Humidity	During operation : 35 to 85\% RH (with no condensation)
Ambient Humidity	During storage: 35 to $95 \%$ RH
Insulation Resistance	$20 \mathrm{M} \Omega$ min. (at 500 VDC )
Dielectric strength voltage	$500 \mathrm{VAC} 50 / 60 \mathrm{~Hz}$ for 1 min .
Degree of Protection	IEC60529 IP20
Shock resistance	Normal operation: $150 \mathrm{~m} / \mathrm{s}^{2}$ [15 G], $\pm \mathrm{X}, \pm \mathrm{Y}$ and $\pm \mathrm{Z}$ directions: 3 times
Vibration resistance	Normal operation: 10 to 55 Hz , double-amplitude: $0.3 \mathrm{~mm}, \mathrm{X}, \mathrm{Y}$ and Z directions: 10 sweeps
Cable length	RS-485 cable: 5 m (4 pin $0.25 \mathrm{~mm}^{2}$ )
	RS-232C cable: Standard
Materials	Case: Aluminum
Size	$122 \times 60 \times 35 \mathrm{~mm}$
Conformity	EMC Directive

## Precautions

## 1. WARNING

1. Do not use the F3S-B on machines that can not be stopped by electrical control in case of an emergency.
2. Do not use the F3S-B in flammable or explosive environments
3. Always maintain the safety distance between F3S-B and a hazardous part of the machine. Serious injury may result if the machine does not stop before someone reaches the hazardous part.
4. Install protective structures around a machine so that you must pass through the detection zone to reach a hazardous part of the machine.
5. Install F3S-B so that some parts of the operator's body remain in the detection zone at all times when the operator works in the hazardous area.
6. Failure to do so may result in serious injury.

## Correct installation



A hazardous part of a machine can be reached only by passing through the sensor detection zone.

Some part of the operator's body remains in the detection zone while they are working.

## Incorrect installation



A worker is between the sensor detection zone and a hazardous part of a machine.

## WARNING

1. Be sure to install the F3S-B to minimize the effects of reflections from reflective surfaces. Failures to do so will create an inability to detect and may result in serious injury
2. Install the F3S-B with a minimum distance $D$ as shown below form the reflective surface (highly reflective surfaces) like metal walls, floors, ceilings, and work pieces.


Reflecting floor


Distance between emitter and receiver (detection distance L)	Minimum installation distance D
0.3 to 3 m	0.26 m
3 to 5 m	$\mathrm{~L} \times \tan 5^{\circ}=\mathrm{L} \times 0.088(\mathrm{~m})$

When using multiple sets of the F3S-B, install them so that mutual interference is not incurred.


Alternate emitters and receivers
Correct installations are shown below to prevent mutual interference.


## \. WARNING

1. The F3S-B is a TYPE 2 Electro-sensitive protective equipment, intended to be used as or with the safety related part of control system to category 2, 1 or B as defined in the European standard EN954-1.
Do not use the F3S-B in category 3 or 4 systems.
2. A qualified person, as determind by local regulations, must confirm that installation, inspection and maintenance are implemented correctly.
3. Do not short the output lines to the +24 V line. Doing so will cause the output to be always ON, creating a hazardous situation.
4. Do not connect the F3S-B to a power supply with voltage higher than 24 VDC $+20 \%$. Do not connect the F3S-B to an AC power supply.
5. Be sure to conduct inspections regularly.
6. The F3S-B cannot be used in applications where hazardous projectiles may exit the protected zone.
7. Do not disassemble, repair or modify the F3S-B.
8. DC power supply units must satisfy all of the conditions below so that the F3S-B can comply with the applicable standards IEC 61496-1 and UL 508.
(1.) The power supply voltage must be within rating ( $24 \mathrm{VDC} \pm 20 \%$ ).
(2.) The power supply is connected only to the F3S-B and to the electro-sensitive protective function of the F3S$B$, such as a safety controller and muting sensors, and it has enough rated current for all the devices.
(3.) The power supply uses double or reinforced insulation between the primary and secondary circuits.
(4.) The power supply automatically resets overcurrent protection characteristics (voltage drop).
(5.) The power supply maintains an output holding time of at least 20 ms .
(6.) FG (frame ground terminal) must be connected to PE (protective earth) when using a commercially available switching regulator.
(7.) The power supply must have output characterisitics required for the power source for Class 2 Circuit or Limited Voltage / Current Circuit as defined in UL508.
(8.) The power supply must conform to regulatory requirements and standards, regarding EMC and electrical equipment safety, of the country where the F3S-B is installed and where machinery will be operated, for example: The EMC Directive (industrial environment) and the Low Voltage Directive in EU.
9. Do not use the F3S-B in a direct retroreflective configuration. Otherwise detection may fail.


## Safety sensor for Palletisers

## F3S-TGR-SB $\square$ C series



TECA№.

## Features

## For Palletiser

F3S-TGR-SB $\square$ C series has been developed especially for Palletisers and wrapping machine access protection applications.

Active - Passive system and Plug and play
By using a mirror system we can achieve an active - passive multi beam system. This active passive system will improve installation time and reduce costs.


## 3 Different types available

We provide 3 different Types as following:

- 2 beam Type (beam pitch 500 mm )
- 3 beam Type (beam pitch 400 mm )
- 4 beam Type (beam pitch 300 mm )


Muting functions are integrated
Following Muting functions are integrated:

- Muting sensor inputs
- Muting Lamp output
- Override input (120 second max)
- Test / Reset input
- Interlock function and Test Reset input


## Decentralized Muting connection Box

Furthermore, using a F39-TGR-SB-CMB1, it's possible to reduce the wiring time and wiring material for the muting Sensors and Muting Lamp etc.


Ex. 1


Ex. 2

In the conventional solution all wires from the light curtain, mute sensors, lamp, reset are wired back to the mute controller in the control cabinet (See Ex. 1)
As you can see this solution need JUST ONE WIRE to the cabinet (See Ex. 2)

Multiple mute connections are possible

To Barrier


To Cabinet

1. PARALLEL MUTING and TWO WAY direction

2. CROSS MUTING and TWO WAY direction

3. PARALLEL MUTING and ONE WAY direcion


Please add MTL*. Ex. F3S-TGR-SB4-K1CMTL
4. CROSS MUTING and ONE WAY direction


Please add MTL*. Ex. F3S-TGR-SB4-K1CMTL

Reference
——Mechanical Guard *MTL has a special software inside of F3S-TGR-SB $\square \mathrm{C}$ which works to finalize a Muting function.

## Muting Sensors Recommendation

It is recommended to use the E3Z or E3G as muting sensor. Please refer to the E3Z datasheet Cat.No. E701-E2-Cat04-01 and the E3G datasheet Cat.No. E278-E2-Cat04-03.

SOLUTION 1: Object Gaps In many palletiser applications there is a gap between objects on the pallet. The Muting function may not work correctly because of this gap. To avoid the mutual interruption, we recommend to Use E3G $\square \square \square \square$ T as muting sensor. E3G- $\square \square \square \square$ T has ON delay timer internally ( 0 to 5 seconds)


SOLUTION 2: Misalignment of pallets
When using a CROSS MUTING system, It may cause that unexpected behavior when the pallets get out of alignment then E3G $\square \square \square \square$
 also solves the problem by OFF delay timer ( 0 to 5 seconds).

## List of Models

## Safety Multi beam Sensors

F3S-TGR-SB2-K $\square$ C Mirror Reflection Type (Type 2)

Shape	Number of optical axes	Sensing Distance	Beam Pitch	Model
	2	0.5 to 6 m	500	F3S-TGR-SB2-K2C-500(MTL)*
	3	0.5 to 5 m	400	F3S-TGR-SB2-K3C-800(MTL)*
	4		300	F3S-TGR-SB2-K4C-900(MTL)*

*. If you want to have a ONE WAY direction Type, (see Page D-26) Please add the MTL behind of Model Name. Ex. F3S-TGR-SB4-K2C-500MTL
F3S-TGR-SB4-K $\square$ C Mirror Reflection Type (Type 4)

Shape	Number of optical axes	Sensing Distance	Beam Pitch	Model
	2	0.5 to 6 m	500	F3S-TGR-SB4-K2C-500(MTL)*
	3	0.5 to 5 m	400	F3S-TGR-SB4-K3C-800(MTL)*
	4		300	F3S-TGR-SB4-K4C-900(MTL)*

*. If you want to have a ONE WAY direction Type, (see Page D-26) Please add the MTL behind of Model Name. Ex. F3S-TGR-SB4-K2C-500MTL

## Muting Connecting Box (Order Separately)

Flexible Connecting Box

Appearance	SLC Connection   Type	Other connection	Model
	M12 8pin connector   without cable	F   $4 \times$ Muting sensor connection (4pin)   $1 \times$ Muting Lamp M12 (4pin)   $1 \times$ Override/Test input M12 (4pin)   $1 \times$ cabinet connection M12 (8pin)	F39-TGR-SB-CMB1

Accessories (Order Separately)
Connector Cable

Appearance	Cable length	Specification	Model
	2 m	M12 connector (8pin Socket)   For cabinet connection   (From F3S-TGR-SB $\square$-K $\square$ C or F3S-TGR-   SB-CMB $\square$ )	F39-TGR-SB4-CVLB2R
	5 m		F39-TGR-SB4-CVLB5R
	10 m		F39-TGR-SB4-CVLB10R
	2 m	M12 connector (4pin Plug)   For Muting sensor, Muting Lamp connection and Override/Test connection	F39-TGR-SB4-CVLB2MC

Connector Plug Assemblies, Screw-on Type

Appearance	Cable connection direction	Specification	Connection method	Applicable cable diameter	Model
	Straight	DC only 4pin Plug	Screw-on	3 dia. (3 to 4 dia.)	XS2G-D4S5
	Right angle				XS2G-D4S6

Muting Lamp

Appearance	Specification	Model
	24 V DC	F39-A11

Bulb for Maintenance

Appearance	Specification	Model
	24 V DC 3 W E14	F39-A11MB

Laser alignment Kit

Appearance	Model
	F39-LKK2-SB

## Rating and Performance

## Safety sensors

F3S-TGR-SB $\square$-K $\square C$

Item	Model	
	F3S-TGR-SB4-K $\square \mathrm{C}-\square \square \square(\mathrm{MTL})^{*}$	F3S-TGR-SB2-K $\square \mathrm{C}-\square \square \square(\mathrm{MTL})^{*}$
Sensor type	Type 4	Type 2
Applicable safety category	4, 3, 2, 1, B	2, 1, B
Operating range	F3S-TGR-SB $\square-K 2 C$ 0.5   F3S-TGR-SB $\square-K 3 C / K 4 C$ 0.5	
Beam pitch and Number of beam	F3S-TGR-SB $\square-K 2 C$ 500 mm 2 be   F3S-TGR-SB $\square-K 3 C$ 400 mm 3 be   F3S-TGR-SB $\square-K 4 C$ 300 mm 4 be	with mirror with mirror with mirror
Outermost beam gap	F3S-TGR-SB $\square-K 2 C$ 500 mm   F3S-TGR-SB $\square-K 3 C$ 800 mm   F3S-TGR-SB $\square-K 4 C$ 900 mm	
Effective aperture angle (EAA)	Within $\pm 2.5^{\circ}$	Within $\pm 5^{\circ}$
Light source	Infrared LED (880 nm)	
Power supply	24 VDC $\pm 20 \%$	
Current Consumption	420 mA	
OSSD	Two PNP transistor outputs, 250 mA eacher	( 500 mA sum)
Output operation mode	Light - ON	
Test functions	Self-test (after power ON and during op	ation, one cycle during response time)
Protection	Output short-circuit protection, Reverse	larity protection
Response time	ON to OFF 16 ms max OFF to ON 300 ms (Maximum Power-	time is 900 ms )
Ambient temperature	Operating: -10 to $+55^{\circ} \mathrm{C}$ (with no dew	densation)
Ambient humidity	15\% to 95\% (non condensing)	
Metal housing (AI) painted	Yellow (RAL 1303 F14)	
Degree of protection	IP65	
Accessories	M6 T-Bolt x 8, M6 Nut x 8 Mounting fixture x 4	
Applicable standards	EN61496-1; 1997 prEN61496-2; 1997	

*. If you want to have a ONE WAY direction Type, (see Page D-26) Please add the MTL behind of Model Name. Ex. F3S-TGR-SB4-K2C-500MTL

## Muting Connecting Box

F3S-TGR-SB-CMB $\square$

Item	Model
Power supply	24 VDC $\pm 20 \%$
Consumption	10 W max
Ambient temperature	During operation: -10 to $+55{ }^{\circ} \mathrm{C}$ (with no dex condensation)
Ambient humidity	$15 \%$ to 95\% (non condensing)
RX connector	M12 8 pins female
Cabinet connector	M12 8 pins male
Sensor connector	$4 \times$ M12 4 pins female
Muting indicator	M12 4 pins female
Test / Override connectors	M12 4 pins female
Metal housing (Al) painted	Yellow (RAL 1303 F14)
Degree of protection	IP65
Material	Case
Connector	Brass with nickel plate
Front Cover	Aluminium
Weight	0.5 kg
Accessories	M6 T-Bolt x 4, M6 Nut x 4   Mounting fixture x 2, Connector cover x 2


Item	Model
Applicable standards	93/68/EEC
	DIN V VDE 0801:1990 and am.A1:1994
	EN 50081-2:1993
	EN 55022:1998

## Dimensions

F3S-TGR-SB-K $\square \mathrm{C}-\square \square \square$ with Mounting Brackets


Model	A	C	E
F3S-TGR-SB $\square-K 2 C 500$	614 mm	500 mm	500 mm
F3S-TGR-SB $\square-$ K3C800	914 mm	800 mm	400 mm
F3S-TGR-SB $\square-$ K4C900	$1,014 \mathrm{~mm}$	900 mm	300 mm

Muting connection box



Mounting bracket (Common bracket for F3S-TGR-SB $\square$-K $\square \mathrm{C}$ and F39-TGR-SB-CMB $\square$


Connector Plug Assemblies, Screw-on Type
XS2G-D4S5


XS2G-D4S6


## Connection

F3S-TGR-SB $\square$-K $\square \mathrm{C}$
Connection example


S1: External Test / Interlock reset Switch
MIA : Muting input A
MIB : Muting input B
ML : Muting Lamp

In case of Cat 4 (EN954-1), OSSD1/2 must be connected Safety Relay Unit (G9SA, G9SB-301B etc.) with feedback monitor
Pin reference

Front View	Pin No.	Signal Name	Wire Color
$\left(\begin{array}{ccc} 2 & & 1 \\ 7 & 8 & 3 \\ 6 & 5 \end{array}\right)$	1	Test and Reset Input	White
	2	+24 Vdc	Brown
	3	Muting A Input	Green
	4	Muting B Input	Yellow
	5	OSSD1 (OUT1)	Gray
	6	OSSD2 (OUT2)	Pink
	7	0 Vdc	Blue
	8	Muting Lamp (0 Vdc)	Red

## F3S-TGR-SB-CMB $\square$

Pin and Plug reference


1) To Barrier (F3S-TGR-SB series) M12 8pin connector (Female) *1
2) Muting Sensor B2 M12 5pin connector (Female)
3) Muting Sensor A2 M12 5pin connector (Female)
4) Muting Sensor B1 M12 5pin connector (Female)
5) Muting Sensor A1 M12 5pin connector (Female)
6) Muting Lamp

M12 5pin connector (Female)
7) Test/Override M12 5pin connector (Female)
8) From Cabinet

M12 8pin connector (Male)
*1 In case of F3S-TGR-SB-CMB2,
M12 8pin connector with 100 mm cable

1) To F3S-TGR-SB Series

Front View	Pin No.	Signal Name	Wire Color
$\begin{array}{lll} 1 & 2 \\ 3 & 8 & 7 \\ 4 & 5 & 6 \end{array}$	1	Test and Reset Input	White
	2	+24 Vdc	Brown
	3	Muting A Input	Green
	4	Muting B Input	Yellow
	5	OSSD1 (OUT1)	Gray
	6	OSSD2 (OUT2)	Pink
	7	0 Vdc	Blue
	8	Muting Lamp (0 Vdc)	Red

2), 3) 4), 5) Wiring of Muting Sensor connection

Front View	Pin No.	Signal Name	Wire Color
4   4 $5_{3}^{2}$	1	+24 Vdc	Brown
	2	No connect	White
	3	0 V	Blue
	4	PNP Input	Black

6) Wiring of Muting Lamp connection

Front View	Pin No.	Signal Name	Wire Color
${ }_{4}^{1} 5_{3}^{2}$	1	+24 Vdc	Brown
	2	No connect	White
	3	No connect	Blue
	4	0 V	Black

7) Test/Override connection

Front View	Pin No.	Signal Name	Wire Color
${ }_{4}^{1} 5^{2}$	1	+24 Vdc	Brown
	2	Test input	White
	3	No connect	Blue
	4	Override input	Black

8) From Cabinet

Front View	Pin No.	Signal Name	Wire Color
$\begin{array}{ccc} 2 & & 1 \\ 7 & 8 & 3 \\ 6 & 5 \end{array}$	1	Test and Reset Input	White
	2	+24 Vdc	Brown
	3	Muting A Input	Green
	4	Muting B Input	Yellow
	5	OSSD1 (OUT1)	Gray
	6	OSSD2 (OUT2)	Pink
	7	0 Vdc	Blue
	8	Muting Lamp (0 Vdc)	Red

## Application

Manual Reset Mode (by Safety barrier)


F39-TGR-SB-CMB $\square$ Plug reference


ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.
To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .

# Safety light curtain for long distance detection 

## F3SL

## 20-m long-distance

 detection. Safety light curtain (Type 4) is ideal for detection of intrusion of human bodies in large machines and conveyor lines.

## Features

- Complies with IEC standards, EN standards, and North American standards. EC-based certification from TÜV for EU machine directives. Can be used as a safety guard for satisfaction of OSHA requirements for on-site labor safety in North America.
- Special controller not needed. Detection of human body intrusion is possible using just the sensor unit.
- Includes "Start/restart interlock function" to prevent automatic reset of output.
- Includes floating blanking function (disables 1 or 2 non specific beams) and Fixed Blanking (disables specific beams)
- Built-in EDM (External Device Monitor). Feedback check is possible without a controller


## Ordering Information

Sensors $\quad \square \square$ Infrared ray							
Sensor type	Shape	Sensing distance			Operating mode	Detection width (mm)	Model
Through-beam			0.3 to 20		Light ON	351	F3SL-A0351P30
						523	F3SL-A0523P30
						700	F3SL-A0700P30
						871	F3SL-A0871P30
						1,046	F3SL-A1046P30
				20m		1,219	F3SL-A1219P30
						1,394	F3SL-A1394P30
						1,570	F3SL-A1570P30
						1,746	F3SL-A1746P30
						1,920	F3SL-A1920P30
						2,095	F3SL-A2095P30

## Accessories (Order Separately)

Special cable (please order one each for the emitter and the receiver)

Cable length	Specifications	Model	
		For emitter	For receiver
10 m	Connector	F39-JL10A-L	F39-JL10A-D
		F39-JL15A-D	
		F39-JL30A-L	F39-JL30A-D
30 m			

Refection mirror ( $15 \%$ sensing distance attenuation)

Mirror material	Width (mm)	Thickness (mm)	Length (mm)	Model
Glass mirror	125	31	460	F39-MDG460
			607	F39-MDG0607
			750	F39-MDG0750
			907	F39-MDG0907
			1,057	F39-MDG1057
			1,357	F39-MDG1357
			1,500	F39-MDG1500
			1,657	F39-MDG1657
			1,807	F39-MDG1807

Note: Other sizes are available upon request.

## Safety Relay Unit

For controlling the outputs we recommend to use safety relay units G9SA or G9SB

Appearance	Output	Model
	Expandable relay unit series with up to 8 safety relay outputs. Time delay for stop category 1 can be realized.   (Please refer to page G-109)	G9SA series
	Small size safety relay unit with 17.5 mm and 22.5 mm size. Up to 3 safety relay outputs are available.   (Please refer to page G-123)	G9SB series
	Fletible and expandable safety unit with solid state outputs	G9SX series

Rating/performance

Item	Model	F3SLA0351 P30	F3SLA0523 P30	$\begin{gathered} \text { F3SL- } \\ \text { A0700 } \\ \text { P30 } \end{gathered}$	$\begin{gathered} \text { F3SL- } \\ \text { A0871 } \\ \text { P30 } \end{gathered}$	$\begin{gathered} \text { F3SL- } \\ \text { A1046 } \\ \text { P30 } \end{gathered}$	$\begin{gathered} \text { F3SL- } \\ \text { A1219 } \\ \text { P30 } \end{gathered}$	$\begin{gathered} \text { F3SL- } \\ \text { A1394 } \\ \text { P30 } \end{gathered}$	$\begin{aligned} & \text { F3SL- } \\ & \text { A1570 } \\ & \text { P30 } \end{aligned}$	$\begin{gathered} \hline \text { F3SL- } \\ \text { A1746 } \\ \text { P30 } \end{gathered}$	$\begin{gathered} \text { F3SL- } \\ \text { A1920 } \\ \text { P30 } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { F3SL- } \\ \text { A2095P } \\ 30 \end{array}$
Sensing distance		0.3 to 20 m										
Optical axis pitch		22 mm										
Number of optical axes		16	24	32	40	48	56	64	72	80	88	96
Protective height		351 mm	523 mm	700 mm	871 mm	1,046mm	1,219mm	1,394mm	1,570mm	1,746mm	1,920mm	2,095mm
Min. sensing object		Opaque object, $30-\mathrm{mm}$ dia. or greater ( $52-\mathrm{mm}$ or $74-\mathrm{mm}$ dia. when using floating blanking)										
Effective Aperture angle		Emitter/receiver: $\pm 2.5^{\circ}$ or less each (based on IEC61496-2 at detection distance of 3 m or greater)										
Light source (wave length)		Infrared LED (850 nm)										
Power supply voltage		24 V DC $\pm 20 \%$ including $5 \%$ ripple (p-p)										
Startup time after turning on power		3 s max.										
Current consumption		Emitter: 285 mA or less, receiver: 1.4 A or less (including load output current)										
Control output		PNP transistor outputs x 2 , load current 500 mA or less (residual voltage 2 V or less) (excluding voltage drop due to cable extension), Light ON										
Auxiliary output		Same signal as control output: PNP transistor outputs $\times 1$ output (non-safety output), load current 100 mA or less (residual voltage 1 V or less) (excluding voltage drop due to cable extension)										
Protective circuits		Output load short circuit protection, reverse power connection protection										
Safety functions		Start/restart interlock function (select enable/disable with DIP switch)   - Blanking functions (1) Channel select (fixed blanking) (2) Floating blanking (3) No blanking (initial setting) Select (1), (2), or (3) with DIP switch.   The optical axes for (1) fixed blanking are set by a teach button.										
Diagnosis functions		- Self diagnosis functions when the power is turned on   - External relay (MPCE) monitor function (connect external relay monitor input wire to contact b of external relay, 50 mA 24 V DC)										
Response time ON-OFF		20 ms max .				25 ms max .			30 ms max .		35 ms max .	
Ambient temperature		Operating/Storage: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ (with no icing or condensation)										
Ambient humidity		Operating./Storage: 35\% to 95\% RH (no condensation)										
Vibration resistance		Malfunction / durability: 10 to 50 Hz , amplitude $0.7 \mathrm{~mm}, 20$ sweeps each in $\mathrm{X}, \mathrm{Y}$, and Z directions										
Shock resistance		Wrong operation / durability: $100 \mathrm{~m} / \mathrm{s} 2,1,000$ times each in $\mathrm{X}, \mathrm{Y}$, and Z directions										
Protective Degree		IEC Standard IP65										
Connection method		M12 Connector										
Weight (Packed state)		11kg max.										
Materi-   al Case		Aluminum										
Accessories		Test rod, mounting brackets (upper/lower), operation manual, special hex wrench for program button access, test load resistors ( $1 \mathrm{k} \Omega, 2$ resistors), surge protector (2)										
Applicable standards		IEC (EN) 61496-1 TYPE4 ESPE *1 IEC61496-2 TYPE4 AOPD *2										

*1) ESPE (Electro-Sensitive Protective Equipment)
*2) AOPD (Active Opto-electronic Protective Devices)

## Connection

Wire the F3SL only after all power has been turned off.


M: Mechanical drive unit including 3-phase motor
S1: Start switch for interlock reset (NC contact)
MPCE1, MPCE2: Contactor or safety relay with compulsory guide mechanism (G7SA is recommended)
Note: 1.Please use a safety relay with forcibly guided contacts (such as the G7SA) for MPCE1 and MPCE2, which are relays that perform ultimate control of the machine.
2 . If you do not intend to use the MPCE monitor function, short the MPCE monitor line (pink) to power supply 0 V .
3 . If a load is not connected to control output 1 and control output 2, an error will result and normal operation will not take place. For testing purposes during installation or at other times, connect the $10 \mathrm{k} \Omega$ resistors included with the operation manual to the MPCE1 and MPCE2 positions.
4 . If you intend to use auto start mode, short the start line (gray) to power supply 0 V .
5 . Take care when wiring not to make any mistakes regarding the cable colors. In particular, the wire colors of the power supply line (+ 24 V DC: white, 0 V : brown) are different from the regular sensor wires.
6 . Connect the provided surge protector in parallel with MPCE1 and MPCE2.

## Wiring method

Receiver unit connector			
Front view diagram	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Signal name	Wire color of special cable
		Receiver	
	1	Control output 1 (OSSD1)	Orange
	2	OV	Brown
	3	Shielded	---
	4	+DC24V	White
	5	Auxiliary output (AUXIL-	Purple
	6	MPCE monitor	Pink
	7	Start	Gray
	8	Control output 2 (OSSD2)	Yellow

Emitter unit connector

Front view diagram	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Signal name	Wire color of special cable
		Emitter	
	10	Shielded	---
	11	+DC24V	White
	12	OV	Brown

Special cable (purchased separately)

For emitter (3-pin)		For receiver (8-pin)		Cable length
F39-JL10A-L	Black   connector	F39-JL10A-D	Red connector	10 m
F39-JL15A-L		F39-JL15A-D		15 m
F39-JL30A-L		F39-JL30A-D		30 m

Note: Please order one each for the emitter and the receiver.

## ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.

To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .
Cat. No. E15E-EN-01
In the interest of product improvement, specifications are subject to change without notice.

## Safety Single Beam Sensor \& Controller

## E3FS series with

## F3SP-U3P-TGR and F3SP-U5P-TGR



## Features

The E3FS is a type 2 Safety Single beam sensor intended to be used with the control units F3SP-U3P -TGR and F3SP-U5P-TGR.

- Safety Single Beam (E3FS)

1) Up to Category 2 (EN954-1)

Type2 ESPE and Type2 AOPD.
Approved by TÜV Product Service

2) High protection against water IP67 (IEC60529)
3) Small Sensor

M18 x 65 mm
4) 4 different model available

Plastic case (with cable type and connector type)
Brass case (with cable type and connector type)

- Muting Controller for Safety single beam sensor (F3SP-U3P-TGR and F3SP-U5P-TGR)

1) Muting functions are integrated

Muting inputs
Override function
Muting Lamp output
Interlock function and Test Reset input
2) 2 different model available

2 beam unit (F3SP-U3P-TGR)
4 beam unit (F3SP-U5P-TGR)
3) Small Controller

2 beam unit $W=22.5 \mathrm{~mm}$
4 beam unit $W=45.0 \mathrm{~mm}$

## Ordering Information

Safety Single beam Sensors (Type 2)
E3FS-10B4 series

Appearance	Case material	Operation distance	Model	
	Plastic	0 to10 m	Cable Type	E3FS-10B4
			Plug Type	E3FS-10B4-P1
	Nickel Brass		Cable Type	E3FS-10B4-M
			Plug Type	E3FS-10B4-M1-M

Controller for Safety Single beam Sensors
F3SP-UxP series


## Accessories

Muting Lamp

Appearance	Model
	F39-A11

Bulb for Maintenance

Appearance	Specification	Model
	24 V DC 3 W E14	F39-A11MB

## Rating and Performance

## Sensors

E3FS-10B4 series

Sensing method		Through-beam
Controller		F3SP-U3P-TGR, F3SP-U5P-TGR
Supply voltage		24 VDC $\pm 10 \%$ (ripple p-p 10\% max.)
Effective aperture angle (EAA)		$\pm 5^{\circ}$ (at 3 m )
Current consumption		Emitter:50 mA max. Receiver: 25 mA max.
Sensing distance		10 m
Standard sensing object		Opaque object: 11 mm min. in diameter
Response time		2.0 ms (E3FS only) Response time of controller = Response time of the system
Control output		PNP transistor output, load current: 100 mA max., residual voltage: 2 V max. (Except for voltage drop due to cable extension)
Test input (Emitter)		21.5 to 24 VDC: Emitter OFF (source current: 3 mA max.) Open or 0 to 2.5 V : Emitter ON (leakage current: 0.1 mA max.)
Power supply reset time		100 ms
Ambient light intensity		Incandescent lamp: 3.000 lx max. (light intensity on the receiver surface) Sunlight: 10,000 Ix max. (light intensity on the receiver surface)
Ambient temperature		Operating: -10 to $55^{\circ} \mathrm{C}$, storage: -30 to $70^{\circ} \mathrm{C}$ (with no icing or condensation)
Ambient humidity		Operating: $35 \%$ to $85 \%$, storage: $35 \%$ to $95 \%$ (with no icing or condensation)
Insulation resistance		$20 \mathrm{M} \Omega$ min. (at 500 VDC )
Dielectric strength		1,000 VAC 50/60 Hz 1 min
Vibration resistance	Malfunction	10 to 55 Hz , double amplitude: 1.5 mm , 2 h each in the $\mathrm{X}, \mathrm{Y}$, and Z directions
	Operating limit	10 to 55 Hz , double amplitude: $0.7 \mathrm{~mm}, 50 \mathrm{~min}$ each in the $\mathrm{X}, \mathrm{Y}$, and Z directions
Shock resistance	Malfunction	$500 \mathrm{~m} / \mathrm{s}^{2}$ (approx. 50 G ), 3 times each in the $X, Y$, and $Z$ directions
	Operating limit	$100 \mathrm{~m} / \mathrm{s}^{2}$ (approx. 10 G ), 1,000 times in the $\mathrm{X}, \mathrm{Y}$, and Z directions
Degree of protection		IP67 (IEC standard)
Light source		Infrared LED
Operation indicators		Emitter: Emitting (orange)   Receiver: Output ON (green), Output OFF (red)
Protection		Output short-circuit protection, reverse polarity protection
Weight (in packaging)		E3FS-10B4 2M (ABS resin case): approx. 150 g for 1 set (weight without cable: approx. 55 g ) E3FS-10B4-M1-M (metal case): approx. 125 g for 1 set
Applicable standard		IEC61496-1, EN61496-1 Type 2 ESPE (Electro-Sensitive Protective Equipment) IEC61496-2, prEN61496-2 Type 2 AOPD (Active Opto-electronic Protective Devices)
Accessories		Emitter, Receiver, four nuts for mounting, and an instruction manual

Parallel Operating Range


Mutual interference Range


Excess Gain Ratio


## Controllers

F3SP-U series

	F3SP-U3P	F3SP-U5P
Number of sensors	1 to 2 Safety Single beam sensor	1 to 4 Safety Single beam Sensor
Width	22.5 mm	45 mm
Muting Input	2 Inputs	4 Inputs
Safety related function	Override function   Muting Lamp Connection   Interlock System (Automatic and manual reset)	
Power supply voltage	24 VDC $\pm 10 \%$	
Power consumption	420 mA max.	
Output contacts	2 NO 2.5 A (protected by fuse), 115 V AC max.	2 NO 2.5 A (protected by fuse), 250 V AC max.
Indicators	6 LED for status and diagnostics	
Enclosure rating	IP20	
Terminal	16 screw terminals, Detachable blocks with '4pin'	32 screw terminals, Detachable blocks with '4pin'
Response time	$\leq 30 \mathrm{~ms}$	
Ambient temperature	Operation: $-10^{\circ} \mathrm{C}+55^{\circ} \mathrm{C}$	
Housing material	Plastic; DIN rail mounting	
Weight	0.3 kg	

## Operating Instructions

Output Circuit

Model	Connection method	Output transistor	Output circuit
E3FS-10DB4 2M   E3FS-10DB4-P1   E3FS-10DB4-M 2M	Connect the pink and brown wire	ON when light is incident (Li-ght-ON)	
Receiver circuit	Connect the pink and blue wire	ON when light is interrupted (Dark-ON)	
E3FS-10LB 2M   E3FS-10LB-P1   E3FS-10LB-M 2M   E3FS-10LB-M1-M   Emitter circuit			

## Timing Chart

Output mode and timing chart

Receiver connection	Connect Pink (2) to Brown(1)	Connect Pink (2) to Blue (3)
Mode of output	ON when Incident (Light ON)	ON when interrupted (Dark ON)
Light Incident Light interrupted		$\square$
Indicator   Green   Red		
Control ON   output OFF		
Load ON   (Relay) OFF	$\longrightarrow$ -	

Emitting timing chart

		Timing chart	
Test input	ON		
Light emission	OFF	$\square$	
Indicator	ON	$\square$	
	OFF	$\square$	



WARNING: Both safety contacts OUT1 and OUT2 must be connected. If the machine has a single locking circuit, the two normally opened contacts must be connected in series.
WARNING: The power supply of Safety sensors must be taken from the same supply of F3S-U3P-TGR unit.
Dip Switch setting

	Function	ON	OFF
4	Not used	-------------------------------	
3	Muting Activate	It will be muting   Sensor_1 only	It will be muting   both Sensor
2	Muting Duration	Infinite	$\underline{\mathbf{6 0} \text { Second }}$
1	Reset mode	Auto Reset	Manual Reset



## F3SP-U5P Manual Reset (Cat 2)

Sensor_2 (or 4)


WARNING: Both safety contacts OUT1 and OUT2 must be connected. If the machine has a single locking circuit, the two normally opened con tacts must be connected in series.

Dip Switch setting

	Function	ON	OFF
4	Not used	------------------------1	
3	Muting Activate	Muting inputs A-B act on the sensor_1.   Muting inputs C-D act on the sensor_2.   Other sensor 3-4 continue to work	Muting inputs A-B act on the   sensor 1 and 2.   Muting inputs C-D act on the
sensor 3 and 4.			



Factory setting

The underlines mean initial setting (Factory setting)

## Common Output wiring

In case of 2 load
In case of 1 load

 operation may not be possible if another Single-beam Sensor Controller is used.

The Sensor cannot be used as part of a safety system when the mode selection input of the Single-beam Safety Sensor Receiver is connected to 0 V because the
 Sensor will turn ON when light is interrupted (Dark ON). Be sure to connect the mode selection input to 24 VDC if you want the Sensor to turn ON when light is incident (Light ON).

## Safety Distance

The safety distance is the minimum distance that must be maintained between the Sensor and a hazardous part of the machine in order to stop the machine before someone or something reaches it. The safety distance is calculated based on the following equation when a person moves perpendicular to the detection zone of the Sensor.
Safety distance ( S )= Intrusion speed into the detection zone (K) x Total response time for the machine and Sensor

+ Additional distance calculated based on the detection capability of the Sensor (C)
The safety distance varies with the national standards and individual machine standards. The equation is also different if the direction of intrusion is not perpendicular to the detection zone of the Sensor. Be sure to refer to the related standards.
Here T = T1 + T2 + T3, where
$\mathrm{T} 1=$ Maximum machine stop time (s)
T2 = Sensor response time (s) (From ON to OFF: 2.0 ms for the E3FS)
T3 $=$ F3SP response time (s) (From ON to OFF: Refer to Response Time.)
The maximum stop time for a machine is the time it takes to actually stop dangerous parts after the machine receives a stop signal from the F3SP.


Reference: Method for Calculating Safety Distance as Defined in the European Standard EN999 (with Intrusion Perpendicular to the Detection Zone)
K and C are as follows for the Single-beam Safety Sensors.

1) When a Single-beam Safety Sensor is used alone (when the risk assessment indicates that a single beam is sufficient)
$\mathrm{K}=1600 \mathrm{~mm} / \mathrm{s}$
$C=1200 \mathrm{~mm}$
Height of the beam from the ground or from a reference surface: 750 mm (EN999 recommendation)
2) When multiple Single-beam Safety Sensors are installed at different heighte.
$\mathrm{K}=1600 \mathrm{~mm} / \mathrm{s}$
$C=850 \mathrm{~mm}$

The beam heights in the following table are the EN999 recommendations.

No. of beams	Height from the reference surface (example: the floor)
2	$400 \mathrm{~mm}, 900 \mathrm{~mm}$
3	$300 \mathrm{~mm}, 700 \mathrm{~mm}, 1,100 \mathrm{~mm}$
4	$300 \mathrm{~mm}, 600 \mathrm{~mm}, 900 \mathrm{~mm}, 1,200 \mathrm{~mm}$
Note: Refer to the F3SN/F3SH instruction manuals for details on Safety Light curtains and Multi-beam Safety Sensord.	

## Preventing Mutual Interference

Observe the following items during installation to prevent Singlebeam Safety Sensors from interfering with each other or with Safety Light Curtains.

- Leave adequate space between the Sensors during installation. (Refer to the instruction manuals for the E3FS.)
- Use baffle plates to seperate Sensors.
- Alternate Emitters and Receivers during installation. (See the figure below.)


Check for mutual interference between Single-beam Safety Sensors or Safety Light Curtains connected to the same or different Control Units before finalizing placement and starting normal operation.
 rence. Otherwise detection may fail and serious injury may result.

Plastic housing
Cable type:
E3FS-10LB
E3FS-10DB4


Metallic housing
Cable type:
E3FS-10LB-M
E3FS-10DB4-M


Connector type:
E3FS-10LB-P1
E3FS-10DB4-P1


Connector type:
E3FS-10LB-M1-M
E3FS-10DB4-M1-M


## Controller

F3SP-U3P and F3SP-U5P


Model	A
F3SP-U3P-TGR	22.5 mm
F3SP-U5P-TGR	45 mm

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.
To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .

## Muting Controller for Safety Light Curtain

## F3SP-U4P

- High functionality (two independent muting functions, override function, automatic and manual reset).
- Category 2 or 4 depending on safety light curtain.
- Only 45 mm width
- Double output safety relay.
- 6 LED for status and diagnostics.
- Detachable terminals for easy installation.
- Controlls 1 or 2 safety light curtains
- TÜV approved

Muting controller for one or two Safety Light Curtain.


## List of Models

## Controller

Description	Model
	Muting Controller for Safety Light Curtain F3S-B, F3SN and F3SH

Accessories

Description	Model
Muting lamp	F39-A11

## Rating / performance

	F3SP-U4P-TGR
Power supply voltage	$24 \mathrm{VDC} \pm 10 \%$
Power consumption	420 mA max. (excl. SLC power consumption)
Output contacts	$2 \mathrm{NO} 2,5 \mathrm{~A}$ (protected by fuse)
Indicators	6 LEDs for status and diagnostics.
Enclosure rating	IP20
Terminal	32 screw terminals $\left(1,5 \mathrm{~mm}^{2}\right)$, detachable blocks with 4 screws each
Response time	$\leq 30 \mathrm{~ms}$
Ambient temperature	Operating: $-10^{\circ} \mathrm{C}+55^{\circ} \mathrm{C}$
Housing material	Plastic, DIN rail mounting
Weight	$0,6 \mathrm{~kg}$



LED $\begin{cases}\bigcirc & \text { GUARD } \\ \bigcirc & \text { BREAK } \\ \bigcirc & \text { rxz_OUT1 } \\ O & \text { RX2_OUT2 } \\ \bigcirc & \text { RX1_OUT1 } \\ O & \text { RX1_OUT2 }\end{cases}$


Wiring Example
Control unit F3SP-U4P-TGR in a mixed configuration that allowes the use of several OMRON safety light curtains and perimetrical guards.



ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.
To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .

## DeviceNet Safety System

## NE1A/DST1

## Omron now offers a DeviceNet

 compatible Safety System, that can be used 3-ways: as a Standalone controller, as a Safety network expandable with remote I/O blocks, or combined with DeviceNet to form a combined Network.- Conforms to Global Safety Standards
- Individual I/O LED status and error indicators
- USB Programming Port
- IEC 61508 SIL 3
- EN954-1 Category 4
- UL1604 Class 1, Div. 2 Group A,B,C,D

© $C \in$ (【1) , แmio
NEW


## Product Information

Introducing a Safety Network System that dramatically alters previous safety design.
Programmable safety circuits are incorporated to facilitate efficient designing and modifications. Moreover, Safety I/O Terminals can be added to increase safety I/O capacity for distributed allocation through the network. DeviceNet wiring on the existing network can be used as is, facilitating efficient design by expanding on the existing system.
The programmability of safety circuits, expandability of I/O using the network, and compatibility with the DeviceNet open network effects major changes to the framework of previous safety design systems.


## Complies with the Highest Safety Standards in the world

The DeviceNet Safety System conforms to IEC 61508 SIL3 for functional safety, and EN 954-1 Category 4 for machine safety, complying with the world's highest level of safety standards.

IEC 61508 SIL 3
Safety circuits must be able to function to provide safety at anytime. Conversely, the degree of lack of safety is used as the indicator. In IEC 61508, safety is defined as the Probability of Failure per Hour, or PFH. Based on this, the SIL (Safety Level) is classified into four levels. SIL 3 indicates a probability of dangerous failure of once in 1,000 years, which is the highest level in machine safety.

## NE1A-SCPU01 Safety Network Controller



DST1-series Safety I/O Terminals


WS02-CFSC1-E Safety Network Configurator


## EN 954-1 Safety Category 4

EN standards evaluate the level of machine risk and require the incorporation of risk minimization measures. In EN 954-1, five safety categories have been established, with Safety Category 4 indicating designs that require the highest safety design level. This category is demanded for machines with the highest level of danger, wherein "serious injury (severed limbs, death, etc.) will occur frequently, with little chance of escaping danger." This category demands that a single fault (failure) in any part of the machine, or a series of faults, will not lead to loss of the machine's safety functions.

## Programmable Safety Control

- Incorporates 16 safety inputs and 8 safety outputs.

Functions as a compact safety PLC even without using a network.

- Construct safety circuits easily with special Function Blocks.
- Up to 128 Function Blocks can be used.

DeviceNet Safety Communications Functions

- Provides DeviceNet Safety Master functionality. Connect up to 16 Safety Slaves
Expand using up to sixteen Input Slaves with 12 points each (192 points total) and eight I/O Slaves with 16 points each ( 128 points total).
- Safety Slave functionality is also included. Interlock control can be incorporated between Safety Network Controllers.
DeviceNet Slave Functionality
- Monitor safety I/O and status information from the DeviceNet Master.


## Safety Input and Safety I/O Models Available

- Safety inputs: 12-point model (DST1-ID12SL-1)
- Safety I/O: 8-point/8-point model (DST1-MD16SL-1)
- Safety I/O: 4-point/4-point (relay outputs) model (DST1-MRD08SL-1)
DeviceNet Slave Functionality
- Safety I/O and status information can be allocated as a DeviceNet Slave.
- Maintenance functions are provided for measuring the number of operations or the operating time for safety devices.
Easy Wiring
- Superior construction and preventive maintenance using clamp connectors.


## Network Configurator Functions

- Includes previous DeviceNet Configurator functions.
- Performs setup for the DeviceNet Safety network configuration.

Programming Functions

- I/O configuration functions for Safety Network Controllers and Safety I/O Terminals.
- Programming functions for safety circuits.
- Monitor programs.


## Stand-Alone Programmable Controller

Programmable Safety Circuits
Until now, safety design involved combining safety relays to configure safety control circuits. This process involved tedious wiring, and moreover, any changes required direct modification of the wiring. The DeviceNet Safety System uses programmable safety circuits, dramatically improving the ease of design and modification.


System Configuration 1

Configuration Example for High-speed Safety I/O Response Using Small Number of Points

- NE1A-SCPU01
- WS02-CFSC1-E

Delivers high-speed I/O response in a single Unit with up to 16 safety inputs and 8 safety outputs.


## Safety Network

Expand Safety I/O Through Networks
Safety components distributed over many different installation locations required long and complicated wiring.
Replacing the wiring with a network between safety components greatly improves productivity


System Configuration 2
Example of Safety I/O Configuration for Distributed Hazard Sources

- NE1A-SCPU01
- DST1 Series
- WS02-CFSC1-E

Distributed allocation of safety I/O devices can be achieved easily using Safety I/O Terminals and the DeviceNet Safety Network


## Combined Safety / DeviceNet Network

Compatible with the DeviceNet Open Network
Linking machine control is indispensable for achieving total control. By linking to machine control data, safety control can be monitored from the PLC, enabling the location of an error to be identified in an instant and improving maintenance.
DeviceNet Safety System utilizes the DeviceNet wiring from the existing network as is.


System Configuration 3

System Configuration Example for Total Control of Machine Control and Safety Control

- SYSMAC CJ Series
- NE1A-SCPU01
- DST1 Series
- WS02-CFSC1-E

The DeviceNet Network can be used to monitor the status of safety I/O and safety circuits on the DeviceNet Safety Network from existing DeviceNet Masters or other PLCs.


## Ordering Information

Safety I/O Terminals

Appearance	Appearance Description	Part Number
Safety Network Controller		
	16 PNP Inputs   8 PNP Outputs   4 Test Outputs   128 Function Block Programming   Removable Cage Clamp Terminals	NE1A-SCPU01

IP20 Safety I/O Terminals

Appearance	Appearance Description	Part Number
Input Terminal	12 PNP Inputs   4 Test Outputs   Removable Cage Clamp Terminals	DST1-ID12SL-1
Mixed I/O Terminal	8 PNP Inputs   8 PNP Outputs   4 Test Outputs Removable Cage Clamp Terminals	DST1-MD16SL-1
Mixed I/O Terminal	4 PNP Inputs   4 relay Outputs ( $4 \times 2$-single pole)   4 Test Outputs   Removable Cage Clamp Terminals	DST1-MRD08SL-1

Software

Appearance	Appearance Description	
Safety Network Configurator		

## Specifications

## NE1A-SCPU01

DeviceNet communications power supply voltage		11 to 25 VDC (supplied from communications connector)
Unit power supply voltage		20.4 to 26.4 VDC
I/O power supply voltage		20.4 to 26.4 VDC (24 VDC 15\% +1
Consumption current	Communications power supply	$24 \mathrm{VDC}, 15 \mathrm{~mA}$
	Internal circuit power supply	24 VDC, 230 mA
Overvoltage category		II
Noise immunity		Conforms to IEC 61131-2
Vibration resistance		10 to 57 Hz : $0.35 \mathrm{~mm}, 57$ to $150 \mathrm{~Hz}: 50 \mathrm{~m} / \mathrm{s} 2$
Shock resistance		$150 \mathrm{~m} / \mathrm{s} 2: 11 \mathrm{~ms}$
Mounting method		35-mm DIN Track
Ambient operating temperature		-10 to $+55^{\circ} \mathrm{C}$
Ambient operating humidity		10\% to 95\% (with no condensation)
Ambient storage temperature		-40 to $+70^{\circ} \mathrm{C}$
Degree of protection		IP20
Weight		460 g max.

## Safety Input Specifications

Input type	Sinking inputs (PNP)
ON voltage	11 VDC min. between each input terminal and G1
OFF voltage	$5 \mathrm{VDC} \mathrm{min} .\mathrm{between} \mathrm{each} \mathrm{input} \mathrm{terminal} \mathrm{and} \mathrm{G1}$
OFF current	1 mA max.
Input current	4.5 mA

DST1- $\square$ SL-1
General Specifications

DeviceNet communications power supply voltage		11 to 25 VDC (supplied from communications connector)
Unit power supply voltage		20.4 to 26.4 VDC (24 VDC 15\% +10\%)
I/O power supply voltage		
Consumption current	Communications power supply	DST1-ID12SL-1/MD16SL-1: 100 mA DST1-MRD08SL-1: 110 mA
Overvoltage category		II
Noise immunity		Conforms to IEC 61131-2
Vibration resistance		10 to $57 \mathrm{~Hz}: 0.35 \mathrm{~mm}, 57$ to $150 \mathrm{~Hz}: 50 \mathrm{~m} / \mathrm{s} 2$
Shock resistance		DST1-ID12SL-1/MD16SL-1: $150 \mathrm{~m} / \mathrm{s}^{2} 11 \mathrm{~ms}$ DST1-MRD08SL-1: $100 \mathrm{~m} / \mathrm{s}^{2} 11 \mathrm{~ms}$
Mounting method		35-mm DIN Track
Ambient operating temperature		-10 to $+55^{\circ} \mathrm{C}$
Ambient operating humidity		$10 \%$ to $95 \%$ (with no condensation) DST1-MRD08SL-1: $10 \%$ to $85 \%$ (with no condensation)
Ambient storage temperature		-40 to $+70^{\circ} \mathrm{C}$
Degree of protection		IP20
Weight		$\begin{aligned} & \text { DST1-ID12SL-1/MD16SL-1: } 420 \mathrm{~g} \\ & \text { DST1-MRD08SL-1: } 600 \mathrm{~g} \end{aligned}$

## Safety Input Specifications

Input type	Sinking inputs (PNP)
ON voltage	11 VDC min. between each input terminal and G1
OFF voltage	5 VDC min. between each input terminal and G1
OFF current	1 mA max.
Input current	6 mA

Note: For details on operating precautions and other information required to use the product, be sure to read the following operation manual: DeviceNet Safety DST1-series Safety I/O Terminals Operation Manual (Z904)

## Safety Output Specifications

Output type	Sourcing outputs (PNP)
Rated output current	0.5 A max. per output
Residual voltage	1.2 V max. between each output terminal and V2
Leakage current	0.1 mA max.

## Test Output Specifications

Output type	Sourcing outputs (PNP)
Rated output current	0.7 A max. per output (See note.)
Residual voltage	$1.2 \mathrm{~V} \mathrm{max}$. between each output terminal   and V1
Leakage current	0.1 mA max.

Note: Total simultaneous ON current: 1.4 A

## Standards

Certifying body	Standards
TÜV Rheinland	EN954-1:1996, EN60204-1:1997, EN61000-6-2:2001, EN61000-6-4:2001, EN418:1992, IEC61508 part1-7/ 12.98-05.00, IEC61131-2/02.03, NFPA 79-2002, ANSI RIA15.06-1999, ANSI B11.19-2003
UL	UL1998 (pending), NFPA79 (pending), UL508, CSA22.2 No14, UL1604

Note: For details on operating precautions and other information required to use the product, be sure to read the following operation manual: DeviceNet Safety Network Controller Operation Manual (Z906)

## Safety Output Specifications

Output type	Sourcing outputs (PNP)
Rated output current	0.5 A max. per output
Residual voltage	1.2 V max. between each output terminal and V2
Leakage current	0.1 mA max.

## Test Output Specifications

Output type	Sourcing outputs (PNP)
Rated output current	0.7 A max. per point
Residual voltage	$1.2 \mathrm{~V} \mathrm{max}$. between each output terminal and V1
Leakage current	0.1 mA max.

Safety Output Specifications for Realy Outputs

Relays	G7SA-2A2B, EN 50205 Class A
Minimum applicable load	1 mA at 5 VDC
Rated load for a resistive   load	240 VAC: $2 \mathrm{~A}, 30 \mathrm{VDC:} 2 \mathrm{~A}$
Rated load for an inductive   load	2 A at 240 VAC (cos =0.3),   1 A at 24 VDC
Mechanical life expectancy	$5,000,000$ operations min. (switching frequency   of 7,200 operations/h)
Electrical life expectancy	100,000 operations min. (at rated load and   switching frequency of 1,800 operations/h)

## Standards

Certifying body	Standards
TÜV Rheinland	EN954-1/12.96, EN60204-1/12.97, EN61000-6-2/10.01,   EN61000-6-4/10.01,EN418/1992, IEC61508 part1-7/   12.98-05.00,IEC61131-2/02.03, NFPA 79-2002,ANSI   RIA15.06-1999, ANSI B11.19-2003
UL	UL1998, NFPA79, UL508, CSA22.2 No14, UL1604   (DST1-ID12SL-1 and DST1-MD16SL-1 only)

WS02-CFSC1-E

## System Configuration



## General Specifications

Compatible computer	IBM PC/AT or compatible
CPU	Pentium 300 MHz min.
OS	Windows 2000 or XP
Supported languages	English
Memory	128 Mbytes min.
Hard disk	40 Mbytes min. available space
Monitor	Display functionality of S-VGA monitor or   higher
CD-ROM	One CD-ROM drive min.
Communications port	Either of the following communications   ports is required.   $\bullet$   USB port: For online communications   via SNC USB port (USB1.1)   $\bullet$ DeviceNet Interface Card (3G8E2-   DRM21-EV1):   For online communications via De-   viceNet.

Note: Windows is a registered trademark of Microsoft.
IBM is a registered trademark of International Business Machines Corp.

## Manuals

Description	Reference Number
Devicenet Safety Network Control-   ler Operation Manual	Z906
Devicenet Safety DST1-series   Safety I/O Terminals Operation   Manual	Z904
Devicenet Safety System Configu-   ration Manual	Z905



DST1-ID12SL-1


DST1-MD16SL-1


DST1-MRD08SL-1


## Wiring Diagrams

NE1A-SCPU01
Emergency Stop Applications (Manual Reset)


## Safety I/O Terminals

- Emergency Stop Switch and Reset



## - Safety Outputs



E1: 24-VDC Power Supply (e.g., S8VS) L1 and L2: Loads

E1: 24-VDC Power Supply (e.g., S8VS)
S1: Emergency stop pushbutton switch (direct operation mechanism) S2: Reset switch

- Safety Output and Output Feedback


E1: 24-VDC Power Supply (e.g., S8VS)
KM1 and KM2: Contactors
F1 and F2: Fuses

## Dimensions

NE1A-SCPU01


DST1-ID12SL-1
DST1-MD16SL-1


DST1-MRD08SL-1


## Flexible Safety Unit

## G9SX

## Logical AND Function in combination with clever I/O Expansion and Diagnosis offers Flexibility, Transparency and Availability

- Facilitates clear and transparent segmentation of your safety system
- Solid-state outputs for long live, and relay expansion units for up to 25 outputs per path.
- Detailed LED indications enable easy diagnosis
- Small size saves space.
- Clever Feeback outputs to feed status into control system
- Approved for compliance to EN954-1 (cat4) and
IEC/EN61508 (SIL3) by TÜV Produkt Service
- Approved by UL and CSA for global market.
Note: Refer to Precautions on page G-103.


## Model Number Legend



1. Functions

AD: Advanced Unit
BC: Basic Unit
EX: Expansion Unit
2. Output Configuration (Instantaneous Safety Outputs)

0 : None
2: 2 outputs
3: 3 outputs
4: 4 outputs
3. Output Configuration (OFF-delayed Safety Outputs)

0 : None
2: 2 outputs
4: 4 outputs
4. Output Configuration (Auxiliary Outputs)

1: 1 output
2: 2 outputs
5. Max. OFF-delay Time

Advanced Unit
T15: 15 s
Basic Unit
No indicator: No OFF delay
Expansion Unit
No indicator: No OFF delay
T: OFF delay
6. Terminal Block Type

RT: Screw terminals
RC: Spring-cage terminals

## Ordering Information

List of Models
Advanced Unit

Safety outputs		Auxiliary outputs	No. of input channels	Max. OFF-   delay time   (See note 1.)	Rated voltage	Terminal block type	Model
Instantaneous	OFF-delayed (See note 2.)						
3 (solid state) (See note 3.)	2 (solid state) (See note 3.)	2 (solid state) (See note 4.)	1 or 2 channels	15 s	24 VDC	Screw terminals	G9SX-AD322-T15-RT
						Spring-cage terminals	G9SX-AD322-T15-RC

Note: 1. The OFF-delay time can be set in 16 steps as follows:
T15: 0/0.2/0.3/0.4/0.5/0.6/0.7/1/1.5/2/3/4/5/7/10/15 s
2. The OFF-delayed output becomes an instantaneous output by setting the OFF-delay time to 0 s .
3. P channel MOS FET transistor output
4. PNP transistor output

## Basic Unit

Safety outputs		Auxiliary outputs	No. of input channels	Rated voltage	Terminal block type	Model
Instantaneous	OFF-delayed					
2 (solid state)	---	2 (solid state) (See note 2.)	1 or 2 channels	24 VDC	Screw terminals	G9SX-BC202-RT
(See note 1.)					Spring-cage terminals	G9SX-BC202-RC

Note: 1. P channel MOS FET transistor output
2. PNP transistor output

Expansion Unit

Safety outputs		Auxiliary   outputs		OFF-delay   time	Rated voltage	Terminal block type

Note: 1. PNP transistor output
2. The OFF-delay time is synchronized to the OFF-delay time setting in the connected G9SX-AD- $\square$ Advanced Unit.

## Specifications

## Ratings

Power input

Item	G9SX-AD322- $\square$	G9SX-BC202- $\square$	
Rated supply voltage	24 VDC	G9SX-EX- $\square$	
Operating voltage range	$-15 \%$ to $10 \%$ of rated supply voltage		
Rated power consumption (See note.)	4 W max.	3 W max.	2 W max.

Note: Power consumption of loads not included.
Inputs

Item	G9SX-AD322- $\square$	G9SX-BC202- $\square$
Safety input	Operating voltage: 20.4 VDC to 26.4 VDC, internal impedance: approx. $2.8 \mathrm{k} \Omega$	
Feedback/reset input		

Outputs

Item	G9SX-AD322-■	G9SX-BC202- $\square$
Instantaneous safety output OFF-delayed safety output (See note 1.)	P channel MOS FET transistor output   Load current:   Using 2 outputs or less: 1 A DC max. (See note 2.)   Using 3 outputs or more: 0.8 A DC max.	P channel MOS FET transistor output Load current:   Using 1 output: 1 A DC max. (See note 2.)   Using 2 outputs: 0.8 A DC max.
Auxiliary output	PNP transistor output Load current: 100 mA max.	

Note: 1. While safety outputs are in the ON state, the following signal sequence is output continuously for diagnosis. When using the safety outputs as input signals to control devices (i.e. Programmable Controllers), consider the OFF pulse shown below.

2. The following derating is required when Units are mounted side-by-side. G9SX-AD322- $\square / G 9 S X-B C 202-\square: 0.4$ A max. load current
Expansion Unit

Item	G9SX-EX- $\square$
Rated load	250 VAC, 3A / 30 VDC, 3A (resistive load)
Rated carry current	3 A
Maximum switching voltage	250 VAC, 125 VDC

## Characteristics

Item		G9SX-AD322- $\square$	G9SX-BC202- $\square$	G9SX-EX- $\square$
Over-voltage category (IEC/EN 60664-1)		II		II (Safety relay outputs 13 to 43 and 14 to 44: III)
Operating time (OFF to ON state) (See note 1.)		50 ms max. (Safety input: ON) (See note 2.) 100 ms max. (Logical AND connection input: ON) (See note 3.)	$50 \mathrm{~ms} \mathrm{max}. \mathrm{(Safety} \mathrm{input:} \mathrm{ON)}$	$30 \mathrm{~ms} \mathrm{max}$. (See note 4.)
Response time (ON to OFF state) (See note 1.)		15 ms max.		$10 \mathrm{~ms} \mathrm{max}$. (See note 4.)
ON-state residual voltage		3.0 V max. (safety output, auxiliary output)		
OFF-state leakage current		0.1 mA max. (safety output, auxiliary output)		
External connection impedance		$100 \Omega$ max. and 10 nF max.		---
Reset input time (Reset button pressing time)		100 ms min .		
Accuracy of OFF-delay time (See note 5.)		Within $\pm 5 \%$ of the set value	---	Within $\pm 5 \%$ of the set value
Insulation resistance	Between logical AND connection terminals, and power supply input terminals and other input and output terminals connected together	$20 \mathrm{M} \Omega$ min. (by 100 VDC megger)	--	---
	Between all terminals connected together and DIN rail		$20 \mathrm{M} \Omega$ min. (at 100 VDC )	$100 \mathrm{M} \Omega$ min. (at 500 VDC)


Item		G9SX-AD322- $\square$	G9SX-BC202- $\square$	G9SX-EX- $\square$
Dielectric strength	Between logical AND connection terminals, and power supply input terminals and other input and output terminals connected together	500 VAC for 1 min	---	---
	Between all terminals connected together and DIN rail		500 VAC for 1 min	1,200 VAC for 1 min
	Between different poles of outputs	---	---	
	Between safety relay outputs connected together and other terminals connected together			2,200 VAC for 1 min
Vibration resistance		Frequency: 10 to 55 to $10 \mathrm{~Hz}, 0.375-\mathrm{mm}$ single amplitude (0.75-mm double amplitude)		
Mechanical shock resistance	Destruction	$300 \mathrm{~m} / \mathrm{s}^{2}$		
	Malfunction	$100 \mathrm{~m} / \mathrm{s}^{2}$		
Durability	Electrical	---		100,000 cycles min. (rated load, switching frequency: 1,800 cycles/hour)
	Mechanical	---		$5,000,000$ cycles min. (switching frequency: 7,200 cycles/hour)
Ambient temperature		-10 to $55^{\circ} \mathrm{C}$ (no icing or condensation)		
Ambient humidity		25\% to 85\%		
Terminal tightening torque (See note 6.)		$0.5 \mathrm{~N} \cdot \mathrm{~m}$		
Weight		Approx. 160 g	Approx. 100 g	Approx. 145 g

Note: 1. When two or more Units are connected by logical AND, the operating time and response time are the sum total of the operating times and response times, respectively, of all the Units connected by logical AND.
2. Represents the operating time when the safety input turns ON with all other conditions set.
3. Represents the operating time when the logical AND input turns ON with all other conditions set.
4. This does not include the operating time or response time of Advanced Units that are connected.
5. This does not include the operating time or response time of internal relays in the G9SX-EX- $\square$.
6. For the G9SX- $\square$-RT (with screw terminals) only

## Logical AND Connection

Item	G9SX-AD322- $\square$	G9SX-BC202- $\square$	
Number of Units connected per   logical AND output	4 Units max.	G9SX-EX- $\square$	
Total number of Units connected   by logical AND (See note 2.)	20 Units max.	---	
Number of Units connected in   series by logical AND	5 Units max.	---	
Max. number of Expansion Units   connected (See note 3.)	---	---	
Maximum cable length for logical   AND input	100 m	5 Units	

Note: 1. See Logical AND Connection Combinations below for details.
2. The number of G9SX-EX401- $\square$ Expansion Units or G9SX-EX041-T- $\square$ Expansion Units (OFF-delayed Model) not included.
3. G9SX-EX401- $\square$ Expansion Units and G9SX-EX041-T- $\square$ Expansion Units (OFF-delayed Model) can be mixed.

Logical AND Connection Combinations

1. One logical AND connection output from an Advanced Unit can be logical AND connected to up to four Advanced Units.

2. Two logical AND outputs from a Basic Unit can be logical AND connected to up to eight Advanced Units.

3. Any Advanced Unit with logical AND input can be logical AND connected to Advanced Units on up to five tiers.

4. The largest possible system configuration contains a total of 20 Advanced and Basic Units. In this configuration, each Advanced Unit can have up to five Expansion Units.


## Response Time and Operating Time

The following table shows the response time for two or more Units that are logical AND connected.

Tier Item	Block flow diagram	Max. response time (not including Expansion Units) (See note 1.)	Max. response time (including Expansion Units) (See note 2.)	Max. operating time (not including Expansion Units) (See note 3.)	Max. operating time (including Expansion Units) (See note 4.)
First tier	Advanced Unit or Basic Unit	15 ms	25 ms	50 ms	80 ms
Second tier	Advanced Unit	30 ms	40 ms	150 ms	180 ms
Third tier	Advanced Unit	45 ms	55 ms	250 ms	280 ms
Fourth tier	Advanced Unit	60 ms	70 ms	350 ms	380 ms
Fifth tier		75 ms	85 ms	450 ms	480 ms

Note: 1. The maximum response time (not including Expansion Units) in this block flow diagram is the time it takes the output from the Unit on the lowest tier to switch from ON to OFF after the input to the Unit on the highest tier switches from ON to OFF.
2. The maximum response time (including Expansion Units) in this block flow diagram is the time it takes the output from the Expansion Unit connected to the Unit on the lowest tier to switch from ON to OFF after the input to the Unit on the highest tier switches from ON to OFF.
3. The maximum operating time (not including Expansion Units) in this block flow diagram is the time it takes the output from the Unit on the lowest tier to switch from OFF to ON after the input to the Unit on the highest tier switches from OFF to ON.
4. The maximum operating time (including Expansion Units) in this block flow diagram is the time it takes the output from the Expansion Unit connected to the Unit on the lowest tier to switch from OFF to ON after the input to the Unit on the highest tier switches from OFF to ON.

## Connections

## Internal Connection

G9SX-AD-322-T15- $\square$ (Advanced Unit)


Note: 1. Internal power supply circuit is not isolated.
2. Logical AND input is isolated.
3. Outputs S14 to S54 are internally redundant.

G9SX-BC202- $\square$ (Basic Unit)


Note: 1. Internal power supply circuit is not isolated.
2. Outputs S14 and S24 are internally redundant.

G9SX-EX401- $\square /$ G9SX-EX041-T- $\square$ (Expansion Unit / Expansion Unit OFF-delayed model)


Note: 1. Internal power supply circuit is not isolated.
2. Relay outputs are isolated

## Dimensions

Note: All units are in millimeters unless otherwise indicated.
Advanced Unit

## G9SX-AD322- $\square$



Basic Unit

G9SX-BC202- $\square$


Expansion Unit
G9SX-EX401- $\square$
Expansion Unit (OFF-delayed Model)


## Wiring of Inputs and Outputs

Signal name	Terminal name	Description of operation		Wiring
Power supply input	A1, A2	The input terminals for power supply. Connect the power source to the A1 and A2 terminals.	Connect the power supply plus (24 VDC) to the A1 terminal.   Connect the power supply minus (GND) to the A2 terminal.	
Safety input 1	T11, T12	To set the safety outputs in the ON state, the HIGH state signals must be input to both safety input 1 and safety input 2. Otherwise the safety outputs cannot be in the ON state.	Corresponds to Safety Category 2 (EN954-1)	
Safety input 2	T21, T22		Corresponds to Safety Category 3 (EN954-1)	
			Corresponds to Safety Category 4 (EN954-1)	
Feedback/reset input	T31, T32, T33	To set the safety outputs in the ON state, the ON state signal must be input to T33. Otherwise the safety outputs cannot be in the ON state.	Auto reset	
		To set the safety outputs in the ON state, the signal input to T32 must change from the OFF state to the ON state, and then to the OFF state. Otherwise the safety outputs cannot be in the ON state.	Manual reset	
Logical AND connection input	T41, T42	The logical AND connection means that one unit (Unit A) outputs a safety signal "a" to a subsequent unit (Unit B) and Unit B calculates the logical multiplication (AND) of the signal "a" and safety signal "b", which is input to Unit B.   Thereby the logic of the safety output of Unit B is "a" AND "b".   To set the safety outputs of the subsequent Unit in the ON state, its logical AND connection preset switch must be set to AND (enable) and the HIGH state signal must be input to T41 of the subsequent unit.		
Cross fault detection input	Y1	Selects the mode for the failure detecting (cross fault detecting) function for the safety inputs of G9SX corresponding to the connection of the cross fault detection input.	Keep Y1 open when using T11, T21. (Wiring corresponding to category 4)   Connect Y1 to 24 VDC when not using T11, T21.   (Wiring corresponding to category 2 or 3 , or when connecting safety sensors)	
Instantaneous safety output	S14, S24, S34	Turns ON/OFF according to the state of the safety inputs, feedback/reset inputs, and logical AND connection inputs.   During OFF-delay state, the Instantaneous safety outputs are not able to turn ON.	Keep these outputs open when not used.	
OFF-delayed safety output	S44, S54	OFF-delayed safety outputs.   The OFF-delay time is set by the OFF-delay preset switch.   When the delay time is set to zero, these outputs can be used as non-delay outputs.	Keep these outputs open when not used.	
Logical connection output	L1, L2	Outputs a signal of the same logic as the instantaneous safety outputs.	Keep these outputs open when not used.	
Auxiliary monitor output	X1	Outputs a signal of the same logic as the instantaneous safety outputs	Keep these outputs open when not used.	
Auxiliary error output	X2	Outputs when the error indicator is lit or blinking.	Keep these outputs open when not used.	

## Connecting Safety Sensors and the G9SX

1. When connecting safety sensors to the G9SX, the Y1 terminal must be connected to 24 VDC

The G9SX will detect a connection error, if the Y 1 terminal is open.
2. In many cases, safety sensor outputs include an OFF-shot pulse for self diagnosis.

The following condition of test pulse is applicable as safety inputs for the G9SX.

- OFF-shot pulse width of the sensor, during the ON-state: $340 \mu$ s max. OMRON safety sensors comply to this specification. For 3rd party products refer to OSSD specification



## Operation

## Functions

## Logical AND Connection

The logical AND connection means that the Basic Unit (or Advanced Unit) outputs a safety signal "a" to an Advanced Unit, and the Advanced Unit calculates the logical multiplication (AND) of the safety signal "a" and safety signal "b." The safety output of an Advanced Unit with the logical AND connection shown in the following diagram is "a" AND "b".


This is illustrated using the application in the following diagram as an example. The equipment here has two hazards identified as Robot 1 and Robot 2, and it is equipped with a safety door switch and an emergency stop button. You may have overall control where both Robot 1 and Robot 2 are stopped every time the emergency stop button is pressed. You may also have partial control where only Robot 1, which is closest to the door, is stopped when the door is opened. In that case, Robot 2 will continue to operate.
The actual situation using a G9SX for this application is shown in this example.
(Note: The logical AND setting on the Advanced Unit must be set to AND (enabled).)


## Connecting Expansion Units

- The G9SX-EX and G9SX-EX-T Expansion Units can be connected to a G9SX-AD- $\square$ Advanced Unit to increase the number of safety outputs. (They cannot be connected to a Basic Unit.)
- A maximum of five Expansion Units can be connected to one Advanced Unit. This may be a combination of G9SX-EX Instantaneous types and G9SX-EX-T OFF-delayed types.
- Remove the terminating connector from the receptacle on the Advanced Unit and insert the Expansion Unit cable connector into the receptacle. Insert the terminating connector into the receptacle on the Expansion Unit at the very end (rightmost).
- When Expansion Units are connected to an Advanced Unit, make sure that power is supplied to every Expansion Unit. (Refer to the following diagram for actual Expansion Unit connection.)



## Setting Procedure

## 1. Cross Fault Detection (Advanced Unit/Basic Unit)

Set the cross fault detection mode for safety inputs by shorting Y1 to 24 V or leaving it open. When cross fault detection is set to ON, short-circuit failures are detected between safety inputs T11-T12 and T21-22. When a cross fault is detected, the following will occur.

1. The safety outputs and logical AND outputs lock out.
2. The LED error indicator is lit.
3. The error output (auxiliary output) turns ON.

4. Reset Mode (Advanced Unit/Basic Unit)

Set the reset mode using feedback/reset input terminals T31, T32, and T33.
Auto reset mode is selected when terminal T32 is shorted to 24 V and manual reset mode is selected when terminal T33 is shorted to 24 V .


## 3. Setting Logical AND Connection (Advanced Unit)

When connecting two or more Advanced Units (or Basic Units) by logical AND connection, set the logical AND connection preset switch on the Advanced Unit that is on the input side (Advanced Unit $B$ in the following diagram) to AND.


Note: 1. A setting error will occur and Advanced Unit B will lock out if the logical AND setting switch on the Unit is set to OFF.
2. Set the logical AND setting switch on Advanced Unit A to OFF or an error will occur.
3. A logical AND input cannot be sent to a Basic Unit.

## 4. Setting the OFF-delay Time (Advanced Unit)

The OFF-delay preset time on an Advanced Unit is set from the OFFdelay time preset switch (1 each on the front and back of the Unit). Normal operation will only occur if both switches are identically set. An error will occur if the switches are not identically set.


Refer to the following illustration for details on setting switch positions.


Make sure AND and off delay time is set properly. Otherwise safety outputs remain in safe off state.

## LED Indicators

Marking	Color	Name	G9SA-AD	G9SX-BC	G9SX-EX	G9SX-EX-T	Function	Reference
PWR	Green	Power supply indicator	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	Lights up while power is supplied.	---
T1	Orange	Safety input \#1 indicator	$\bigcirc$	$\bigcirc$	---	---	Lights up while a HIGH state signal is input to T12.   Blinks when an error relating to safety input \#1 occurs.	(See note.)
T2	Orange	Safety input \#2 indicator	$\bigcirc$	$\bigcirc$	---	---	Lights up while a HIGH state signal is input to T22.   Blinks when an error relating to safety input \#2 occurs.	
FB	Orange	Feedback/ reset input indicator	$\bigcirc$	$\bigcirc$	---	---	Lights up in the following cases: With automatic reset while a HIGH state signal is input to T33.   With manual reset while a HIGH state signal is input to T32.   Blinks when an error relating to feedback/reset input occurs.	
AND	Orange	Logical AND input indicator	$\bigcirc$	---	---	---	Lights up while a HIGH state signal is input to T41.   Blinks when an error relating to logical AND connection input occurs.	
EI	Orange	Safety output indicator	$\bigcirc$	$\bigcirc$	$\bigcirc$	---	Lights up while the Instantaneous safety outputs (S14, S24, S34) are in the ON-state.   Blinks when an error relating to the instantaneous safety output occurs.	
ED	Orange	OFF-delayed safety output indicator	$\bigcirc$	---	---	$\bigcirc$	Lights up while OFF-delayed safety outputs (S44, S54) are in the ONstate.   Blinks when an error relating to OFF-delayed safety output occurs.	
ERR	Red	Error indicator	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	Lights up or blinks when an error occurs.	

Note: Refer to Fault Detection on the next page for details.
Settings Indication (at Power ON)
Settings for the G9SX can be checked by the orange indicators for approx. 3 seconds after the power is turned ON. During this settings indication period, the ERR indicator will light, however the auxiliary error output will remain OFF

Indicator	Item	Setting position	Indicator status	Setting mode	Setting status
T1	Cross fault detection mode	Y1 terminal	Lit	Detection mode	Y1 = open
			Not lit	Non-detection mode	Y1 = 24 VDC
FB	Reset mode	T32 or T33 terminal	Lit	Manual reset mode	T33 = 24 VDC
			Not lit	Auto reset mode	T32 = 24 VDC
AND	Logical AND connection input mode	Logical AND connection preset switch	Lit	Enable logical AND input	"AND"
			Not lit	Disable logical AND input	"OFF"

## Fault Detection

When the G9SX detects a fault, the ERR indicator and/or other indicators light up or blink to inform the user about the fault.
Check and take necessary measures referring to the following table, and then re-supply power to the G9SX.
(Advanced Unit/Basic Unit)

ERR indicator	Other indicator	Fault	Expected causes of the fault	Check points and measures to take
Blinks	---	Fault due to electromagnetic disturbance or of internal circuits.	1) Excessive electro-magnetic disturbance   2) Failure of the internal circuit	1) Check the disturbance level around the G9SX and the related system.   2) Replace with a new product.
Li	T1 blinks	Fault involved with safety input 1	1) Failure involving the wiring of safety input 1   2) Incorrect setting of cross fault detection input   3) Failure of the circuit of safety input 1	1) Check the wiring to T11 and T12.   2) Check the wiring to Y1.   3) Replace with a new product.
	T2 blinks	Fault involved with safety input 2	1) Failure involving the wiring of safety input 2   2) Incorrect setting of cross fault detection input   3) Failure of circuits of safety input 2	1) Check the wiring to T21 and T22.   2) Check the wiring to Y1.   3) Replace with a new product.
	FB blinks	Faults involved with feedback/reset input	1) Failures involving the wiring of feedback/ reset input.   2) Failures of the circuit of feedback/reset input	1) Check the wiring to T31, T32 and T33.   2) Replace with a new product.
		Fault in Expansion Unit	1) Improper feedback signals from Expansion Unit   2) Abnormal supply voltage to Expansion Unit   3) Failure of the circuit of safety relay contact outputs	1) Check the connecting cable of Expansion Unit and the connection of the termination socket.   2) Check the supply voltage to Expansion Unit.   Note: Make sure that all Expansion units' PWR indicators are lit.   3) Replace the Expansion Unit with a new one.
	El blinks	Fault involved with instantaneous safety outputs or logical connection outputs or auxiliary monitor output	1) Failure involving the wiring of instantaneous safety outputs   2) Failure of the circuit of Instantaneous safety outputs   3) Failure involving the wiring of the logical connection output   4) Failure of the circuit of the logical connection output   5) Failure involving the wiring of the auxiliary monitor output   6) Impermissible high ambient temperature	1) Check the wiring to S14, S24, and S34.   2) Replace with a new product.   3) Check the wiring to L1 and L2.   4) Replace with a new product.   5) Check the wiring to X1.   6) Check the ambient temperature and spacing around the G9SX.
	ED blinks	Fault involved with OFFdelayed safety outputs	1) Failure involving the wiring of OFFdelayed safety relay contact outputs   2) Incorrect set values for OFF-delay time   3) Failure of the circuit of OFF-delayed safety relay contact outputs   4) Impermissible high ambient temperature	1) Check the wiring to $S 44$ and $S 54$   2) Confirm the set values of the two OFF-delay time preset switches.   3) Replace with a new product.   4) Check the ambient temperature and spacing around the G9SX.
	AND blinks	Fault involved with logical AND connection input	1) Failure involving the wiring of the logical AND connection input   2) Incorrect setting for the logical AND connection input   3) Failure of the circuit of the logical AND connection input	1) Check the wiring to T41 and T42   Note: Make sure that the wiring length for the T41 or T42 terminal is less than 100 meters.   Note: Make sure that the logical AND connection signal is branched for less than 4 units.   2) Confirm the set value of the logical AND connection preset switch.   3) Replace with a new product.
	$\begin{array}{\|c\|} \hline \text { All } \\ \text { Andicators } \\ \text { except PWR } \\ \text { blink } \end{array}$	Supply voltage outside the rated value	1) Supply voltage outside the rated value	1) Check the supply voltage to Expansion Units.

When indicators other than the ERR indicator blink, check and take necessary actions referring to the following table.

ERR indicator	Otherindicators		Fault	Expected cause of the fault	Check points and measures to take
$\begin{gathered} \text { O } \\ \text { Off } \end{gathered}$	T1   T2	- 'O'Blink	Mismatch between input 1 and input 2.	The input status between input 1 and input 2 is different, due to contact failure or a short circuit of safety input device(s) or a wiring fault.	Check the wiring from safety input devices to the G9SX. Or check the input sequence of safety input devices. After removing the fault, turn both safety inputs to the OFF state.

## (Expansion Unit)

ERR   indicator	Other   indicators	Fault	Expected cause of the faults	Check points and measures to take
${\hline \multirow{13}{}}{ } }$	---	Fault involved with safety   relay outputs of Expansion   Units	1) Welding of relay contacts   2) Failure of the internal circuit	Replace with a new product.

## Precautions for Correct Use

Serious injury may possibly occur due to breakdown of safety outputs.
Do not connect loads beyond the rated value to the safety outputs.
Serious injury may possibly occur due to loss of required safety functions.
Wire G9SX properly so that supply voltages or voltages for loads do NOT touch the safety inputs accidentally or unintentionally.
Serious injury may possibly occur due to damages of safety inputs.
Apply protection circuitry against back electromotive force in case connecting inductive loads to safety outputs.
Serious injury may possibly occur due to loss of safety functions. Use devices appropriate for the application and the condition where G9SX is used.

Control Devices	Requirements
Emergency stop switch	$\begin{array}{l}\text { Use approved devices with Direct } \\ \text { Opening } \\ \text { Mechanism complying with IEC/EN } \\ 60947-5-1\end{array}$
$\begin{array}{l}\text { Door interlocking switch } \\ \text { Limit switch }\end{array}$	$\begin{array}{l}\text { Use approved devices with Direct } \\ \text { Opening } \\ \text { Mechanism complying with IEC/EN } \\ \text { 60947-5-1 and capable of switching } \\ \text { micro loads of 24VDC, 5mA. }\end{array}$
Safety Sensor	$\begin{array}{l}\text { Use approved devices complying with } \\ \text { the relevant product standards, } \\ \text { regulations and rules in the country } \\ \text { where it is used. } \\ \text { Consult a certification body to assess } \\ \text { that the entire system satisfies the } \\ \text { required safety category level. }\end{array}$
$\begin{array}{l}\text { Relay with forcibly guided } \\ \text { contacts }\end{array}$	$\begin{array}{l}\text { Use approved devices with forcibly } \\ \text { guided contacts complying with EN } \\ 50205 . ~ F o r ~ f e e d b a c k ~ p u r p o s e ~ u s e ~\end{array}$
devices with contacts capable of	
switching micro loads of 24VDC, 5mA.	

Precautions for Safe Use

1. Use G9SX within an enclosure with IP54 protection or higher of IEC/EN60529.
2. Incorrect wiring may lead to loss of safety function. Wire conductors correctly and verify the operation of G9SX before commissioning the system in which G9SX is incorporated.
3. Do not apply DC voltages exceeding the rated voltages, or any AC voltages to the G9SX power supply input.
4. Use DC supply satisfying requirements below to prevent electric shock.

- DC power supply with double or reinforced insulation, for example, according to IED/EN60950 or EN50178 or a transformer according to IEC/EN61558.
- DC supply satisfies the requirement for class 2 circuits or limited voltage/current circuit stated in UL 508.

5. Apply properly specified voltages to G9SX inputs.

Applying inappropriate voltages cause G9SX to fail to perform its specified function, which leads to the loss of safety functions or damages to G9SX
6. Auxiliary error outputs and auxiliary monitoring outputs are NOT safety outputs. Do not use auxiliary outputs as any safety output. Such incorrect use causes loss of safety function of G9SX and its relevant system.
Also Logical connection outputs can only be used for logical connections between G9SXs.
7. After installation of G9SX, qualified personnel should confirm the installation, and should conduct test operations and maintenance. The qualified personnel should be qualified and authorized to secure the safety on each phases of design, installation, running, maintenance and disposal of system.
8. A person in charge, who is familiar to the machine in which G9SX is to be installed, should conduct and verify the installation.
9. Turn OFF the signal to Safety input or Logical AND connection input every 24 hours and make sure G9SX operates without faults by checking the state of the ERR indicator.
10.Do not dismantle, repair, or modify G9SX. It may lead to loss of its safety functions.
11.Use only appropriate components or devices complying with relevant safety standards corresponding to the required level of safety categories.
Conformity to requirements of safety category is determined as an entire system.
It is recommended to consult a certification body regarding assessment of conformity to the required safety level.
12.OMRON shall not be responsible for conformity with any safety standards regarding to customer's entire system.
13. Disconnect G9SX from power supply when wiring, to prevent electric shock or unexpected operation.
14.Be cautious not to have your fingers caught when attaching terminal sockets to the plugs on G9SX.
15. The lifetime of G9SX depends on the conditions of switching of its outputs. Be sure to conduct its test operation under actual operating conditions in advance and use it within appropriate switching cycles
16.Do not use in combustible gases or explosive gases. Arcs or heat generated by switching elements of G9SX can lead to fire or explosion.

## Precautions for Correct Use

1. Handle with care

Do not drop G9SX to the ground or expose to excessive vibration or mechanical shocks. G9SX may be damaged and may not function properly.
2. Conditions of storage

Do not store in such conditions stated below.
a. In direct sunlight
b. At ambient temperatures out of the range of -10 to $55^{\circ} \mathrm{C}$.
c. At relative humidity out of the range of $25 \%$ to $85 \%$ or under such temperature change that causes condensation.
d. In corrosive or combustible gases
e. With vibration or mechanical shocks out of the rated values.
f. Under splashing of water, oil, chemicals
g. In the atmosphere containing dust, saline or metal powder.

G9SX may be damaged and may not function properly.
3. Mounting

Mount G9SX to DIN rails with attachments (TYPE PFP-M, not incorporated to this product), not to drop out of rails by vibration etc. especially when the length of DIN railing is short compared to the widths of G9SX.
4. Following spacing around G9SX should be available to apply rated current to outputs of G9SX and for enough ventilation and wiring:
a. At least 25 mm beside side faces of the Advanced Unit (G9SX-AD322- $\square-\square$ ) and side faces of the Basic Unit (G9SX-BC202$\square)$.
b. At least 50 mm above top face of G9SX and below bottom face of G9SX.

5. Wiring
a. For model G9SX- $\square$-RT (with screw terminals)

- Use the following to wire to G9SX- $\square$-RT.

Solid wire	0.2 to $2.5 \mathrm{~mm}^{2}$ AWG24 to AWG12
Stranded wire   (Flexible wire)	0.2 to $2.5 \mathrm{~mm}^{2}$ AWG24 to AWG12

- Tighten each screw with a specified torque of 0.5 to 0.6 Nm , or the G9SX may malfunction or generate heat.
- Strip the cover of wire no longer than 7 mm .
b. For model G9SX- $\square$-RC (with spring-cage terminals)
- Use the following to wire to G9SX- $\square$-RC

Solid wire	0.2 to $2.5 \mathrm{~mm}^{2}$ AWG24 to AWG12
Stranded wire	0.34 to $1.5 \mathrm{~mm}^{2}$ AWG22 toAWG16

- It is recommended that stranded wire should be terminated with insulation-covered bar terminal (DIN 46228-4 standard compatible type) at its ends before using for connection.

6. When connecting Expansion Units (G9SX-EX $\square-\square$ ) to Advanced Unit (G9SX-AD322- $\square$ - $\square$ ):
a. Follow the procedure below:

- Remove the termination connector from the receptacle on Advanced Unit (G9SX-AD322- $\square$ - $\square$ ),
- Insert the head of the connecting cable of Expansion Unit to the receptacle on the Advanced Unit
- Set the termination connector to the receptacle on the Expansion Unit at the end position. When Advanced Unit is used without expansion units, leave the termination connector set on the Advanced Unit.
b. Do not remove the termination connector or the connecting cable of the Expansion Unit while the system is operating.
c. Before applying supply voltage, confirm that the connecting sockets and plugs are locked firmly.
d. All of the Expansion Units should be supplied with its specified voltages within 10s after the connected Advanced Unit is supplied with voltage.
Otherwise, Advanced Unit detects the power-supply error for the Expansion Units.

7. Use cables with length less than 100 m to connect to Safety Inputs, Feed-back/Reset inputs, or between Logical AND connection inputs and Logical connection outputs, respectively.
8. Set the time duration of OFF-delay to an appropriate value that does not cause the loss of safety function of system.
9. Logical connection between Units:
a. When using Logical AND connection inputs, set the Logical connection preset switch to 'AND' position for the units which the logical connection signal are input to.
b. Connect Logical connection outputs appropriately to Logical AND connection inputs of the relevant unit. Verify the operation of G9SX before commissioning the system.
c. When configuring the safety related system, be sure to consider that the delay of response time caused by logical connections do not degrade the safety function of the system.
10. To determine safety distance to hazards, take into account the delay of Safety outputs caused by the following time:
a. Response time of Safety inputs
b. Response time of Logical AND connection input (See also "Ratings and specifications, note 5")
c. Preset off-delay time
d. Accuracy of off-delay time
11. Start entire system after more than 5 s have passed since applying supply voltage to all G9SXs in the system.
12.G9SX may malfunction due to electro-magnetic disturbances. Be sure to connect the terminal A2 to ground. To suppress electrical noise, apply a surge absorber to the coil of inductive load.
13.Devices connected to G9SX may operate unexpectedly. When replacing G9SX, disconnect it from power supply.
14.Adhesion of solvent such as alcohol, thinner, trichloroethane or gasoline on the product should be avoided. Such solvents make the marking on G9SX illegible and cause deterioration of parts.
12. Do NOT mix AC load and DC load to be switched in one G9SXEX $\square-\square$. When switching of both AC load and DC load is necessary, connect more than two G9SX-EX $\square-\square$ and use each unit for AC load and DC load exclusively.

## Category of EN 954-1

In the condition shown in Application Examples, G9SX can be used for the corresponding categories up to category 4.
This does NOT mean that G9SX can always be used for required category under all the similar conditions and situations.
Conformity to the categories must be assessed as a whole system. When using G9SX for safety categories, be sure to confirm the conformity as a whole system.

1. Input the signals to both of the Safety inputs (T11-T12 and T21T22)
2. Input a signal to the Safety inputs (T11-T12 and T21-T22) through switches with Direct Opening Mechanism.
When using limit switches, at least one of them must have Direct Opening Mechanism.
3. When connecting Safety sensor with G9SX, use TYPE 4 safety sensor.
4. Input the signal through a NC contact of the contactor to Feedback/Reset input (T31-T32 for manual reset or T31-T33 for auto reset).(Refer to Application Examples)
5. Keep Cross fault detection mode input (Y1) open. However, when connecting devices with self-diagnosis function, such as safety sensors, apply 24VDC to Y1.
6. Be sure to Connect A 2 to ground.
7. When using a G9SX-EX- $\square-\square$ Expansion Unit, connect fuses with a current rating of 3.15 A max. to the safety relay outputs to prevent the contacts from welding.

## Compliance with International Standards

G9SX-AD- $\square / G 9 S X-B C-\square / G 9 S X-E X-\square$

- Approved by TÜV Product Service

EN50178
IEC/EN60204-1
EN954-1 Cat. 4
IEC/EN61508 SIL3
IEC/EN61000-6-2
IEC/EN61000-6-4

- Approved by UL

UL508
UL1998
NFPA79
IEC61508

- Approved by CSA

CAN/CSA C22.2 No. 142

## Application Examples

G9SX-AD322-T15 (24 VDC) (1-channel Emergency Stop Switch Input / Manual Reset)


S1: Emergency stop switch
S2: Reset switch S2
KM1 to KM4: Contactor
M1, M2: 3-phase motor

Note: This example corresponds to category 2 (EN 954-1)
G9SX-AD322-T15 (24 VDC) (2-channel Safety Sensor / Auto Reset)


Timing chart


F3SN-A: Safety sensor
KM1 to KM4: Contactor
M1, M2: 3-phase motor

Note: 1. This example corresponds to category 4 (EN 954-1)
2. For further information of settings and wiring, refer to the catalog or instruction manual of the connected sensor.
3. Use safety sensors with PNP outputs.

G9SX-BC202 (24 VDC) (2-channel Emergency Stop Switch Input / Manual Reset) + G9SX-AD322-T15 (24 VDC) (2-channel Safety Limit Switch Input / Auto Reset)



Timing chart

(1) Door opened: Only the lower Unit stops
(2) Emergency stop button pressed: Both the upper and lower Unit stop


## Safety Relay Unit

## G9SA

- Four kinds of $45-\mathrm{mm}$ wide Units are available: A 3-safety contact model, a 5-safety contact model, and models with 3 safety contacts and 2 OFF-delay safety contacts.
Also available are $17.5-\mathrm{mm}$ wide Expansion Units with 3 safety contacts and 3 OFF-delay safety contacts.
- Two hand controller (type III C, EN 574)
- Simple expansion connection.
- OFF-delay models have 15 -step OFFdelay settings.
- Conforms to EN standards. (BG approval)
- Approved by UL and CSA.
- Both DIN track mounting and screw mounting are possible.
- Suitable for PNP OSSD outputs of safety sensors, F3SN, F3SH, F3S-B,


## The G9SA Series Offers a Complete Line-up of Compact Units.

 F3S-TGR, F3SL
## Ordering Information

Emergency-stop Units

Main contacts	Auxiliary contact	Number of input channels	Rated voltage	Model	Category
3PST-NO	SPST-NC	1 channel or 2 channels possible	24 VAC/VDC	G9SA-301	4
			100 to 240 VAC		
5PST-NO	SPST-NC	1 channel or 2 channels possible	24 VAC/VDC	G9SA-501	
			100 to 240 VAC		

Emergency-stop OFF-delay Units

Main contacts	OFF-delay contacts	Auxiliary contact	Number of input channels	OFF-delay time	Rated voltage	Model	Category
3PST-NO	DPST-NO	SPST-NC	1 channel or 2 channels possible	7.5 s	24 VAC/VDC	G9SA-321-T075	Main contacts:   4   OFF-delay contacts: 3
					100 to 240 VAC		
				15 s	24 VAC/VDC	G9SA-321-T15	
					100 to 240 VAC		
				30 s	24 VAC/VDC	G9SA-321-T30	
					100 to 240 VAC		

Note: The following 15-step OFF-delay time settings are available:
T075: $0.5,1,1.5,2,2.5,3,3.5,4,4.5,5,5.5,6,6.5,7$, and 7.5 s
T15: $1,2,3,4,5,6,7,8,9,10,11,12,13,14$, and 15 s
T30: $2,4,6,8,10,12,14,16,18,20,22,24,26,28$, and 30 s
Two-hand Controller

Main contacts	Auxiliary contact	Number of input channels	Rated voltage	Model	Category
3PST-NO	SPST-NC	2 channels	24 VAC/VDC	G9SA-TH301	4 (IIIc, EN574)
			100 to 240 VAC		

Expansion Unit
The Expansion Unit connects to a G9SA-301, G9SA-501, G9SA-

Main contacts	Auxiliary contact	Model	Category
3PST-NO	SPST-NC	G9SA-EX301	4

Expansion Units with OFF-delay Outputs
The Expansion Unit connects to a G9SA-301, G9SA-501, G9SA-321, or G9SA-TH301.

Main contact form	Auxiliary contact	OFF-delay time	Model	Category
3PST-NO	SPST-NC	7.5 s	G9SA-EX031-T075	3
		15 s	G9SA-EX031-T15	
		30 s	G9SA-EX031-T30	

Note: The following 15-step OFF-delay time settings are available:
T075: $0.5,1,1.5,2,2.5,3,3.5,4,4.5,5,5.5,6,6.5,7$, and 7.5 s
T15: $1,2,3,4,5,6,7,8,9,10,11,12,13,14$, and 15 s
T30: $2,4,6,8,10,12,14,16,18,20,22,24,26,28$, and 30 s

Model Number Legend

## G9SA- $\frac{\square \square \square}{1} \frac{\square}{2} \frac{\square}{4} \frac{\square}{5} \frac{\square \square \square \square}{6}$

1. Function

None: Emergency stop
EX: Expansion Unit
TH: Two-hand Controller
2. Contact Configuration (Safety Output)

0: None
3: 3PST-NO
5: 5PST-NO
3. Contact Configuration (OFF-delay Output)

0: None
2: DPST-NO
3: 3PST-NO
4. Contact Configuration (Auxiliary Output)

0: None
1: SPST-NC
5. Input Configuration (for G9SA-301/501/321)

None: 1-channel or 2-channel input possible
6. OFF-delay Time (Max. setting time)

None: No OFF-delay
T075: 7.5 seconds
T15: 15 seconds
T30: 30 seconds

## Specifications

## Ratings

Power Input

Item	G9SA-301/TH301	G9SA-501	G9SA-321-T $\square$
Power supply voltage	24 VAC/VDC: 24 VAC, $50 / 60 \mathrm{~Hz}$, or 24 VDC 100 to 240 VAC: 100 to 240 VAC, $50 / 60 \mathrm{~Hz}$		
Operating voltage range	$85 \%$ to $110 \%$ of rated power supply voltage		
Power consumption (See note.)	24 VAC/VDC: $1.8 \mathrm{VA} / 1.7 \mathrm{~W}$ max. 100 to 240 VAC: 9 VA max.	24 VAC/VDC: $2.8 \mathrm{VA} / 2.6 \mathrm{~W}$ max. 100 to 240 VAC: 11 VA max.	24 VAC/VDC: 3.5 VA/3.3 W max. 100 to 240 VAC: 12.5 VA max.

Note: When an Expansion Unit is connected, the power consumption is increased by $2 \mathrm{VA} / 2 \mathrm{~W}$ max.
Inputs

Item	G9SA-301/321-T $\square /$ TH301	G9SA-501
Input current (See note.)	40 mA max.	60 mA max.

Note: When an Expansion Unit is connected, the input current is increased by 30 mA max.
Contacts

Item	
	G9SA-301/501/321-T $\square /$ TH301/EX301/EX031-T $\square$
Rated load	250 VAC, 5 A
Rated carry current	5 A

## Characteristics

Item		G9SA-301/TH301	G9SA-501/321-T $\square$	G9SA-EX301/EX031-T $\square$
Contact resistance (see note 1)		$100 \mathrm{~m} \mathrm{\Omega}$		
Operating time		$30 \mathrm{~ms} \mathrm{max}$. (not including bounce time)		
Response time (see note 2)		$10 \mathrm{~ms} \mathrm{max}$. (not including bounce time)		
Insulation resistance (see note 3)		$100 \mathrm{M} \Omega$ min. (at 500 VDC )		
Dielectric strength	Between different outputs	2,500 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min		
	Between inputs and outputs			
	Between power inputs and outputs			
	Between power inputs and other inputs (only for 100 to $240-\mathrm{V}$ models)			
Vibration resistance		10 to $55 \mathrm{~Hz}, 0.75-\mathrm{mm}$ double amplitude		
Shock resistance	Destruction	$300 \mathrm{~m} / \mathrm{s}^{2}$		
	Malfunction	$100 \mathrm{~m} / \mathrm{s}^{2}$		
Durability	Mechanical	5,000,000 operations min. (at approx. 7,200 operations/hr)		
	Electrical	100,000 operations min. (at approx. 1,800 operations/hr)		
Minimum permissible load (reference value)		5 VDC, 1 mA		
Ambient temperature		Operating:- $25^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ (with no icing or condensation) Storage:- $25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (with no icing or condensation)		
Ambient humidity		Operating:35\% to 85\% Storage:35\% to 85\%		
Terminal tightening torque		0.98 N.m		
Weight (see note 4)		Approx. 210 g	Approx. 270 g	Approx. 130 g
Approved standards		EN954-1, EN60204-1, EN574 (-TH301), UL508, CSA C22.2 No. 14		
EMC		EMI: EN55011 group 1 class A EMS: EN50082-2 group 1		

Note: 1. The contact resistance was measured with 1 A at 5 VDC using the voltage-drop method.
2. The response time is the time it takes for the main contact to open after the input is turned OFF.
3. The insulation resistance was measured with 500 VDC at the same places that the dielectric strength was checked.
4. Weight shown is for $24-$ VAC/VDC type. For 100 to 240 -VAC type, add approximately 20 g

## Application Examples

G9SA-301 (24 VAC/VDC) with 2-channel Limit Switch Input/Auto-reset


G9SA-301 (24 VAC/VDC) with 2-channel Limit Switch Input/Manual-reset



G9SA-301 (24 VAC/VDC) with 2-channel Emergency Stop Switch Input/Manual-reset


Timing Chart


G9SA-321-T $\square$ (24 VAC/VDC) with 2-channel Limit Switch Input/Manual-reset


G9SA-321-T $\square$ (24 VAC/VDC) + G9SA-EX031-T $\square$ with 2-channel Limit Switch Input/Manual-reset


Note: This circuit achieves EN954-1 Safety Category 4.
The OFF-delay output, however, achieves EN954-1 Safety Category 3.

## G9SA-301 (24 VAC/VDC) with 2-channel Safety Area Sensor/Manual-reset



G9SA-TH301 (24 VDC) with 2-hand Inputs/Auto-reset


G9SA-501 (24 VAC/VDC) and G9SA-EX301 with 2-channel Limit Switch Input/Manual-reset


K1, K2, K3, and
K4 (NO)
G9SA-EX301
K1 and K2 (NC
G9SA-EX301
K1 and K2 (NO)
KM1 and KM2
(NC)
KM1 and KM2
(NO)


## Dimensions

Note: All units are in millimeters unless otherwise indicated. The diagrams are drawn in perspective.
G9SA-301
G9SA-501
G9SA-321-T $\square$

## G9SA-TH301



Terminal Arrangement


Mounting Holes
Two, 4.2 dia. or M4


Note: The OFF-delay time setting switch is
found on the G9SA-321-T $\square$ only.


Internal Connections
G9SA-301 (24 VAC/VDC)

(See note 3.) (See note 1.)
G9SA-501 (24 VAC/VDC)


G9SA-321-T $\square$ (24 VAC/VDC)


G9SA-TH301 (24 VAC/VDC)

(See note 2.)
G9SA-EX301


G9SA-EX031-T $\square$


G9SA-301 (100 to 240 VAC)


G9SA-501 (100 to 240 VAC)


G9SA-321-T $\square$ ( 100 to 240 VAC)


G9SA-TH301 (100 to 240 VAC)


Note: 1. Use terminals $A$ and $B$ to switch reset mode. A to B open: Manual reset
A to B closed: Auto-reset
2. Use terminals $C$ and $D$ to switch input conditions. C to D open: DPDT input.
C to D closed: DPST-NC input. (Make sure T11 and T21 are open.)
3. Use terminal T23 with + common 2-channel input. When using T23, make sure that T21 and T22 are open. For 1-channel input, make sure T12 and T23 are closed.
4. With 100 to 240 -VAC type, be sure to connect PE to a protective ground. With 24-VAC/VDC type, if the power supply is not connected to a protective ground, be sure to connect PE to a protective ground.
5. With 24-VAC/VDC type, the power supply terminals $A$ and A2 have polarities. A2 is the negative pole.

Do not touch the terminal area of the Relays or the socket terminal area (charged area) while power is ON. Electric shock will result.

## Wiring

Turn OFF the G9SA before wiring the G9SA. Do not touch the terminals of the G9SA while the power is turned ON, because the terminals are charged and may cause an electric shock.
Use the following to wire the G9SA.
Stranded wire: 0.75 to $1.5 \mathrm{~mm}^{2}$
Solid wire: $\quad 1.0$ to $1.5 \mathrm{~mm}^{2}$
Tighten each screw to a torque of 0.78 to $1.18 \mathrm{~N} \cdot \mathrm{~m}$, or the G9SA may malfunction or generate heat.
External inputs connected to T11 and T12 or T21 and T22 of the G9SA-301 must be no-voltage contact inputs.
$P E$ is a ground terminal.
When a machine is grounded at the positive, the PE terminal should not be grounded.

## Mounting Expansion Units

Turn OFF the G9SA before connecting the Expansion Unit.
When an Expansion Unit is being used, remove the connector cover from the G9SA Safety Relay Unit (G9SA-301, G9SA-501, G9SA$321 \square$, or G9SA-TH301) and insert the connector of the Expansion Unit's connector cable.

## Applicable Safety Category (EN954-1)

G9SA-series Relays meet the requirements of Safety Category 4 of the EN954-1 standards when they are used as shown in the examples provided by OMRON. The Relays may not meet the standards in some operating conditions. The OFF-delay output of models G9SA-321-T $\square$ and EX031-T $\square$, however, conform to Safety Category 3.

The applicable safety category is determined from the whole safety control system. Make sure that the whole safety control system meets EN954-1 requirements.

## Mounting Multiple Units

When mounting multiple Units close to each other, the rated current will be 3 A . Do not apply a current higher than 3 A .

## Connecting Inputs

If using multiple G9SA models, inputs cannot be made using the same switch. This is also true for other input terminals.


## Earth Short

A positive thermistor is built into the G9SA circuits, so you can detect earth short breakdowns and breakdown shorts between channel 1 and channel 2. If the short breakdown is canceled, reset is automatic.

## Safety Relay Unit

## G9SB

## Ultra Slim Safety Relay Unit

- Models of width 17.5 mm available with 2 or 3 safety contacts. Models of width 22.5 mm with 3 safety contacts and auxiliary contact are also available.
- Conforms to EN standards. (TÜV approval)
- DIN track mounting possible.
- Slim size controller dedicated for safey sensors F3SN, F3SH, F3S-B, F3STGR, F3SL, F3S-J

$\triangle$ 젣 $C$


## Ordering Information

Main contacts	Auxiliary contact	Number of input channels	Reset mode	Input type	Rated voltage	Model	Category (EN954-1)	Size
DPST-NO   2 safety contacts	None	2 channels	Auto-reset	Inverse	24 VAC/VDC	G9SB-2002-A		
		1 channel or 2 channels		+ common		G9SB-200-B		
		2 channels	Manual-reset	Inverse		G9SB-2002-C	4	17.5 m
		1 channel or 2 channels		+ common		G9SB-200-D		
3PST-NO   3 safety contacts	SPST-NC	None (direct breaking)	Auto-reset	---	24 VDC	G9SB-3010	3	17.5 mm
		2 channels		Inverse	24 VAC/VDC	G9SB-3012-A	4	22.5 mm
		1 channel or 2 channels		+ common		G9SB-301-B		
		2 channels	Manual-reset	Inverse		G9SB-3012-C		
		1 channel or 2 channels		+ common		G9SB-301-D		

## Model Number Legend

## G9SB- $\square \square \square \square \square \square \square$ <br> 123456

1. Function

None: Emergency stop
2. Contact Configuration (Safety Output)

2: DPST-NO
3: 3PST-NO
3. Contact Configuration (OFF-delay Output)

0: None
4. Contact Configuration (Auxiliary Output)

0: None
1: SPST-NC

## 5. Input Configuration

None: 1-channel or 2-channel input possible
0 : $\quad$ None (direct breaking)
2: 2-channel input
6. Miscellaneous

A: Auto-reset, inverse input
B: Auto-reset, + common input
C: Manual-reset, inverse input
D: Manual-reset, + common input

## Specifications

Ratings
Power Input

Item	G9SB-200 $\square-\square$	G9SB-3010	G9SB-301■- $\square$
Power supply voltage	$24 \mathrm{VAC} / \mathrm{VDC:} 24 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$, or 24VDC   $24 \mathrm{VDC:} 24 \mathrm{VDC}$		
Operating voltage range	$85 \%$ to $110 \%$ of rated power supply voltage		
Power consumption	$1.4 \mathrm{VA} / 1.4 \mathrm{~W}$ max.	1.7 W max.	$1.7 \mathrm{VA} / 1.7 \mathrm{~W}$ max.

Inputs

Item	G9SB-200■- $\square$	G9SB-3010	G9SB-301■- $\square$
Input current	25 mA max.	60 mA max. (See note.)	$30 \mathrm{~mA} \mathrm{max}$.

Note: Indicates the current between terminals A1 and A2.

## Contacts

Item	G9SB-200■-■	G9SB-3010	G9SB-301■-■
	Resistive load ( $\cos =1$ )		
Rated load	250 VAC, 5 A		
Rated carry current	5 A		

Characteristics

Item		G9SB-200■-■	G9SB-3010	G9SB-301■-■
Contact resistance (See note 1.)		$100 \mathrm{~m} \Omega$		
Operating time (See note 2.)		30 ms max.		
Response time (See notes 2 and 3.)		10 ms max .		
Insulation resistance (See note 4.)		$100 \mathrm{M} \Omega$ min. (at 500 VDC)		
Dielectric strength	Between different outputs	2,500 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min		
	Between inputs and outputs			
	Between power inputs and outputs			
Vibration resistance		10 to 55 to $10 \mathrm{~Hz}, 0.375-\mathrm{mm}$ single amplitude (0.75-mm double amplitude)		
Shock resistance	Destruction	$300 \mathrm{~m} / \mathrm{s}^{2}$		
	Malfunction	$100 \mathrm{~m} / \mathrm{s}^{2}$		
Durability	Mechanical	5,000,000 operations min. (at approx. 7,200 operations/hr)		
	Electrical	100,000 operations min. (at approx. 1,800 operations/hr)		
Minimum permissable load (reference value)		$5 \mathrm{VDC}, 1 \mathrm{~mA}$		
Ambient operating temperature		-25 to $55^{\circ} \mathrm{C}$ (with no icing or condensation)		
Ambient operating humidity		35\% to 85\%		
Terminal tightening torque		$0.5 \mathrm{~N} \cdot \mathrm{~m}$		
Weight		Approx. 115 g Approx. 135 g Approx. 120 g		
Approved standards		EN954-1, EN60204-1, UL508, CSA C22.2 No. 14		
EMC		EMI: EN55011 group 1 class A EMS: EN50082-2		

Note: 1. The contact resistance was measured with 1 A at 5 VDC using the voltage-drop method.
2. The bounce time is not included in the figure for operating time.
3. The response time is the time it takes for the main contact to open after the input is turned OFF.
4. The insulation resistance was measured with 500 VDC at the same places that the dielectric strength was checked.

G9SB-2002-A (24 VAC/VDC) or G9SB-3012-A (24 VAC/VDC) with 2-channel Limit Switch Input/Auto-reset


Note: 1. External connections and timing charts for G9SB-200-B/301-B models are the same as those for G9SB-2002-A/3012-A models.
2. This circuit conforms to EN954-1 Safety Category 4.

G9SB-2002-C (24 VAC/VDC) or G9SB-3012-C (24 VAC/VDC) with 2-channel Emergency Stop Switch Input/Manual-reset


## Timing Chart



Note: 1. External connections and timing charts for G9SB-200-D/301-D models are the same as those for G9SB-2002-C/3012-D models.
2. This circuit conforms to EN954-1 Safety Category 4.

G9SB-200-D (24 VAC/VDC) or G9SB-301-D (24 VAC/VDC) with 2-channel Safety Area Sensor/Manual-reset


Note: This circuit conforms to EN954-1 Safety Category 4.

G9SB-3010 (24 VDC) with 2-channel Limit Switch Input/Auto-reset


Note: This circuit conforms to EN954-1 Safety Category 3.


G9SB-301- $\square$


## Terminal Arrangement

G9SB-200 $\square-\square$

$\left|\begin{array}{l|l|}\text { Pwi(1)(1)(9reen) }\end{array}\right|$
K1 $\quad$ (orange)


Internal connections
G9SB-2002-A/C (24 VAC/VDC)
G9SB-3012-A/C (24 VAC/VDC)


G9SB-200-B/D (24 VAC/VDC)
G9SB-301-B/D (24 VAC/VDC)


G9SB-3010 (24 VDC)


Note: 1. For 1-channel input with G9SB- $\square \square \square$-B/D models, short terminals T12 and T22. It is not possible to wire G9SB- $\square \square \square 2-A / C$ models for 1-channel input.
2. Only G9SB-301 $\square-\square$ models have terminals 33-34 and 41-42.

## Wiring

Turn OFF the G9SB before wiring. Do not touch the terminals of the G9SB while the power is turned ON, because the terminals are charged and may cause an electric shock.
Use the following to wire the G9SB.
Stranded wire:0.2 to $2.5 \mathrm{~mm}^{2}$
Solid wire:0.2 to $2.5 \mathrm{~mm}^{2}$
Tighten each screw to a torque of 0.5 to $0.6 \mathrm{~N} \cdot \mathrm{~m}$, or the G9SB may malfunction or generate heat.
External inputs connected to T11 and T12 or T21 and T22 of the G9SB must be no-voltage contact inputs.

Applicable Safety Category
G9SB-200 $\square-\square / 301 \square-\square$ meet the requirements of Safety Category 4 of the EN954-1 standards when they are used as shown in the examples provided by OMRON. Relays may not meet the standards in some operating conditions. The G9SB3010 can be applied to Safety Category 3 of the EN954-1 using double breaking. The applicable safety category is determined from the whole safety control system. Make sure that the whole safety control system meets EN954-1 requirements.

Mounting Multiple Units
When mounting multiple Units close to each other, the rated current will be 3 A. Do not apply a current higher than 3 A .

Connecting Inputs
If using multiple G9SB models, inputs cannot be made using the same switch. This is also true for other input terminals.


## Earth Short

A positive thermistor is built into the G9SB circuits, so you can detect earth short breakdowns and breakdown shorts between channel 1 and channel 2. (Detection of breakdown shorts between channel 1 and channel 2 is supported for G9SB-2002- $\square / 3012-\square$ models only.)
Note: In order to detect earth short breakdowns, connect the minus side of the power supply to ground.

## Safety-door Switch

## D4NS

## Multi-contact,

 Labor-saving,Environment-friendly, Next-generation Safety-door Switch

- Lineup includes three contact models with 2NC/1NC and 3NC contact forms in addition to the previous contact forms 1NC/1NO, and 2NC.
- M12-connector models are available, saving on labor and simplifying replacement.
- Standardized gold-clad contacts provide high contact reliability.
- Applicable to both standard loads and micro loads.

- Free of lead, cadmium, and hexavalent chrome, reducing the burden on the environment.


## Model Number Structure

## Model Number Legend

## Switch

D4NS- $\square \square \square$

## 123

1. Conduit/Connector size

1: $\operatorname{Pg} 13.5$ (1-conduit)
2: $\quad \mathrm{G} 1 / 2$ (1-conduit)
3: 1/2-14NPT (1-conduit)
4: M20 (1-conduit)
5: $\quad$ Pg13.5 (2-conduit)
6: G1/2 (2-conduit)
7: $1 / 2-14 N P T$ compatible (2-conduit model with M20 conduit size includes an M20-to-1/2-14NPT conversion adapter)
8: M20 (2-conduit)
9: M12 connector (1-conduit)
2. Built-in Switch

## Operation Key

## D4DS-K $\square$

1. Operation Key Type

Horizontal mounting
Vertical mounting
Adjustable mounting (Horizontal)
Adjustable mounting (Horizontal/ Vertical)

A: $\quad 1 \mathrm{NC} / 1 \mathrm{NO}$ (slow-action)
B: $\quad 2 \mathrm{NC}$ (slow-action)
C: 2NC/1NO (slow-action)
D: $\quad 3 \mathrm{NC}$ (slow-action)
E: $1 \mathrm{NC} / 1 \mathrm{NO}$ (MBB contact)
F: 2NC/1NO (MBB contact)
3. Head Mounting Direction

F: Four mounting directions possible (Front-side mounting at shipping)
Note: An order for the head part or the switch part alone cannot be accepted. The Operation Key is sold separately.

## Ordering Information

## List of Models

Switches (Operation Keys are sold separately.)
: Models with approved direct opening contacts.

Type	Contact configuration		Conduit opening/Connector	Model
1-conduit	Slow-action	1NC/1NO	Pg13.5	D4NS-1AF (note 3)
			G1/2	D4NS-2AF
			1/2-14NPT	D4NS-3AF
			M20	D4NS-4AF (note 3)
		2NC	Pg13.5	D4NS-1BF (note 3)
			G1/2	D4NS-2BF
			1/2-14NPT	D4NS-3BF
			M20	D4NS-4BF (note 3)
		2NC/1NO	Pg13.5	D4NS-1CF (note 3)
			G1/2	D4NS-2CF
			1/2-14NPT	D4NS-3CF
			M20	D4NS-4CF (note 3)
		3NC	Pg13.5	D4NS-1DF
			G1/2	D4NS-2DF
			1/2-14NPT	D4NS-3DF
			M20	D4NS-4DF (note 3)
	Slow-action MBB contact	1NC/1NO	Pg13.5	D4NS-1EF
			G1/2	D4NS-2EF
			1/2-14NPT	D4NS-3EF
			M20	D4NS-4EF (note 3)
		2NC/1NO	Pg13.5	D4NS-1FF
			G1/2	D4NS-2FF
			1/2-14NPT	D4NS-3FF
			M20	D4NS-4FF (note 3)
2-conduit	Slow-action	1NC/1NO	Pg13.5	D4NS-5AF
			G1/2	D4NS-6AF
			M20, includes M20-to-1/2-14NPT conversion adapter	D4NS-7AF
			M20	D4NS-8AF
		2NC	Pg13.5	D4NS-5BF (note 3)
			G1/2	D4NS-6BF
			M20, includes M20-to-1/2-14NPT conversion adapter	D4NS-7BF
			M20	D4NS-8BF (note 3)
		2NC/1NO	Pg13.5	D4NS-5CF
			G1/2	D4NS-6CF
			M20, includes M20-to-1/2-14NPT conversion adapter	D4NS-7CF
			M20	D4NS-8CF (note 3)
		3NC	Pg13.5	D4NS-5DF
			G1/2	D4NS-6DF
			M20, includes M20-to-1/2-14NPT conversion adapter	D4NS-7DF
			M20	D4NS-8DF
	Slow-action MBB contact	1NC/1NO	Pg13.5	D4NS-5EF
			G1/2	D4NS-6EF
			M20, includes M20-to-1/2-14NPT conversion adapter	D4NS-7EF
			M20	D4NS-8EF
		2NC/1NO	Pg13.5	D4NS-5FF
			G1/2	D4NS-6FF
			M20, includes M20-to-1/2-14NPT conversion adapter	D4NS-7FF
			M20	D4NS-8FF
1-conduit, with connector	Slow-action	1NC/1NO	M12 connector	D4NS-9AF (note 3)
		2NC		D4NS-9BF (note 3)
	Slow-action MBB contact	1NC/1NO		D4NS-9EF (note 3)

Note: 1. The recommended models for equipment and machinery being exported to Europe are those with an M20 or Pg13.5 conduit sizes, and for North America, the recommended models are those with a 1/2-14NPT conduit sizes.
2. Resin is used as the material for the D4NS housing and head. Use the metal D4BS Safety-door Switch for applications requiring greater mechanical strength.
3. Prefered stock item

Operation Keys

Type	
Horizontal mounting	Model
Vertical mounting	
Adjustable mounting   (Horizontal)	D4DS-K1
Adjustable mounting	
(Horizontal/Vertical)	

## Specifications

## Approved Standards

Agency	Standard	File No.
TÜV Product   Service	EN60947-5-1 (approved   direct opening)   GS-ET-15	B0306 39656052
UL (See note.)	UL508, CSA C22.2 No.14	E76675

Note: Approval for CSA C22.2 No. 14 is authorized by the UL mark.
Standards and EC Directives

- Conforms to the following EC Directives:

Machinery Directive
Low Voltage Directive
EN50047
EN1088
CCC (China Compulsory Certification) Mark

Agency	Standard	File No.
CQC	GB14048.5	Under   application

Approved Standard Ratings
TÜV (EN60947-5-1)

ItemUtilization   category	AC-15	DC-13
Rated operating current $\left(\mathrm{I}_{\mathrm{e}}\right)$	3 A	0.27 A
Rated operating voltage $\left(\mathrm{U}_{\mathrm{e}}\right)$	240 V	250 V

Note: Use a 10-A fuse type gI or gG that conforms to IEC269 as a short-circuit protection device. This fuse is not built into the Switch.
UL/CSA (UL508, CSA C22.2 No. 14)
A300

Rated   voltage	Carry current	Current		Volt-amperes	
		Make	Break	Make	Break
120 VAC	10 A	60 A	6 A	$7,200 \mathrm{VA}$	720 VA
240 VAC		30 A	3 A		

## Characteristics

Degree of protection (See note 3.)		IP67 (EN60947-5-1)   (This applies for the Switch only. The degree of protection for the key hole is IP00.)	
Durability (See note 4.)	Mechanical	1,000,000 operations min.	
	Electrical	500,000 operations min. for a resistive load of 3 A at 250 VAC (See note 5.) 300,000 operations min. for a resistive load of 10 A at 250 VAC	
Operating speed		0.05 to $0.5 \mathrm{~m} / \mathrm{s}$	
Operating frequency		30 operations/minute max.	
Direct opening force (See note 6.)		60 N min.	
Direct opening travel (See note 6.)		10 mm min.	
Contact resistance		$25 \mathrm{~m} \Omega$ max.	
Minimum applicable load (See note 7.)		Resistive load of 1 mA at 5 VDC ( N -level reference value)	
Rated insulation voltage ( $\mathrm{U}_{\mathrm{i}}$ )		300 V	
Protection against electric shock		Class II (double insulation)	
Pollution degree (operating environment)		3 (EN60947-5-1)	
Impulse withstand voltage (EN60947-5-1)		Between terminals of the same polarity	2.5 kV
		Between terminals of different polarities	4 kV
		Between other terminals and uncharged metallic parts	6 kV
Insulation resistance		$100 \mathrm{M} \Omega \mathrm{min}$.	
Contact gap		$2 \times 2 \mathrm{~mm}$ min	
Vibration resistance	Malfunction	10 to $55 \mathrm{~Hz}, 0.75-\mathrm{mm}$ single amplitude	
Shock resistance	Destruction	$1,000 \mathrm{~m} / \mathrm{s}^{2} \mathrm{~min}$.	
	Malfunction	$300 \mathrm{~m} / \mathrm{s}^{2} \mathrm{~min}$.	
Conditional short-circuit current		100 A (EN60947-5-1)	
Rated open thermal current ( $\mathrm{t}_{\mathrm{th}}$ )		10 A (EN60947-5-1)	
Ambient temperature		Operating: $-30^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ with no icing	
Ambient humidity		Operating: 95\% max.	
Weight		Approx. 96 g (D4NS-1CF)	

Note: 1. The above values are initial values
2. Once a contact has been used to switch a standard load, it cannot be used for a load of a smaller capacity. Doing so may result in roughening of the contact surface and contact reliability may be lost.
3. The degree of protection is tested using the method specified by the standard (EN60947-5-1). Confirm that sealing properties are sufficient for the operating conditions and environment beforehand. Although the switch box is protected from dust or water penetration, do not use the D4NS in places where foreign material may penetrate through the key hole on the head, otherwise Switch damage or malfunctioning may occur.
4. The durability is for an ambient temperature of $5^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$ and an ambient humidity of $40 \%$ to $70 \%$. For more details, consult your OMRON representative.
5. If the ambient temperature is greater than $35^{\circ} \mathrm{C}$, do not pass the $3-\mathrm{A}, 250$-VAC load through more than 2 circuits
6. These figures are minimum requirements for safe operation.
7. This value will vary with the switching frequency, environment, and reliability level. Confirm that correct operation is possible with the actual load beforehand.

## Nomenclature

## Structure

D4NS- $\square$ A $\square$, D4NS- $\square \mathrm{B} \square$, D4NS- $\square \mathrm{E} \square$
D4NS- $\square \mathrm{C} \square$, D4NS- $\square \mathrm{D} \square$, D4NS- $\square \mathrm{F} \square$


Note: The 2-conduit models have the same terminal arrangement
Contact Form (Diagrams Show State with Key Inserted)

Model	Contact	Contact form	Operating pattern			Remarks
D4NS- $\square$ A $\square$	1NC/1NO		$\begin{array}{r} 11-12 \\ 33-34 \\ \text { Oper } \\ \text { Oper } \\ \text { Key } \\ \text { comp } \\ \text { positit } \end{array}$	$\xrightarrow{\text { Stroke } \longrightarrow \longrightarrow}$		Only NC contacts 11-12 have an approved direct opening mechanism.   The terminals 11-12 and 33-34 can be used as unlike poles.
D4NS- $\square$ B $\square$	2NC	12	$\begin{gathered} 11-12 \\ 31-32 \\ \\ \text { Ope } \\ \text { Key } \\ \text { com } \\ \text { posit } \end{gathered}$		$\square \mathrm{ON}$	Only NC contacts 11-12 and 31-32 have an approved direct opening mechanism. The terminals 11-12 and 31-32 can be used as unlike poles.
D4NS- $\square \mathrm{C} \square$	2NC/1NO		$\begin{array}{r} 11-12 \\ 21-22 \\ 33-34 \\ \\ \text { Oper } \\ \text { Key } \\ \text { comit } \\ \text { posit } \end{array}$			Only NC contacts 11-12 and 21-22 have an approved direct opening mechanism.   The terminals 11-12, 21-22, and 33-34 can be used as unlike poles.
D4NS- $\square \square \square$	3NC		$\begin{array}{r} 11-12 \\ 21-22 \\ 31-32 \\ \\ \text { Ope } \\ \text { Key } \\ \text { com } \\ \text { posit } \end{array}$		$\square O \mathrm{ON}$	Only NC contacts 11-12, 21-22, and 31-32 have an approved direct opening mechanism.   The terminals 11-12, 21-22, and 31-32 can be used as unlike poles.
D4NS- $\square$ E $\square$	1NC/1NO MBB		$\begin{array}{r} 11-12 \\ 33-34 \\ \\ \text { Ope } \\ \text { Key } \\ \text { com } \\ \text { posi } \end{array}$			Only NC contacts 11-12 have an approved direct opening mechanism.   The terminals 11-12 and 33-34 can be used as unlike poles.
D4NS- $\square$ F $\square$	2NC/1NO MBB		$\begin{gathered} 11-12 \\ 21-22 \\ 33-34 \\ \\ \text { Operi } \\ \text { Key } \\ \text { comp } \\ \text { cositit } \end{gathered}$			Only NC contacts 11-12 and 21-22 have an approved direct opening mechanism.   The terminals 11-12, 21-22 and 33-34 can be used as unlike poles.

Note: MBB (Make Before Break) contacts have an overlapping structure, so that before the normally closed contact (NC) opens, the normally open contact (NO) closes.

## Dimensions/Operating Characteristics

Note: All units are in millimeters unless otherwise indicated.

## Switches

1-conduit Models
D4NS-1 $\square$ F
D4NS-2 $\square F$
D4NS-3 $\square$ F
D4NS-4 $\square$ F


2-conduit Models
D4NS-5 $\square$ F
D4NS-6 $\square$ F
D4NS-7 $\square$ F
D4NS-8 $\square$ F


Operating   characteristics	D4NS-5 $\square \mathbf{F}$   D4NS-6 $\square \mathbf{F}$   D4NS-7 $\square \mathbf{F}$   D4NS-8 $\square \mathbf{F}$
Key insertion force   Key extraction force	15 N max.
30 N max.	
Pretravel (PT)	$6 \pm 3 \mathrm{~mm}$
Total travel (TT)	$(28 \mathrm{~mm})$
Direct opening force*   Direct opening stroke*	60 N min.   10 mm min..   * Always maintain the above operating characteristics   for safe use.

1-conduit Connector Models

## D4NS-9 $\square$ F



Operating   characteristics	D4NS-9 $\square \mathbf{F}$
Key insertion force   Key extraction force	$15 \mathrm{~N} \mathrm{max}$.   30 N max.
Pretravel (PT)	$6 \pm 3 \mathrm{~mm}$
Total travel (TT)	$(28 \mathrm{~mm})$
Direct opening force*   Direct opening stroke*	60 N min.   10 mm min.

* Always maintain the above operating characteristics for safe use.

Note: Unless otherwise specified, a tolerance of $\pm 0.4 \mathrm{~mm}$ applies to all dimensions.

Operation Keys
Note: Unless otherwise specified, a tolerance of $\pm 0.4 \mathrm{~mm}$ applies to all dimensions.


With Operation Key Inserted (Relationship between Insertion Radius and Insertion Hole)
Note: Unless otherwise specified, a tolerance of $\pm 0.4 \mathrm{~mm}$ applies to all dimensions.

## D4NS-1 $\square$ F + D4DS-K1



D4NS-1 $\square$ F + D4DS-K2


$$
40 \text { to } 42.5
$$



D4NS-1 $\square$ F + D4DS-K5


Refer to OMRON SAFETY COMPONENTS SERIES (Y106) for common precautions.

## $\triangle$ CAUTION

Do not dismount the operation key from the door intentionally and insert it to the switch with the door open. Machine may start operating and injury or death may be caused.
Do not use metal connector or conduit with this switch. The broken conduit hole may cause electrical shock hazard.

## Precautions for Safe Use

- Be careful not to drop your D4NS, or the switch will not fully exhibit its ability.
- Do not disassemble or remodel your D4NS in any case, or the D4NS will not operate normally.
- Do not use the switch where explosive gas, ignitable gas, or any other harmful gasses may be present.
- Install operation key so that it will not hit the operator when the door is open. Injury may be caused.
- Do not use the switch in the oil and in the water. IP67(EN60947-5-1)
- Though the switch body is protected from the ingress of dust or water, avoid the ingress of foreign substance through the key hole on the head.
Otherwise, wear in short time or break may be caused
- Do not put the electric power when wiring.
- Be sure to install a cover after the wiring.

Do not put the electric power when opening a cover.

- Connect the fuse to the switch in series to prevent it from short circuit damage.
The value of the breaking current of the fuse must be increased to cover the rated current by 150 to $200 \%$. When using the switch with EN rating, use 10 A fuse, type gl or gG that complies with IEC 60269.
- Keep the electrical load below the rated value.
- On the switching of general loads (250VAC/3A), do not operate two circuits or more at the same time. Otherwise, insulation performance may be degraded.
- The durability of the switch is seriously affected by operating conditions.
Evaluate the switch under actual working conditions before permanent installation.
- Please mention in machine manufacturer's Instruction. Manual that the user must not repair nor maintain the switch and must contact machine manufacturer for them.
- Do not use the switch as a stopper.

Be sure to install a stopper as shown in the following illustration to prevent the edge of the operation key from inadvertently hitting the switch directly.


## Precautions for Correct Use

## 1. Environment

- The switch is intended for indoor use only.
- Do not use your D4NS outdoor, or the switch will malfunction
- Do not use your D4NS in the atmosphere of hazardous gases (H2S, SO2, NH3, HNO3, Cl2, etc.) or high temperature and humidity, or it will cause the imperfect closing of the contacts or the breakage thereof stemming from corrosion.
- Do not use the switch under any of the conditions mentioned below.
- Frequent temperature range.
- High humidity or dew condensation may be generated
- Where the switch is subject to severe vibration.
- Where the metal dust, oil, or chemical is sprayed inside the door.
- Where thinner is applied.


## 2. Mounting method

- Mounting Screw Tightening Torque

Loose mounting may result in malfunction.
Fasten the screws to the specified torque.

Terminal screw	0.6 to $0.8 \mathrm{~N} \cdot \mathrm{~m}$
Cover clamping screw	0.5 to $0.7 \mathrm{~N} \cdot \mathrm{~m}$
Head clamping screw	0.5 to $0.6 \mathrm{~N} \cdot \mathrm{~m}$
Operation Key clamping screw (See item 4)	2.4 to $2.8 \mathrm{~N} \cdot \mathrm{~m}$
Body clamping screw (See item 4)	0.5 to $0.7 \mathrm{~N} \cdot \mathrm{~m}$
Conduit mounting connection (see item 10,11),   M12 changing adaptor	1.8 to $2.2 \mathrm{~N} \cdot \mathrm{~m}$
	1.4 to $1.8 \mathrm{~N} \cdot \mathrm{~m} \mathrm{(1/2-14NPT)}$
Cap screw	1.3 to $1.7 \mathrm{~N} \cdot \mathrm{~m}$

- Switch, operation key
- The switch and operation key will be fastened to specified torque in item 2 with M4 screws and washers
- Secured more by the studs like below picture 4-0.05/-0.15 dia., 4.8 max. height at the lower two which are inserted from back side of switch

- Do not use the operation key other than dedicated OMRON's. Otherwise switch may be damaged.
- Be sure that the operation key can be inserted properly to key hole with a tolerance of $\pm 1 \mathrm{~mm}$.

3. Head direction

The rotation of the switch head may be adjusted to any of the four directions by loosening the head clamping screws at the four corners of the head.
4. Securing of the door

If the operation key is pulled in the opening direction due to a force caused by vibration, by the door weight, or by a cushion attached to the door.
The closed door must be secured with a hook or by similar means.

5. Wiring

- When connect with insulation tubes and terminals, connect the terminals as shown in the following figure and wire without overriding to the case and the cover. Adequate conductor size is AWG 20 to 18 ( 0.5 to $0.75 \mathrm{~mm}^{2}$ ).
Wire leads as shown in the following figure. Otherwise, the switch cover does not fit.
(1 conduit type)

(2 conduits type)

- Do not push the ring connector and the likes into the opening between the parts in order to prevent the case from being broken and deformed.
- Use terminals having the thickness of 0.5 mm or less to avoid the contact between the terminal and the switch case inside.
The below listed the terminals have thickness of 0.5 mm or less.

Manufacture	Type	Wire size
J.S.T.	FV0.5-3.7 (F type)	AWG22 to 20
	V0.5-3.7 (straight type)	

J.S.T is a Japanese manufacturer.


## 6. Contact arrangement

- The following show a safety contact and an auxiliary contact for 3 contacts and 2 contacts types.
D4NS- $\square$ DF (3NC) D4NS- $\square \mathrm{FF}$ (2NC/1NO (MBB))

$$
\begin{aligned}
& 11-12 \Theta \\
& 21- \\
& 33- \\
& \hline
\end{aligned}
$$

$$
\text { D4NS- } \square \mathrm{BF} \text { (2NC) }
$$

$$
\text { D4NS- } \square \mathrm{AF}(1 \mathrm{NC} / 1 \mathrm{NO})
$$

$$
\text { D4NS- } \square \text { FF (1NC/1NO (MBB)) }
$$

$$
{ }_{31}^{11+\underbrace{}_{32} \Theta}
$$



$$
{ }_{33-}^{11-}+{ }_{34} \Theta
$$

D4NS-9BF (2NC)
(Connector type)
(11)
D4NS-9AF (1NC/1NO)
D4NS-9EF (1NC/1NO (MBB))
$1(11)-{ }_{3(3)}^{2(12)} \Theta$
$4(34)$
Pin No. (Terminal No.)
Suitable socket is Type XS2F (OMRON).

## 7. Socket tightening (connector type)

Do not use any tools, such as pliers, otherwise the socket connector may become damaged. Connect the socket connector to the connector threads of the D4NS. Then firmly turn the socket connector by hand so that the connector threaded portion will be completely covered by the socket connector so that space will be almost 0 .
Make sure, however, that the socket connector is tightened securely, otherwise the rated degree of protection of the D4NS may not be maintained. Furthermore, the socket connector may be loosened by vibration.

## 8. Conduit opening

Use the connectors recommended in clause 9 and tighten the connector with specified torque in clause 2. An excessive torque will bring a case breakage.
Apply sealing tape between connector and conduit opening so that the enclosure will conform to IP67.
Use a cable with a suitable diameter for the connector.
For unused conduit opening, apply a conduit cap provided and tighten it to specified torque in clause 2.

## 9. Recommendation of connector

Use the connector with thread section of 9 mm long or less. In the case of the connector with longer thread section, protruded part may interfere with the other parts inside the body. Use below listed connector to secure IP67.

Size	Manufacture	Type	Adequate cable   Diameter
G1/2	LAPP	ST-PF1/2   $5380-1002$	6.0 to 12.0 mm
	Ohm Denki	OA-W1609	7.0 to 9.0 mm
		9.0 to 11.0 mm	
Pg13.5	LAPP	S-13.5   $5301-5030$	6.0 to 12.0 mm
	LAPP	ST-M20 $\times 1.5$   $5311-1020$	7.0 to 13.0 mm
$1 / 2-14 N P T$	LAPP	ST-NPT1/2   $5301-6030$	6.0 to 12.0 mm
	HEYCO	LAPP	ST-M12 $\times 1.5$   $5301-1000$

When use LAPP's products, use together with a seal packing which is sold separately (Type names, JPK-16, GP-13.5, GPM20. GPM12 is for M12 connector) and tighten with proper tightening torque.
LAPP is a German manufacturer.
Ohm Denki is a Japanese manufacturer.
HEYCO is an American manufacturer.
Before using the 2 conduit type 1/2-14NPT connector, attach the appended changing adapter to the switch, and wind the seal tape about the joint of the adapter and switch.
When use M12 conduit type, connect the above listed connector, after tightened the M12 changing adaptor to the switch.
The M12 changing adaptor is enclosed with the packing.

## 10. Storage

Do not keep the switch in dusty, humid place and any place where gas may be present for example H2S, SO2, NH3, HNO3, Cl2.

## 11. Others

- Do not impose excessive force on the key top while the operation key is inserted into the switch body or drop the switch with the operation key inserted to avoid the deformation of the key or the breakage of the switch body.
- Confirm that the seal rubber has no abnormality and then use it. If the seal rubber is displaced or floated, or if foreign matters adhere to the seal rubber, the seal rubber will lose its sealing capability.
- Do not use any screw other than correct one, or the sealing capability of the seal rubber will deteriorate.
- Please do a regular check in premeditation for this switch.


## Production Termination

Following the release of the D4NS, production of the D4DS will be terminated.
Date of Production Termination
Production of the D4DS Series will be terminated in July 2006.
Date of Substitute Product Release
Sale of the D4NS Series commenced in July 2003.
Product Replacement

1. Dimensions

The D4DS and D4NS have basically the same structure, and use the same mounting method, Operation Keys, mounting hole and Operation Key insertion positions. The multi-contact structure and the extra 4 mm in length, however, are different.
2. Terminal Numbers

For the 2-contact model, the terminals 21, 22, 23, and 24 on the D4DS are 31, 32, 33, and 34 on the D4NS.
3. Recommended Terminals

If the recommended terminals are not used, the Switch may not be
compatible. Make sure that the Switch is compatible with the terminals.
Comparison of the D4DS and Substitute Products

Model	D4NS- $\square$
Switch color	Very similar
Dimensions	Very similar
Wiring/connection	Significantly different
Mounting method	Very similar
Ratings/performance	Very similar
Operating characteristics	Very similar
Operating method	Completely compatible

Dimensions (Unit: mm)
Discontinued Models (1-conduit D4DS) $\quad$ Replacement products (1-conduit D4NS)
Discontinued Model (2-conduit D4DS)

## $\triangle$ WARNing

This catalog is a guide to help customers select the proper safety product. Observe the following items when choosing products, select the right product for your device or equipment, and develop a safety-related system to fully utilize the product's functions.

## Setting up a risk assessment system

The items listed in this catalog must be used properly in terms of product location as well as product performance and functionality. Part of the process of selecting and using these products should include the introduction and development of a risk assessment system early in the design development stage to help identify potential dangers in your equipment that will optimize safety product selection. A badly designed risk assessment system often results in poor choices when it comes to safety products.

- Related international standard: ISO 14121 "Principles of risk assessment."


## Safety policy

When developing a safety system for the devices and equipment that use safety products, make every effort to understand and conform to the entire series of international and industrial standards available, such as the examples given below.

- Related international standards: ISO/DIS 12100 "Basic concepts, general principles for design"

IEC 61508 "Functional safety of electrical/electronic/programmable electronic safety-related systems."

## Role of safety products

Safety products have functions and mechanisms that ensure safety as defined by standards. These functions and mechanisms are designed to attain their full potential within safety-related systems. Make sure you fully understand all functions and mechanisms, and use that understanding to develop systems that will ensure optimal usage.

- Related international standard: ISO 14119 "Interlocking devices associated with guards- Principles for design and selection."


## Installing safety products

Make sure that properly educated and trained engineers are selected to develop your safety-related system and to install safety products in devices and equipment.

- Related international standards: ISO/DIS 12100 "Basic Concepts, general principles for design."

IEC 61508 "Functional safety of electrical/electronic/programmable electronic safety-related systems."

## Observing laws and regulations

Safety products should conform to pertinent laws, regulations and standards, but make sure that they are used in accordance with the laws, regulations and standards of the country where the devices and equipment incorporating these products are distributed.

- Related international standard: IEC 60204 "Electrical equipment of machines."


## Observing usage precautions

Carefully read the specifications and precautions listed in this catalog for your product as well as all items in the Operating Manual packed with the product to learn usage procedures that will optimize your choice. Any deviation from precautions will lead to unexpected device or equipment failure not anticipated by safety-related systems or fire originating from equipment failure.

## Transferring devices and equipment

When transferring devices and equipment, be sure to keep one copy of the Operating Manual and pack another copy with the device or equipment so the person receiving it will have no problem operating it.

- Related international standards: ISO/DIS 12100 "Basic concepts, general principles for design"

IEC 61508 "Functional safety of electrical/electronic/programmable electronic safety-related systems."

## Safety-door Switch

## D4BS

Safety-door Switch's Special Operation Key Directly Pulls Apart the Contacts from Each Other and Contributes to the Safety of the Production Site

- Conforms to EN (TÜV) standards corresponding to the CE marking.
- Approved by UL, CSA, BIA, and SUVA standards.
- The switch contact is opened by a direct opening mechanism (NC contacts only) when the protective cover is opened. The EN-approved direct opening mechanism is indicated by $\Theta$ on the Switch.
- Degree of protection of the switch box: IP67 (EN60947-5-1).
- Series includes models with gold-plated contacts for handling the micro-load range.
- Metric conduit types available.


## Model Number Structure

Model Number Legend


1. Conduit

1: PG13.5 (1 conduit)
2: G1/2 (1 conduit)
3: 1/2-14NPT (1 conduit)
4: M20
5: PG13.5 (3-conduit)
6: G1/2 (3-conduit)
7: 1/2-14NPT (3-conduit)
8: M20 (3-conduit)
2. Built-in Switch

5: 1NC/1NO (slow-action)
6: 1NC/NO (slow-action), gold-plated contacts
A: 2NC (slow-action)
B: 2NC (slow-action), gold-plated contacts

## 3. Head Mounting Direction

F: Four mounting directions pos-
sible (front-side mounting at shipping)

Operation Key
D4BS - K $\underset{=}{\square}$

1. Operation Key Type

1: Horizontal mounting
2: Vertical mounting
3: Adjustable mounting (Horizontal)

## Ordering Information

## List of Models

Switches

Type	Mounting direction		Conduit size	1NC/1NO (Slow-action)	2NC (Slow-action)
1-conduit	Front-side mounting		Pg13.5	D4BS-15FS	D4BS-1AFS
			G1/2	D4BS-25FS	D4BS-2AFS
			M20	D4BS-45FS	D4BS-4AFS
3-conduit			Pg13.5	D4BS-55FS	D4BS-5AFS
			G1/2	D4BS-65FS	D4BS-6AFS
			M20	D4BS-85FS	D4BS-8AFS

Prefered stock item

Operation Keys (Order Separately)

Type	Model
Horizontal mounting	D4BS-K1
Vertical mounting	D4BS-K2
Adjustable mounting (Horizontal)	D4BS-K3

## Specifications

Approved Standards			Standards and EC Directives   Conforms to the following EC Directives:   Machinery Directive   Low Voltage Directive   EN50041   EN1088
Agency	Standard	File No.	Conforms to the following EC Directives:   Machinery Directive   Low Voltage Directive   EN50041   EN1088
TÜV Rheinland	EN60947-5-1	R9351022   (Direct opening: approved)	
UL	UL508	E76675	
CSA	CSA C22.2 No. 14	LR45746	
BIA	GS-ET-15	9303323	
SUVA	SUVA	E6187.d	

## Approved Standard Ratings

TÜV (EN60947-5-1)

Utilization category	AC-15
Rated operating current (le)	2 A
Rated operating voltage (Ue)	400 V

Note: Use a 10-A fuse type a gl or gG that conforms to IEC269 as a short-circuit protection device.

## UL/CSA (UL508, CSA C22.2 No. 14)

A600

Rated voltage	Carry current	Current		Volt-amperes	
		Make	Break	Make	Break
120 VAC	10 A	60 A	6 A	7,200 VA	720 VA
240 VAC		30 A	3 A		
480 VAC		15 A	1.5 A		
600 VAC		12 A	1.2 A		

## Characteristics

Degree of protection (see note 2)	IP67 (EN60947-5-1)
Durability (see note 3)	Mechanical:1,000,000 operations min.   Electrical:500,000 operations min. (10 A at 250 VAC, resistive load)
Operating speed	$0.1 \mathrm{~m} / \mathrm{s}$ to $0.5 \mathrm{~m} / \mathrm{s}$
Operating frequency	30 operations/min max.
Rated frequency	$50 / 60 \mathrm{~Hz}$
Contact gap	$2 \times 2 \mathrm{~mm}$ min.
Direct opening force (see note 4)	19.61 N min. (EN60947-5-1)
Direct opening travel (see note 4)	20 mm min. (EN60947-5-1)
Full stroke	23 mm min.
Insulation resistance	$100 \mathrm{M} \Omega$ min. (at 500 VDC ) between terminals of same or different polarity, between each terminal and ground, and between each terminal and non-current-carrying metal part
Contact resistance	$25 \mathrm{~m} \Omega$ max. (initial value)
Rated insulation voltage ( $\mathrm{U}_{\mathrm{i}}$ )	600 V (EN60947-5-1)
Conventional enclosed thermal current ( $\mathrm{t}_{\text {the }}$ )	20 A (EN60947-5-1)
Dielectric strength (Uimp)	Impulse dielectric strength $\left(\mathrm{U}_{\mathrm{imp}}\right) 4 \mathrm{kV}$ (EN60947-5-1) between terminals of same or different polarity, between current-carrying metal parts and ground, and between each terminal and non-current-carrying metal part
Switching overvoltage	1,500 V max. (EN60947-5-1)
Conditional short-circuit current	100 A (EN60947-5-1)
Pollution degree (operating environment)	3 (EN60947-5-1)
Insulation class	Class I (with ground terminal)
Vibration resistance	Malfunction: 10 to $500 \mathrm{~Hz}, 0.65-\mathrm{mm}$ single amplitude
Shock resistance	Destruction:1,000 m/s ${ }^{2} \mathrm{~min}$. (IEC68-2-27) Malfunction:300 m/s ${ }^{2} \mathrm{~min}$. (IEC68-2-27)
Ambient temperature	Operating:- $40^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$ (with no icing)
Ambient humidity	Operating:95\% max.
Weight	Approx. 285 g (in the case of D4BS-15FS)

Note: 1. The above values are initial values.
2. Although the switch box is protected from dust, oil, or water penetration, do not use the D4BS in places where dust, oil, water, or chemicals may penetrate through the key hole on the head, otherwise Switch damage or malfunctioning may occur.
3. The durability is for an ambient temperature of $5^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$ and an ambient humidity of $40 \%$ to $70 \%$. Contact your OMRON sales representative for more detailed information on other operating environments.
4. These figures are minimum requirements for safe operation.

Contact Form (Diagrams Show State with Key Inserted)

Model		Contact form	Diagram	Remarks
D4BS- $\square \square$ S	1NC/1NO			Only NC contact 11-12 has an approved direct opening mechanism.   Terminals 11-12 and 23-24 can be used as unlike poles.
D4BS- $\square$ A $\square$ S	2NC			NC contacts 11-12 and 21-22 have an approved direct opening mechanism.   Terminals 11-12 and 21-22 can be used as unlike poles.

Note: The terminal numbers are in accordance with EN50013, and the contact symbols are in accordance with IEC947-5-1.


## Dimensions

Note: 1. All units are in millimeters unless otherwise indicated.
2. Unless otherwise specified, a tolerance of $\pm 0.4 \mathrm{~mm}$ applies to all dimensions.
3. The conduit thread varies with the model as follows:.

Conduit thread	Model
Pg 13.5	D4BS-1 $\square \square$ S, D4BS-5 $\square \square$ S
G1/2	D4BS-2 $\square \square$ S, D4BS-6 $\square \square$ S
M20	D4BS-4 $\square \square$ S, D4BS-8 $\square \square$ S

Switches


Operation Keys


With Operation Key Inserted
Horizontal Mounting
D4BS-1 $\square$ S +D4BS-K1
D4BS-2 $\square$ S +D4BS-K1
D4BS-4 $\square$ S +D4BS-K1


Vertical Mounting
D4BS-1 $\square$ S +D4BS-K2
D4BS-2 $\square$ S +D4BS-K2
D4BS-4 $\square$ S +D4BS-K2


Adjustable Mounting (Horizontal)

D4BS-1 $\square$ S +D4BS-K3 D4BS-2 $\square$ S +D4BS-K3 D4BS-4 $\square \square$ S +D4BS-K3



Note: "R" is the Operation Key insertion radius.

[^42]Do not dismount the Operation Key from the door intentionally and insert it to the Switch with the door open. Machine may start operating and injury or death may be caused.
Mount the Operation Key at a location where it will not come in contact with users when the door is opened or closed.

When operating the D4BS as a part of a safety category circuit to prevent injury, operate the NC contacts that have a direct opening mechanism in direct opening mode. For safety purposes, tighten the switch body and Operation Key with one-way screws or equivalents or install a switch protection cover and warning label for safety purposes to prevent easy removal of the D4BS.

Connect the fuse to the D4BS in series to prevent it from short-circuit damage. The value of the breaking current of the fuse must be calculated by multiplying rated current by $150 \%$ to $200 \%$. When using the D4BS with EN ratings, use 10-A fuse Type gl or gG that complies with IEC60269.

## Correct Use

## Operating Environment

Make sure in advance that the environment is suitable, with no oil, water, or chemicals, as these may cause the seal to deteriorate, resulting in faulty contact, faulty isolation, current leakage, or burning.
Do not use the D4BS in the following locations:

- Locations subject to severe temperature changes
- Locations subject to high temperatures or condensation
- Locations subject to severe vibration
- Locations where the product may come into direct contact with processing waste or dust


## Operation Key

Be sure to use a special Operation Key only. Do not operate the D4BS with anything other than the special Operation Key, otherwise the D4BS may break or the safety of the system may not be maintained.
Do not impose excessive force on the Operation Key inserted into the D4BS or drop the D4BS with the Operation Key inserted, otherwise the Operation Key may deform or break.


Secure the Operation Key with a one-way screw, or an equivalent, so that the Operation Key cannot be easily removed.

## Securing the Door

If the Operation Key on the closed door is pulled outside the set zone by a force caused by vibration, the door's weight, or the door cushion rubber, the switch contact may be opened (causing the machinery to stop) or the D4BS may be damaged. Secure the door with hooks so that it will remain within the set zone.


## Mounting

Do not use the Switch as a stopper. Be sure to install a stopper as shown in the following illustration when mounting the Switch. The range of space "a" must be determined according to the available set zone of the Operation Key.


Refer to Dimensions for the mounting dimension of the Operation Key and mount the Operation Key correctly. The Operation Key will soon become damaged or worn out if it is not mounted correctly.
Make sure that the Operation Key can be inserted properly with a tolerance of $\pm 0.5 \mathrm{~mm}$ in the upward, downward, left, or right direction, otherwise the D4BS may soon become damaged.


## Other

Make sure that the D4BS is located outside the safety door and that no metal dust, oil, or chemical will be sprayed onto the D4BS. Otherwise, the D4BS may soon fail to operate due to the penetration of metal dust, oil, or chemical.

## Tightening Torque

Be sure to tighten each screw of the D4BS properly, otherwise the D4BS may malfunction.


No.	Type	Torque
1	M3.5 terminal screw (including   ground terminal screw)	0.59 to $0.78 \mathrm{~N} \cdot \mathrm{~m}$
2	Cover mounting screw   (see note 1)	1.18 to $1.37 \mathrm{~N} \cdot \mathrm{~m}$
3	Head mounting screw	0.78 to $0.98 \mathrm{~N} \cdot \mathrm{~m}$
4	M5 body mounting screw   (see note 2)	4.90 to $5.88 \mathrm{~N} \cdot \mathrm{~m}$
5	Operation Key mounting screw	2.35 to $2.75 \mathrm{~N} \cdot \mathrm{~m}$
6	Connector	1.77 to $2.16 \mathrm{~N} \cdot \mathrm{~m}$
7	Cap screw	1.27 to $1.67 \mathrm{~N} \cdot \mathrm{~m}$

Note: 1. Apply a torque of 0.78 o $0.88 \mathrm{~N} \cdot \mathrm{~m}$ if the D4BS is a three-conduit model.
2. Apply a torque of 4.90 to $5.88 \mathrm{~N} \cdot \mathrm{~m}$ in the case of an Allenhead bolt. If it is a pan head screw, apply a torque of 2.35 to 2.75 N•m.

## Mounting Dimensions (M5)

Standard Model


The D4BS can be mounted more securely by adding two protruding portions, each of which is 5 mm maximum in height and $5^{-0.05 /-0.15} \mathrm{~mm}$ in diameter as shown below.
Operating Key Mounting Dimensions
Horizontal Mounting


Vertical Mounting


Adjustable Mounting (Horizontal)


## Changes in Head Mounting Direction

By removing the screws on the four corners of the head, the head can be reset in any of four directions. The head direction can be changed with or without the Operation Key inserted in the head Make sure that no foreign materials penetrate through the head and that the head is tightened securely within the proper torque range.

## Wiring

Do not connect the lead wires directly to the terminals. Connect the lead wires through insulation tubes and M3.5 crimp terminals. Tighten each terminal screw within the proper torque range.
The proper lead wire is AWG20 to AWG14 ( 0.5 to $2.5 \mathrm{~mm}^{2}$ ) in size.


Make sure that all crimp terminals are correctly connected and located within the casing or cover as shown below.


## Connector

Tighten the connector to a suitable torque. Excessive tightening torque may damage the casing.
When using a 1/2-14NPT conduit, apply sealing tape between connector and conduit opening so that the enclosure will confirm to IP67. If using a Pg13.5 conduit, use an ABS-08 Pg13.5 connector or an ABS-12 Pg13.5 connector (manufactured by Nippon Flex).
Use a connector (SC Series, sold separately) suitable for the outer diameter of the cable.
When wiring a 3-conduit model, securely tighten the cap screw provided for unused conduit openings.

## Maintenance and Repairs

The user must not maintain or repair equipment incorporating any D4BS model. Contact the manufacturer of the equipment for any maintenance or repairs required.

## Guard Lock Safety-door Switch

## D4NL

## Lead-free,

## Environment-friendly Design

- Contains no harmful substances, such as lead or cadmium, reducing the burden on the environment.
- Models with 4-contact and 5 -contact built-in switches are available.
- Key holding force of $1,300 \mathrm{~N} \mathrm{~min}$.
- Can be used for either standard loads or microloads.
- Lineup includes models with a conduit size of M20.
- IP67 degree of protection.
- Operation key compatible to D4DS, D4NS and D4GL.


## Model Number Structure

## Model Number Legend

## Switch



$$
1234567
$$

1. Conduit Size

1: Pg13.5
2: G1/2
4: M20
2. Built-in Switch (with Door Open/Closed Detection Switch and Lock Monitor Switch Contacts)
A: $\quad 1 \mathrm{NC} / 1 \mathrm{NO}$ slow-action contacts plus $1 \mathrm{NC} / 1 \mathrm{NO}$ slow-action contacts
B: $\quad 1 \mathrm{NC} / 1 \mathrm{NO}$ slow-action contacts plus 2NC slow-action contacts
C: $\quad 2 \mathrm{NC}$ slow-action contacts plus $1 \mathrm{NC} / 1 \mathrm{NO}$ slow-action contacts
D: 2NC slow-action contacts plus 2NC slow-action contacts
E: $\quad 2 \mathrm{NC} / 1 \mathrm{NO}$ slow-action contacts plus $1 \mathrm{NC} / 1 \mathrm{NO}$ slow-action contacts
F: $\quad 2 \mathrm{NC} / 1 \mathrm{NO}$ slow-action contacts plus 2NC slow-action contacts
G: $\quad 3 \mathrm{NC}$ slow-action contacts plus $1 \mathrm{NC} / 1 \mathrm{NO}$ slow-action contacts
H: 3NC slow-action contacts plus 2NC slow-action contacts
3. Head Mounting Direction and Material

F: Four mounting directions possible (Front-side mounting at time of delivery)/plastic
D: Four mounting directions possible (Front-side mounting at time of delivery)/metal
4. Door Lock and Release

A: Mechanical lock/24-VDC solenoid release
B: Mechanical lock/110-VAC solenoid release
C: Mechanical lock/230-VAC solenoid release
G: 24-VDC solenoid lock/mechanical release
H: 110-VAC solenoid lock/mechanical release
J: 230-VAC solenoid lock/mechanical release
5. Indicator

B: 10 to 115 VAC/VDC (orange LED indicator)
E: 100-230V VAC (orange neon lamp indicator)
6. Release Key Type

Blank:Standard
4: Special release key
7. Release Key Position

Blank:Bottom
S: Front
Operation Key

## D4DS-K $\square$

1

1. Operation Key Type

1: Horizontal mounting
2: Vertical mounting
3: Adjustable mounting (horizontal)
5: Adjustable mounting (horizontal/vertical)

## Ordering Information

List of Models
For 110 V and 230 V version ask your local OMRON Representative
Switches (Operation Keys are sold separately.)
Models with approved direct opening contacts. Prefered stock item*

$\begin{gathered} \text { Head } \\ \text { material } \end{gathered}$	Release key position	$\begin{aligned} & \text { Release } \\ & \text { key type } \end{aligned}$	Solenoid voltage/ indicator	Lock and release types	Contact configuration (door open/closed detection switch and lock monitor switch contacts) (slow-action) Approved direct opening NC contact	Conduit opening	Model
Plastic	Bottom	Standard	Solenoid: 24 VDC Orange LED: 10 to 115 VAC/VDC	Mechanical lock Solenoid release	1NC/1NO+1NC/1NO	Pg13.5	D4NL-1AFA-B*
						G1/2	D4NL-2AFA-B
						M20	D4NL-4AFA-B*
					1NC/1NO+2NC	Pg13.5	D4NL-1BFA-B
						G1/2	D4NL-2BFA-B
						M20	D4NL-4BFA-B
					2NC+1NC/1NO	Pg13.5	D4NL-1CFA-B*
						G1/2	D4NL-2CFA-B
						M20	D4NL-4CFA-B*
					2NC+2NC	Pg13.5	D4NL-1DFA-B
						G1/2	D4NL-2DFA-B
						M20	D4NL-4DFA-B
					2NC/1NO+1NC/1NO	Pg13.5	D4NL-1EFA-B
						G1/2	D4NL-2EFA-B
						M20	D4NL-4EFA-B*
					2NC/1NO+2NC	Pg13.5	D4NL-1FFA-B
						G1/2	D4NL-2FFA-B
						M20	D4NL-4FFA-B
					3NC+1NC/1NO	Pg13.5	D4NL-1GFA-B
						G1/2	D4NL-2GFA-B
						M20	D4NL-4GFA-B
					3NC+2NC	Pg13.5	D4NL-1HFA-B
						G1/2	D4NL-2HFA-B
						M20	D4NL-4HFA-B
				Solenoid lock Mechanical release	1NC/1NO+1NC/1NO	Pg13.5	D4NL-1AFG-B*
						G1/2	D4NL-2AFG-B
						M20	D4NL-4AFG-B*
					1NC/1NO+2NC	Pg13.5	D4NL-1BFG-B
						G1/2	D4NL-2BFG-B
						M20	D4NL-4BFG-B
					2NC+1NC/1NO	Pg13.5	D4NL-1CFG-B*
						G1/2	D4NL-2CFG-B
						M20	D4NL-4CFG-B*
					2NC+2NC	Pg13.5	D4NL-1DFG-B
						G1/2	D4NL-2DFG-B
						M20	D4NL-4DFG-B
					2NC/1NO+1NC/1NO	Pg13.5	D4NL-1EFG-B
						G1/2	D4NL-2EFG-B
						M20	D4NL-4EFG-B*
					2NC/1NO+2NC	Pg13.5	D4NL-1FFG-B
						G1/2	D4NL-2FFG-B
						M20	D4NL-4FFG-B
					3NC+1NC/1NO	Pg13.5	D4NL-1GFG-B
						G1/2	D4NL-2GFG-B
						M20	D4NL-4GFG-B
					3NC+2NC	Pg13.5	D4NL-1HFG-B
						G1/2	D4NL-2HFG-B
						M20	D4NL-4HFG-B

## Operation Keys

Type		Model
Horizontal mounting		
Vertical mounting		
Adjustable mounting		
(Horizontal)		

## Specifications

## Standards and EC Directives

Applicable EC Directives and Standards

- Machinery Directive
- Low Voltage Directive
- EN1088
- EN60204-1
- GS-ET-19


## Approved Standards

Agency	Standard	File No.
TÜV Product   Service	EN60947-5-1 (approved   direct opening)	(See note 1.)
UL (See note 2.)	UL508, CSA C22.2 No.14	E76675

Note: 1. Consult your OMRON representative for details.
2. Approval for CSA C22.2 No. 14 is authorized by the UL mark.

## Approved Standard Ratings

TÜV (EN60947-5-1)

ItemUtilization   category	AC-15	DC-13
Rated operating current $\left(\mathbf{I}_{\mathbf{e}}\right)$	3 A	0.27 A
Rated operating voltage $\left(\mathbf{U}_{\mathbf{e}}\right)$	240 V	250 V

Note: Use a 10-A fuse type gI or gG that conforms to IEC269 as a short-circuit protection device. This fuse is not built into the Switch.

UL/CSA (UL508, CSA C22.2 No. 14)
A300

Rated   voltage	Carry current	Current		Volt-amperes	
		Make	Break	Make	Break
120 VAC	10 A	60 A	6 A	$7,200 \mathrm{VA}$	720 VA
240 VAC		30 A	3 A		

Solenoid Coil Characteristics

Item	24 VDC	110 VAC	230 VAC
Rated operating   voltage (100\% ED)	$24 \mathrm{VDC} \mathrm{+10} \mathrm{\% /}$   $-15 \%$	110 VAC $\pm 10 \%$	230 VAC $\pm 10 \%$
Current consump-   tion	Approx.   200 mA	Approx. 50 mA	Approx. 30 mA
Insulation	Class F (130 ${ }^{\circ} \mathrm{C}$ max.)		

Indicator Characteristics

Item	LED
Rated voltage	10 to 115 VAC/VDC
Current leakage	Approx. 1 mA
Color (LED)	Orange

## Characteristics

Degree of protection (see note 2)		IP67 (EN60947-5-1)   (This applies for the Switch only. The degree of protection for the key hole is IP00.)	
$\begin{array}{\|l\|} \hline \text { Durability } \\ \text { (see note 3) } \end{array}$	Mechanical	1,000,000 operations min.	
	Electrical	500,000 operations min. for a resistive load of 3 A at 250 VAC (see note 4)	
Operating speed		0.05 to $0.5 \mathrm{~m} / \mathrm{s}$	
Operating frequency		30 operations/minute max.	
Rated frequency		$50 / 60 \mathrm{~Hz}$	
Contact gap		$2 \times 2 \mathrm{~mm}$ min	
Direct opening force (see note 5)		60 N min. (EN60947-5-1)	
Direct opening travel (see note 5)		10 mm min. (EN60947-5-1)	
Holding force (see note 6)		1,300 N min.	
Insulation resistance		$100 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC )	
Minimum applicable load (see note 7)		Resistive load of 1 mA at 5 VDC (N-level reference value)	
Rated insulation voltage ( $\mathrm{U}_{\mathrm{i}}$ )		300 V (EN60947-5-1)	
Rated open thermal current ( $\mathrm{l}_{\mathrm{th}}$ )		10 A (EN60947-5-1)	
Impulse withstand voltage (EN60947-5-1)		Between terminals of the same polarity	2.5 kV
		Between terminals of different polarities	4 kV
		Between other terminals and uncharged metallic parts	6 kV
Conditional short-circuit current		100 A (EN60947-5-1)	
Pollution degree (operating environment)		3 (EN60947-5-1)	
Protection against electric shock		Class II (double insulation)	
Contact resistance		$25 \mathrm{~m} \Omega$ max. per contact (initial value)	
Vibration resistance	Malfunction	10 to $55 \mathrm{~Hz}, 0.75-\mathrm{mm}$ single amplitude	
Shock resistance	Destruction	$1,000 \mathrm{~m} / \mathrm{s}^{2} \mathrm{~min}$.	
	Malfunction	$300 \mathrm{~m} / \mathrm{s}^{2} \mathrm{~min}$. (100 m/s ${ }^{2} \mathrm{~min}$. for the lock monitor switch)	
Ambient temperature		Operating: $-10^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ with no icing	
Ambient humidity		Operating:95\% max.	
Weight		Approx. 370 g (D4NL-IAFA-B)	

Note: 1. The above values are initial values
2. The degree of protection is tested using the method specified by the standard (EN60947-5-1). Confirm that sealing properties are sufficient for the operating conditions and environment beforehand. Although the switch box is protected from dust or water penetration, do not use the D4NL in places where foreign material may penetrate through the key hole on the head, otherwise Switch damage or malfunctioning may occur.
3. The durability is for an ambient temperature of $5^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$ and an ambient humidity of $40 \%$ to $70 \%$. For more details, consult your OM RON representative.
4. If the ambient temperature is greater than $35^{\circ} \mathrm{C}$, do not pass the $3-\mathrm{A}, 250-\mathrm{VAC}$ load through more than 2 circuits.
5. These figures are minimum requirements for safe operation.
6. This figure is based on the GS-ET-19 evaluation method.
7. This value will vary with the switching frequency, environment, and reliability level. Confirm that correct operation is possible with the actual load beforehand.

## Indicator

Internal Circuit Diagram


## Circuit Connection Example

- Terminals 12 and 41 are connected internally and so connect terminals 11 and 42 for safety-circuit input. (GS-ET-19)
- Connect terminals 21 and 22 and terminals 51 and 52 in series when using as safety-circuit input (redundancy circuit for terminals 11 and 12 and terminals 41 and 42 above). Connect the terminals individually when using as auxiliary-circuit input (e.g., terminals 21 and 22 for safety-door open/closed monitoring and terminals 51 and 52 for monitoring the lock status).
- In the connection example on the right, terminals 21 and 22 and terminals 51 and 52 are used as auxiliary-circuit input.

- Direct opening contacts used as safety-circuit input are indicated with the $\Theta$ mark. Terminals 11 and 12 and terminals 21 and 22 are direct opening contacts.
- Connect the indicators in parallel to the auxiliary circuits or terminals E1 and E2.
If an indicator is connected in parallel to a direct opening contact, when the indicator breaks, a short-circuit current will be generated, possibly resulting in an installation malfunction.
- Do not switch standard loads for more than 2 circuits at the same time. Otherwise, the level of insulation may decrease.
- The 24-VDC solenoid has polarity. Be sure to connect terminals with the correct polarity.


## Operation Method

Operation Principles
Mechanical
lock models

## Nomenclature

Structure


Standard Release Key (Bottom View)


Special Release Key (Bottom View)


Note: Terminal numbers vary with the model.

Contact Form
Indicates conditions where the Key is inserted and the lock is applied. Terminals 12 and 41 are connected internally (as per GS-ET-19).

Model	Contact	Contact form	Operating patt	ern	Remarks
D4NL- $\square$ AF $\square$ - $\square$	1NC/1NO + 1NC/1NO	${ }_{33}{ }_{11} \boldsymbol{H}_{34}$			Only NC contacts 1112 and 41-42 have an approved direct opening mechanism.   The terminals 11-42, 3334 , and 53-54 can be used as unlike poles.
D4NL- $\square$ BF $\square$ - $\square$	1NC/1NO + 2NC			$\square$ ON   Extraction completion position	Only NC contacts 11 -$12,41-42$, and 51-52 have an approved direct opening mechanism.   The terminals 11-42, 3334 , and 51-52 can be used as unlike poles.
D4NL- $\square$ CF $\square$ - $\square$	2NC + 1NC/1NO				Only NC contacts 11 -   12, 31-32, and 41-42 have an approved direct opening mechanism.   The terminals 11-42, 3132 , and 53-54 can be used as unlike poles.
D4NL- $\square$ DF $\square$ - $\square$	$2 N C+2 N C$	${ }_{31}^{11} \underbrace{}_{32}$			Only NC contacts 11-   12, 31-32, 41-42, and 51-52 have an approved direct opening mechanism.   The terminals 11-42, 3132 , and 51-52 can be used as unlike poles.
D4NL- $\square$ EF $\square$ - $\square$	2NC/1NO + 1NC/1NO				Only NC contacts 1112, 21-22, and 41-42 have an approved direct opening mechanism.   The terminals 11-42, 2122, 33-34, and 53-54 can be used as unlike poles.
D4NL- $\square$ FF $\square$ - $\square$	2NC/1NO + 2NC			ON   Extraction completion position	Only NC contacts 11-   12, 21-22, 41-42, and   51-52 have an approved   direct opening   mechanism.   The terminals 11-42, 2122, 33-34, and 51-52 can be used as unlike poles.
D4NL- $\square$ GF $\square$ - $\square$	$3 \mathrm{NC}+1 \mathrm{NC} / 1 \mathrm{NO}$				Only NC contacts 11 -   12, 21-22, 31-32, and 41-42 have an approved direct opening mechanism.   The terminals 11-42, 2122, 31-32, and 53-54 can be used as unlike poles.
D4NL- $\square \mathrm{HF} \square-\square$	$3 N C+2 N C$			on   Extraction completion position	Only NC contacts 11-12,   21-22, 31-32, 41-42 and   51-52 have an approved direct opening mechanism. The terminals 11-42, 2122, 31-32, and 51-52 can be used as unlike poles.

## Dimensions

Note: All units are in millimeters unless otherwise indicated

## Switches

D4NL- $\square \square \square$-B


D4NL- $\square \square \square \square$-B4


## D4NL- $\square \square \square \square$-BS



D4NL- $\square \square \square-$-B4S


Operation Keys
Note: Unless otherwise specified, a tolerance of $\pm 0.4 \mathrm{~mm}$ applies to all dimensions.


Operating   characteristics	D4NL- $\square \square \square \square-\mathrm{B4S}$
Key insertion force   Key extraction force	15 N max.   30 N max.
Pre-travel distance	9 mm max.
Movement before   being locked	3 mm min.


Operating   characteristics	D4NL- $\square \square \square \square-B S$
Key insertion force   Key extraction force	15 N max.   30 N max.
Pre-travel distance	9 mm max.
Movement before   being locked	3 mm min.

## With Operation Key Inserted

## D4NL + D4DS-K1



D4NL + D4DS-K3


D4NL + D4DS-K2


D4NL + D4DS-K5


## Application Examples

G9SA-321-T $\square$ (24 VAC/VDC) + D4NL- $\square \square \square \mathrm{A}-\square, \square \square \square \mathrm{B}-\square, \square \square \square \mathrm{C}-\square$ (Mechanical Lock Type) + D4D- $\square 520 \mathrm{~N}$ Circuit Diagram


G9SA-301 (24 VAC/VDC) + D4NL- $\square \square \square \mathrm{G}-\square, \square \square \square \mathrm{H}-\square$, $\square \square \square \mathrm{J}-\square$ (Solenoid Lock Type) + D4D- $\square 520 \mathrm{~N}$ Circuit Diagram


## - $!$ Caution

Do not insert the Operation Key with the door open. The machine may operate and damage may result.

## - $!$ Caution

Do not use metal connectors or conduits with this switch. Damage to the broken conduit hole may cause electric shock.

## - $\triangle$ Caution

Change the head direction after changing the release key to the UNLOCK position. Do not change the head direction with the cover removed. Failure to observe these points may result in Switch malfunction or damage.

## Holding Force

- Do not apply a force exceeding the specified holding force. Doing so may break the Switch and the machine may continue to operate.
- Either install another locking component (e.g., a stop) in addition to the Switch, or use a warning sticker or an indicator showing the lock status so that a force exceeding the specified holding force is not applied.


## Safety Precautions

- The Switch contacts can be used for either standard loads or microloads. Once a contact has been used to switch a standard load, however, it cannot be used for a load of a smaller capacity. Doing so may result in roughening of the contact surface and contact reliability may be lost.
- Turn OFF the power before disassembling the Switch or touching any internal parts. Not doing so may result in electric shock.
- Mount the Operation Key in a location where it will not come in contact with users when the door is opened or closed. Otherwise, injury may result.
- Do not impose excessive force on the Operation Key when it is inserted into the Switch or drop the Switch with the Operation Key inserted. Otherwise, the Operation Key may be deformed or the Switch may be broken.
- Observe the specified insertion radius for the Operation Key and insert it in a direction perpendicular to the key hole.
- Do not use the Switch in starting circuits. (Use for safety confirmation signals.)
- When using the Switch in emergency-stop circuits or other safety circuits that have a direct impact on human lives, operate the NC contacts that have a direct opening mechanism in direct opening mode. For safety purposes, prevent easy removal by, for example, mounting the Switch and Operation Key with one-way screws or attaching a protective cover and warning label.
- In order to prevent short-circuit damage to the Switch, connect a fuse to the Switch in series. Use a fuse with a breaking current of 1.5 to 2 times the rated current. To conform to EN ratings, use a IEC269-compliant 10-A fuse type gI or gG.
- Turn the power OFF when wiring. After wiring is completed, be sure to mount the cover before use.
- In order to prevent burning due to overvoltage, insert a protective fuse in the solenoid circuits.
- Do not use the Switch where explosive gas, flammable gas, or any other dangerous gas may be present.
- Ensure that the load current does not exceed the rated current.
- Be sure to wire the terminals correctly.
- Be sure to evaluate the Switch under actual operating conditions after installation.
- Do not drop the package or the product. Do not disassemble internal parts.


## Release Key



- The release key is used to unlock the Switch in case of emergency or if the power supply to the Switch stops.
- If the release key setting is changed from LOCK to UNLOCK using an appropriate tool, the lock will be released and the safety door can be opened (mechanical lock models only).
- After setting the release key to UNLOCK in order to, for example, change the head direction or perform maintenance, be sure to return it to LOCK setting before resuming operation.
- When the Switch is used for the door of a machine room to ensure the safety of people performing adjustment work inside, if the release key is set to UNLOCK, the door will not be locked when the door is closed and no power will be supplied to the equipment.
- Do not use the release key to start or stop machines.
- The auxiliary lock must only be released by authorized personnel.
- Do not impose a force exceeding $1 \mathrm{~N} \cdot \mathrm{~m}$ on the release key screws. The release key may be damaged and may not operated properly.
- To prevent the release key from being used by unauthorized personnel, set it to LOCK and seal it with seal wax.


## Mounting



- Do not use the Switch as a stopper. To prevent the door from coming into contact with the flange of the Operation Key, be sure to mount the Switch with a stopper as shown above.
- When the Switch is used for a hinged door at a location near to the hinged side, where the Operation Key's insertion radius is comparatively small, if an attempt is made to open the door beyond the lock position, the force imposed will be much larger than for locations far from the hinged side, and the lock may be damaged.


## Solenoid Lock Models

The solenoid lock locks the door only when power is supplied to the solenoid. Therefore, the door will be unlocked if the power supply to the solenoid stops. Therefore, do not use solenoid lock models for machines that may be operating and dangerous even after the machine stops operating.

## Correct Use

Operating Environment

- This Switch is for indoor use only. Do not use it outdoors. Otherwise, it may malfunction.
- Do not use the Switch in the following locations:
-Locations subject to severe temperature changes
-Locations subject to high humidity levels or condensation
-Locations subject to severe shocks or vibrations
-Locations where the Switch may come in contact with metal dust, oil, or chemicals
-Locations subject to thinner, detergent, or other solvents.
- Although the Switch itself is protected from dust or water penetration, ensure that foreign material does not penetrate through the key hole on the head, otherwise Switch damage or malfunctioning may occur.
- Do not use the Switch submerged in oil or water, or in locations continuously subject to splashes of oil or water. Doing so may result in oil or water entering the Switch interior. (The IP67 degree of protection specification for the Switch pertains to the amount of water penetration after the Switch is submerged in water for a certain period of time.)
Life Expectancy
The life expectancy of the Switch will vary with the switching conditions. Before applying the Switch, test it under actual operating conditions and be sure to use it at a switching frequency that will not lower its performance.
Operation Key

- Use the designated OMRON Operation Key with the Switch. Using another Operation Key may result in Switch damage.
- Do not impose excessive force on the Operation Key when it is inserted into the Switch or drop the Switch with the Operation Key inserted. Otherwise, the Operation Key may be deformed or the Switch may be broken.
Mounting


## Tightening Torque

Be sure to tighten each screw of the Switch properly. Loose screws may result in malfunction.

Type	Tightening torque
Terminal screw	0.59 to $0.78 \mathrm{~N} \cdot \mathrm{~m}$
Cover mounting screw	0.49 to $0.69 \mathrm{~N} \cdot \mathrm{~m}$
Head mounting screw	0.49 to $0.59 \mathrm{~N} \cdot \mathrm{~m}$
Operation Key mounting screw	2.35 to $2.75 \mathrm{~N} \cdot \mathrm{~m}$
Switch mounting screw	0.49 to $0.69 \mathrm{~N} \cdot \mathrm{~m}$
Connector	1.77 to $2.16 \mathrm{~N} \cdot \mathrm{~m}$
Cap screw	1.27 to $1.67 \mathrm{~N} \cdot \mathrm{~m}$

## Switch and Operation Key Mounting

- Mount the Switch and Operation Key securely to the applicable tightening torque with M4 screws.


## Mounting Hole Dimensions

 for Switch
# Mounting Hole Dimensions 

 for Operation Key

- If the Switch is back-mounted, the release key can only be operated from the bottom and the indicator cannot be used.
- Use the designated OMRON Operation Key with the Switch. Using another Operation Key may result in Switch damage.
- Ensure that the alignment offset between the Operation Key and the key hole does not exceed $\pm 1 \mathrm{~mm}$.
Head Direction
By removing the four screws of the head, the mounting direction of the head can be changed. The head can be mounted in four directions.

Ensure that no foreign matter penetrates the interior of the Switch.

## Securing the Door

When the door is closed (with the Operation Key inserted), it may be pulled beyond the set zone because of, for example, the door's weight, or the door cushion rubber. Also, if a load is applied to the Operation Key, the door may fail to unlock properly. Use hooks to ensure that the door stays within the set zone ( 0.5 to 3 mm ).


## Wiring

Wiring Precautions


- When connecting to the terminals via insulating tube and M3.5 crimp terminals, cross the crimp terminals as shown above so that they do not rise up onto the case or the cover. Applicable lead wire size: AWG20 to AWG18 ( 0.5 to $0.75 \mathrm{~mm}^{2}$ ).
- When connecting lead wires directly to terminals, perform wiring securely so that there are no loose wire strands.
- Do not push crimp terminals into gaps in the case interior. Doing so may cause damage or deformation of the case.
- Use lead wires of an appropriate length. Not doing so may cause the cover to rise.
- Use crimp terminals not more than 0.5 mm in thickness. Otherwise, they will interfere with other components inside the case. The crimp terminals shown below are not more than 0.5 mm thick.

Manufacturer	Model
J.S.T.	FV0.5-3.7



## Conduit Opening

- Connect a recommended connector to the opening of the conduit and tighten the connector to the proper torque. The case may be damaged if an excessive tightening torque is applied.
- In order to ensure IP67 degree of protection, wrap sealing tape around the conduit end of the connector.
- Be sure that the outer diameter of the cable connected to the connector is correct.
- Attach and tighten a conduit cap to the unused conduit opening when wiring. The conduit cap is provided with the Switch.


## Recommended Connectors

Use a connector with a screw section not exceeding 11 mm , otherwise the screws will protrude into the case interior. The connectors given in the following table have connectors with screw sections not exceeding 11 mm .
Use the following connectors to ensure conformance to IP67.

Size	Manufacturer	Model	Applicable cable   diameter
$\mathrm{G}^{1 / 2}$	LAPP	ST-PF1/2   $5380-1002$	6.0 to 12.0 mm
	Ohm Denki	OA-W1609	7.0 to 9.0 mm
	OA-W1611	9.0 to 11.0 mm	
Pg13.5	LAPP	S-13.5   $5301-5030$	5.0 to 12.0 mm
	LAPP	ST-M20 $* 1.5$   $5311-1020$	7.0 to 13.0 mm

Use LAPP connectors together with seal packing (JPK-16, GP-13.5, or GPM20), and tighten with the applicable torque. Seal packing is sold separately.

## Maintenance and Repairs

The user must not perform repairs or maintenance. Contact the machine manufacturer if repairs or maintenance are required.

## Storage

Do not store the Switch in locations where harmful gases (e.g., $\mathrm{H}_{2} \mathrm{~S}$, $\mathrm{SO}_{2}, \mathrm{NH}_{3}, \mathrm{HNO}_{3}$, or $\mathrm{Cl}_{2}$ ) or dust are present, or in locations subject to high humidity levels.

## Miscellaneous

- Do not touch the solenoid. The temperature of the solenoid increases when current is passed.
- In conditions requiring greater rigidity, sealing performance, and oil resistance, use OMRON's D4BL.
- Perform regular inspections.


## Production Termination

Following the release of the D4NL, production of the D4DL will be terminated.

## Date of Production Termination

Production of the D4DL Series will be terminated in November 2003

## Date of Substitute Product Release

Sale of the D4NL Series commenced in October 2002.

## Product Replacement

The D4DL and D4NL have basically the same structure, and use the same mounting method and Operation Keys. There are differences however, in the external appearance and the mounting sections.
Comparison of the D4DL and Substitute Products

Model	D4NL- $\square$
Switch color	Very similar
Dimensions	Very similar
Wiring/connection	Significantly different
Mounting method	Very similar
Ratings/performance	Very similar
Operating characteristics	Very similar
Operating method	Completely compatible

Dimensions


Differences:The depth of the M4 mounting screw holes is 29 mm for the D4NL, as opposed to 10 mm for the D4DL. Therefore, when replacing the D4DL with the D4NL, use M4 screws that are 19 mm longer than the ones used before.

List of Recommended Substitute Products
Switch

D4DL product	Recommended substitute product	Substitute with M20 conduit
D4DL-1CFA-B	D4NL-1AFA-B, D4NL-1BFA-B	D4NL-4AFA-B, D4NL-4BFA-B
D4DL-2CFA-B	D4NL-2AFA-B, D4NL-2BFA-B	
D4DL-1DFA-B	D4NL-1CFA-B, D4NL-1DFA-B	D4NL-4CFA-B, D4NL-4DFA-B
D4DL-2DFA-B	D4NL-2CFA-B, D4NL-2DFA-B	
D4DL-1CFG-B	D4NL-1AFG-B, D4NL-1BFG-B	D4NL-4AFG-B, D4NL-4BFG-B
D4DL-2CFG-B	D4NL-2AFG-B, D4NL-2BFG-B	
D4DL-1DFG-B	D4NL-1CFG-B, D4NL-1DFG-B	D4NL-4CFG-B, D4NL-4DFG-B
D4DL-2DFG-B	D4NL-2CFG-B, D4NL-2DFG-B	
D4DL-1CFB-B	D4NL-1AFB-B, D4NL-1BFB-B	D4NL-4AFB-B, D4NL-4BFB-B
D4DL-2CFB-B	D4NL-2AFB-B, D4NL-2BFB-B	
D4DL-1DFB-B	D4NL-1CFB-B, D4NL-1DFB-B	D4NL-4CFB-B, D4NL-4DFB-B
D4DL-2DFB-B	D4NL-2CFB-B, D4NL-2DFB-B	
D4DL-1CFH-B	D4NL-1AFH-B, D4NL-1BFH-B	D4NL-4AFH-B, D4NL-4BFH-B
D4DL-2CFH-B	D4NL-2AFH-B, D4NL-2BFH-B	
D4DL-1DFH-B	D4NL-1CFH-B, D4NL-1DFH-B	D4NL-4CFH-B, D4NL-4DFH-B
D4DL-2DFH-B	D4NL-2CFH-B, D4NL-2DFH-B	
D4DL-1CFC-EW	D4NL-1AFC-E, D4NL-1BFC-E	D4NL-4AFC-E, D4NL-4BFC-E
D4DL-2CFC-EW	D4NL-2AFC-E, D4NL-2BFC-E	
D4DL-1DFC-EW	D4NL-1CFC-E, D4NL-1DFC-E	D4NL-4CFC-E, D4NL-4DFC-E
D4DL-2DFC-EW	D4NL-2CFC-E, D4NL-2DFC-E	
D4DL-1CFJ-EW	D4NL-1AFJ-E, D4NL-1BFJ-E	D4NL-4AFJ-E, D4NL-4BFJ-E
D4DL-2CFJ-EW	D4NL-2AFJ-E, D4NL-2BFJ-E	
D4DL-1DFJ-EW	D4NL-1CFJ-E, D4NL-1DFJ-E	D4NL-4CFJ-E, D4NL-4DFJ-E
D4DL-2DFJ-EW	D4NL-2CFJ-E, D4NL-2DFJ-E	
D4DL-1CFA-B-HT	D4NL-1AFA-B4, D4NL-1BFA-B4	D4NL-4AFA-B4, D4NL-4BFA-B4
D4DL-2CFA-B-HT	D4NL-2AFA-B4, D4NL-2BFA-B4	
D4DL-1DFA-B-HT	D4NL-1CFA-B4, D4NL-1DFA-B4	D4NL-4CFA-B4, D4NL-4DFA-B4
D4DL-2DFA-B-HT	D4NL-2CFA-B4, D4NL-2DFA-B4	
D4DL-1CFG-B-HT	D4NL-1AFG-B4, D4NL-1BFG-B4	D4NL-4AFG-B4, D4NL-4BFG-B4
D4DL-2CFG-B-HT	D4NL-2AFG-B4, D4NL-2BFG-B4	
D4DL-1DFG-B-HT	D4NL-1CFG-B4, D4NL-1DFG-B4	D4NL-4CFG-B4, D4NL-4DFG-B4
D4DL-2DFG-B-HT	D4NL-2CFG-B4, D4NL-2DFG-B4	

Note: With standard products, terminals 12 and 41 are connected with a short-
ing pin. In cases where D4DL terminals 11 and 12 and terminals 41 and 42 are currently being used independently, remove the shorting pin.

Note: Operation Key

- D4DS-K1
- D4DS-K2
- D4DS-K3
- D4DS-K5

All of the above Operation Keys can be used with the D4NL.

## Guard Lock Safety-door Switch

## D4GL

## Environment-friendly Switch with Direct Opening Contacts

- Contains no harmful substances, such as lead or cadmium, reducing the burden on the environment.
- Slim safety-door switch with an electromagnetic lock or unlock mechanism.
- Models with 4 -contact and 5-contact built-in switches are available.
- Capable of a holding force of $1,000 \mathrm{~N}$ min.
- Can be used for either standard loads or microloads.
- Lineup includes models with a conduit size of M20.
- Patent and industrial design approval pending.



## Model Number Structure

## Model Number Legend

## Switch

## D4GL- $\square \square \square-\square \square$

1. Conduit Size

1: $\operatorname{Pg} 13.5$
2: $\quad \mathrm{G} 1 / 2$
4: M20
2. Built-in Switch (with Door Open/Closed Detection Switch and Lock Monitor Switch Contacts)
A: $\quad 1 \mathrm{NC} / 1 \mathrm{NO}$ slow-action contacts plus $1 \mathrm{NC} / 1 \mathrm{NO}$ slow-action contacts
B: $\quad 1 \mathrm{NC} / 1 \mathrm{NO}$ slow-action contacts plus 2NC slow-action contacts
C: 2 NC slow-action contacts plus $1 \mathrm{NC} / 1 \mathrm{NO}$ slow-action contacts
D: 2NC slow-action contacts plus 2NC slow-action contacts
E: $\quad 2 \mathrm{NC} / 1 \mathrm{NO}$ slow-action contacts plus $1 \mathrm{NC} / 1 \mathrm{NO}$ slow-action contacts
F: $\quad 2 \mathrm{NC} / 1 \mathrm{NO}$ slow-action contacts plus 2NC slow-action contacts
G: 3NC slow-action contacts plus 1NC/1NO slow-action contacts
H: 3NC slow-action contacts plus 2NC slow-action contacts
3. Head Mounting Direction and Material

F: Four mounting directions possible (Front-side mounting at time of delivery)/plastic
4. Door Lock and Release

A: Mechanical lock/24-VDC solenoid release
G: 24-VDC solenoid lock/mechanical release
5. Indicator

B: $\quad 24$ VDC (orange/green LED indicator)
6. Release Key Type

Blank:Standard release key
4: Special release key

## Operation Key

## D4DS-K $\square$ <br> \section*{1}

1. Operation Key Type

1: Horizontal mounting
2: Vertical mounting
3: Adjustable mounting (horizontal)
5: Adjustable mounting (horizontal/vertical)

## Ordering Information

List of Models
Switches (Operation Keys are sold separately.)

Head material	approved direct opening contacts. Prefered stock item*					
	Release key type	Solenoid voltage/ indicator	Lock and release types	Contact configuration (door open/closed detection switch and lock monitor switch contacts) (slow-action) Approved direct opening NC contact	Conduit size	Model
Plastic	Standard	Solenoid: 24 VDC   Orange/green LED:   24 VDC	Mechanical lock Solenoid release	1NC/1NO+1NC/1NO	Pg13.5	D4GL-1AFA-A*
					G1/2	D4GL-2AFA-A
					M20	D4GL-4AFA-A*
				1NC/1NO+2NC	Pg13.5	D4GL-1BFA-A
					G1/2	D4GL-2BFA-A
					M20	D4GL-4BFA-A
				2NC+1NC/1NO	Pg13.5	D4GL-1CFA-A*
					G1/2	D4GL-2CFA-A
					M20	D4GL-4CFA-A*
				2NC+2NC	Pg13.5	D4GL-1DFA-A
					G1/2	D4GL-2DFA-A
					M20	D4GL-4DFA-A
				2NC/1NO+1NC/1NO	Pg13.5	D4GL-1EFA-A
					G1/2	D4GL-2EFA-A
					M20	D4GL-4EFA-A*
				2NC/1NO+2NC	Pg13.5	D4GL-1FFA-A
					G1/2	D4GL-2FFA-A
					M20	D4GL-4FFA-A
				3NC+1NC/1NO	Pg13.5	D4GL-1GFA-A
					G1/2	D4GL-2GFA-A
					M20	D4GL-4GFA-A
				$3 \mathrm{NC}+2 \mathrm{NC}$	Pg13.5	D4GL-1HFA-A
					G1/2	D4GL-2HFA-A
					M20	D4GL-4HFA-A
			Solenoid lock Mechanical release	1NC/1NO+1NC/1NO	Pg13.5	D4GL-1AFG-A*
					G1/2	D4GL-2AFG-A
					M20	D4GL-4AFG-A*
					Pg13.5	D4GL-1BFG-A
				1NC/1NO+2NC	G1/2	D4GL-2BFG-A
					M20	D4GL-4BFG-A
					Pg13.5	D4GL-1CFG-A*
				2NC+1NC/1NO	G1/2	D4GL-2CFG-A
					M20	D4GL-4CFG-A*
					Pg13.5	D4GL-1DFG-A
				2NC+2NC	G1/2	D4GL-2DFG-A
					M20	D4GL-4DFG-A
					Pg13.5	D4GL-1EFG-A
				2NC/1NO+1NC/1NO	G1/2	D4GL-2EFG-A
					M20	D4GL-4EFG-A*
					Pg13.5	D4GL-1FFG-A
				2NC/1NO+2NC	G1/2	D4GL-2FFG-A
					M20	D4GL-4FFG-A
					Pg13.5	D4GL-1GFG-A
				$3 \mathrm{NC}+1 \mathrm{NC} / 1 \mathrm{NO}$	G1/2	D4GL-2GFG-A
					M20	D4GL-4GFG-A
					Pg13.5	D4GL-1HFG-A
				3NC+2NC	G1/2	D4GL-2HFG-A
					M20	D4GL-4HFG-A

Operation Keys (Order Separately)

Type		Model
Horizontal mounting		D4DS-K1
Vertical mounting		
Adjustable mounting		

## Specifications

## Standards and EC Directives

Applicable EC Directives and Standards

- Machinery Directive
- Low Voltage Directive
- EN1088
- EN60204-1
- GS-ET-19


## Approved Standards

Agency	Standard	File No.
TÜV Product   Service	EN60947-5-1 (approved   direct opening)	(See note 1.)
UL (See note 2.)	UL508, CSA C22.2 No.14	E76675

Note: 1. Consult your OMRON representative for details.
2. Approval for CSA C22.2 No. 14 is authorized by the UL mark.
Approved Standard Ratings
TÜV (EN60947-5-1)

ItemUtilization   category	AC-15	DC-13
Rated operating current $\left(\mathrm{I}_{\mathrm{e}}\right)$	0.75 A	0.27 A
Rated operating voItage $\left(\mathrm{U}_{\mathrm{e}}\right)$	240 V	250 V

Note: Use a 10-A fuse type gl or gG that conforms to IEC269 as a short-circuit protection device.

UL/CSA (UL508, CSA C22.2 No. 14)
C300

Rated   voltage	Carry current	Current		Volt-amperes	
		Make	Break	Make	Break
120 VAC	2.5 A	15 A	1.5 A	$1,800 \mathrm{VA}$	180 VA
240 VAC		7.5 A	0.75 A		

Q300

Rated   voltage	Carry current	Current		Volt-amperes	
		Make	Break	Make	Break
125 VAC	2.5 A	0.55 A	0.55 A	69 VA	69 VA
250 VAC		0.27 A	0.27 A		

Solenoid Coil Characteristics

Item	24 VDC
Rated operating voltage   (100\% ED)	24 VDC $\pm 10 \%$
Current consumption	Approx. 200 mA
Insulation	Class F $\left(130^{\circ} \mathrm{C}\right.$ max. $)$

Indicator Characteristics

Item	LED
Rated voltage	24 VDC
Current leakage	Approx. 3 mA
Color (LED)	Orange/Green

## Characteristics

Degree of protection (See note 2.)		IP67 (EN60947-5-1)   (This applies for the Switch only. The degree of protection for the key hole is IP00.)		
Durability (See note 3.)	Mechanical	1,000,000 operations min.		
	Electrical	500,000 operations min. for a resistive load of 4 mA at 24 VDC ; 150,000 operations min. for a resistive load of 1 A at 125 VAC in 2 circuits and 4 mA at 24 VDC in 2 circuits (See note 4.)		
Operating speed		0.05 to $0.5 \mathrm{~m} / \mathrm{s}$		
Operating frequency		30 operations/minute max.		
Rated frequency		$50 / 60 \mathrm{~Hz}$		
Contact gap		$2 \times 2 \mathrm{~mm}$ min.		
Direct opening force (See note 5.)		60 N min. (EN60947-5-1)		
Direct opening travel (See note 5.)		10 mm min. (EN60947-5-1)		
Holding force (See note 6.)		1,000 N min.		
Insulation resistance		$100 \mathrm{M} \Omega$ min. (at 500 VDC )		
Minimum applicable load (See note 7.)		Resistive load of 4 mA at 24 VDC (N-level reference value)		
Rated insulation voltage ( $\mathrm{U}_{\mathrm{i}}$ )		300 V (EN60947-5-1)		
Conventional enclosed thermal current ( $\mathrm{l}_{\text {the }}$ )		2.5 A (EN60947-5-1)		
Impulse withstand voltage (EN60947-5-1)		Between terminals of the same polarity	2.5 kV	
		Between terminals of different polarities   Between the solenoid and uncharged metallic parts and between the solenoid and ground	4 kV	
		---		
		24-VDC solenoid	0.8 kV	
		Between other terminals and uncharged metallic parts and between other terminals and ground	4 kV	
Conditional short-circuit current			100 A (EN60947-5-1)	
Pollution degree (operating environment)		3 (EN60947-5-1)		
Protection against electric shock		Class II (double insulation)		
Closed-circuit counterelectromotive force		1,500 V max. (EN60947-5-1)		
Contact resistance		$25 \mathrm{~m} \Omega$ max. (initial value)		
Vibration resistance	Malfunction	10 to $55 \mathrm{~Hz}, 0.75-\mathrm{mm}$ single amplitude		
Shock resistance	Destruction	$1,000 \mathrm{~m} / \mathrm{s}^{2} \mathrm{~min}$.		
	Malfunction	$300 \mathrm{~m} / \mathrm{s}^{2} \mathrm{~min}$.		
Ambient temperature		Operating: $-10^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ with no icing		
Ambient humidity		Operating: 95\% max.		
Weight		Approx. 400 g (D4GL-1AFA-A)		

Note: 1. The above values are initial values
2. The degree of protection is tested using the method specified by the standard (EN60947-5-1). Confirm that sealing properties are sufficient for the operating conditions and environment beforehand. Although the switch box is protected from dust or water penetration, do not use the D4GL in places where foreign material may penetrate through the key hole on the head, otherwise Switch damage or malfunctioning may occur.
3. The durability is for an ambient temperature of $5^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$ and an ambient humidity of $40 \%$ to $70 \%$. For more details, consult your OM RON representative.
4. If the ambient temperature is greater than $35^{\circ} \mathrm{C}$, do not pass the $1-\mathrm{A}, 125-\mathrm{VAC}$ load through more than 2 circuits.
5. These figures are minimum requirements for safe operation.
6. This figure is based on the GS-ET-19 evaluation method.
7. This value will vary with the switching frequency, environment, and reliability level. Confirm that correct operation is possible with the actual load beforehand.

## Indicator

Internal Circuit Diagram


## Circuit Connection Example

- Terminals 12 and 41 are connected internally and so connect terminals 11 and 42 for safety-circuit input. (BIA GS-ET-19)
- Connect terminals 21 and 22 and terminals 51 and 52 in series when using as safety-circuit input (redundancy circuit for terminals 11 and 12 and terminals 41 and 42 above). Connect the terminals individually when using as auxiliary-circuit input (e.g., terminals 21 and 22 for safety-door open/closed monitoring and terminals 51 and 52 for monitoring the lock status).
- In the following connection example, terminals 21 and 22 and terminals 51 and 52 are used as auxiliary-circuit input.


## Connection Example for D4GL-1HFA-A



- Direct opening contacts used as safety-circuit input are indicated with the $\Theta$ mark. Terminals 11 and 12 and terminals 21 and 22 are direct opening contacts.
- Connect the indicators in parallel to the auxiliary circuits or terminals E1 and E2.
- Although the 3 lines are connected at the time of delivery, rewire them as necessary for the application.
- The following table shows the connection configuration required to make the green indicator light when the door is closed and the orange indicator light when the solenoid turns ON.

Indicator	Terminal   number	Lead wire   color	Connected   terminal   number
Green indicator	O1	Green	32
Orange indicator	O 2	Orange	E1
Common	O 3	Black	E2

- If an indicator is connected in parallel to a direct opening contact, when the indicator breaks, a short-circuit current will be generated, possibly resulting in an installation malfunction.
- Do not switch standard loads for more than 2 circuits at the same time. Otherwise, the level of insulation may decrease.
- The solenoid has polarity. Be sure to connect terminals with the correct polarity.


## Operation Method

Operation Principles
Mechanical
lock models

## Nomenclature

## Structure



Note: Terminal numbers vary with the model. Confirm terminal numbers by referring to the cover on the back of the Switch.

## Contact Form

Indicates conditions where the Key is inserted and the lock is applied. Terminals 12 and 41 are connected internally (as per BIA GS-ET-19).

Model	Contact	```Contact form (door open/closed detection switch and lock monitor switch contacts)```	Operating pattern			Remarks
D4GL- $\square$ AF $\square$ - $\square$	1NC/1NO + 1NC/1NO	${ }^{11} \text { 土 }$	$\begin{aligned} & 11-42 \\ & 33-34 \\ & 53-54 \end{aligned}$			Only NC contact 11-12 has an approved direct opening mechanism.   The terminals 11-42, 3334 , and $53-54$ can be used as unlike poles.
D4GL- $\square$ BF $\square$ - $\square$	1NC/1NO + 2NC	${ }^{11}{ }_{33}$	$\begin{aligned} & 11-42 \\ & 33-34 \\ & 51-52 \end{aligned}$   Operation K completion	Lock position		Only NC contact 11-12, has an approved direct opening mechanism.   The terminals 11-42, 3334, and 51-52 can be used as unlike poles.
D4GL- $\square$ CF $\square$ - $\square$	2NC + 1NC/1NO					Only NC contacts 11-12 and 21-22 have an approved direct opening mechanism.   The terminals 11-42, 2122 , and $53-54$ can be used as unlike poles.
D4GL- $\square$ DF $\square$ - $\square$	2NC + 2NC	11	$\begin{aligned} & 11-42 \\ & 21-22 \\ & 51-52 \end{aligned}$   Operation completion			Only NC contacts 11-12 and 21-22 have an approved direct opening mechanism.   The terminals 11-42, 2122, and 51-52 can be used as unlike poles.
D4GL- $\square$ EF $\square$ - $\square$	2NC/1NO + 1NC/1NO		$\begin{aligned} & 11-42 \\ & 21-22 \\ & 33-34 \\ & 53-54 \end{aligned}$   Operation K completion p			Only NC contacts 11-12 and 21-22 have an approved direct opening mechanism.   The terminals 11-42, 2122, 33-34, and 53-54 can be used as unlike poles.
D4GL- $\square$ FF $\square$ - $\square$	2NC/1NO + 2NC		$\begin{gathered} 11-42 \\ 21-22 \\ 33-34 \\ 51-52 \\ \text { Operation } \end{gathered}$	Lock position		Only NC contacts 11-12 and 21-22 have an approved direct opening mechanism.   The terminals 11-42, 2122, 33-34, and 51-52 can be used as unlike poles.
D4GL- $\square$ GF $\square$ - $\square$	3NC + 1NC/1NO		$\begin{array}{r} 11-42 \\ 21-22 \\ 31-32 \\ 53-54 \\ \\ \begin{array}{l} \text { Operation } \\ \text { completion } \end{array} \end{array}$			Only NC contacts 1112 , 21-22, and 31-32 have an approved direct opening mechanism.   The terminals 11-42, 2122, 31-32, and 53-54 can be used as unlike poles.
D4GL- $\square \mathrm{HF} \square$ - $\square$	3NC + 2NC		$\begin{array}{r} 11-42 \\ 21-22 \\ 31-32 \\ 51-52 \\ \text { Operation } \mathrm{K} \\ \text { completion } \end{array}$	Lock position		Only NC contacts 11-12, 21-22, and 31-32 have an approved direct opening mechanism. The terminals 11-42, 2122, 31-32, and 51-52 can be used as unlike poles.

## Dimensions

Note: All units are in millimeters unless otherwise indicated.

## Switches

D4GL- $\square \square \square$-A

Conduit cap


Operating   characteristics	D4GL- $\square \square \square \square-\mathrm{A}$
Key insertion force   Key extraction force	15 N max.
40 N max.	

D4GL- $\square \square \square \square$-A4


Conduit cap


Operating   characteristics	D4GL- $\square \square \square \square$-A4
Key insertion force   Key extraction force	15 N max.   40 N max.
Pre-travel distance	10 mm max.
Movement before   being locked	4 mm min.

Operation Keys
Note: Unless otherwise specified, a tolerance of $\pm 0.4 \mathrm{~mm}$ applies to all dimensions.

## D4DS-K1



D4DS-K2



D4DS-K3


D4DS-K5


D4GL + D4DS-K3


D4GL + D4DS-K2


## Application Examples

G9SA-321-T $\square$ (24 VAC/VDC) + D4GL- $\square \square \square$ A- $\square$ (Mechanical Lock Type)

+ D4D- $\square 520 \mathrm{~N}$ Circuit Diagram


G9SA-301 (24 VAC/VDC) + D4GL- $\square \square \square \mathrm{G}-\square$ (Solenoid Lock Type)

+ D4D- $\square 520 \mathrm{~N}$ Circuit Diagram



## - 1 Caution

Do not insert the Operation Key with the door open. The machine may operate and damage may result.

## - 1 Caution

Do not use metal connectors or conduits with this switch. Damage to the broken conduit hole may cause electric shock.

## - $!$ Caution

Change the head direction after inserting the Operation Key or changing the release key to the UNLOCK position. Otherwise, the switch may malfunction and damage may result.

## Holding Force

- Do not apply a force exceeding the specified holding force. Doing so may break the Switch and the machine may continue to operate.
- Either install another locking component (e.g., a stop) in addition to the Switch, or use a warning sticker or an indicator showing the lock status so that a force exceeding the specified holding force is not applied.


## Safety Precautions

- Turn OFF the power before disassembling the Switch or touching any internal parts. Not doing so may result in electric shock.
- Mount the Operation Key in a location where it will not come in contact with users when the door is opened or closed. Otherwise, injury may result.
- Do not impose excessive force on the Operation Key when it is inserted into the Switch or drop the Switch with the Operation Key inserted. Otherwise, the Operation Key may be deformed or the Switch may be broken.
- Observe the specified insertion radius for the Operation Key and insert it in a direction perpendicular to the key hole.
- Do not use the Switch in starting circuits. (Use for safety confirmation signals.)
- When using the Switch in emergency-stop circuits or other safety circuits that have a direct impact on human lives, operate the NC contacts that have a direct opening mechanism in direct opening mode. For safety purposes, prevent easy removal by, for example, mounting the Switch and Operation Key with one-way screws or attaching a protective cover and warning label.
- In order to prevent short-circuit damage to the Switch, connect a fuse to the Switch in series. Use a fuse with a breaking current of 1.5 to 2 times the rated current. To conform to EN ratings, use a IEC269-compliant 10-A fuse type gl or gG.
- Turn the power OFF when wiring. After wiring is completed, be sure to mount the cover before use.
- In order to prevent burning due to overvoltage, insert a protective fuse in the solenoid circuits.
- Do not use the Switch where explosive gas, flammable gas, or any other dangerous gas may be present.
- Ensure that the load current does not exceed the rated current.
- Be sure to wire the terminals correctly.
- Be sure to evaluate the Switch under actual operating conditions after installation.
- Do not drop the package or the product. Do not disassemble internal parts.


## Release Key



- The release key is used to unlock the Switch in case of emergency or if the power supply to the Switch stops.
- If the release key setting is changed from LOCK to UNLOCK using an appropriate tool, the lock will be released and the safety door can be opened (mechanical lock models only).
- After setting the release key to UNLOCK in order to, for example, change the head direction or perform maintenance, be sure to return it to LOCK setting before resuming operation.
- When the Switch is used for the door of a machine room to ensure the safety of people performing adjustment work inside, if the release key is set to UNLOCK, the door will not be locked when the door is closed and no power will be supplied to the equipment.
- Do not use the release key to start or stop machines.
- The auxiliary lock must only be released by authorized personnel.
- Do not impose excessive force on the release key screws. The release key may be damaged and may not operated properly.
- To prevent easy release of the auxiliary lock by unauthorized personnel, set it to LOCK and seal it with seal wax.


## Mounting



- Do not use the Switch as a stopper. To prevent the door from coming into contact with the flange of the Operation Key, be sure to mount the Switch with a stopper as shown above.
- When the Switch is used for a hinged door at a location near to the hinged side, where the Operation Key's insertion radius is comparatively small, if an attempt is made to open the door beyond the lock position, the force imposed will be much larger than for locations far from the hinged side, and the lock may be damaged.


## Solenoid Lock Models

The solenoid lock locks the door only when power is supplied to the solenoid. Therefore, the door will be unlocked if the power supply to the solenoid stops. Therefore, do not use solenoid lock models for machines that may be operating and dangerous even after the machine stops operating.

## Correct Use

Operating Environment

- This Switch is for indoor use only. Do not use it outdoors. Otherwise, it may malfunction.
- Do not use the Switch in the following locations:
-Locations subject to severe temperature changes
-Locations subject to high humidity levels or condensation
-Locations subject to severe vibration
-Locations where the Switch may come in contact with metal dust, oil, or chemicals
-Locations subject to thinner, detergent, or other solvents
- Although the switch itself is protected from dust or water penetration, ensure that foreign material does not penetrate through the key hole on the head, otherwise Switch damage or malfunctioning may occur.
- Do not use the Switch submerged in oil or water, or in locations continuously subject to splashes of oil or water. Doing so may result in oil or water entering the Switch interior. (The IP67 degree of protection specification for the Switch pertains to the amount of water penetration after the Switch is submerged in water for a certain period of time.)


## Life Expectancy

The life expectancy of the Switch will vary with the switching conditions. Before applying the Switch, test it under actual operating conditions and be sure to use it at a switching frequency that will not lower its performance.

## Mounting

Tightening Torque
Be sure to tighten each screw of the Switch properly. Loose screws may result in malfunction.

Terminal screw	0.4 to $0.5 \mathrm{~N} \cdot \mathrm{~m}$
Cover mounting screw	0.5 to $0.7 \mathrm{~N} \cdot \mathrm{~m}$
Head mounting screw	0.5 to $0.6 \mathrm{~N} \cdot \mathrm{~m}$
Operation Key mounting screw	2.4 to $2.8 \mathrm{~N} \cdot \mathrm{~m}$
Switch mounting screw	1.3 to $1.5 \mathrm{~N} \cdot \mathrm{~m}$
Connector	1.8 to $2.1 \mathrm{~N} \cdot \mathrm{~m}$
Cap screw	1.3 to $1.7 \mathrm{~N} \cdot \mathrm{~m}$

## Switch and Operation Key Mounting

- Mount the Switch and Operation Key securely to the applicable tightening torque with M5 screws.

- Use the designated OMRON Operation Key with the Switch. Using another Operation Key may result in Switch damage.
- Ensure that the alignment offset between the Operation Key and the key hole does not exceed $\pm 1 \mathrm{~mm}$.


## Head Direction

By removing the four screws of the head, the mounting direction of the head can be changed. The head can be mounted in four directions.
Ensure that no foreign matter penetrates the interior of the Switch. Also, insert the head until the insertion line engraved on the head is hidden by the reference line on the Switch, as shown in the following diagram.


## Securing the Door

When the door is closed (with the Operation Key inserted), it may be pulled beyond the set zone because of, for example, the door's weight, or the door cushion rubber. Also, if a load is applied to the Operation Key, the door may fail to unlock properly. Use hooks to ensure that the door stays within the set zone.


Wiring
Wiring Precautions

- Applicable lead wire size: AWG22 to AWG24.
- When connecting lead wires directly to terminals, perform wiring securely so that there are no loose wire strands.
- Do not push crimp terminals into gaps in the case interior. Doing so may cause damage or deformation of the case.
- Use lead wires of an appropriate length. Not doing so may cause the cover to rise.
- Use crimp terminals not more than 0.5 mm in thickness. Otherwise, they will interfere with other components inside the case.



## Circuit Connection Example

- Terminals 12 and 41 are connected internally and so connect terminals 11 and 42 for safety-circuit input. (BIA GS-ET-19)
- Connect terminals 21 and 22 and terminals 51 and 52 in series when using as safety-circuit input (redundancy circuit for terminals 11 and 12 and terminals 41 and 42 above). Connect the terminals individually when using as auxiliary-circuit input (e.g., terminals 21 and 22 for safety-door open/closed monitoring and terminals 51 and 52 for monitoring the lock status).
- In the following connection example, terminals 21 and 22 and terminals 51 and 52 are used as auxiliary-circuit input.


## Connection Example for D4GL-1HFA-A



- Direct opening contacts used as safety-circuit input are indicated with the $\Theta$ mark. Terminals 11 and 12, terminals 21 and 22 , and terminals 31 and 32 are direct opening contacts.
- Connect the indicators in parallel to the auxiliary circuits or terminals E1 and E2.
- Although the 3 lines are connected at the time of delivery, rewire them as necessary for the application.
- The following table shows the connection configuration required to make the green indicator light when the door is closed and the orange indicator light when the solenoid turns ON.

Indicator	Terminal   number	Lead wire   color	Connected   terminal   number
Green indicator	O 1	Green	32
Orange indicator	O 2	Orange	E 1
Common	O 3	Black	E 2

- If an indicator is connected in parallel to a direct opening contact, when the indicator breaks, a short-circuit current will be generated, possibly resulting in an installation malfunction.
- Do not switch standard loads for more than 2 circuits at the same time. Otherwise, the level of insulation may decrease.
- The solenoid has polarity. Be sure to connect terminals with the correct polarity.


## Conduit Opening

- Connect a recommended connector to the opening of the conduit and tighten the connector to the proper torque. The case may be damaged if an excessive tightening torque is applied.
- In order to ensure IP67 degree of protection, wrap sealing tape around the conduit end of the connector.
- Be sure that the outer diameter of the cable connected to the connector is correct.
- Attach and tighten a conduit cap to the unused conduit opening when wiring. The conduit cap is provided with the Switch.


## Recommended Connectors

Use a connector with a screw section not exceeding 10 mm , otherwise the screws will protrude into the case interior. The connectors given in the following table have connectors with screw sections not exceeding 10 mm .

Size	Manufacturer	Model	Applicable cable   diameter
$\mathrm{G}^{1 / 2}$		LAPP	ST-PF1/2   $5380-1002$
		OA-W1609	7.0 to 12.0 mm
	OA-W1611 mm		
Pg13.5	LAPP	S-13.5   $5301-5030$	5.0 to 11.0 mm
M20	LAPP	ST-M20 $* 1.5$   $5311-1020$	7.0 to 13.0 mm

Use LAPP connectors together with seal packing (JPK-16, GP-13.5, or GPM20), and tighten with the applicable torque. Seal packing is sold separately.

## Maintenance and Repairs

The user must not perform repairs or maintenance. Contact the machine manufacturer if repairs or maintenance are required.

## Storage

Do not store the Switch in locations where harmful gases (e.g., $\mathrm{H}_{2} \mathrm{~S}$, $\mathrm{SO}_{2}, \mathrm{NH}_{3}, \mathrm{HNO}_{3}$, or $\mathrm{Cl}_{2}$ ) or dust are present, or in locations subject to high humidity levels.

## Miscellaneous

- In conditions requiring greater rigidity, sealing performance, and oil resistance, use OMRON's D4BL.
- Perform regular inspections.

```
ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.
To convert millimeters into inches, multiply by 0.03937. To convert grams into ounces, multiply by 0.03527.
```

Cat. No. C125-E2-01-X
In the interest of product improvement, specifications are subject to change without notice.

## Guard Lock Safety-door Switch

## D4BL

## Protective Doors Are Locked Until Machines Completely Stop Operating

- A mechanical lock is applied automatically when the Operation Key is inserted. A high level of safety is achieved using a mechanism where the lock is only released when voltage is applied to the solenoid.
- Conforms to EN (TÜV) standards corresponding to the CE marking.
- Approved by UL, CSA, BIA, and SUVA standards.
- The switch contact is opened by a direct opening mechanism (NC contacts only) when the protective cover is opened. Direct opening mechanism that is EN-approved is indicated by $\Theta$ on the switch.
- Auxiliary release key ensures easy maintenance and unlocks the door in the case of a power failure.
- Tough aluminum die-cast body incorporating a switch box with degree of protection satisfying IP67,
 UL, and CSA TYPE6P, 13.
- Equipped with a horizontal and vertical conduit opening.
- Models incorporating easy-to-see indicators for monitoring and those using an adjustable Operation Key for a double door are available.
- The mounting direction of the head can be changed to allow the Operation Key to be inserted from four directions.
- Metric conduit types available

Model Number Structure

## Model Number Legend

Switch


1. Conduit Size (2-conduit)

1: PG13.5
2: G1/2
3: 1/2-14NPT
4: M20
2. Built-in Switch (with Safety Switch and Lock Monitor Switch Contacts)
C: 1NC/1NO (slow-action) + 1NC (slow-action)
D: 2NC (slow-action) + 1NC (slow-action)
3. Head Mounting Direction
$R$ : Four mounting directions possible (right-side mounting at shipping)

## Operation Key (Order Separately) D4BL - K $\square$ <br> 1

1. Operation Key Type
: Horizontal mounting
Vertical mounting
3: Adjustable mounting (Horizontal)

## 4. Door Lock and Release

(Auxiliary Release Key is Incorporated by All Models)
A: Mechanical lock/24-VDC solenoid release
B: Mechanical lock/110-VAC solenoid release
G: 24-VDC Solenoid lock/Mechanical release
5. Indicator

Blank: Without indicator
A: $\quad 10$ to 115 VAC or VDC driving (with orange
and green LED indicator unit)

## Ordering Information

List of Models
Switches

Lock method	Conduit size	Voltage for solenoid	Without indicator 1NC/1NO+1NC (Slow-action)	With LED indicator $1 \mathrm{NC} / 1 \mathrm{NO}+1 \mathrm{NC}$ (Slow-action)	Without indicator $2 \mathrm{NC}+1 \mathrm{NC}$ (Slow-action)	With LED indicator 2NC+ 1NC (Slow-action)
Mechanical lock	PG13.5	24 VDC	D4BL-1CRA	D4BL-1CRA-A	D4BL-1DRA	D4BL-1DRA-A
		110 VAC	D4BL-1CRB	D4BL-1CRB-A	D4BL-1DRB	D4BL-1DRB-A
	G1/2	24 VDC	D4BL-2CRA	D4BL-2CRA-A	D4BL-2DRA	D4BL-2DRA-A
		110 VAC	D4BL-2CRB	D4BL-2CRB-A	D4BL-2DRB	D4BL-2DRB-A
	M20	24 VDC	D4BL-4CRA	D4BL-4CRA-A	D4BL-4DRA	D4BL-4DRA-A
		110 VAC	D4BL-4CRB	D4BL-4CRB-A		
Solenoid lock	Pg 13.5	24 VDC	D4BL-1CRG	D4BL-1CRG-A	D4BL-1DRG	D4BL-1DRG-A
	G1/2	24 VDC	D4BL-2CRG	D4BL-2CRG-A	D4BL-2DRG	D4BL-2DRG-A
	M20	24 VDC		D4BL-4CRG-A		

Prefered model

Operation Keys (Order Separately)

Mounting type	Model
Horizontal mounting	D4BL-K1
Vertical mounting	D4BL-K2
Adjustable mounting (Horizontal)	D4BL-K3

Specifications

Approved Standards

Agency	Standard	File No.
TÜV Rheinland	EN60947-5-1	R9451050(Direct opening:   approved)   BIA   GS-ET-19Mechanical lock:   9402293   Solenoid lock:   1998 20462-01
SUVA	SUVA	E6186/2.d
UL	UL508	E76675
CSA	CSA C22.2, No.14	LR45746

[^43]
## Approved Standard Ratings

TÜV (EN60947-5-1)

Item	Standard model	Indicator model
Utilization category	AC-15	AC-15
Rated operating current (le)	3 A	6 A
Rated operating voltage (Ue)	250 V	115 V

Use a 10-A fuse type gl or gG that conforms to IEC269 as a short-circuit protection device.
UL/CSA (UL508, CSA C22.2 No. 14)
A300

Rated voltage	Carry current	Current		Volt-amperes	
		Make	Break	Make	Break
120 VAC	10 A	60 A	6 A	7,200 VA	720 VA
240 VAC		30 A	3 A		

Note: The UL/CSA approved rating for products with indicators $(-A)$ is 6 A/115 VAC.

## Characteristics

Degree of protection	IP67 (See note 2.)
Durability (See note 3.)	Mechanical:1,000,000 operations min.   Electrical:500,000 operations min. (10-A resistive load at 250 VAC)
Operating speed	0.05 to $0.5 \mathrm{~m} / \mathrm{s}$
Operating frequency	30 operations/min max.
Rated frequency	50/60 Hz
Operating characteristics	Direct opening force:19.61 N min. (EN60947-5-1) Direct opening travel:20 mm min. (EN60947-5-1) All stroke:23 mm min.
Holding force	$700 \mathrm{~N} \mathrm{min}. \mathrm{(GS-ET-19)}$
Insulation resistance	$100 \mathrm{M} \Omega$ min. (at 500 VDC )
Rated insulation voltage ( $\mathrm{U}_{\mathrm{i}}$ )	300 V (EN60947-5-1)
Conventional enclosed thermal current (Ithe	10 A (EN60947-5-1)
Dielectric strength ( $\mathrm{U}_{\mathrm{imp}}$ )	Impulse dielectric strength $\left(\mathrm{U}_{\mathrm{imp}}\right) 4 \mathrm{kV}$ (EN60947-5-1) between terminals of different polarity, between each terminal and ground, and between each terminal and non-current-carrying metal part;   2.5 kV between solenoid and ground (EN60947-5-1)
Conditional short-circuit current	100 V (EN60947-5-1)
Pollution degree (operating environment)	3 (EN60947-5-1)
Protection against electric shock	Class I (with ground terminal)
Switching overvoltage	1,500 V max. (EN60947-5-1)
Contact resistance	$50 \mathrm{~m} \Omega$ max. (initial value)
Vibration resistance	Malfunction: 10 to 55 Hz , 0.35-mm single amplitude
Shock resistance	Destruction:1,000 m/s² min. (IEC68-2-27) Malfunction: $300 \mathrm{~m} / \mathrm{s}^{2} \mathrm{~min}$. (IEC68-2-27)
Ambient temperature	Operating: $-10^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ (with no icing)
Ambient humidity	Operating:95\% max.
Weight	Approx. 800 g

Note: 1. The above values are initial values.
2. Although the switch box is protected from dust, oil or water penetration, do not use the D4BL in places where dust, oil, water, or chemicals may penetrate through the key hole on the head, otherwise Switch damage or malfunctioning may occur.
3. The durability is for an ambient temperature of $5^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$ and an ambient humidity of $40 \%$ to $70 \%$.

Solenoid Coil Characteristics

Item	24-VDC mechanical lock models	110-VAC mechanical lock models	24-VAC solenoid lock models
Rated operating voltage	24 VDC ${ }^{+10 \%}{ }_{-15 \%}(100 \%$ ED)	110 VAC $\pm 10 \%$ ( $50 / 60 \mathrm{~Hz}$ )	24 VDC ${ }^{+10 \%}{ }_{-15 \%}(100 \%$ ED)
Current consumption	Approx. 300 mA	Approx. 98 mA	Approx. 300 mA
Insulation	Class F ( $130^{\circ} \mathrm{C}$ or less)		

## Indicator Characteristics

Item	
Rated voltage	10 to $115 \mathrm{VAC/VDC}$
Current leakage	Approx. 1 mA
Color (LED)	Orange, green

Contact Form (Diagrams Show State with Key Inserted and Lock Engaged)

Model		Contact	Diagram	Remarks
D4BL- $\square$ C $\square \square-\square$	$\begin{aligned} & 1 \mathrm{NC} / \\ & 1 \mathrm{NO}+1 \mathrm{NC} \end{aligned}$			Only NC contacts 11-12 and 31-32 have an approved direct opening mechanism.   The terminals 11-12 and 23-24 can be used as unlike poles.
D4BL- $\square$ D $\square \square-\square$	$2 N C+1 N C$			NC contacts 11-12, 21-22, and 31-32 have an approved direct opening mechanism.   The terminals 11-12 and 21-22 can be used as unlike poles.

Note: The EN-approved direct opening mechanism is indicated by $\Theta$ on the switch.

## Indicator Unit

Dimensions


## Circuit Connection Example

- Do not connect the indicators to the safety contact terminals (11-12-31-32) or the safety circuit side.
- When using indicators, connect them to the auxiliary circuit side (monitor circuit) or the solenoid input terminals as shown below.
- The indicators can be used to confirm the open/closed status of the door, the ON/OFF status of the power supply, and the ON/OFF status of the solenoid.

1. Orange: Lights when the solenoid turns ON. Green: Lights when the door opens.

2. Orange: Lights when the solenoid turns ON. Green: Lights when door closes.


Internal Circuit


- Do not connect the indicators in parallel with the direct opening contact. If the indicators are broken, a short-circuit current may flow, causing equipment to malfunction.
- The 24-VDC solenoid terminals have polarity. Confirm the polarity before wiring.
- Be sure to use a special pushbutton switch to stop and start machinery and release locks.

2. Orange: Lights when the solenoid turns ON. Green: Lights when power turns ON.

3. Orange: Lights when the solenoid turns ON. Green: Lights when power turns ON.



## Dimensions

Note: 1. All units are in millimeters unless otherwise indicated.
2. Unless otherwise specified, a tolerance of $\pm 0.4 \mathrm{~mm}$ applies to all dimensions.

## Switches



Operating Characteristics	D4BL- $\square \square \square \square$
Key insertion force	19.61 N max.
Key extraction force	$19.61 \mathrm{~N} \mathrm{max}$.
Movement before being locked	15 mm max.

Operation Keys

Horizontal Mounting
D4BL-K1
Led


Adjustable Mounting (Horizontal)

## Vertical Mounting



## D4BL-K3



With Operation Key Inserted

## Horizontal Mounting



Adjustable Mounting (Horizontal)


Note: 1. Unless otherwise specified, a tolerance of $\pm 0.4 \mathrm{~mm}$ applies to all dimensions.
2. In the above diagrams, the Operation Key is inserted from the front.

Do not insert the Operation Key to the Switch with the door open. Before using the machine, be sure to remove the shock-absorbing damper, which is provided before shipping. Otherwise the machine may start operating and injury may be caused.

Mount the Operation Key at a location where it will not come in contact with users when the door is opened or closed.
When operating the D4BL as a part of a safety circuit or an emergency stop circuit to prevent injury, operate the NC contacts that have a direct opening mechanism in direct opening mode. For safety purposes, tighten the switch body and Operation Key with one-way screws or equivalents or install a switch protection cover and warning label for safety purposes to prevent easy removal of the D4BL.
Connect the fuse to the D4BL in series to prevent it from short-circuit damage. The value of the breaking current of the fuse must be calculated by multiplying rated current by $150 \%$ to $200 \%$.

When using the D4BL with EN ratings, use 10-A fuse Type gl or gG that complies with IEC60269.
In order to prevent the D4BL from burning due to overvoltage, insert a protection fuse into the solenoid circuit.
If the D4BL is imposed with force exceeding the lock strength, the D4BL may break and the equipment may continue to operate.

## Auxiliary Release Key

The auxiliary release key is used to unlock the D4BL in case of emergency or in case the power supply to the D4BL fails.
Use an appropriate tool to set the auxiliary release key to UNLOCK so that the lock will be released and the door can be opened.


The auxiliary release key applied to the door of a machine room ensures the safety of people adjusting the equipment in the machine room. If the auxiliary release key is set to UNLOCK, the door will not be locked when the door is closed and no power will be supplied to the equipment.
To lock the door, set the auxiliary release key to LOCK.
Do not use the auxiliary release key to start or stop machines.
To prevent the auxiliary release key from being handled carelessly by unauthorized people, seal the auxiliary release key with sealing wax and the provided seal cap to ensure IP67.
Make sure that the auxiliary release key is kept with the person in charge.
Before attaching the cover to the D4BL, make sure that the auxiliary release key position is set to LOCK.

## Stopper



Do not use the Switch as a stopper. When mounting the Switch, be sure to locate a stopper as shown in the following illustration to prevent the top of the Operation Key from hitting the switch head.


## Correct Use

Operating Environment
Due to the wear and tear of the sealing of the D4BL, water and some types of oil and chemical sprayed onto the D4BL may cause contact or insulation failures, current leakages, or fires.
Do not use the D4BL in the following locations.

- Locations subject to severe temperature changes
- Locations subject to high temperatures or condensation
- Locations subject to severe vibration
- Locations where the product may come in contact with metal dust, oil, or chemicals


## Operation Key

The D4BL is provided with a shock-absorbing damper to protect the D4BL from damage that may result from dropping the D4BL during transportation. Be sure to remove the damper after mounting the D4BL.
The mounting tolerance of the Operation Key is $\pm 0.3 \mathrm{~mm}$ vertically or horizontally. Be sure to mount the D4BL correctly without leaning, otherwise the D4BL may soon break or wear out.


Do not drop the D4BL with the Operation Key inserted, otherwise the Operation Key may deform or break.


The head is constructed so that it cannot be operated with tools such as screwdrivers. Always use OMRON's Operation Key to operate the head in order to ensure the safety of the machine and protect the D4BL from damage.
The Operation Key provided for the D4BL is not compatible with that of the D4BS.

Mount the Operation Key and secure it with one-way screws or equivalents to prevent easy removal of the D4BL.

## Securing the Door

If the Operation Key on the closed door is pulled outside the set zone by a force caused by vibration, the door's weight, or the door cushion rubber, the D4BL may be damaged. Secure the door with hooks so that it will remain within the set zone.


## Tightening Torque

Be sure to tighten each screw of the D4BL properly, otherwise the D4BL may malfunction.

	Type	Torque
1	M3.5 terminal screw   (including terminal screw)	0.59 to $0.78 \mathrm{~N} \cdot \mathrm{~m}$
2	Cover mounting screw	1.18 to $1.37 \mathrm{~N} \cdot \mathrm{~m}$
3	Head mounting screw	0.78 to $0.98 \mathrm{~N} \cdot \mathrm{~m}$
4	M5 body mounting screw	4.90 to $5.88 \mathrm{~N} \cdot \mathrm{~m}$
5	Operation Key mounting screw	2.35 to $2.75 \mathrm{~N} \cdot \mathrm{~m}$
6	Connector	1.77 to $2.16 \mathrm{~N} \cdot \mathrm{~m}$
7	Cap screw	1.27 to $1.67 \mathrm{~N} \cdot \mathrm{~m}$



## Switch and Operation Key Mounting

Mount the D4BL and Operation Key with four M5 screws with washers and tighten each screw to the specified torque.

## Mounting Dimensions

## Switch Mounting Dimensions



## Operation Key Mounting Holes

- Horizontal Mounting D4BL-K1

- Vertical Mounting D4BL-K2

- Adjustable Mounting (Horizontal)

D4BL-K3


## Head Directions

The head can be mounted in four directions. To remove the head, turn the head by $45^{\circ}$ as shown in figures A and B below.
To change the direction of the head, make sure that the protruding part of the rotating lever engages with the groove of the plunger. Then turn the head clockwise or counterclockwise to the desired direction. At that time, make sure that the groove of the plunger is located under the rotating lever. If the direction of the head is not set when the plunger is rotated by $45^{\circ}$, the groove of the plunger presses the rotating lever. The head, plunger, or the built-in switch may be damaged as a result.

Head Direction Changes


Head Bottom View Switch Top View


Operation plunger and groove mechanism

Rotation lever and protruding part

Normal Positions of Rotating Lever and Plunger


Be sure to check the mechanical lock and solenoid release functions when mounting the D4BL.
If the head direction is changed, recheck the tightening torque of each of screw. Make sure that no foreign materials will penetrate through the key hole on the head.

## Mounting the Cover

When tightening the cover, first check the specified torque, and then tighten each screw to the that torque. Also, make sure that no foreign matter has entered the switch.
When mounting the cover, make sure that the cover and switch box are properly aligned.

## Processing and Connecting Cable/Conduit

The following procedures are recommended for mounting and wiring the indicator unit securely.
In order to ensure IP67, use OMRON's SC- $\square$ M and Nippon Flex's ABS-08Pg13.5 and ABS-12 Pg13.5 Connectors.
Recommended cable: UL2464-type cable that is 20 to 18 AWG ( 0.5 to $1.0 \mathrm{~mm}^{2}$ ) in size and has seven conductors
If the $1 / 2-14 N P T$ is used, cover the cable and conduit end with sealing tape in order to ensure IP67. Tighten the connector to a torque of 1.77 to $2.16 \mathrm{~N} \cdot \mathrm{~m}$.

Connect the indicator unit after connecting the seven-conductor cable.


Terminal no.	Lp (mm)	Lv (mm)	a (mm)
$\mathrm{E}_{1}$	$30 \pm 2$	$80 \pm 2$	$8 \pm 1$
$\mathrm{E}_{2}$	$35 \pm 2$	$75 \pm 2$	
31	$45 \pm 2$	$60 \pm 2$	
12	$55 \pm 2$	$50 \pm 2$	
23 (21)	$65 \pm 2$	$45 \pm 2$	
24 (22)	$70 \pm 2$	$35 \pm 2$	
$\stackrel{\square}{\dagger}$	$90 \pm 2$	$50 \pm 2$	

Properly attach and securely tighten the provided conduit cap to the unused conduit opening when wiring the D4BL.

## Cable Connection Example

1. Connect the wires to the terminals in the order shown below for wiring efficiency.


Tighten each wired terminal clockwise to a torque of 0.59 to $0.78 \mathrm{~N} \cdot \mathrm{~m}$.


Twist the wire two or three times and make sure that no bare wire exists outside the terminal when tightening the terminal.
2. The insulation sheath of the seven-conductor cable must come into contact with the wall of the conduit mouth, side A or side B.


## Maintenance and Repairs

Contact your OMRON representative for any repair or maintenance work on the D4BL. The D4BL must not be maintained or repaired by any unauthorized party.

## Others

Do not touch the solenoid because the solenoid radiates heat while power is being supplied.

## Compact Non-contact Door Switch

## D40B

## Detects the open/ closed state of doors without making contact and has high resistance to the environment.

- Detects the open/closed state of doors without making contact by combining a special magnetic actuator and switch. The switching mechanism is not easily disabled.
- The non-contact operation prevents the creation of particles due to abrasion.
- The actuator and switch can be washed in water. There are no keyholes where dirt can accumulate, making it easy to keep machinery clean.
- Small distortions in the door and mechanical discrepancies can be absorbed in the allowable operating range of the magnetic actuator and switch.
- Conforms to Category 3.


## Model Number Structure

## Model Number Legend

Sensor
Controller

D40B-


1. Type

1: Standard Sensor
2: Elongated Sensor
3: High-temperature Type Sensor
2. Auxiliary Output

B: None
D: 1 NC
E: 1 NO
3. Cable Length

3: $\quad 3 \mathrm{~m}$
5: $\quad 5 \mathrm{~m}$
10: 10 m
4. Wiring Method

None: Pre-wired
C: Connector (switch side only)

## D40B-J $\square$

1. Type

1: One main contact + one auxiliary contact (See note.)
2: Two main contacts + one auxiliary contact (See note.)
Note: The auxiliary contacts use non-safety output.

## Ordering Information

List of Models
Sensors (Switches/Actuators)


Note: A Sensor used in combination with a Controller is classified Category 3.
Controllers

Safety contacts	Auxiliary contacts/output   (See note 2.)	Rated voltage	Model
1 NO	1 NC (See note 1.)	24 VAC/VDC	D40B-J1
2 NO	1 NC	24 VAC/VDC   $110 / 230 ~ V A C ~$	D40B-J2

Note: 1. MOS output.
2. Non-safety output.

Accessories

Classification	Model
Fuse	D9M-P1

## Specifications

## Sensor (Switch/Actuator)

Item Type	Standard Sensor	Elongated Sensor	High-temperature Type Sensor
Switching distance (See note 1.) (nominal value)	OFF-ON: 5 mm ON-OFF: 15 mm		OFF-ON: 9 mm ON-OFF: 17 mm
Actuator approach speed (See note 2.)	$17 \mathrm{~mm} / \mathrm{s} \mathrm{min}$.		
Operating temperature	-10 to $+55^{\circ} \mathrm{C}$		-25 to $+125^{\circ} \mathrm{C}$
Operating humidity	$90 \%$ at $+50^{\circ} \mathrm{C}$		
Degree of protection	IP67		
Material	ABS		Stainless steel
Mounting method	M4 screws		
Mounting screw tightening torque	$1 \mathrm{~N} \cdot \mathrm{~m}$		

Note: 1. These values represent the distances at which OFF changes to ON (approaching) or ON changes to OFF (separating) when the switch and actuator's target marks are aligned and the sensing surfaces have the same orientation.
2. If the approach speed is less than the specified value, the Controller's safety contact output may not turn ON, even if the distance is less than the switching distance.
Controller
Ratings
Power Supply

Item	Type	D40B-J1	D40B-J2
Power supply voltage		24 VAC/DC	24 VAC/DC or 110/230 VAC (selectable)
Allowable voltage range		Power supply voltage $\pm 15 \%$	
Power consumption		2.0 VA max.	4.0 VA max.

Switch

Item	Type	D40B-J1	D40B-J2
Rated load	Safety contacts	$250 \mathrm{VAC}, 4 \mathrm{~A}, \cos \phi=1$   $30 \mathrm{VDC}, 2 \mathrm{~A}, \cos \phi=1$	$250 \mathrm{VAC}, 4 \mathrm{~A}, \cos \phi=1$   $30 \mathrm{VDC}, 2 \mathrm{~A}, \cos \phi=1$
	Auxiliary contacts/output   (See note.)	$230 \mathrm{VAC}, 100 \mathrm{~mA}, \cos \phi=1$   $24 \mathrm{VDC}, 100 \mathrm{~mA}, \cos \phi=1$	

Note: D40B-J1: MOS output; D40B-J2: Contact output.
Characteristics

Item	Type	D40B-J1	D40B-J2
Contact resistance		$100 \mathrm{~m} \Omega$ (not including auxiliary output)	$100 \mathrm{~m} \Omega$
Auxiliary output ON resistance		$36 \Omega$ (nominal value)	---
Response time		25 ms max.	
Insulation resistance		$100 \mathrm{M} \Omega$ (at 500 VDC )	
Dielectric strength	Between output poles	1,500 VAC 1 min.	
	Between inputs and outputs		
	Between power supply and outputs		
Vibration resistance		10 to 55 Hz , 1-mm single amplitude, IEC68-2-6	
Shock resistance		30G, 11 ms , IEC68-2-27	
Durability	Mechanical	1,000,000 operations min.	
	Electrical	100,000 operation min. (at the rated load)	
Minimum rated current for safety contacts		$10 \mathrm{VAC} / \mathrm{VDC}, 10 \mathrm{~mA}$ (reference values)	
Operating temperature		-10 to $+55^{\circ} \mathrm{C}$	
Operating humidity		$90 \%$ at $+50^{\circ} \mathrm{C}$.	
Mounting method		35 mm DIN Track (Screw mounting is not possible.)	
Terminal screw tightening torque		$1 \mathrm{~N} \cdot \mathrm{~m}$	
Weight		147 g	590 g

## Approved Standards

- EN standards certified by TÜV Nord

EN954-1
EN/IEC60204-1
EN/IEC60947-5-3

- UL508, CSA C22.2 No. 14
- EN1088 conformance


## Internal Connection Diagram

## D40B-J1



D40B-J2


Note: 1. If a $100 / 230$ VAC power supply is used, connect it to the A1 and A2 terminals. Do not connect the power supply to the + and -terminals
2. If a 24 VDC power supply is used, connect it to the + and terminals. Do not connect the power supply to the A1 and A2 terminals.

## 4 WARNING

Do not connect a 100/230 VAC power supply to the + and -terminals.
Doing so may result in electric shock.


## Engineering Data

## Detection Ranges





## Dimensions

Note: All units are in millimeters unless otherwise indicated.
Sensor (Switch/Actuator)
Standard Sensor


High-temperature Type Sensor

D40B-3D5C
D40B-3E5C


Note: A cable with connectors is included.


## Controller

1-pole Controller

## D40B-J1

## Terminal Arrangement



2-pole Controller
D40B-J2


## Terminal Arrangement



## Application Examples

Wiring Example for 1 Sensor and 2 Contactors (with D40B-J1):
Auto-reset
The configuration in this example is for auto-reset and contactor monitoring.


Operation Flowchart


Note: The circuit in this example is equivalent to a Category 3 circuit.
*This example applies to Standard or Elongated Sensors. The wire colors for the High-temperature Type Sensors are different. Refer to Sensor and Controller Connection Examples on page 10.

Wiring Example for 1 Sensor and 2 Contactors (with D40B-J2):
Auto-reset
The configuration in this example is for auto-reset and contactor monitoring.


Note: The circuit in this example is equivalent to a Category 3 circuit.
*This example applies to Standard or Elongated Sensors. The wire colors for the High-temperature Type Sensors are different. Refer to Sensor and Controller Connection Examples on page 10.
Wiring Example for 3 Sensors and 2 Contactors (with D40B-J2):

## Auto-reset

The configuration in this example is for auto-reset and contactor monitoring.


Note 1: The circuit in this example is equivalent to a Category 3 circuit.
Note 2: If two or more Sensors are connected to one Controller, all of the guard doors must open and close independently. If two or more doors open and close at the same time, it is possible that a fault may not be detected.
Note 3: Up to six Sensors can be connected to a single Controller.
*This example applies to Standard or Elongated Sensors. The wire colors for the High-temperature Type Sensors are different. Refer to Sensor and Controller Connection Examples on page 10.

## Manual Start

If manual start is required, insert start switch S 1 between X 1 and X 2 as shown below. Monitored start is not possible.


Operation Flowchart


Sensor and Controller Connection Examples
Connection between Standard or Elongated Sensor and 1-pole Controller


Connection between High-temperature Type Sensor and 1 -pole Controller


Connection between Standard or Elongated Sensor and 2-pole Controller


Connection between High-temperature Type Sensor and 2-pole Controller


## © WARNING

Be sure to turn OFF the power before performing wiring. Do not touch charge parts (e.g., terminals) while power is ON. Doing so may result in electric shock.

Do not allow the actuator to come close to the switch with the door open. Doing so may cause machinery to start operating and may result in injury.

## A CAUTION

Use guard stops in the way shown below to ensure that the switch and actuator do not make contact when the guard door is closed.


## Application Precautions

- Do not use the product in locations subject to explosive or flammable gases.
- Do not use load currents exceeding the rated value.
- Be sure to wire each conductor correctly.
- Be sure to confirm correct operation after completing mounting and adjustment.
- Do not drop or attempt to disassemble the product.
- Be sure to use the correct combination of switch and actuator.
- Use a power supply of the specified voltage. Do not use power supplies with large ripples or power supplies that intermittently generate incorrect voltages.
- Capacitors are consumable and require regular maintenance and inspection.


## Precautions for Safe Use

Mounting Direction of Switch and Actuator
The Sensor will not operate properly if the switch and actuator come towards each other diagonally. The Sensor will, however, operate properly if the switch and actuator come towards each other headon, horizontally or vertically (as long as the faces have the same orientation).


## Mutual Interference

If the switch and actuator are mounted in parallel, be sure to separate them by at least 25 mm , as shown below.


## Using for Hinged Doors

On hinged doors, install the Sensor at an opening edge as shown below.


Switching Power Supply Voltage (D40B-J2 Only)

- Turn OFF the power to the Controller.
- Open the Controller's front cover with a flat-bladed screwdriver.
- Change the power supply voltage as required with the internal power supply selection switch. The switch is factory-set to 230 VAC.


Internal power supply selection switch Up: 110 VAC
Fuse Replacement Method
(D40B-J2 Only)
Note: The D40B-J1 has an automatic recovery mechanism and so fuse replacement is not necessary.

- Turn OFF the power to the Controller.
- Open the Controller's front cover with a flat-bladed screwdriver.
- Replace the fuse (D9M-P1). (See page 198.)


Applicable Safety Category (EN954-1)
This product can be used in environments classified as Safety Category 3 according to the requirements of European standard EN954-1. This evaluation, however, is based on circuit configuration examples proposed by OMRON. The standard may not apply in some operating conditions.
The applicable safety category is determined from the whole safety control system. Make sure that the whole safety control system meets EN954-1 requirements.
Handling
Do not drop the product or subject it to excessive shocks or vibration. Doing so may result in faults or malfunctions.

## Solvents

Ensure that solvents, such as alcohol, thinner, trichloroethane, or gasoline do not adhere to the product. Solvents may cause markings to fade and components to deteriorate.
Installation Location
Do not install the product in the following locations. Doing so may result in product failure or malfunction.

- Locations subject to direct sunlight.
- Locations subject to temperatures outside the range 25 to $55^{\circ} \mathrm{C}$.
- Locations subject to humidity levels outside the range $35 \%$ to $85 \%$ or subject to condensation due to extreme temperature changes.
- Locations subject to corrosive or flammable gases.
- Locations subject to shocks or vibration in excess of the product ratings.
- Locations subject to exposure to water, oil, or chemicals.
- Locations subject to dust (including iron dust) or salts.

Take appropriate and sufficient countermeasures when using the product in the following locations.

- Locations subject to static electricity or other forms of noise.
- Locations subject to possible exposure to radioactivity
- Locations close to power supply lines.

Wiring
Perform wiring using wire with the following dimensions
Stranded wire: $\quad 2.5 \mathrm{~mm}^{2}$
Solid wire: $\quad 4.0 \mathrm{~mm}^{2}$
Tighten the terminal screws with the specified torque. Not doing so may result in malfunction or abnormal heat generation.
Terminal screw tightening torque: $1 \mathrm{~N} \cdot \mathrm{~m}$

## ALL DIMENSIONS SHOWN ARE IN MILLIMETERS

To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .
In the interest of product improvement, specifications are subject to change without notice.

## Miniature Safety-door Hinge Switch

## D4NH

## New series Safety-door Hinge Switch Designed for sace saving guaring in Machines and safety Equipment

- Lineup includes three contact models with 2NC/1NO and 3NC contacts in addition to the $1 \mathrm{NC} / 1 \mathrm{NO}$, and 2NC versions. Version with MBB contacts meet applications for avdanced requirements.
- M12-connector models are available, saving on labor and simplifying maintenance.
- Standardized gold-clad contacts provide high contact reliability Can be used with both standard loads and microloads.
- Free of lead, cadmium, and hexavalent chrome, reducing the burden on the environment.

Be sure to read the "Safety Precautions" on page G-214.


Note: Contact your sales representative for details on models with safety standard certification.

## Model Number Structure

D4NH-

## 123

1. Conduit/Connector size

1: Pg13.5 (1-conduit)
2. Built-in Switch

2: G1/2 (1-conduit)
3: 1/2-14NPT (1-conduit)
4: M20 (1-conduit)
5: Pg13.5 (2-conduit)
6: G1/2 (2-conduit)
7: 1/2-14NPT (2-conduit)
8: M20 (2-conduit)
9: M12 connector (1-conduit)

A: 1NC/1NO (slow-action)
B: 2NC (slow-action)
C: 2NC/1NO (slow-action)
D: 3NC (slow-action)
E: 1NC/1NO (MBB contact) (slow-action)
F: 2NC/1NO (MBB contact) (slow-action)

## 3. Actuator

AS: Shaft
BC: Arm lever

## Application Examples (Protective Door Safety Measures)

Shaft Actuator


Arm Lever Actuator


## Ordering Information

List of Models
Switches

Actuator		duit size		uilt-in switch mech	
			1NC/1NO (Slow-action)	$\stackrel{2 N C}{\text { (Slow-action) }}$	2NC/1NO (Slow-action)
Shaft	1-conduit	Pg13.5	D4NH-1AAS	D4NH-1BAS	D4NH-1CAS
		G1/2	D4NH-2AAS	D4NH-2BAS	D4NH-2CAS
		1/2-14NPT	D4NH-3AAS	D4NH-3BAS	D4NH-3CAS
		M20	D4NH-4AAS	D4NH-4BAS	D4NH-4CAS
		M12 connector	D4NH-9AAS	D4NH-9BAS	---
	2-conduit	Pg13.5	D4NH-5AAS	D4NH-5BAS	D4NH-5CAS
		G1/2	D4NH-6AAS	D4NH-6BAS	D4NH-6CAS
		$\begin{aligned} & \hline 1 / 2-14 \mathrm{NPT} \\ & \text { (See note 3.) } \end{aligned}$	D4NH-7AAS	D4NH-7BAS	D4NH-7CAS
		M20	D4NH-8AAS	D4NH-8BAS	D4NH-8CAS
Arm lever	1-conduit	Pg13.5	D4NH-1ABC	D4NH-1BBC	D4NH-1CBC
		G1/2	D4NH-2ABC	D4NH-2BBC	D4NH-2CBC
		1/2-14NPT	D4NH-3ABC	D4NH-3BBC	D4NH-3CBC
		M20	D4NH-4ABC	D4NH-4BBC	D4NH-4CBC
		M12 connector	D4NH-9ABC	D4NH-9BBC	---
	2-conduit	Pg13.5	D4NH-5ABC	D4NH-5BBC	D4NH-5CBC
		G1/2	D4NH-6ABC	D4NH-6BBC	D4NH-6CBC
		$\begin{aligned} & \hline 1 / 2-14 \mathrm{NPT} \\ & \text { (See note 3.) } \end{aligned}$	D4NH-7ABC	D4NH-7BBC	D4NH-7CBC
		M20	D4NH-8ABC	D4NH-8BBC	D4NH-8CBC


Actuator	Conduit size		Built-in switch mechanism		
			$\begin{gathered} \text { 3NC } \\ \text { (Slow-action) } \end{gathered}$	1NC/1NO MBB (Slow-action)	2NC/1NO MBB (Slow-action)
Shaft	1-conduit	Pg13.5	D4NH-1DAS	D4NH-1EAS	D4NH-1FAS
		G1/2	D4NH-2DAS	D4NH-2EAS	D4NH-2FAS
		1/2-14NPT	D4NH-3DAS	D4NH-3EAS	D4NH-3FAS
		M20	D4NH-4DAS	D4NH-4EAS	D4NH-4FAS
		M12 connector	---	D4NH-9EAS	---
	2-conduit	Pg13.5	D4NH-5DAS	D4NH-5EAS	D4NH-5FAS
		G1/2	D4NH-6DAS	D4NH-6EAS	D4NH-6FAS
		$\begin{array}{\|l} \hline 1 / 2-14 N P T \\ \text { (See note 3.) } \\ \hline \end{array}$	D4NH-7DAS	D4NH-7EAS	D4NH-7FAS
		M20	D4NH-8DAS	D4NH-8EAS	D4NH-8FAS
Arm lever	1-conduit	Pg13.5	D4NH-1DBC	D4NH-1EBC	D4NH-1FBC
		G1/2	D4NH-2DBC	D4NH-2EBC	D4NH-2FBC
		1/2-14NPT	D4NH-3DBC	D4NH-3EBC	D4NH-3FBC
		M20	D4NH-4DBC	D4NH-4EBC	D4NH-4FBC
		M12 connector	---	D4NH-9EBC	---
	2-conduit	Pg13.5	D4NH-5DBC	D4NH-5EBC	D4NH-5FBC
		G1/2	D4NH-6DBC	D4NH-6EBC	D4NH-6FBC
		$\begin{array}{\|l\|} \hline 1 / 2-14 N P T \\ \text { (See note 3.) } \\ \hline \end{array}$	D4NH-7DBC	D4NH-7EBC	D4NH-7FBC
		M20	D4NH-8DBC	D4NH-8EBC	D4NH-8FBC

Prefered types
Note: 1. It is recommended that M20 be used for Switches to be exported to Europe and $1 / 2-14$ NPT be used for Switches to be exported to North American countries.
2. All models have slow-action contacts with approved direct opening mechanisms on NC contacts only.
3. The $1 / 2-14 N P T$-conduit models include an M20-to-1/2-14NPT changing adaptor.

## Specifications

## Standards and EC Directives

- Conforms to the following EC Directives:

Machinery Directive
Low Voltage Directive
EN50047
EN1088
GS-ET-15

## Approved Standards

Agency	Standard	File No.
TÜV Product   Service	EN60947-5-1 (approved   direct opening)	B03 1139656 061
UL (See note.)	UL508, CSA C22.2 No.14	E76675

Note: Approval for CSA C22.2 No. 14 is authorized by the UL mark.
CCC (China Compulsory Certification) Mark

Agency	Standard	File No.
CQC	GB14048.5	Under application

## Approved Standard Ratings

TUV (EN60947-5-1)

ItemUtilization   category	AC-15	DC-13
Rated operating current $\left(\mathbf{I}_{\mathrm{e}}\right)$	3 A	0.27 A
Rated operating voltage $\left(\mathrm{U}_{\mathrm{e}}\right)$	240 V	250 V

Note: Use a 10-A fuse type gI or gG that conforms to IEC269 as a short-circuit protection device. This fuse is not built into the Switch.

UL/CSA (UL508, CSA C22.2 No. 14)
A300

Rated   voltage	Carry current	Current		Volt-amperes	
		Make	Break	Make	Break
120 VAC	10 A	60 A	6 A	$7,200 \mathrm{VA}$	720 VA
	340 AAC	3 A			

Q300

Rated   voltage	Carry current	Current		Volt-amperes	
		Make	Break	Make	Break
125 VDC	2.5 A	0.55 A	0.55 A	69 VA	69 VA
250 VDC		0.27 A	0.27 A		

## Characteristics

Degree of protection (See note 3.)		IP67 (EN60947-5-1)
Durability (See note 4.)	Mechanical	1,000,000 operations min.
	Electrical	500,000 operations min. for a resistive load of 3 A at 250 VAC (See note 5.) 300,000 operations min. for a resistive load of 10 A at 250 VAC
Operating speed		2 to 360 /s (See note 6.)
Operating frequency		30 operations/minute max.
Contact resistance		$25 \mathrm{~m} \Omega$ max.
Minimum applicable load (See note 7.)		Resistive load of 1 mA at 5 VDC ( N -level reference value)
Rated insulation voltage ( $\mathrm{U}_{\mathrm{i}}$ )		300 V
Protection against electric shock		Class II (double insulation)
Pollution degree (operating environment)		Level 3 (EN60947-5-1)
Impulse withstand voltage (EN60947-5-1)		Between terminals of the same polarity: 2.5 kV
		Between terminals of different polarities: 4 kV
		Between other terminals and uncharged metallic parts: 6 kV
Insulation resistance		$100 \mathrm{M} \Omega$ min.
Contact gap		Snap-action: $2 \times 9.5 \mathrm{~mm}$ min Slow-action: $2 \times 2 \mathrm{~mm}$ min
Vibration resistance	Malfunction	10 to $55 \mathrm{~Hz}, 0.75-\mathrm{mm}$ single amplitude
Shock resistance	Destruction	$1,000 \mathrm{~m} / \mathrm{s}^{2}$
	Malfunction	$300 \mathrm{~m} / \mathrm{s}^{2}$
Conditional short-circuit current		100 A (EN60947-5-1)
Rated open thermal current ( $\mathrm{l}_{\mathrm{th}}$ )		10 A (EN60947-5-1)
Ambient temperature		Operating: $30^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ with no icing
Ambient humidity		Operating: 95\% max.
Weight		Approx. 87 g (D4NH-1AAS) Approx. 97 g (D4NH-1ABC)

Note: 1. The values in the table on the previous page are initial values.
2. Once a contact has been used to switch a standard load, it cannot be used for a load of a smaller capacity. Doing so may result in roughening of the contact surface and contact reliability may be lost.
3. The degree of protection is tested using the method specified by the standard (EN60947-5-1). Confirm that sealing properties are sufficient for the operating conditions and environment beforehand. Although the switch box is protected from dust or water penetration, do not use the D4NH in places where foreign material such as dust, dirt, oil, water, or chemicals may penetrate through the head. Otherwise, premature wear, Switch damage or malfunctioning may occur.
4. The durability is for an ambient temperature of $5^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$ and an ambient humidity of $40 \%$ to $70 \%$. For more details, consult your OMRON representative.
5. If the ambient temperature is greater than $35^{\circ} \mathrm{C}$, do not pass the $3-\mathrm{A}, 250-\mathrm{VAC}$ load through more than 2 circuits.
6. For safe use, make sure that the allowable operating speed is not exceeded.
7. This value will vary with the switching frequency, environment, and reliability level. Confirm that correct operation is possible with the actual load beforehand.

## Structure, Names, and Functions

Structure (D4NH- $\square \square \mathrm{BC}$ )

Guard Closed Guard Open


When the guard is opened, the cam that is directly coupled to the shaft rotates to press the Switch in the direction shown by the (vertical) arrow. This action separates the contacts to stop the machine.

## Built-in Switch

The built-in switch has a direct opening mechanism that forcibly separates the NC contact even when there is contact deposit.

## Cover

The cover, with a hinge on its lower part, can be opened by removing the screw of the cover, which ensures ease of maintenance and wiring.

* The housing and head of the D4NH are made of resin. Use D4BS Miniature Electromagnetic Lock Safety Door Limit Switches for applications requiring safety door switches of tough, high-sealing, or oil-resistant construction.


## Arm Lever

The arm lever is mounted upwards in the center position before shipping. To change the position loosen the arm lever mounting screw, dismount the arm lever, and mount the arm lever in the left or right position.
The joint between the shaft and arm lever is formed with formlock construction which remains secure even when the screw becomes loose

Head
The head can be mounted in four directions.

## Conduit

A wide variety of conduits is available.

Size	1-conduit	2-conduit
Pg13.5	Yes	Yes
G1/2	Yes	Yes
1/2-14NPT	Yes	Yes
M20	Yes	Yes
M12 Connector	Yes	---

Note: M12 connector types are not available for Switches with three contacts

Contact Form

Model	Contact	Contact form		Operating pattern		Remarks
D4NH- $\square$ A $\square$	1NC/1NO		$\begin{aligned} & 11-12 \\ & 33-34 \end{aligned}$	$\xrightarrow{ } \quad \mathrm{Stroke} \longrightarrow \longrightarrow$	$\square \mathrm{ON}$	Only NC contacts 11-12 have an approved direct opening mechanism.   The terminals 11-12 and 33-34 can be used as unlike poles.
D4NH- $\square \mathrm{B} \square$	2NC		$\begin{aligned} & 11-12 \\ & 31-32 \end{aligned}$		$\square \mathrm{ON}$	Only NC contacts 11-12 and 31-32 have an approved direct opening mechanism.   The terminals 11-12 and 31-32 can be used as unlike poles.
D4NH- $\square \mathrm{C} \square$	2NC/1NO		$\begin{aligned} & 11-12 \\ & 21-22 \\ & 33-34 \end{aligned}$	          Stroke $\longrightarrow$	$\square \mathrm{ON}$	Only NC contacts 11-12 and 21-22 have an approved direct opening mechanism.   The terminals 11-12, 21-22, and 33-34 can be used as unlike poles.
D4NH- $\square \square$	3NC	cele	$\begin{aligned} & 11-12 \\ & 21-22 \\ & 31-32 \end{aligned}$		$\square \mathrm{ON}$	Only NC contacts 11-12, 21-22, and 31-32 have an approved direct opening mechanism.   The terminals 11-12, 21-22, and 31-32 can be used as unlike poles.
D4NH- $\square$ E $\square$	1NC/1NO MBB		$\begin{aligned} & 11-12 \\ & 33-34 \end{aligned}$		$\square \mathrm{ON}$	Only NC contacts 11-12 have an approved direct opening mechanism.   The terminals 11-12 and 33-34 can be used as unlike poles.
D4NH- $\square \mathrm{F} \square$	2NC/1NO MBB		$\begin{aligned} & 11-12 \\ & 21-22 \\ & 33-34 \end{aligned}$	$\xrightarrow[\text { Stroke } \longrightarrow]{\longrightarrow}$	$\square \mathrm{ON}$	Only NC contacts 11-12 and 21-22 have an approved direct opening mechanism.   The terminals 11-12, 21-22 and 33-34 can be used as unlike poles.

Note: 1. Terminals are numbered according to EN50013. Contact forms are according to EN60947-5-1.
2. MBB (Make Before Break) contacts have an overlapping structure, so that before the normally closed contact (NC) opens, the normally open contact (NO) closes.

## Direct Opening Mechanism

1NC/1NO Contact (Slow-action)


Only the NC contact side has a direct opening mechanism. When metal deposition occurs, the contacts are separated from each other by the plunger being pushed in.
(Conforms to EN60947-5-1 Direct Opening Operation.)

## 2NC Contact (Slow-action)



Both NC contacts have a direct opening mechanism.
When metal deposition occurs, the contacts are separated from each other by the plunger being pushed in
(Conforms to EN60947-5-1 Direct Opening Operation.)

## Dimensions

Switches
Note: All units are in millimeters unless otherwise indicated.
Shaft Type with 1 Conduit
D4NH-1 $\square$ AS D4NH-2 $\square$ AS
D4NH-3 $\square$ AS D4NH-4 $\square$ AS
D4NH-9 $\square$ AS (See note 4.)


OF max.	$0.15 \mathrm{~N} \cdot \mathrm{~m}$
PT 1 (NC)	$\left.7^{\circ}\right)\left(\mathrm{MBB}: 10^{\circ}\right)$
PT 2 (NO)	$\left(19^{\circ}\right)\left(\mathrm{MBB}: 5^{\circ}\right)$
DOT min.	$18^{\circ}$
DOF min.	$1 \mathrm{~N} \cdot \mathrm{~m}$

Shaft Type with 2 Conduits
D4NH-5 $\square$ AS D4NH-6 $\square$ AS
D4NH-7 $\square$ AS D4NH-8 $\square$ AS


OF max.	$0.15 \mathrm{~N} \cdot \mathrm{~m}$
PT 1 (NC)	$\left(7^{\circ}\right)\left(\mathrm{MBB}: 10^{\circ}\right)$
PT 2 (NO)	$\left(19^{\circ}\right)\left(\mathrm{MBB}: 5^{\circ}\right)$
DOT min.	$18^{\circ}$
DOF min.	$1 \mathrm{~N} \cdot \mathrm{~m}$

Note: 1. Unless otherwise specified, a tolerance of $\pm 0.4 \mathrm{~mm}$ applies to all dimensions.
2. Variation occurs in the simultaneity of contact opening/closing operations of $2 \mathrm{NC}, 2 \mathrm{NC} / 1 \mathrm{NO}$, and 3 NC contacts. Check contact operation.
3. There are a minimum of five turns of the screw thread for a Pg13.5 conduit opening and four turns minimum for a G $1 / 2$ conduit opening.
4. Refer to the following diagram for details on M12 connectors.

1-conduit M12 Connector
D4NH-9 $\square \square$


Arm Lever Type with 1 Conduit
D4NH-1 $\square$ BC D4NH-2 $\square$ BC
D4NH-3 $\square$ BC D4NH-4 $\square$ BC
D4NH-9 $\square$ BC (See note 4.)


OF max.	$0.15 \mathrm{~N} \cdot \mathrm{~m}$
PT 1 (NC)	$\left(7^{\circ}\right)\left(\mathrm{MBB}: 10^{\circ}\right)$
PT 2 (NO)	$\left(19^{\circ}\right)\left(\mathrm{MBB}: 5^{\circ}\right)$
DOT min.	$18^{\circ}$
DOF min.	$1 \mathrm{~N} \cdot \mathrm{~m}$

Arm Lever Type with 2 Conduits
D4NH-5 $\square$ BC $\quad$ D4NH-6 $\square$ BC

## D4NH-7 $\square$ BC $\quad$ D4NH-8 $\square$ BC



OF max.	$0.15 \mathrm{~N} \cdot \mathrm{~m}$
PT 1 (NC)	$\left(7^{\circ}\right)\left(\mathrm{MBB}: 10^{\circ}\right)$
PT 2 (NO)	$\left(19^{\circ}\right)\left(\mathrm{MBB}: 5^{\circ}\right)$
DOT min.	$18^{\circ}$
DOF min.	$1 \mathrm{~N} \cdot \mathrm{~m}$

Note: 1. Unless otherwise specified, a tolerance of $\pm 0.4 \mathrm{~mm}$ applies to all dimensions.
2. Variation occurs in the simultaneity of contact opening/closing operations of $2 \mathrm{NC}, 2 \mathrm{NC} / 1 \mathrm{NO}$, and 3 NC contacts. Check contact operation.
3. There are a minimum of five turns of the screw thread for a Pg13.5 conduit opening and four turns minimum for a G $1 / 2$ conduit opening.
4. Refer to the following diagram for details on M12 connectors.

## 1-conduit M12 Connector

D4NH-9 $\square \square \square$


## Application Examples of Arm Lever Use

Note: Be sure to evaluate the Switch under actual working conditions after installation.

When Installing at the Center
The arm lever is set for center installation at the time of shipment.


Note: Install the arm lever so that it will not rotate more than $90^{\circ}$.

When Installing to the Left
Remove the screw and arm lever, position the arm lever to the left, and then secure it with the screw.


Note: Install the arm lever so that it will not rotate more than $180^{\circ}$.

## When Installing to the Right

Remove the screw and arm lever, position the arm lever to the right, and then secure it with the screw.


Note: Install the arm lever so that it will not rotate more than $180^{\circ}$.

Refer to OMRON SAFETY COMPONENTS SERIES (Y106) for common precautions for Switches and Safety Limit Switches.

## $\triangle$ CAUTION

Do not use metal connectors or metal conduits with this Switch. Doing so may occasionally result in electric shock.

## Precautions for Safe Use

- Do not drop the Switch. Doing so may result in the Switch not performing to its full capacity.
- Do not attempt to disassemble or modify the Switch. Doing so may cause the Switch to malfunction.
- Do not use the Switch where explosive gas, flammable gas, or any other hazardous gas may be present.
- Install the Switch in a location away from close body contact. Not doing so may result in malfunction.
- Do not use the Switch submerged in oil or water, or in locations continuously subject to splashes of oil or water. Doing so may result in oil or water entering the Switch interior. (The IP67 degree of protection specification for the Switch refers to water penetration while the Switch is submersed in water for a specified period of time.)
- Protect the head from foreign material. Subjecting the head to foreign material may result in premature wear or damage to the Switch. Although the switch body is protected from penetration by dust or water, the head is not protected from penetration by minute particles or water.
- Turn the power OFF before wiring. Doing so may result in electric shock.
- Install a cover after wiring. Not doing so may result in electric shock.
- Connect a fuse to the Switch in series to protect the Switch from short-circuit damage. Use a fuse with a breaking current 1.5 to 2 times larger than the rated current. To conform to EN ratings, use an IEC60269-compliant 10-A fuse type gl or gG.
- Do not switch circuits for two or more standard loads (250 VAC, 3 A) at the same time. Doing so may adversely affect insulation performance.
- The durability of the Switch is greatly affected by operating conditions. Evaluate the Switch under actual working conditions before permanent installation and use within a number of switching operations that will not adversely affect the Switch's performance.
- Be sure to indicate in the machine manufacturer's instruction manual that the user must not attempt to repair or maintain the Switch and must contact the machine manufacturer for any repairs or maintenance.
- If the Switch is to be used in an emergency stop circuit or in a safety circuit for preventing accidents resulting in injuries or deaths, use a model that has an NC contact equipped with a direct opening mechanism and make sure that the Switch operates in the direct opening mode.


## Precautions for Correct Use

## Environment

- The Switch is intended for indoor use only.
- Do not use the Switch outdoors. Doing so may cause the Switch to malfunction.
- Do not use the Switch where hazardous gases (e.g., $\mathrm{H}_{2} \mathrm{~S}, \mathrm{SO}_{2}$, $\mathrm{NH}_{3}, \mathrm{HNO}_{3}, \mathrm{Cl}_{2}$ ) are present or in locations subject to high temperature and humidity. Doing so may result in damage to the Switch caused by contact failure or corrosion.
- Do not use the Switch under any of the following conditions.
- Locations subject to extreme temperature changes.
- Locations where high humidity or condensation may occur.
- Locations subject to excessive vibration.
- Locations where metal dust, processing waste, oil, or chemicals may penetrate through the protective door.
- Locations subject to detergents, thinner, or other solvents.


## Mounting Method

## Mounting Screw Tightening Torque

Tighten each of the screws to the specified torque. Loose screws may result in malfunction of the Switch within a short time

Terminal screw	0.6 to $0.8 \mathrm{~N} \cdot \mathrm{~m}$
Cover clamping screw	0.5 to $0.7 \mathrm{~N} \cdot \mathrm{~m}$
Head clamping screw	0.5 to $0.6 \mathrm{~N} \cdot \mathrm{~m}$
Arm lever clamping screw	1.6 to $1.8 \mathrm{~N} \cdot \mathrm{~m}$
Body clamping screw	0.5 to $0.7 \mathrm{~N} \cdot \mathrm{~m}$
Conduit mounting connection, M12	1.8 to $2.2 \mathrm{~N} \cdot \mathrm{~m}$
adaptor	1.4 to $1.8 \mathrm{~N} \cdot \mathrm{~m} \mathrm{(1/2-14NPT)}$
Cap screw	1.3 to $1.7 \mathrm{~N} \cdot \mathrm{~m}$

## Switch Mounting

- Mount the Switch using M4 screws and washers and tighten the screws to the specified torque.
- For safety, use screws that cannot be easily removed, or use an equivalent measure to ensure that the Switch is secure.
- Secure the Switch with two M4 bolts and washers. Provide studs with a diameter of $4^{0.05 / 0.15}$ and a height of 4.8 mm max. at two places, inserting into the holes at the bottom of the Switch as shown below so that the Switch is firmly fixed at four points.

Switch Mounting Holes
One-conduit Type


Two-conduit Type


- Mount the shaft or arm lever securely with a one-way screw, or an equivalent so that the shaft or arm lever cannot be easily removed.
- Align the rotational center of the shaft with the door, so that the switch shaft and head will not be subjected to mechanical stress when the door opens or closes.
Do not impose a force of 50 N or more on the shaft.


Be sure that the arm lever and door are mounted as shown in the following diagram so that the arm lever and head are not subjected to mechanical stress when the door opens or closes


## Changing the Head Direction

By removing the four screws of the head, the mounting direction of the head can be changed. The head can be mounted in four directions. Be sure that no foreign material will enter the head during a change in direction.

## Arm Lever Mounting Position

The arm lever is mounted upwards in the center position before shipping. To change the position, loosen the arm lever mounting screw, dismount the arm lever, and mount the arm lever in the left or right position.

## Wiring

- When connecting to the terminals via insulating tube and M3.5 crimp terminals, arrange the crimp terminals as shown below so that they do not rise up onto the case or the cover. Applicable lead wire size: AWG20 to AWG18 ( 0.5 to $0.75 \mathrm{~mm}^{2}$ ).
Use lead wires of an appropriate length, as shown below. Not doing so may result in excess length causing the cover to rise and not fit properly.
One-conduit Type (3 Poles)


Two-conduit Type (3 Poles)


- Do not push crimp terminals into gaps in the case interior. Doing so may cause damage or deformation of the case.
- Use crimp terminals not more than 0.5 mm in thickness. Otherwise, they will interfere with other components inside the case. The crimp terminals shown below are not more than 0.5 mm thick.

Manufacture	Type	Wire size
J.S.T.	FV0.5-3.7 (F type)	AWG20 $\left(0.5 \mathrm{~mm}^{2}\right)$
	V0.5-3.7 (straight type)	

J.S.T is a Japanese manufacturer.


## Contact Arrangement

- The following diagrams show the contact arrangements used for screw terminal types and connector types.
Screw Terminal Type



## Connector Type



Pin No. (Terminal No.)

D4NH-9B $\square \square$ (2NC)
(1) $11 \xrightarrow{+} 12$ (2) $\Theta$
(3) $31 \rightarrow 32$ (4) $\Theta$

D4NH-9A $\square \square$ ( $1 \mathrm{NC} / 1 \mathrm{NO}$ )
D4NH-9ED (1NC/1NO (MBB))


- Applicable socket: XS2F (OMRON).
- Refer to the G010 Connector Catalog for details on socket pin numbers and lead wire colors.


## Socket Tightening (Connector Type)

- Turn the socket connector screws by hand and tighten until no space remains between the socket and the plug.
- Make sure that the socket connector is tightened securely. Otherwise, the rated degree of protection (IP67) may not be maintained and vibration may loosen the socket connector.


## Conduit Opening

- Connect a recommended connector to the opening of the conduit and tighten the connector to the specified torque. The case may be damaged if an excessive tightening torque is applied.
- When using 1/2-14NPT, wind sealing tape around the joint between the connector and conduit opening so that the enclosure will conform to IP67.
- Use a cable with a suitable diameter for the connector.
- Attach and tighten a conduit cap to the unused conduit opening when wiring. Tighten the conduit cap to the specified torque. The conduit cap is provided with the Switch (2-conduit types).


## Recommended Connectors

Use connectors with screws not exceeding 9 mm , otherwise the screws will protrude into the case interior, interfering with other components in the case. The connectors listed in the following table have connectors with thread sections not exceeding 9 mm . Use the recommended connectors to ensure conformance to IP67.

Size	Manufacturer	Model	Applicable cable   diameter
G1/2	LAPP	ST-PF1/2   $5380-1002$	6.0 to 12.0 mm
	Ohm Denki	OA-W1609	7.0 to 9.0 mm
	OA-W1611	9.0 to 11.0 mm	
Pg13.5	LAPP	ST-13.5   $5301-5030$	6.0 to 12.0 mm
M20	LAPP	ST-M20 $\times 1.5$   $5311-1020$	7.0 to 13.0 mm
$1 / 2-14 \mathrm{NPT}$	LAPP	ST-NPT1/2   $5301-6030$	6.0 to 12.0 mm
M12	LAPP	ST-M12 $\times 1.5$   $5311-1000$	3.5 to 7.0 mm

Use LAPP connectors together with seal packing (JPK-16, GP-13.5, GPM20, or GPM12), and tighten to the specified tightening torque. Seal packing is sold separately.

LAPP is a German manufacturer. Ohm Denki is a Japanese manufacturer.

Before using an M12 type, attaching the provided changing adaptor to the Switch and then connect the recommended connector.

Before using a 2 -conduit $1 / 2-14$ NPT type, attach the provided changing adaptor to the Switch and then connect the recommended connector.

## Storage

Do not store the Switch in locations where hazardous gases (e.g., $\mathrm{H}_{2} \mathrm{~S}, \mathrm{SO}_{2}, \mathrm{NH}_{3}, \mathrm{HNO}_{3}, \mathrm{Cl}_{2}$ ) or dust is present, or in locations subject to high temperatures and humidity.

## Others

- Do not allow the load current to exceed the rated value.
- Confirm that the seal rubber has no defects before use. If the seal rubber is displaced or raised, or has foreign particles adhered to it, the sealing capability of the seal rubber will be adversely affected.
- Use the correct cover mounting screws only, or the sealing capability of the seal rubber will deteriorate.
- Inspect the Switch regularly.
- Use the following recommended countermeasures to prevent telegraphing when using adjustable or long levers.

1. Make the rear edge of the dog smooth with an angle of $15^{\circ}$ to $30^{\circ}$ or make it in the shape of a quadratic curve.
2. Design the circuit so that no error signal will be generated
3. Use or set a Switch that is operated in one direction only.

## Production Termination

Following the release of the D4NH, production of the D4DH will be terminated.

## Date of Production Termination

Production of the D4DH Series will be terminated in March 2006.

## Product Replacement

1. Dimensions

The D4DH and D4NH use the same mounting method, and mounting hole. The multi-contact structure and the extra 4 mm in length, however, are different.
2. Terminal Numbers

For the 2 -contact model, the terminals 21, 22, 23, and 24 on the D4DH are 31, 32,33 , and 34 on the D4NH.
3. Recommended Terminals

If the recommended terminals are not used, the Switch may not be compatible. Make sure that the Switch is compatible with the terminals.

Comparison of the D4DH and Substitute Products

Model	D4NH
Switch color	Very similar
Dimensions	Very similar
Wiring/connection	Significantly different
Mounting method	Completely compatible
Ratings/performance	Very similar
Operating characteristics	Very similar
Operating method	Completely compatible

## List of Recommended Substitute Products

Using M screws is recommended to comply with European standards. Therefore, the M20 conduit model is recommended for use in new designs.

D4DH product   to be   discontinued	Recommended   substitute   product	D4DH product   to be   discontinued	Recommended   substitute   product
D4DH-15AS	D4NH-1AAS	D4DH-1AAS	D4NH-1BAS
D4DH-25AS	D4NH-2AAS	D4DH-2AAS	D4NH-2BAS
D4DH-35AS	D4NH-3AAS	D4DH-3AAS	D4NH-3BAS
D4DH-55AS	D4NH-5AAS	D4DH-5AAS	D4NH-5BAS
D4DH-65AS	D4NH-6AAS	D4DH-6AAS	D4NH-6BAS
D4DH-15BC	D4NH-1ABC	D4DH-1ABC	D4NH-1BBC
D4DH-25BC	D4NH-2ABC	D4DH-2ABC	D4NH-2BBC
D4DH-35BC	D4NH-3ABC	D4DH-3ABC	D4NH-3BBC
D4DH-55BC	D4NH-5ABC	D4DH-5ABC	D4NH-5BBC
D4DH-65BC	D4NH-6ABC	D4DH-6ABC	D4NH-6BBC

Dimensions (Unit: mm)
Discontinued Models (1-conduit D4DH)
Discontinued Models (2-conduit D4DH)

## Miniature Safety Limit Switch

## D4N

## Safety Limit Switches compatible to the Popular D4D, Providing a Full Lineup Conforming to International Standards

- Lineup includes three contact models with $2 \mathrm{NC} / 1 \mathrm{NO}$ and 3NC in addition to the $1 \mathrm{NC} / 1 \mathrm{NO}$, and 2 NC contact models. Models with MBB contacts are available too.
- M12-connector models are available, saving on labor and simplifying maintenance.
- Standardized gold-clad contacts provide high contact reliability.
Can be used with both standard loads and microloads.
- Free of lead, cadmium, and hexavalent chrome, reducing the burden on the environment.
- Conforms to EN115 and EN81-1.
- Lineup includes both slow-action and snap-action models with Zb contacts.
Be sure to read the Safety Precautions on page G-237.


## Model Number Structure

## Model Number Legend

## D4N- $\frac{\square}{1} \frac{\square}{2} \frac{\square}{3}$

1. Conduit/Connector size

1: Pg13.5 (1-conduit)
2: G1/2 (1-conduit)
3: 1/2-14NPT (1-conduit)
4: M20 (1-conduit)
5: Pg13.5 (2-conduit)
6: G1/2 (2-conduit)
7: 1/2-14NPT (2-conduit)
8: M20 (2-conduit)
9: M12 connector (1-conduit)
2. Built-in Switch

1: 1NC/1NO (snap-action)
2: 2NC (snap-action)
A: $1 \mathrm{NC} / 1 \mathrm{NO}$ (slow-action)
B: 2NC (slow-action)
C: 2NC/1NO (slow-action)
D: 3NC (slow-action)
E: $1 \mathrm{NC} / 1 \mathrm{NO}$ (MBB contact-/-slow-action)
F: 2NC/1NO (MBB contact-/-slow-action)
3. Head and Actuator

20: Roller lever (resin lever, resin roller)
22: Roller lever (metal lever, resin roller)
25: Roller lever (metal lever, metal roller)
26: Roller lever (metal lever, bearing roller)
2G: Adjustable roller lever, form lock (metal lever, resin roller)
2H: Adjustable roller lever, form lock (metal lever, rubber roller)

32: Top roller plunger
62: One-way roller arm lever (horizontal)
72: One-way roller arm lever (vertical)
80: Cat whisker
87: Plastic rod
RE: Fork lever lock (right operation)
LE: Fork lever lock (left operation)

## Ordering Information

## List of Models

Switches with Two Contacts

Actuator	Conduit size		Built-in switch mechanism							
			1NC/1NO (Snapaction)		$\underset{\text { (Snap-action) }}{\text { 2NC }}$		1NC/1NO (Slowaction)		2NC(Slow-action)	
			Direct opening	Model						
Roller lever (resin lever, resin roller)	1-conduit	Pg13.5	$\Theta$	D4N-1120	$\Theta$	D4N-1220	$\Theta$	D4N-1A20	$\Theta$	D4N-1B20
		G1/2		D4N-2120		D4N-2220		D4N-2A20		D4N-2B20
		1/2-14NPT		D4N-3120		D4N-3220		D4N-3A20		D4N-3B20
		M20		D4N-4120		D4N-4220		D4N-4A20		D4N-4B20
		M12 connector		D4N-9120		D4N-9220		D4N-9A20		D4N-9B20
	2-conduit	Pg13.5	$\Theta$	D4N-5120	$\Theta$	D4N-5220	$\Theta$	D4N-5A20	$\Theta$	D4N-5B20
		G1/2		D4N-6120		D4N-6220		D4N-6A20		D4N-6B20
		M20		D4N-8120		D4N-8220		D4N-8A20		D4N-8B20
Roller lever (metal lever, resin roller)	1-conduit	Pg13.5	$\Theta$	D4N-1122	$\Theta$	D4N-1222	$\Theta$	D4N-1A22	$\Theta$	D4N-1B22
		G1/2		D4N-2122		D4N-2222		D4N-2A22		D4N-2B22
		1/2-14NPT		D4N-3122		D4N-3222		D4N-3A22		D4N-3B22
		M20		D4N-4122		D4N-4222		D4N-4A22		D4N-4B22
		M12 connector		D4N-9122		D4N-9222		D4N-9A22		D4N-9B22
	2-conduit	Pg13.5	$\Theta$	D4N-5122	$\Theta$	D4N-5222	$\Theta$	D4N-5A22	$\Theta$	D4N-5B22
		G1/2		D4N-6122		D4N-6222		D4N-6A22		D4N-6B22
		M20		D4N-8122		D4N-8222		D4N-8A22		D4N-8B22
Roller lever (metal lever, metal roller)	1-conduit	Pg13.5	$\Theta$	D4N-1125	$\Theta$	D4N-1225	$\Theta$	D4N-1A25	$\Theta$	D4N-1B25
		G1/2		D4N-2125		D4N-2225		D4N-2A25		D4N-2B25
		1/2-14NPT		D4N-3125		D4N-3225		D4N-3A25		D4N-3B25
		M20		D4N-4125		D4N-4225		D4N-4A25		D4N-4B25
		M12 connector		D4N-9125		D4N-9225		D4N-9A25		D4N-9B25
Roller lever (metal lever, bearing roller)	1-conduit	Pg13.5	$\Theta$	D4N-1126	$\Theta$	D4N-1226	$\Theta$	D4N-1A26	$\Theta$	D4N-1B26
		G1/2		D4N-2126		D4N-2226		D4N-2A26		D4N-2B26
		1/2-14NPT		D4N-3126		D4N-3226		D4N-3A26		D4N-3B26
		M20		D4N-4126		D4N-4226		D4N-4A26		D4N-4B26
		M12 connector		D4N-9126		D4N-9226		D4N-9A26		D4N-9B26
Plunger   -	1-conduit	Pg13.5	$\Theta$	D4N-1131	$\Theta$	D4N-1231	$\bigcirc$	D4N-1A31	$\bigcirc$	D4N-1B31
		G1/2		D4N-2131		D4N-2231		D4N-2A31		D4N-2B31
		1/2-14NPT		D4N-3131		D4N-3231		D4N-3A31		D4N-3B31
		M20		D4N-4131		D4N-4231		D4N-4A31		D4N-4B31
		M12 connector		D4N-9131		D4N-9231		D4N-9A31		D4N-9B31
	2-conduit	Pg13.5	$\Theta$	D4N-5131	$\Theta$	D4N-5231	$\Theta$	D4N-5A31	$\Theta$	D4N-5B31
		G1/2		D4N-6131		D4N-6231		D4N-6A31		D4N-6B31
		M20		D4N-8131		D4N-8231		D4N-8A31		D4N-8B31
Roller plunger	1-conduit	Pg13.5	$\Theta$	D4N-1132	$\Theta$	D4N-1232	$\Theta$	D4N-1A32	$\Theta$	D4N-1B32
		G1/2		D4N-2132		D4N-2232		D4N-2A32		D4N-2B32
		1/2-14NPT		D4N-3132		D4N-3232		D4N-3A32		D4N-3B32
		M20		D4N-4132		D4N-4232		D4N-4A32		D4N-4B32
		M12 connector		D4N-9132		D4N-9232		D4N-9A32		D4N-9B32
	2-conduit	Pg13.5	$\Theta$	D4N-5132	$\Theta$	D4N-5232	$\Theta$	D4N-5A32	$\bigcirc$	D4N-5B32
		G1/2		D4N-6132		D4N-6232		D4N-6A32		D4N-6B32
		M20		D4N-8132		D4N-8232		D4N-8A32		D4N-8B32
One-way roller arm lever (horizontal)	1-conduit	Pg13.5	$\Theta$	D4N-1162	$\Theta$	D4N-1262	$\Theta$	D4N-1A62	$\Theta$	D4N-1B62
		G1/2		D4N-2162		D4N-2262		D4N-2A62		D4N-2B62
		1/2-14NPT		D4N-3162		D4N-3262		D4N-3A62		D4N-3B62
		M20		D4N-4162		D4N-4262		D4N-4A62		D4N-4B62
		M12 connector		D4N-9162		D4N-9262		D4N-9A62		D4N-9B62
	2-conduit	Pg13.5	$\Theta$	D4N-5162	$\Theta$	D4N-5262	$\Theta$	D4N-5A62	$\leftrightarrow$	D4N-5B62
		G1/2		D4N-6162		D4N-6262		D4N-6A62		D4N-6B62
		M20		D4N-8162		D4N-8262		D4N-8A62		D4N-8B62

Prefered types

Actuator	Conduit size		Built-in switch mechanism							
			1NC/1NO (Snapaction)		2NC(Snap-action)		1NC/1NO (Slowaction)		$\underset{\text { (Sow-action) }}{\text { 2NC }}$	
			$\begin{array}{\|c\|} \hline \text { Direct } \\ \text { opening } \end{array}$	Model	$\begin{array}{\|c\|} \hline \text { Direct } \\ \text { opening } \end{array}$	Model	$\begin{array}{\|c\|} \hline \text { Direct } \\ \text { opening } \end{array}$	Model	$\begin{array}{\|c\|} \hline \text { Direct } \\ \text { opening } \\ \hline \end{array}$	Model
One-way roller arm lever (vertical)	1-conduit	Pg13.5	$\Theta$	D4N-1172	$\Theta$	D4N-1272	$\Theta$	D4N-1A72	$\Theta$	D4N-1B72
		G1/2		D4N-2172		D4N-2272		D4N-2A72		D4N-2B72
		1/2-14NPT		D4N-3172		D4N-3272		D4N-3A72		D4N-3B72
		M20		D4N-4172		D4N-4272		D4N-4A72		D4N-4B72
		M12 connector		D4N-9172		D4N-9272		D4N-9A72		D4N-9B72
	2-conduit	Pg13.5	$\Theta$	D4N-5172	$\Theta$	D4N-5272	$\Theta$	D4N-5A72	$\Theta$	D4N-5B72
		G1/2		D4N-6172		D4N-6272		D4N-6A72		D4N-6B72
		M20		D4N-8172		D4N-8272		D4N-8A72		D4N-8B72
Adjustable roller lever, form lock (metal lever, resin roller)	1-conduit	Pg13.5	$\Theta$	D4N-112G	$\Theta$	D4N-122G	$\Theta$	D4N-1A2G	$\Theta$	D4N-1B2G
		G1/2		D4N-212G		D4N-222G		D4N-2A2G		D4N-2B2G
		1/2-14NPT		D4N-312G		D4N-322G		D4N-3A2G		D4N-3B2G
		M20		D4N-412G		D4N-422G		D4N-4A2G		D4N-4B2G
		M12 connector		D4N-912G		D4N-922G		D4N-9A2G		D4N-9B2G
	2-conduit	G1/2	$\Theta$	D4N-612G	$\Theta$	D4N-622G	$\Theta$	D4N-6A2G	$\Theta$	D4N-6B2G
		M20		D4N-812G		D4N-822G		D4N-8A2G		D4N-8B2G
Adjustable roller lever, form lock (metal lever, rubber roller)	1-conduit	Pg13.5	$\Theta$	D4N-112H	$\Theta$	D4N-122H	$\Theta$	D4N-1A2H	$\Theta$	D4N-1B2H
		G1/2		D4N-212H		D4N-222H		D4N-2A2H		D4N-2B2H
		1/2-14NPT		D4N-312H		D4N-322H		D4N-3A2H		D4N-3B2H
		M20		D4N-412H		D4N-422H		D4N-4A2H		D4N-4B2H
		M12 connector		D4N-912H		D4N-922H		D4N-9A2H		D4N-9B2H
	2-conduit	G1/2	$\Theta$	D4N-612H	$\Theta$	D4N-622H	$\Theta$	D4N-6A2H	$\Theta$	D4N-6B2H
		M20		D4N-812H		D4N-822H		D4N-8A2H		D4N-8B2H

- Prefered types

Note: It is recommended that M20 be used for Switches to be exported to Europe and $1 / 2-14$ NPT be used for Switches to be exported to North American countries.

Switches with Three Contacts and MBB Contacts

Actuator	Conduit size		Built-in switch mechanism							
			2NC/1NO (Snapaction)		3NC(Snap-action)		1NC/1NO MBB (Slow-action)		2NC/1NO MBB (Slow-action)	
			Direct opening	Model						
Roller lever (resin lever, resin roller)	1-conduit	Pg13.5	$\Theta$	D4N-1C20	$\Theta$	D4N-1D20	$\Theta$	D4N-1E20	$\Theta$	D4N-1F20
		G1/2		D4N-2C20		D4N-2D20		D4N-2E20		D4N-2F20
		1/2-14NPT		D4N-3C20		D4N-3D20		D4N-3E20		D4N-3F20
		M20		D4N-4C20		D4N-4D20		D4N-4E20		D4N-4F20
		M12 connector		---		---		D4N-9E20		---
	2-conduit	Pg13.5	$\Theta$	D4N-5C20	$\Theta$	D4N-5D20	$\Theta$	D4N-5E20	$\Theta$	D4N-5F20
		G1/2		D4N-6C20		D4N-6D20		D4N-6E20		D4N-6F20
		M20		D4N-8C20		D4N-8D20		D4N-8E20		D4N-8F20
Roller lever (metal lever, resin roller)	1-conduit	Pg13.5	$\Theta$	D4N-1C22	$\Theta$	D4N-1D22	$\Theta$	D4N-1E22	$\Theta$	D4N-1F22
		G1/2		D4N-2C22		D4N-2D22		D4N-2E22		D4N-2F22
		1/2-14NPT		D4N-3C22		D4N-3D22		D4N-3E22		D4N-3F22
		M20		D4N-4C22		D4N-4D22		D4N-4E22		D4N-4F22
		M12 connector		---		---		D4N-9E22		---
	2-conduit	Pg13.5	$\Theta$	D4N-5C22	$\Theta$	D4N-5D22	$\bigcirc$	D4N-5E22	$\Theta$	D4N-5F22
		G1/2		D4N-6C22		D4N-6D22		D4N-6E22		D4N-6F22
		M20		D4N-8C22		D4N-8D22		D4N-8E22		D4N-8F22
Roller lever (metal lever, metal roller)	1-conduit	Pg13.5	$\Theta$	D4N-1C25	$\Theta$	D4N-1D25	$\Theta$	D4N-1E25	$\Theta$	D4N-1F25
		G1/2		D4N-2C25		D4N-2D25		D4N-2E25		D4N-2F25
		1/2-14NPT		D4N-3C25		D4N-3D25		D4N-3E25		D4N-3F25
		M20		D4N-4C25		D4N-4D25		D4N-4E25		D4N-4F25
		M12 connector		---		---		D4N-9E25		---

Prefered types

Actuator	Conduit size		Built-in switch mechanism							
			2NC/1NO (Snap-action)		3NC (Snap-action)		1NC/1NO MBB (Slow-action)		2NC/1NO MBB (Slow-action)	
			Direct opening	Model						
Roller lever (metal lever, bearing roller)	1-conduit	Pg13.5	$\Theta$	D4N-1C26	$\Theta$	D4N-1D26	$\Theta$	D4N-1E26	$\Theta$	D4N-1F26
		G1/2		D4N-2C26		D4N-2D26		D4N-2E26		D4N-2F26
		1/2-14NPT		D4N-3C26		D4N-3D26		D4N-3E26		D4N-3F26
		M20		D4N-4C26		D4N-4D26		D4N-4E26		D4N-4F26
		M12 connector		---		---		D4N-9E26		---
Plunger$\qquad$	1-conduit	Pg13.5	$\Theta$	D4N-1C31	$\Theta$	D4N-1D31	$\Theta$	D4N-1E31	$\Theta$	D4N-1F31
		G1/2		D4N-2C31		D4N-2D31		D4N-2E31		D4N-2F31
		1/2-14NPT		D4N-3C31		D4N-3D31		D4N-3E31		D4N-3F31
		M20		D4N-4C31		D4N-4D31		D4N-4E31		D4N-4F31
		M12 connector		---		---		D4N-9E31		---
	2-conduit	Pg13.5	$\Theta$	D4N-5C31	$\Theta$	D4N-5D31	$\Theta$	D4N-5E31	$\Theta$	D4N-5F31
		G1/2		D4N-6C31		D4N-6D31		D4N-6E31		D4N-6F31
		M20		D4N-8C31		D4N-8D31		D4N-8E31		D4N-8F31
Roller plunger \&	1-conduit	Pg13.5	$\Theta$	D4N-1C32	$\Theta$	D4N-1D32	$\Theta$	D4N-1E32	$\Theta$	D4N-1F32
		G1/2		D4N-2C32		D4N-2D32		D4N-2E32		D4N-2F32
		1/2-14NPT		D4N-3C32		D4N-3D32		D4N-3E32		D4N-3F32
		M20		D4N-4C32		D4N-4D32		D4N-4E32		D4N-4F32
		M12 connector		---		---		D4N-9E32		---
	2-conduit	Pg13.5	$\Theta$	D4N-5C32	$\Theta$	D4N-5D32	$\Theta$	D4N-5E32	$\Theta$	D4N-5F32
		G1/2		D4N-6C32		D4N-6D32		D4N-6E32		D4N-6F32
		M20		D4N-8C32		D4N-8D32		D4N-8E32		D4N-8F32
One-way roller arm lever (horizontal)	1-conduit	Pg13.5	$\Theta$	D4N-1C62	$\Theta$	D4N-1D62	$\Theta$	D4N-1E62	$\Theta$	D4N-1F62
		G1/2		D4N-2C62		D4N-2D62		D4N-2E62		D4N-2F62
		1/2-14NPT		D4N-3C62		D4N-3D62		D4N-3E62		D4N-3F62
		M20		D4N-4C62		D4N-4D62		D4N-4E62		D4N-4F62
		M12 connector		---		---		D4N-9E62		----
	2-conduit	Pg13.5	$\Theta$	D4N-5C62	$\Theta$	D4N-5D62	$\Theta$	D4N-5E62	$\Theta$	D4N-5F62
		G1/2		D4N-6C62		D4N-6D62		D4N-6E62		D4N-6F62
		M20		D4N-8C62		D4N-8D62		D4N-8E62		D4N-8F62
One-way roller arm lever (vertical)	1-conduit	Pg13.5	$\Theta$	D4N-1C72	$\Theta$	D4N-1D72	$\Theta$	D4N-1E72	$\Theta$	D4N-1F72
		G1/2		D4N-2C72		D4N-2D72		D4N-2E72		D4N-2F72
		1/2-14NPT		D4N-3C72		D4N-3D72		D4N-3E72		D4N-3F72
		M20		D4N-4C72		D4N-4D72		D4N-4E72		D4N-4F72
		M12 connector		---		---		D4N-9E72		---
	2-conduit	Pg13.5	$\Theta$	D4N-5C72	$\Theta$	D4N-5D72	$\Theta$	D4N-5E72	$\Theta$	D4N-5F72
		G1/2		D4N-6C72		D4N-6D72		D4N-6E72		D4N-6F72
		M20		D4N-8C72		D4N-8D72		D4N-8E72		D4N-8F72
Adjustable roller lever, form lock (metal lever, resin roller)	1-conduit	Pg13.5	$\Theta$	D4N-1C2G	$\Theta$	D4N-1D2G	$\Theta$	D4N-1E2G	$\Theta$	D4N-1F2G
		G1/2		D4N-2C2G		D4N-2D2G		D4N-2E2G		D4N-2F2G
		1/2-14NPT		D4N-3C2G		D4N-3D2G		D4N-3E2G		D4N-3F2G
		M20		D4N-4C2G		D4N-4D2G		D4N-4E2G		D4N-4F2G
		M12 connector		---		---		D4N-9E2G		---
	2-conduit	G1/2	$\Theta$	D4N-6C2G	$\Theta$	D4N-6D2G	$\Theta$	D4N-6E2G	$\bigcirc$	D4N-6F2G
		M20		D4N-8C2G		D4N-8D2G		D4N-8E2G		D4N-8F2G
Adjustable roller lever, form lock (metal lever, rubber roller)	1-conduit	Pg13.5	$\Theta$	D4N-1C2H	$\Theta$	D4N-1D2H	$\Theta$	D4N-1E2H	$\Theta$	D4N-1F2H
		G1/2		D4N-2C2H		D4N-2D2H		D4N-2E2H		D4N-2F2H
		1/2-14NPT		D4N-3C2H		D4N-3D2H		D4N-3E2H		D4N-3F2H
		M20		D4N-4C2H		D4N-4D2H		D4N-4E2H		D4N-4F2H
		M12 connector		---		---		D4N-9E2H		---
	2-conduit	G1/2	$\Theta$	D4N-6C2H	$\Theta$	D4N-6D2H	$\Theta$	D4N-6E2H	$\Theta$	D4N-6F2H
		M20		D4N-8C2H		D4N-8D2H		D4N-8E2H		D4N-8F2H

- Prefered types

Note: It is recommended that M20 be used for Switches to be exported to Europe and $1 / 2-14$ NPT be used for Switches to be exported to North American countries.

General-purpose Switches with Two Contacts


Prefered types
Note: 1. It is recommended that M20 be used for Switches to be exported to Europe and $1 / 2-14$ NPT be used for Switches to be exported to North American countries.
2. Mechanically speaking, these models are basic limit switches.

General-purpose Switches with Three Contacts and MBB Contacts

Actuator	Conduit size		Built-in switch mechanism							
			Direct opening	2NC/1NO (Slow-action)	Direct opening	3NC (Slow-action)	Direct opening	1NC/1NO MBB (Slow-action)	Direct opening	2NC/1NO MBB (Slow-action)
Fork lever lock (right operation)	1-conduit	G1/2	---	D4N-2CRE	---	D4N-2DRE	---	D4N-2ERE	---	D4N-2FRE
		1/2-14NPT		D4N-3CRE		D4N-3DRE		D4N-3ERE		D4N-3FRE
		M20		D4N-4CRE		D4N-4DRE		D4N-4ERE		D4N-4FRE
	2-conduit	G1/2	---	D4N-6CRE	---	D4N-6DRE	---	D4N-6ERE	---	D4N-6FRE
		M20		D4N-8CRE		D4N-8DRE		D4N-8ERE		D4N-8FRE
Fork lever lock (left operation)	1-conduit	G1/2	---	D4N-2CLE	---	D4N-2DLE	---	D4N-2ELE	---	D4N-2FLE
		1/2-14NPT		D4N-3CLE		D4N-3DLE		D4N-3ELE		D4N-3FLE
		M20		D4N-4CLE		D4N-4DLE		D4N-4ELE		D4N-4FLE
	2-conduit	G1/2	---	D4N-6CLE	---	D4N-6DLE	---	D4N-6ELE	---	D4N-6FLE
		M20		D4N-8CLE		D4N-8DLE		D4N-8ELE		D4N-8FLE
Cat whisker	1-conduit	G1/2	---	---	---	D4N-2D80	---	---	---	---
		1/2-14NPT				D4N-3D80				
		M20				D4N-4D80				
	2-conduit	G1/2	---		---	D4N-6D80	---		---	
		M20				D4N-8D80				
Plastic rod	1-conduit	G1/2	---		---	D4N-2D87	---		---	
		1/2-14NPT				D4N-3D87				
		M20				D4N-4D87				
	2-conduit	G1/2	---		---	D4N-6D87	---		---	
		M20				D4N-8D87				

Note: 1. It is recommended that M20 be used for Switches to be exported to Europe and $1 / 2-14 N P T$ be used for Switches to be exported to North American countries
2. Mechanically speaking, these models are basic limit switches.

Do not use general purpose switch models for applications that require form lock for safety reasons

## Specifications

Standards and EC Directives

- Conforms to the following EC Directives:

Machinery Directive
Low Voltage Directive
EN50047
EN1088 (slow-action models only)
GS-ET-15
Approved Standards

Agency	Standard	File No.
TÜV Product   Service	EN60947-5-1 (approved   direct opening)	B03 1139656   061
UL (See note.)	UL508, CSA C22.2 No.14	E76675

Note: Approval for CSA C22.2 No. 14 is authorized by the UL mark.
CCC (China Compulsory Certification) Mark

Agency	Standard	File No.
CQC	GB14048.5	Under applica-   tion

## Approved Standard Ratings

TÜV (EN60947-5-1)

ItemUtilization   category	AC-15	DC-13
Rated operating current $\left(\mathbf{I}_{e}\right)$	3 A	0.27 A
Rated operating voltage $\left(\mathbf{U}_{\mathrm{e}}\right)$	240 V	250 V

Note: Use a 10-A fuse type gI or gG that conforms to IEC269 as a short-circuit protection device. This fuse is not built into the Switch.
UL/CSA (UL508, CSA C22.2 No. 14)
A300

Rated   voltage	Carry current	Current		Volt-amperes	
		Make	Break	Make	Break
120 VAC	10 A	60 A	6 A	$7,200 \mathrm{VA}$	720 VA
240 VAC		30 A	3 A		

Q300

Rated   voltage	Carry current	Current		Volt-amperes	
		Make	Break	Make	Break
125 VDC	2.5 A	0.55 A	0.55 A	69 VA	69 VA
250 VDC		0.27 A	0.27 A		

## Characteristics

Degree of protection (See note 3.)		IP67 (EN60947-5-1)
Durability   (See note 4.)	Mechanical	15,000,000 operations min. (See note 7.)
	Electrical	500,000 operations min. for a resistive load of 3 A at 250 VAC (See note 5.) 300,000 operations min. for a resistive load of 10 A at 250 VAC
Operating speed		$1 \mathrm{~mm} / \mathrm{s}$ to $0.5 \mathrm{~m} / \mathrm{s}$ (D4-1120)
Operating frequency		30 operations/minute max.
Contact resistance		$25 \mathrm{~m} \Omega$ max.
Minimum applicable load (See note 6.)		Resistive load of 1 mA at 5 VDC ( N -level reference value)
Rated insulation voltage ( $\mathrm{U}_{\mathrm{i}}$ )		300 V
Protection against electric shock		Class II (double insulation)
Pollution degree (operating environment)		Level 3 (EN60947-5-1)
Impulse withstand voltage (EN60947-5-1)		Between terminals of the same polarity: 2.5 kV
		Between terminals of different polarities: 4 kV
		Between other terminals and uncharged metallic parts : 6 kV
Insulation resistance		100 M / min.
Contact gap		Snap-action: $2 \times 0.5 \mathrm{~mm}$ min Slow-action: $2 \times 2 \mathrm{~mm}$ min
Vibration resistance	Malfunction	10 to $55 \mathrm{~Hz}, 0.75-\mathrm{mm}$ single amplitude
Shock resistance	Destruction	$1,000 \mathrm{~m} / \mathrm{s}^{2} \mathrm{~min}$.
	Malfunction	$300 \mathrm{~m} / \mathrm{s}^{2} \mathrm{~min}$.
Conditional short-circuit current		100 A (EN60947-5-1)
Rated open thermal current ( $\mathrm{I}_{\mathrm{th}}$ )		10 A (EN60947-5-1)
Ambient temperature		Operating: $30^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ with no icing
Ambient humidity		Operating: 95\% max.
Weight		Approx. 82 g (D4N-1120) Approx. 99 g (D4N-5120)

Note: 1. The above values are initial values.
2. Once a contact has been used to switch a standard load, it cannot be used for a load of a smaller capacity. Doing so may result in roughening of the contact surface and contact reliability may be lost.
3. The degree of protection is tested using the method specified by the standard (EN60947-5-1). Confirm that sealing properties are sufficient for the operating conditions and environment beforehand. Although the switch box is protected from dust or water penetration, do not use the D4N in places where foreign material such as dust, dirt, oil, water, or chemicals may penetrate through the head. Otherwise, premature wear, Switch damage or malfunctioning may occur.
4. The durability is for an ambient temperature of $5^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$ and an ambient humidity of $40 \%$ to $70 \%$. For more details, consult your OMRON representative.
5. If the ambient temperature is greater than $35^{\circ} \mathrm{C}$, do not pass the $3-\mathrm{A}, 250-\mathrm{VAC}$ load through more than 2 circuits.
6. This value will vary with the switching frequency, environment, and reliability level. Confirm that correct operation is possible with the actual load beforehand.
7. The mechanical durability of fork lever lock models is $10,000,000$ operations min.

## Structure

 Switches with three contacts.

## Direct Opening Mechanism

1NC/1NO Contact (Slow-action)


Conforms to EN60947-5-1 Direct Opening Operation $\Theta$
(Only the NC contact side has a direct opening mechanism.)
When metal deposition occurs, the contacts are separated from each other by the plunger being pushed in.

## 2NC Contact (Slow-action)



Conforms to EN60947-5-1 Direct Opening Operation $\Theta$
(Both NC contacts have a direct opening mechanism.)

Contact Form

Model	Contact	Contact form		Operating pattern		Remarks
D4N- $\square 1 \square$	1NC/1NO (Snap-action)		$\begin{aligned} & 13-14 \\ & 31-32 \end{aligned}$		$\square \mathrm{ON}$	Only NC contacts 31-32 have an approved direct opening mechanism.   The terminals 13-14 and 31-32 can be used as unlike poles.
D4N- $\square 2 \square$	2NC (Snap-action)		$\begin{aligned} & 11-12 \\ & 31-32 \end{aligned}$		$\square \mathrm{ON}$	Only NC contacts 11-12 and 31-32 have an approved direct opening mechanism. The terminals 11-12 and 31-32 can be used as unlike poles.
D4N- $\square$ A $\square$	$\begin{aligned} & \text { 1NC/1NO (Slow-ac- } \\ & \text { tion) } \end{aligned}$		$\begin{aligned} & 11-12 \\ & 33-34 \end{aligned}$		$\square \mathrm{ON}$	Only NC contacts 11-12 have an approved direct opening mechanism.   The terminals 11-12 and 33-34 can be used as unlike poles.
D4N- $\square$ B $\square$	2NC (Slow-action)		$\begin{aligned} & 11-12 \\ & 31-32 \end{aligned}$		$\square \mathrm{ON}$	Only NC contacts 11-12 and 31-32 have an approved direct opening mechanism. The terminals 11-12 and 31-32 can be used as unlike poles.
D4N- $\square \mathrm{C} \square$	2NC/1NO (Slow-action)		$\begin{aligned} & 11-12 \\ & 21-22 \\ & 33-34 \end{aligned}$		$\square \mathrm{ON}$	Only NC contacts 11-12 and 21-22 have an approved direct opening mechanism.   The terminals 11-12, 21-22, and 33-34 can be used as unlike poles.
D4N- $\square \square \square$	3NC (Slow-action)	212	$\begin{aligned} & 11-12 \\ & 21-22 \\ & 31-32 \end{aligned}$	$\square$	$\square \mathrm{ON}$	Only NC contacts 11-12, 21-22, and 31-32 have an approved direct opening mechanism.   The terminals 11-12, 21-22, and 31-32 can be used as unlike poles.
D4N- $\square \mathrm{E} \square$	1NC/1NO MBB (Slow-action)		$\begin{aligned} & 11-12 \\ & 33-34 \end{aligned}$		$\square \mathrm{ON}$	Only NC contacts 11-12 have an approved direct opening mechanism.   The terminals 11-12 and 33-34 can be used as unlike poles.
D4N- $\square \mathrm{F} \square$	2NC/1NO MBB (Slow-action)		$\begin{aligned} & 11-12 \\ & 21-22 \\ & 33-34 \end{aligned}$		$\square \circ \mathrm{N}$	Only NC contacts 11-12 and 21-22 have an approved direct opening mechanism.   The terminals 11-12, 21-22 and 33-34 can be used as unlike poles.

Note: 1. Terminals are numbered according to EN50013 and the contact forms are according to IEC947-5-1.
2. MBB (Make Before Break) contacts have an overlapping structure, so that before the normally closed contact (NC) opens, the normally open contact (NO) closes.

## Dimensions

## Switches

Note: All units are in millimeters unless otherwise indicated.
1-conduit Models

Roller Lever (Resin Lever, Resin Roller)


Roller Lever (Metal Lever, Metal Roller)


Roller Lever (Metal Lever, Resin Roller)
D4N-1 $\square 22 \quad$ D4N-2 $\square 22$


Roller Lever (Metal Lever, Bearing Roller)


Note: 1. Unless otherwise specified, a tolerance of $\pm 0.4 \mathrm{~mm}$ applies to all dimensions.
2. Refer to page G-231 for details on M12 connectors.

Snap-action (1NC/1NO) (2NC), Slow-action (2NC) (3NC)

Model	D4N- $\square 120$ D4N- 220 D4N- B20 D4N- -D 20	D4N- -122 D4N- 222 D4N- D4N $-\square \mathbf{D 2 2}$	D4N- 125 D4N- 225 D4N- D4N $-\square \mathbf{D 2 5}$	D4N- $\square 126$ D4N- -226 D4N- 226 D4N- D26
OF max.	5.0 N			
RF min.	0.5 N			
PT	$18^{\circ}$ to $27^{\circ}$			
OT min.	$40^{\circ}$			
MD max. (See note 2.)	$14^{\circ}$			
OP	---			
$\begin{aligned} & \mathrm{TT} \\ & \text { (See note 3.) } \end{aligned}$	(80 ${ }^{\circ}$ )			
DOT min. (See note 4.)	$50^{\circ}$			
DOF min. (See note 4.)	20 N			

Note: 1. Variation occurs in the simultaneity of contact opening/closing operations of $2 \mathrm{NC}, 2 \mathrm{NC} / 1 \mathrm{NO}$, and 3 NC contacts. Check contact operation.
2. Only for snap-action models.
3. Reference value.
4.

Only for slow-action models. For safe use, always make sure that the minimum values or greater are provided.

Slow-action (1NC/1NO) (2NC/1NO)

Model	$\begin{aligned} & \text { D4N- A20 } \\ & \text { D4N- C20 } \\ & \text { D4N- } 220 \\ & \text { D4N- }-720 \end{aligned}$	D4N- $\square$ A22 D4N- C22 D4N- - E22 D4N-	D4N- $\square$ A25 D4N- C25 D4N-■E25 D4N-	D4N- $\square$ A26 D4N- C26 D4N- E26 D4N- -726
OF max.	5.0 N			
RF min.	0.5 N			
$\begin{array}{\|l\|l} \text { PT } \\ \text { (See note 1.) } \end{array}$	$18^{\circ}$ to $27^{\circ}$			
PT (2nd) (See note 2.)	(44 ${ }^{\circ}$ )			
PT (See note 3.)	$27.5^{\circ}$ to $36.5^{\circ}$			
PT (2nd) (See note 4.)	$\left(18^{\circ}\right)$			
OT min.	$40^{\circ}$			
OP	---			
TT (See note 5.)	$\left(80^{\circ}\right)$			
DOT min. (See note 6.)	$50^{\circ}$			
DOF min. (See note 6.)	20 N			

Note: 1. These PT values are possible when the NC contacts are open (OFF)
2. These PT values are possible when the NO contacts are closed (ON)
Only for MBB models
4. Reference values for MBB models only.
5. Reference values.

For safe use, always make sure that the minimum values or greater are provided.

1-conduit Models

## Plunger

D4N-1 $\square 31 \quad$ D4N-2 $\square 31$
D4N-3 $\square 31 \quad$ D4N-4 $\square 31$
D4N-9 $\square 31$ (See note 2.)


Two, $3 \pm 0.05$ dia


One-way Roller Arm Lever (Horizontal)
D4N-1 $\square 62 \quad$ D4N-2 $\square 62$
D4N-3 $\square 62 \quad$ D4N-4 $\square 62$
D4N-9 $\square 62$ (See note 2.)


## Roller Plunger

D4N-1 $\square 32 \quad$ D4N-2 $\square 32$
D4N-3 $\square 32 \quad$ D4N-4 $\square 32$
D4N-9 $\square 32$ (See note 2.)


One-way Roller Arm Lever
(Vertical)
$\begin{array}{lr}\text { D4N-1 } \square 72 & \text { D4N-2 } \square 72 \\ \text { D4N-3 } \square 72 & \text { D4N-4 } \square 72 \\ \text { D4N-9 }\end{array}$
D4N-9 $\square 72$ (See note 2.)


Note: 1. Unless otherwise specified, a tolerance of $\pm 0.4 \mathrm{~mm}$ applies to all dimensions.
2. Refer to page G-231 for details on M12 connectors.

Snap-action (1NC/1NO) (2NC), Slow-action (2NC) (3NC)

Model		D4N- $\square 132$   D4N-   D4N2   D4N- B32   D4N-	D4N-D162   D4N- 262   D4N-DB2   D4N-	
OF max.	6.5 N	6.5 N	5.0 N	5.0 N
RF min.	1.5 N	1.5 N	0.8 N	0.8 N
PT max.	2 mm	2 mm	4 mm	4 mm
OT min.	4 mm	4 mm	5 mm	5 mm
MD max. (See note 2.)	1 mm	1 mm	1.5 mm	1.5 mm
OP	$\begin{aligned} & 18.2 \\ & \pm 0.5 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 28.6 \\ & \pm 0.8 \mathrm{~mm} \end{aligned}$	$37 \pm 0.8 \mathrm{~mm}$	$27 \pm 0.8 \mathrm{~mm}$
TT (See note 3.)	(6 mm)	(6 mm)	(9 mm)	(9 mm)
DOT min. (See note 4.)	3.2 mm	3.2 mm	5.8 mm	4.8 mm
DOF min. (See note 4.)	20 N	20 N	20 N	20 N

Slow-action (1NC/1NO) (2NC/1NO)

Model	D4N-DA31    D4N-DC31    DNN-DE31    D4N- F31	D4N- C 32 D4N-C32 D4N-DE32 D4N- F 32	D4N- $\square$ A62   D4N- C62   D4N- E 62   D4N- F 62	D4N- $\square$ A72   D4N- C72   D4N-   D4N   D4N
OF max.	6.5 N	6.5 N	5.0 N	5.0 N
RF min.	1.5 N	1.5 N	0.8 N	0.8 N
PT max. (See note 1.)	2 mm	2 mm	4 mm	4 mm
$\begin{array}{\|l\|} \hline \text { PT (2nd) } \\ \text { (See note 2.) } \end{array}$	(2.9 mm)	(2.9 mm)	( 5.2 mm )	(4.3 mm)
PT max. (See note 3.)	2.8 mm	2.8 mm	4 mm	4 mm
$\begin{array}{\|l\|} \hline \text { PT (2nd) } \\ \text { (See note 4.) } \\ \hline \end{array}$	( 1 mm )	(1 mm)	(1.5 mm)	(1.5 mm)
OT min.	4 mm	4 mm	5 mm	5 mm
OP	$\begin{aligned} & 18.2 \\ & \pm 0.5 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \hline 28.6 \\ & \pm 0.8 \mathrm{~mm} \end{aligned}$	$37 \pm 0.8 \mathrm{~mm}$	$27 \pm 0.8 \mathrm{~mm}$
OP   (See note 5.)	$\begin{aligned} & 17.4 \\ & \pm 0.5 \mathrm{~mm} \end{aligned}$	$28 \pm 0.8 \mathrm{~mm}$	$36 \pm 0.8 \mathrm{~mm}$	$\begin{aligned} & 26.1 \\ & \pm 0.8 \mathrm{~mm} \end{aligned}$
$\begin{array}{\|l\|} \hline \text { TT } \\ \text { (See note 6.) } \end{array}$	(6mm)	(6 mm)	(9 mm)	(9 mm)
DOT min. (See note 7.)	3.2 mm	3.2 mm	5.8 mm	4.8 mm
DOF min. (See note 7.)	20 N	20 N	20 N	20 N

Note: 1. Variation occurs in the simultaneity of contact opening/closing operations of 2NC, 2NC/1NO, and 3NC contacts. Check contact operation.
2. Only for snap-action models.
3. Reference value.
4. Only for slow-action models. For safe use, always make sure that the minimum values or greater are provided.

Note: 1. These PT values are possible when the NC contacts are open (OFF).
2. These PT values are possible when the NO contacts are closed (ON)
3. Only for MBB models.
4. Reference values for MBB models.
5. Only for MBB models.
6. Reference value.
7. ! For safe use, always make sure that the minimum values or greater are provided

## 1-conduit Models

Adjustable Roller Lever, Form Lock (with Metal Lever, Resin Roller)
D4N-1 $\square 2 G \quad$ D4N-2 $\square 2 G$
D4N-3 $\square 2 G \quad$ D4N-4 $\square 2 G$


Adjustable Roller Lever, Form Lock (with Metal Lever, Rubber Roller)


Note: 1. Unless otherwise specified, a tolerance of $\pm 0.4 \mathrm{~mm}$ applies to all dimensions.
2. Refer to following diagrams for details on M12 connectors.

Snap-action (1NC/1NO) (2NC), Slow-action (2NC) (3NC)

Model	D4N- 12 H D4N- 22H D4N- D4N D2H	D4N- $\square 12 \mathrm{G}$   D4N- $\square$ 22G   D4N-DB2G   D4N-DD2G   (See note 2.)
OF max.	4.5 N	
RF min.	0.4 N	
PT	$18^{\circ}$ to $27^{\circ}$	
OT min.	$40^{\circ}$	
MD max. (See note 3.)	$14^{\circ}$	
OP	---	
TT (See note 4.)	(80 ${ }^{\circ}$ )	
DOT min. (See note 5.)	$50^{\circ}$	
DOF min. (See note 5.)	20 N	

Note: 1. Variation occurs in the simultaneity of contact opening/closing operations of 2NC, 2NC/1NO, and 3NC contacts. Check contact operation.
2. The operating characteristics of these Switches were measured with the roller lever set at 32 mm .
3. Only for snap-action models.
4. Reference value.
5. Only for slow-action models. For safe use, always make sure that the minimum values or greater are provided.

Note: 1. The operating characteristics of these Switches were measured with the roller lever set at 32 mm .
2. This PT value is possible when the NC contacts are open (OFF).
3. This PT value is possible when the NO contacts are closed (ON).
4. Only for MBB models.
5. Reference value for MBB models only.
6. Reference value.
7.


For safe use, always make sure that the minimum values or greater are provided.

1-conduit M12 Connector
D4N-9


## 1-conduit Models

Fork Lever Lock
(Right Operation)
D4N-1 $\square$ RE $\quad$ D4N-2 $\square$ RE
D4N-3 $\square$ RE $\quad$ D4N-4 $\square$ RE


Cat Whisker
$\begin{array}{ll}\text { D4N-1 } \square 80 & \text { D4N-2 } \square 80 \\ \text { D4N-3 } \square 80 & \text { D4N-4 } \square 80\end{array}$


Fork Lever Lock
(Left Operation)
$\begin{array}{ll}\text { D4N-1 } \square L E & \text { D4N-2 } \square L E \\ \text { D4N-3 } \square \text { LE } & \text { D4N-4 } \square \text { LE }\end{array}$


Plastic Rod
D4N-1 $\square 87 \quad$ D4N-2 $\square 87$


Note: 1. Unless otherwise specified, a tolerance of $\pm 0.4 \mathrm{~mm}$ applies to all dimensions.
2. Use the dog within 35 mm of the tip of the actuator and keep the total travel to 70 mm or less.

Slow-action (1NC/1NO) (2NC/1NO) (2NC) (3NC)

Model	D4N- $\square \square R E$	D4N- $\square \square$ LE
Force necessary to reverse the   direction of the lever: max.	6.4 N	6.4 N
Movement until the lever revers-   es	$55 \pm 10^{\circ}$	$55 \pm 10^{\circ}$
Movement until switch operation   (NC)	$6.5^{\circ}$   (MBB: $\left.10^{\circ}\right)$	$6.5^{\circ}$   (MBB: $\left.10^{\circ}\right)$
Movement until switch operation   (NO)	$18.5^{\circ}$   (MBB: $\left.5^{\circ}\right)$	$18.5^{\circ}$   (MBB: $\left.5^{\circ}\right)$

Note: Variation occurs in the simultaneity of contact opening/closing operations of 2NC, 2NC/1NO, and 3NC contacts. Check contact operation.

Snap-action (1NC/1NO) (2NC), Slow-action (2NC) (3NC)

Model	D4N- $\square \square 80$	D4N- $\square \square 87$
OF max.	1.5 N	1.5 N
PT max.	$15^{\circ}$	$15^{\circ}$

## 2-conduit Models



Note: Unless otherwise specified, a tolerance of $\pm 0.4 \mathrm{~mm}$ applies to all dimensions
Snap-action (1NC/1NO) (2NC), Slow-action (2NC) (3NC)

Model	$\begin{aligned} & \text { D4N- } \square 120 \\ & \text { D4N- } \square 220 \\ & \text { D4N- } \square \mathbf{B 2 0} \\ & \text { D4N- } \square \mathbf{D 2 0} \end{aligned}$	D4N- $\square 122$ D4N- 222 D4N- D4N $-\square$ D22	D4N- 131 D4N- 231 D4N- B31 D4N- D31	D4N- 132   D4N- 232   D4N $-\square$ B32   D4N- D32
OF max.	5 N	5 N	6.5 N	6.5 N
RF min.	0.5 N	0.5 N	1.5 N	1.5 N
PT	$18^{\circ}$ to $27^{\circ}$	$18^{\circ}$ to $27^{\circ}$	2 mm	2 mm
OT min.	$40^{\circ}$	$40^{\circ}$	4 mm	4 mm
MD max. (See note 2.)	$14^{\circ}$	$14^{\circ}$	1 mm	1 mm
OP	---	---	$18 \pm 0.5 \mathrm{~mm}$	$28.2 \pm 0.8 \mathrm{~mm}$
TT (See note 3.)	(80 ${ }^{\circ}$ )	(80 ${ }^{\circ}$ )	(6 mm)	(6 mm)
DOT min. (See note 4.)	$50^{\circ}$	$50^{\circ}$	3.2 mm	3.2 mm
DOF min. (See note 4.)	20 N	20 N	20 N	20 N

Note: 1. Variation occurs in the simultaneity of contact opening/closing operations of $2 \mathrm{NC}, 2 \mathrm{NC} / 1 \mathrm{NO}$, and 3 NC contacts. Check contact operation.
2. Only for snap-action models.
3. Reference value.
4. Only for slow-action models. For safe use, always make sure that the minimum values or greater are provided.

Roller Lever (Metal Lever, Resin Roller)


Roller Plunger
D4N-5 $\square 32$
D4N-6 $\square 32$


Slow-action (1NC/1NO) (2NC/1NO)

Model	D4N- $\square$ A20 D4N- C20 D4N- $-\square 20$ D4N- F20	D4N- $\square \mathbf{A 2 2}$   D4N $-\square \mathbf{C 2 2}$   D4N- E22   D4N-	D4N- $\square$ A31 D4N- $\mathbf{C 3 1}$ D4N- D4N D F31	D4N- $\square$ A32 D4N $-\square \mathbf{C 3 2}$ D4N- D4N $-\square \mathbf{F 3 2}$
OF max.	5 N	5 N	6.5 N	6.5 N
RF min.	0.5 N	0.5 N	1.5 N	1.5 N
PT   (See note 1.)	$18^{\circ}$ to $27^{\circ}$	$18^{\circ}$ to $27^{\circ}$	2 mm	2 mm
PT (2nd) (See note 2.)	(44 ${ }^{\circ}$ )	(44 ${ }^{\circ}$ )	(2.9 mm)	(2.9 mm)
PT   (See note 3.)	$27.5^{\circ}$ to $36.5^{\circ}$	$27.5^{\circ}$ to $36.5^{\circ}$	2.8 mm	2.8 mm
PT (2nd) (See note 4.)	(18 ${ }^{\circ}$ )	(18 ${ }^{\circ}$ )	(1 mm)	(1 mm)
OT min.	$40^{\circ}$	$40^{\circ}$	4 mm	4 mm
OP	---	---	$18 \pm 0.5 \mathrm{~mm}$	$28.2 \pm 0.8 \mathrm{~mm}$
OP   (See note 5.)	---	---	$17.4 \pm 0.5 \mathrm{~mm}$	$28 \pm 0.8 \mathrm{~mm}$
$\begin{array}{\|l} \text { TT } \\ \text { (See note 6.) } \end{array}$	(80 ${ }^{\circ}$ )	(80 ${ }^{\circ}$ )	(6 mm)	(6 mm)
DOT min. (See note 7.)	$50^{\circ}$	$50^{\circ}$	3.2 mm	3.2 mm
DOF min. (See note 7.)	20 N	20 N	20 N	20 N

Note: 1. This PT value is possible when the NC contacts are open (OFF).
2. This PT value is possible when the NO contacts are closed (ON)
3. Only for MBB models
4. Reference value for MBB models.
5. Only for MBB models.
6. Reference value.
7. For safe use, always make sure that the minimum values or greater are provided.

## 2-conduit Models

## One-way Roller Arm Lever



Adjustable Roller Lever, Form Lock


Note: Unless otherwise specified, a tolerance of $\pm 0.4 \mathrm{~mm}$ applies to all dimensions.
Snap-action (1NC/1NO) (2NC), Slow-action (2NC) (3NC)

Model	D4N- $\square 162$ D4N- 262 D4N- B62 D4N- $-\square 62$	D4N- $\square 172$ D4N- 272 D4N- B72 D4N- $-\square 72$	$\begin{aligned} & \text { D4N- } \square 12 G \\ & \text { D4N- 22G } \\ & \text { D4N- B2G } \\ & \text { D4N- D2G } \\ & \text { (See note 2.) } \end{aligned}$	$\begin{aligned} & \hline \text { D4N- }-12 \mathrm{H} \\ & \text { D4N- } 22 \mathrm{H} \\ & \text { D4N- B2H } \\ & \text { D4N- D2H } \\ & \text { (See note 3.) } \end{aligned}$
OF max.	5.0 N	5.0 N	4.5 N	4.5 N
RF min.	0.8 N	0.8 N	0.4 N	0.4 N
PT max.	4 mm	4 mm	$18^{\circ}$ to $27^{\circ}$	$18^{\circ}$ to $27^{\circ}$
OT min.	5 mm	5 mm	$40^{\circ}$	$40^{\circ}$
MD max. (See note 4.)	1.5 mm	1.5 mm	$14^{\circ}$	$14^{\circ}$
OP	$37 \pm 0.8 \mathrm{~mm}$	$27 \pm 0.8 \mathrm{~mm}$	---	---
$\begin{array}{\|l\|} \hline \text { TT } \\ \text { (See note 5.) } \end{array}$	(9 mm)	(9 mm)	(70 ${ }^{\circ}$ )	(70 ${ }^{\circ}$ )
DOT min. (See note 6.)	5.8 mm	4.8 mm	$50^{\circ}$	$50^{\circ}$
DOF min. (See note 6.)	20 N	20 N	20 N	20 N

Note: 1. Variation occurs in the simultaneity of contact opening/closing operations of $2 \mathrm{NC}, 2 \mathrm{NC} / 1 \mathrm{NO}$, and 3NC contacts. Check contact operation.
2. The operating characteristics of these Switches were measured with the roller lever set at 30 mm .
3. The operating characteristics of these Switches were measured with the roller lever set at 31 mm .
4. Only for snap-action models
5. Reference value.
6. Only for slow-action models. For safe us minimum values or greater are provided


Slow-action (1NC/1NO) (2NC/1NO)

Model	$\begin{aligned} & \text { D4N- } \square \mathbf{A 6 2} \\ & \text { D4N- C62 } \\ & \text { D4N- } \square \mathbf{E 6 2} \\ & \text { D4N }-\square \mathbf{F} 62 \end{aligned}$	$\begin{aligned} & \text { D4N- } \square \text { A72 } \\ & \text { D4N- C72 } \\ & \text { D4N- } \square \text { E72 } \\ & \text { D4N- } 7 \text { F72 } \end{aligned}$	D4N- A2G   D4N-DC2G   D4N-DE2G   D4N- $\square$ F2G   (See note 1.)	D4N- $\quad$ A2H   D4N- -C 2 H   D4N- C 2 H   D4N- $\square$ F2H   (See note 2.)
OF max.	5.0 N	5.0 N	4.5 N	4.5 N
RF min.	0.8 N	0.8 N	0.4 N	0.4 N
PT max. (See note 3.)	4 mm	4 mm	$18^{\circ}$ to $27^{\circ}$	$18^{\circ}$ to $27^{\circ}$
PT (2nd) (See note 4.)	(5.2 mm)	$(4.3 \mathrm{~mm})$	(44*)	(44 ${ }^{\circ}$ )
PT max. (See note 5.)	4 mm	4 mm	$27.5^{\circ}$ to $36.5^{\circ}$	$27.5^{\circ}$ to $36.5^{\circ}$
PT (2nd) (See note 6.)	(1.5 mm)	(1.5 mm)	(18 ${ }^{\circ}$ )	(18 ${ }^{\circ}$ )
OT min.	5 mm	5 mm	$40^{\circ}$	$40^{\circ}$
OP	$37 \pm 0.8 \mathrm{~mm}$	$27 \pm 0.8 \mathrm{~mm}$	---	---
$\begin{array}{\|l\|} \hline \text { OP } \\ \text { (See note 7.) } \end{array}$	$36 \pm 0.8 \mathrm{~mm}$	$26.1 \pm 0.8 \mathrm{~mm}$	---	---
$\begin{array}{\|l} \text { TT } \\ \text { (See note 8.) } \end{array}$	(9 mm)	(9 mm)	(70 ${ }^{\circ}$	(70 ${ }^{\circ}$ )
DOT min. (See note 9.)	5.8 mm	4.8 mm	$50^{\circ}$	$50^{\circ}$
DOF min. (See note 9.)	20 N	20 N	20 N	20 N

Note: 1. The operating characteristics of these Switches were measured with the rolle lever set at 30 mm
2. The operating characteristics of these Switches were measured with the rolle ever set at 31 mm .
3. This PT value is possible when the NC contacts are open (OFF)
4. This PT value is possible when the NO contacts are closed (ON)
5. Only for MBB models.
6. Reference value for MBB models only.
7. Only for MBB models
8. Reference value.
9. For safe use, always make sure that the minimum values or greater are provided.

## 2-conduit Models



Note: 1. Unless otherwise specified, a tolerance of $\pm 0.4 \mathrm{~mm}$ applies to all dimensions.
2. Use the dog within 35 mm of the tip of the actuator and keep the total travel to 70 mm or less.
3. The usable range of the moving part is $1 / 3$ or less of the entire spring length from the end of the spring.

Slow-action (1NC/1NO) (2NC), Slow-action (2NC) (3NC)

Model	D4N- $\square \square$ RE	D4N- $\square \square$ LE
Force necessary to reverse the   direction of the lever: max.	6.4 N	6.4 N
Movement until the lever revers-   es	$55 \pm 10^{\circ}$	$55 \pm 10^{\circ}$
Movement until switch operation   (NC)	$\left(6.5^{\circ}\right)$	$\left(6.5^{\circ}\right)$   $\left(\right.$ MBB: $\left.10^{\circ}\right)$
Movement until switch operation   (NO)	$\left(18.5^{\circ}\right)$	$\left(18.5^{\circ}\right)$   $\left(\right.$ MBB: $\left.5^{\circ}\right)$

Snap-action (1NC/1NO), Slow-action (2NC) (3NC)

Model	D4N- $\square \square 80$	D4N- $\square \square 87$
OF max.	1.5 N	1.5 N
PT max.	$15^{\circ}$	$15^{\circ}$

## Levers

Refer to the following for the angles and positions of the watchdogs (source: EN50047.)

Roller Lever
(D4N- $\square 20$ )


## Sealed Plunger

(D4N- $\square \mathbf{\square 3 1}$ )


One-way Roller Arm Lever
(Horizontal)
(D4N- $\square 62$ )


Fork Lever Lock (Right Operation) (D4N- $\square$ RE)


Adjustable Roller Lever, Form Lock (with Metal Lever, Resin Roller) (D4N- $\square$ 2G) (Reference Values)

Adjustable Roller Lever, Form Lock (with Metal Lever, Rubber Roller) (D4N- $\square 2 \mathrm{H}$ ) (Reference Values)


Roller Plunger
(D4N- $\square 32$ )


One-way Roller Arm Lever (Vertical) (Reference Values) (D4N- $\square 72$ )


Fork Lever Lock (Left Operation) (D4N-DCLE)


Note: Unless otherwise specified, a tolerance of $\pm 0.4 \mathrm{~mm}$ applies to all dimensions.

Refer to OMRON SAFETY COMPONENTS SERIES (Y106) for common precautions for Switches and Safety Limit Switches.

## $\triangle$ CAUTION

Do not use metal connectors or metal conduits with this Switch. Doing so may occasionally result in electric shock.

## Precautions for Safe Use

- Do not drop the Switch. Doing so may result in the Switch not performing to its full capacity.
- Do not attempt to disassemble or modify the Switch. Doing so may cause the Switch to malfunction.
- Do not use the Switch where explosive gas, flammable gas, or any other hazardous gas may be present.
- Do not use the Switch submerged in oil or water, or in locations continuously subject to splashes of oil or water. Doing so may result in oil or water entering the Switch interior. (The IP67 degree of protection specification for the Switch refers to water penetration while the Switch is submersed in water for a specified period of time.)
- Protect the head from foreign material. Subjecting the head to foreign material may result in premature wear or damage to the Switch. Although the switch body is protected from penetration by dust or water, the head is not protected from penetration by minute particles or water.
- Turn the power OFF before wiring. Doing so may result in electric shock.
- Install the cover after wiring. Not doing so may result in electric shock.
- Connect a fuse to the Switch in series to protect the Switch from short-circuit damage. Use a fuse with a breaking current 1.5 to 2 times larger than the rated current. To conform to EN ratings, use an IEC60269-compliant 10-A fuse type gl or gG.
- Do not switch circuits for two or more standard loads (250 VAC, 3 A) at the same time. Doing so may adversely affect insulation performance.
- The durability of the Switch is greatly affected by operating conditions. Evaluate the Switch under actual working conditions before permanent installation and use within a number of switching operations that will not adversely affect the Switch's performance.
- Be sure to indicate in the machine manufacturer's instruction manual that the user must not attempt to repair or maintain the Switch and must contact the machine manufacturer for any repairs or maintenance.
- Check the Switches before use and inspect regularly, replacing them when necessary. If a Switch is kept pressed for an extended period of time, the components may deteriorate quickly, and the Switch may not release.


## Precautions for Correct Use

## Environment

- The Switch is intended for indoor use only.
- Do not use the Switch outdoors. Doing so may cause the Switch to malfunction.
- Do not use the Switch where hazardous gases (e.g., $\mathrm{H}_{2} \mathrm{~S}, \mathrm{SO}_{2}$, $\mathrm{NH}_{3}, \mathrm{HNO}_{3}, \mathrm{Cl}_{2}$ ) are present or in locations subject to high temperature and humidity. Doing so may result in damage to the Switch caused by contact failure or corrosion.
- Do not use the Switch under any of the following conditions. - Locations subject to extreme temperature changes.
- Locations where high humidity or condensation may occur.
- Locations subject to excessive vibration.
- Locations where metal dust, processing waste, oil, or chemicals may penetrate through the protective door.
- Locations subject to detergents, thinner, or other solvents.


## Mounting Method

## Mounting Screw Tightening Torque

Tighten each of the screws to the specified torque. Loose screws may result in malfunction of the Switch within a short time.

1	Terminal screw	0.6 to $0.8 \mathrm{~N} \cdot \mathrm{~m}$
2	Cover clamping screw	0.5 to $0.7 \mathrm{~N} \cdot \mathrm{~m}$
3	Head clamping screw	0.5 to $0.6 \mathrm{~N} \cdot \mathrm{~m}$
4	Lever clamping screw	1.6 to $1.8 \mathrm{~N} \cdot \mathrm{~m}$
5	Body clamping screw	0.5 to $0.7 \mathrm{~N} \cdot \mathrm{~m}$
6	Conduit mounting connection,   M12 adaptor	1.8 to $2.2 \mathrm{~N} \cdot \mathrm{~m}$ (except $1 / 2-$            7
	Cap screw	1.4 to $1.8 \mathrm{~N} \cdot \mathrm{~m} \mathrm{(1/2-14NPT)}$



Switch Mounting

- Mount the Switch using M4 screws and washers and tighten the screws to the specified torque.
- For safety, use screws that cannot be easily removed, or use an equivalent measure to ensure that the Switch is secure.
- Secure the Switch with two M4 bolts and washers. Provide studs with a diameter of $4^{0.05 / 0.15}$ and a height of 4.8 mm max. at two places, inserting into the holes at the bottom of the Switch as shown below so that the Switch is firmly fixed at four points.
Switch Mounting Holes One-conduit Type


Two-conduit Type


- Make sure that the dog contacts the actuator at a right angle. Applying a load to the switch actuator (roller) on a slant may result in deformation or damage of the actuator or rotary shaft.



## Wiring

- When connecting to the terminals via insulating tube and M3.5 crimp terminals, arrange the crimp terminals as shown below so that they do not rise up onto the case or the cover. Applicable lead wire size: AWG20 to AWG18 ( 0.5 to $0.75 \mathrm{~mm}^{2}$ ).
Use lead wires of an appropriate length, as shown below. Not doing so may result in excess length causing the cover to rise and not fit properly.


## One-conduit Type (3 Poles)



Two-conduit Type (3 Poles)


- Do not push crimp terminals into gaps in the case interior. Doing so may cause damage or deformation of the case.
- Use crimp terminals not more than 0.5 mm in thickness. Otherwise, they will interfere with other components inside the case. The crimp terminals shown below are not more than 0.5 mm thick.

Manufacture	Type	Wire size
J.S.T.	FV0.5-3.7 (F type)	AWG20 $\left(0.5 \mathrm{~mm}^{2}\right)$
	V0.5-3.7 (straight type)	

J.S.T is a Japanese manufacturer.


## Contact Arrangement

- The following diagrams show the contact arrangements used for screw terminal types and connector types.


## Screw Terminal Type



## Connector Type

D4N-9B $\square \square$ (2NC)

$$
\text { (1) } 11
$$



Pin No. (Terminal No.)
D4N-9A $\square \square$ (1NC/1NO)
D4N-92al (2NC (SNAP))

D4N-9E $\square \square$ (1NC/1NO (MBB))


D4N-91 $\square \square$ (1NC/1NO (SNAP))


- Applicable socket: XS2F (OMRON).
- Refer to the G010 Connector Catalog for details on socket pin numbers and lead wire colors.


## Socket Tightening (Connector Type)

- Turn the socket connector screws by hand and tighten until no space remains between the socket and the plug.
- Make sure that the socket connector is tightened securely. Otherwise, the rated degree of protection (IP67) may not be maintained and vibration may loosen the socket connector.


## Conduit Opening

- Connect a recommended connector to the opening of the conduit and tighten the connector to the specified torque. The case may be damaged if an excessive tightening torque is applied.
- When using $1 / 2-14 N P T$, wind sealing tape around the joint between the connector and conduit opening so that the enclosure will conform to IP67.
- Use a cable with a suitable diameter for the connector.
- Attach and tighten a conduit cap to the unused conduit opening when wiring. Tighten the conduit cap to the specified torque. The conduit cap is provided with the Switch (2-conduit types).


## Changing the Lever

The lever mounting screws can be used to set the lever position to any position in a $360^{\circ}$ angle at $7.5^{\circ}$ increments. Grooves are incised on the lever and rotary shaft that engage to prevent the lever from slipping against the rotary shaft. The screws on adjustable roller lever models can also loosened to change the length of the lever.
Remove the screws from the front of the lever before mounting the lever in reverse (front/back), and set the level so that operation will be completed before exceeding a range of $180^{\circ}$ on the horizontal.

## Recommended Connectors

Use connectors with screws not exceeding 9 mm , otherwise the screws will protrude into the case interior, interfering with other components in the case. The connectors listed in the following table have connectors with thread sections not exceeding 9 mm . Use the recommended connectors to ensure conformance to IP67.

Size	Manufacturer	Model	Applicable cable   diameter
G1/2	LAPP	ST-PF1/2   $5380-1002$	6.0 to 12.0 mm
	Ohm Denki	OA-W1609	7.0 to 9.0 mm
	OA-W1611	9.0 to 11.0 mm	
Pg13.5	LAPP	ST-13.5   $5301-5030$	6.0 to 12.0 mm
	LAPP	ST-M20 $\times 1.5$   $5311-1020$	7.0 to 13.0 mm
1/2-14NPT	LAPP	ST-NPT1/2   $5301-6030$	6.0 to 12.0 mm
M12	LAPP	ST-M12 $\times 1.5$   $5311-1000$	3.5 to 7.0 mm

Use LAPP connectors together with seal packing (JPK-16, GP-13.5, GPM20, or GPM12), and tighten to the specified tightening torque. Seal packing is sold separately.
LAPP is a German manufacturer. Ohm Denki is a Japanese manufacturer.

Before using an M12 type, attaching the provided changing adaptor to the Switch and then connect the recommended connector.
Before using a 2 -conduit $1 / 2-14$ NPT type, attach the provided changing adaptor to the Switch and then connect the recommended connector.

## Storage

Do not store the Switch in locations where hazardous gases (e.g., $\mathrm{H}_{2} \mathrm{~S}, \mathrm{SO}_{2}, \mathrm{NH}_{3}, \mathrm{HNO}_{3}, \mathrm{Cl}_{2}$ ) or dust is present, or in locations subject to high temperatures and humidity.

## Others

- Do not allow the load current to exceed the rated value.
- Confirm that the seal rubber has no defects before use. If the seal rubber is displaced or raised, or has foreign particles adhered to it, the sealing capability of the seal rubber will be adversely affected.
- Use the correct cover mounting screws only, or the sealing capability of the seal rubber will deteriorate.
- Inspect the Switch regularly.
- Make sure that foreign particles do not enter the head when removing the screws from the four corners to change the head position in any of the four directions.
- Use the following recommended countermeasures to prevent telegraphing when using adjustable or long levers.

1. Make the rear edge of the dog smooth with an angle of $15^{\circ}$ to $30^{\circ}$ or make it in the shape of a quadratic curve.
2. Design the circuit so that no error signal will be generated.
3. Use or set a Switch that is operated in one direction only.

## Production Termination

Following the release of the D 4 N , production of the $\mathrm{D} 4 \mathrm{D}-\mathrm{N}$ will be terminated.

## Date of Production Termination

Production of the D4D-N Series will be terminated in March 2006.

## Product Replacement

1. Dimensions

The D4D-N and D4N use the same mounting method, and mounting hole. The multi-contact structure and the extra 4 mm in length, however, are different.
2. Terminal Numbers

For the 2-contact slow-action model, the terminals 21, 22, 23, and 24 on the D4D-N are 31, 32, 33, and 34 on the D4N.
3. Recommended Terminals

If the recommended terminals are not used, the Switch may not be compatible. Make sure that the Switch is compatible with the terminals.

Comparison of the D4D-N and Substitute Products

Model	D4N
Switch color	Very similar
Dimensions	Very similar
Wiring/connection	Significantly different
Mounting method	Completely compatible
Ratings/performance	Very similar
Operating characteristics	Very similar
Operating method	Completely compatible

Dimensions (Unit: mm)



List of Recommended Substitute Products

- The actuator on the D4D-N is a non-safety type. The D4N is recommended for safety applications (form lock type). Be sure to mount it correctly.
- M screws are recommended to comply with European standards. Therefore, the M20 type is recommended as a substitute when the PG13.5 conduit-type is not available in a D4N model

Safety Limit Switches

D4D-N product to be discontinued	Recommended substitute product	D4D-N product to be discontinued	Recommended substitute product	D4D-N product to be discontinued	Recommended substitute product
D4D-1120N	D4N-1120	D4D-1520N	D4N-1A20	D4D-1A20N	D4N-1B20
D4D-2120N	D4N-2120	D4D-2520N	D4N-2A20	D4D-2A20N	D4N-2B20
D4D-3120N	D4N-3120	D4D-3520N	D4N-3A20	D4D-3A20N	D4N-3B20
D4D-5120N	D4N-5120	D4D-5520N	D4N-5A20	D4D-5A20N	D4N-5B20
D4D-6120N	D4N-6120	D4D-6520N	D4N-6A20	D4D-6A20N	D4N-6B20
D4D-1122N	D4N-1122	D4D-1522N	D4N-1A22	D4D-1A22N	D4N-1B22
D4D-2122N	D4N-2122	D4D-2522N	D4N-2A22	D4D-2A22N	D4N-2B22
D4D-3122N	D4N-3122	D4D-3522N	D4N-3A22	D4D-3A22N	D4N-3B22
D4D-5122N	D4N-5122	D4D-5522N	D4N-5A22	D4D-5A22N	D4N-5B22
D4D-6122N	D4N-6122	D4D-6522N	D4N-6A22	D4D-6A22N	D4N-6B22
D4D-1125N	D4N-1125	D4D-1525N	D4N-1A25	D4D-1A25N	D4N-1B25
D4D-2125N	D4N-2125	D4D-2525N	D4N-2A25	D4D-2A25N	D4N-2B25
D4D-3125N	D4N-3125	D4D-3525N	D4N-3A25	D4D-3A25N	D4N-3B25
D4D-1131N	D4N-1131	D4D-1531N	D4N-1A31	D4D-1A31N	D4N-1B31
D4D-2131N	D4N-2131	D4D-2531N	D4N-2A31	D4D-2A31N	D4N-2B31
D4D-3131N	D4N-3131	D4D-3531N	D4N-3A31	D4D-3A31N	D4N-3B31
D4D-5131N	D4N-5131	D4D-5531N	D4N-5A31	D4D-5A31N	D4N-5B31
D4D-6131N	D4N-6131	D4D-6531N	D4N-6A31	D4D-6A31N	D4N-6B31
D4D-1132N	D4N-1132	D4D-1532N	D4N-1A32	D4D-1A32N	D4N-1B32
D4D-2132N	D4N-2132	D4D-2532N	D4N-2A32	D4D-2A32N	D4N-2B32


D4D-N product to be discontinued	Recommended substitute product	D4D-N product to be discontinued	Recommended substitute product	D4D-N product to be discontinued	Recommended substitute product
D4D-3132N	D4N-3132	D4D-3532N	D4N-3A32	D4D-3A32N	D4N-3B32
D4D-5132N	D4N-5132	D4D-5532N	D4N-5A32	D4D-5A32N	D4N-5B32
D4D-6132N	D4N-6132	D4D-6532N	D4N-6A32	D4D-6A32N	D4N-6B32
D4D-1162N	D4N-1162	D4D-1562N	D4N-1A62	D4D-1A62N	D4N-1B62
D4D-2162N	D4N-2162	D4D-2562N	D4N-2A62	D4D-2A62N	D4N-2B62
D4D-3162N	D4N-3162	D4D-3562N	D4N-3A62	D4D-3A62N	D4N-3B62
D4D-5162N	D4N-5162	D4D-5562N	D4N-5A62	D4D-5A62N	D4N-5B62
D4D-6162N	D4N-6162	D4D-6562N	D4N-6A62	D4D-6A62N	D4N-6B62
D4D-1172N	D4N-1172	D4D-1572N	D4N-1A72	D4D-1A72N	D4N-1B72
D4D-2172N	D4N-2172	D4D-2572N	D4N-2A72	D4D-2A72N	D4N-2B72
D4D-3172N	D4N-3172	D4D-3572N	D4N-3A72	D4D-3A72N	D4N-3B72
D4D-5172N	D4N-5172	D4D-5572N	D4N-5A72	D4D-5A72N	D4N-5B72
D4D-6172N	D4N-6172	D4D-6572N	D4N-6A72	D4D-6A72N	D4N-6B72
D4D-112HN	D4N-112H	D4D-152HN	D4N-1A2H	D4D-1A2HN	D4N-1B2H
D4D-212HN	D4N-212H	D4D-252HN	D4N-2A2H	D4D-2A2HN	D4N-2B2H
D4D-312HN	D4N-312H	D4D-352HN	D4N-3A2H	D4D-3A2HN	D4N-3B2H

General-purpose Limit Switches

D4D-N product to be discontinued	Recommended substitute product	D4D-N product to be discontinued	Recommended substitute product	D4D-N product to be discontinued	Recommended substitute product
D4D-1121N	D4N-112G	D4D-15REN	D4N-1ARE	D4D-1AREN	D4N-1BRE
D4D-2121N	D4N-212G	D4D-25REN	D4N-2ARE	D4D-2AREN	D4N-2BRE
D4D-3121N	D4N-312G	D4D-35REN	D4N-3ARE	D4D-3AREN	D4N-3BRE
D4D-5121N	D4N-512G	D4D-55REN	D4N-5ARE	D4D-5AREN	D4N-5BRE
D4D-6121N	D4N-612G	D4D-65REN	D4N-6ARE	D4D-6AREN	D4N-6BRE
D4D-1127N	D4N-112H	D4D-15LEN	D4N-1ALE	D4D-1ALEN	D4N-1BLE
D4D-2127N	D4N-212H	D4D-25LEN	D4N-2ALE	D4D-2ALEN	D4N-2BLE
D4D-3127N	D4N-312H	D4D-35LEN	D4N-3ALE	D4D-3ALEN	D4N-3BLE
D4D-5127N	D4N-512H	D4D-55LEN	D4N-5ALE	D4D-5ALEN	D4N-5BLE
D4D-6127N	D4N-612H	D4D-65LEN	D4N-6ALE	D4D-6ALEN	D4N-6BLE
D4D-1180N	D4N-4180	D4D-1521N	D4N-1A2G	D4D-1A21N	D4N-1B2G
D4D-2180N	D4N-2180	D4D-2521N	D4N-2A2G	D4D-2A21N	D4N-2B2G
D4D-3180N	D4N-3180	D4D-3521N	D4N-3A2G	D4D-3A21N	D4N-3B2G
D4D-5180N	D4N-8180	D4D-5521N	D4N-5A2G	D4D-5A21N	D4N-5B2G
D4D-6180N	D4N-6180	D4D-6521N	D4N-6A2G	D4D-6A21N	D4N-6B2G
D4D-1187N	D4N-4187	D4D-1527N	D4N-1A2H	D4D-1A27N	D4N-1B2H
D4D-2187N	D4N-2187	D4D-2527N	D4N-2A2H	D4D-2A27N	D4N-2B2H
D4D-3187N	D4N-3187	D4D-3527N	D4N-3A2H	D4D-3A27N	D4N-3B2H
D4D-5187N	D4N-8187	D4D-5527N	D4N-5A2H	D4D-5A27N	D4N-5B2H
D4D-6187N	D4N-6187	D4D-6527N	D4N-6A2H	D4D-6A27N	D4N-6B2H
				D4D-1A80N	D4N-4B80
				D4D-2A80N	D4N-2B80
				D4D-3A80N	D4N-3B80
				D4D-5A80N	D4N-8B80
				D4D-6A80N	D4N-6B80
				D4D-1A87N	D4N-4B87
				D4D-2A87N	D4N-2B87
				D4D-3A87N	D4N-3B87
				D4D-5A87N	D4N-8B87
				D4D-6A87N	D4N-6B87

## Safety Limit Switch

## D4B-CN

- Snap-action or slow-action contact for accurate switching with safe operation via a direct opening mechanism with metal deposition between mating contacts.
- Two sets of contacts: one (NC) for safety category circuit and the other (NO) for control circuit.
- Contacts opened by direct opening mechanism (NC contacts only), thus preventing faulty operation due to factors such as metal deposition.
- Wide standard operating temperature range: $-40^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$ (standard type).
- Safety of lever settings ensured using a mechanism that engages a gear between the operating position indicator plate and the lever.
- Equipped with a mechanism that indicates the applicable operating zone, as well as push-button switching to control left and right motion.
- Conforms to EN (TÜV) standards corresponding to the CE marking.
- 3-conduit switches are available.
- Metric conduit types available.


## Model Number Structure

## Model Number Legend

## D4B- $\square \square \mathrm{N}$ <br> 123

1. Conduit

1: PG13.5 (1-conduit) G1/2 (PF1/2) (1-conduit) 1/2-14NPT (1-conduit) M20 PG13.5 (3-conduit) G1/2 (PF1/2) (3-conduit) 1/2-14NPT (3-conduit)
8: M20 (3-conduit)
2. Built-in Switch

1: $1 \mathrm{NC} / 1 \mathrm{NO}$ (snap-action)
3: $\quad 1 \mathrm{NC} / 1 \mathrm{NO}$ (slow-action) gold-plated contacts
5: $\quad 1 \mathrm{NC} / 1 \mathrm{NO}$ (slow-action) (see note)
A: $\quad 2 N C$ (slow-action)
B: $\quad 2 N C$ (slow-action) gold-plated contacts
Note: Excluding D4B- $\square 81 \mathrm{~N}$ and D4B- $\square \square 87 \mathrm{~N}$ models.

## 3. Actuator

00: Switch box (without head)
11: Roller lever (standard)
16: Adjustable roller lever
17: Adjustable rod lever
1R: Roller lever
(conventional D4B-compatible)
70: Top plunger
71: Top roller plunger
81: Coil spring
87: Plastic rod

## Ordering Information

List of Models
Safety limit switch, mechanical form lock
Switches (EN50041)

Actuator		Conduit size								
		PG13.5 (see note 2)			G1/2			M20		
		1NC/1NO (Snapaction)	1NC/1NO (Slowaction)	2NC (Slowaction)	1NC/1NO (Snapaction)	$\begin{gathered} \text { 1NC/1NO } \\ \text { (Slow- } \\ \text { action) } \end{gathered}$	2NC (Slowaction)	1NC/1NO (Snapaction)	1NC/1NO (Slowaction)	2NC (Slowaction)
Side rotary	Roller lever (form A)	D4B-1111N	D4B-1511N	D4B-1A11N	D4B-2111N	D4B-2511N	D4B-2A11N	D4B-4111N	D4B-4511N	D4B-4A11N
	Adjustable roller lever (see note 1)	D4B-1116N	D4B-1516N	D4B-1A16N	D4B-2116N	D4B-2516N	D4B-2A16N	D4B-4116N	D4B-4516N	D4B-4A16N
	Adjustable rod lever (form D) (see note 1)	D4B-1117N	D4B-1517N	D4B-1A17N	D4B-2117N	D4B-2517N	D4B-2A17N	D4B-4117N	D4B-4517N	D4B-4A17N
Top plunger	Plain   (form B)	D4B-1170N	D4B-1570N	D4B-1A70N	D4B-2170N	D4B-2570N	D4B-2A70N	D4B-4170N	D4B-4570N	D4B-4A70N
	Roller (form C)	D4B-1171N	D4B-1571N	D4B-1A71N	D4B-2171N	D4B-2571N	D4B-2A71N	D4B-4171N	D4B-4571N	D4B-4A71N
Wobble lever (see note 1)	Coil spring	D4B-1181N	---	D4B-1A81N	D4B-2181N	---	D4B-2A81N	D4B-4181N	---	
	Plastic rod	D4B-1187N	---	D4B-1A87N	D4B-2187N	---	D4B-2A87N	D4B-4187N	---	

Note: 1. Mechanically speaking, these models are basic limit switches.
2. The D4B- $\square N$ is a Limit Switch conforming to European standards, and PG13.5 is commonly used in Europe.

3-conduit Switch

Actuator		Conduit size								
		PG13.5 (see note 2)			G1/2			M20		
		1NC/1NO (Snapaction)	1NC/1NO (Slowaction)	2NC (Slowaction)	1NC/1NO (Snapaction)	1NC/1NO (Slowaction)	2NC (Slowaction)	1NC/1NO (Snapaction)	$\begin{gathered} \hline \text { 1NC/1NO } \\ \text { (Slow- } \\ \text { action) } \\ \hline \end{gathered}$	2NC (Slowaction)
Side rotary	Roller lever (form A)	D4B-5111N	D4B-5511N	D4B-5A11N	D4B-6111N	D4B-6511N	D4B-6A11N	D4B-8111N	--	---
	Adjustable roller lever (see note 1)	D4B-5116N	D4B-5516N	D4B-5A16N	D4B-6116N	D4B-6516N	D4B-6A16N	D4B-8116N	---	---
	Adjustable rod lever (form D) (see note 1)	D4B-5117N	D4B-5517N	D4B-5A17N	D4B-6117N	D4B-6517N	D4B-6A17N	D4B-8117N	---	---
Top plunger	Plain (form B)	D4B-5170N	D4B-5570N	D4B-5A70N	D4B-6170N	D4B-6570N	D4B-6A70N	---	---	---
	Roller (form C)	D4B-5171N	D4B-5571N	D4B-5A71N	D4B-6171N	D4B-6571N	D4B-6A71N	D4B-8171N	---	D4B-8A71N
Wobble lever (see note 1)	Coil spring	D4B-5181N	---	D4B-5A81N	D4B-6181N	---	D4B-6A81N	---	---	---
	Plastic rod	D4B-5187N	---	D4B-5A87N	D4B-6187N	---	D4B-6A87N	---	---	---

Note: 1. Mechanically speaking, these models are basic limit switches.
2. The D4B- $\square \mathrm{N}$ is a Limit Switch conforming to European standards, and M20/PG13.5 is commonly used in Europe.
3. The wobble lever models are ordinary limit switches and are not approved under EN, GS, and SUVA's Direct Opening Certificate.

## Replacement Part

Because the D4B- $\square$ N employs a block mounting construction, the switch box, operating head, and lever (side rotary type only) may be ordered as a complete assembly or individually as replacement parts. (Replacement parts are not available as a switch box and head assembly or as a head and lever assembly.)

ex. $\mathrm{D} 4 \mathrm{~B}-2111 \mathrm{~N}=\mathrm{D} 4 \mathrm{~B}-2100 \mathrm{~N}+\mathrm{D} 4 \mathrm{~B}-0010 \mathrm{~N}+\mathrm{D} 4 \mathrm{~B}-0001 \mathrm{~N}$

## Switch Box

		EN50041			3-conduit type		
		PG13.5	G1/2	1/2-14NPT	PG13.5	G1/2	1/2-14NPT
1NC/1NO   (Snap-action)	$\rightarrow$	D4B-1100N	D4B-2100N	D4B-3100N	D4B-5100N	D4B-6100N	D4B-7100N
1NC/1NO   (Slow-action)	$\rightarrow$	D4B-1500N	D4B-2500N	D4B-3500N	D4B-5500N	D4B-6500N	D4B-7500N
2NC   (Slow-action)	$\rightarrow$	D4B-1A00N	D4B-2A00N	D4B-3A00N	D4B-5A00N	D4B-6A00N	D4B-7A00N

## Operating Heads

Actuator	Type	Model
Side rotary	Standard	D4B-0010N
Top plunger	Plain	D4B-0070N
	Roller	D4B-0071N
Wobble lever	Coil spring	D4B-0081N
	Plastic rod	D4B-0087N

Levers (for Side Rotary Switches)

Actuator	Length	Diameter of roller	Model
Standard	31.5	17.5 dia.	D4B-0001N
Adjustable roller lever	25 to 89	19 dia.	D4B-0006N
Adjustable rod lever	145 max.	---	D4B-0007N
Interchangeable with D4B-0001	33.7	19 dia.	D4B-000RN

Note: Other types of lever are also available.

## Specifications

## Approved Standards

Snap-action Models

Agency	Standard	File No.
TÜV Rheinland	EN60947-5-1	R9851083   (Direct opening:   approved)   R9151372   (Direct opening:   approval pending)   (See note 1.)
UL	UL508	E76675
CSA	C22.2 No. 14	LR45746
BIA (See note 2.)	GS-ET-15	1-conduit: 9202158   3-conduit: 9309655

Note: 1. Adjustable roller lever, adjustable rod lever, coil spring, and plastic rod models only.
2. Not including adjustable roller lever, adjustable rod lever, coil spring, and plastic rod models.

## Slow-action Models

Agency	Standard	File No.
TÜV Rheinland	EN60947-5-1	R9151643   (Direct opening:   approved)   (See note)
UL	UL508	E76675
CSA	C22.2 No. 14	LR45746
BIA (See note.)	GS-ET-15	1-conduit: 9202158   3-conduit: 9309655
SUVA (See note.)	SUVA	1-conduit: E6188/   1.d   3-conduit: E6189/   1.d

Note: Not including adjustable roller lever, adjustable rod lever, coil spring, and plastic rod models.

## Standards and EC Directives

- Conforms to the following EC Directives:

Machinery Directive
Low Voltage Directive
EN1088
EN50041

## Approved Standard Ratings

TUV Rheinland: EN60947-5-1

Utilization category	AC-15
Rated operating current $\left(\mathrm{I}_{\mathrm{e}}\right)$	2 A
Rated operating voltage $\left(\mathrm{U}_{\mathrm{e}}\right)$	400 V

Note: As protection against short-circuiting, use either a gl-type or gG-type 10-A fuse that conforms to IEC269.

UL/CSA: (UL508, CSA C22.2 No. 14)
A600

Rated voltage	Carry current	Current		Volt-amperes	
		Make	Break	Make	Break
120 VAC	10 A	60 A	6 A	7,200 VA	720 VA
240 VAC		30 A	3 A		
480 VAC		15 A	1.5 A		
600 VAC		12 A	1.2 A		

## Characteristics

Item		Snap-action	Slow-action
Durability (see note 3)	Mechanical	30,000,000 operations min.	10,000,000 operations min.
	Electrical	500,000 operations min. (at a 250 VAC, 10-A resistive load)	
Operating speed		$1 \mathrm{~mm} / \mathrm{s}$ to $0.5 \mathrm{~m} / \mathrm{s}$	
Operating frequency		Mechanical:120 operations/min Electrical:30 operations/min	
Rated frequency		$50 / 60 \mathrm{~Hz}$	
Insulation resistance		$100 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC ) between terminals of the same polarity and between each terminal and non-current-carrying part	
Contact resistance		$25 \mathrm{~m} \Omega$ max. (initial value)	
Dielectric strength ( $\mathrm{U}_{\text {imp }}$ )			
Between terminals of same polarity		$\mathrm{U}_{\mathrm{imp}} 2.5 \mathrm{kV}$	$\mathrm{U}_{\text {imp }} 4 \mathrm{kV}$
Between terminals of different polarity		---	$\mathrm{U}_{\mathrm{imp}} 4 \mathrm{kV}$
Between current-carrying metal parts and ground		$\mathrm{U}_{\mathrm{imp}} 4 \mathrm{kV}$	$\mathrm{U}_{\mathrm{imp}} 4 \mathrm{kV}$
Between each terminal and non-cur-rent-carrying parts		$\mathrm{U}_{\mathrm{imp}} 4 \mathrm{kV}$	$\mathrm{U}_{\mathrm{imp}} 4 \mathrm{kV}$
Rated insulation voltage ( $\mathrm{U}_{\mathrm{i}}$ )		600 VAC (EN60947-5-1)	
Counter electromotive voltage at switching		1,500 VAC max. (EN60947-5-1)	
Operating environmental pollution level		3 (EN60947-5-1)	
Conditional short-circuit current		100 A (EN60947-5-1)	
Conventional enclosed thermal current ( $\mathrm{t}_{\text {the }}$ )		20 A (EN60947-5-1)	
Electric shock protection class		Class I (with ground terminal)	
Vibration resistance		Malfunction:10 to $55 \mathrm{~Hz}, 0.75 \mathrm{~mm}$ single amplitude	
Shock resistance		Destruction: $1,000 \mathrm{~m} / \mathrm{s}^{2} \mathrm{~min}$. Malfunction: $300 \mathrm{~m} / \mathrm{s}^{2} \mathrm{~min}$.	
Ambient temperature		Operating: $-40^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$ (with no icing) (see note 4)	
Ambient humidity		Operating:95\% max.	
Degree of protection		IP67 (EN60947-5-1)	
Weight		Approx. 250 g	

Note: 1. The above values are initial values.
2. The above values may vary depending on the model. Consult your OMRON sales representative for details.
3. The durability is for an ambient temperature of $5^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$ and ambient humidity of $40 \%$ to $70 \%$. For further conditions, consult your OMRON sales representative.
4. $-25^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$ for the flexible-rod type.

## Operating Characteristics

Model	D4B- $\square 11 \mathrm{~N}$	$\begin{aligned} & \text { D4B-■16N } \\ & \text { (see note 1) } \end{aligned}$	$\begin{aligned} & \hline \text { D4B- } \square 17 \mathrm{~N} \\ & \text { (see note 2) } \end{aligned}$	D4B-D70N	D4B-■71N	D4B-■■81N	D4B-■ $\square$ 87N
OF max.	9.41 N		2.12 N	18.63 N		1.47 N	
RF min.	1.47 N		0.29 N	1.96 N		---	
PT	$21 \pm 3^{\circ}$			2.0 mm max.		$15^{\circ}$ max.	
$\begin{array}{\|l\|} \hline \text { PT (2nd) } \\ \text { (see note 3) } \\ \hline \end{array}$	(45 ${ }^{\circ}$			$(3.0 \mathrm{~mm})$		---	
OT min.	$50^{\circ}$			5.0 mm		---	
MD max. (see note 4)	$12^{\circ}$			1.0 mm		---	
DOT min.	$35^{\circ}$ (Slow-action models)			3.2 mm		---	
	$55^{\circ}$ (Snap-action models)						
DOF min.	19.61 N			$49.03 \mathrm{~N}$		---	
TT	(75 ${ }^{\circ}$ )			$\begin{array}{\|l\|} \hline 49.03 \mathrm{~N} \\ \hline 7.0 \mathrm{~mm} \\ \hline \end{array}$			
FP max.	---			38 mm	51 mm	----	
OP	---			$35 \pm 1 \mathrm{~mm}$	$48 \pm 1 \mathrm{~mm}$	---	

Note: 1. The operating characteristics of these Switches were measured with the roller lever set at 31.5 mm .
2. The operating characteristics of these Switches were measured with the rod lever set at 140 mm .
3. Only for slow-action models.
4. Only for snap-action models.


## Direct Opening Mechanism

1NO/1NC Contact (Snap-action)
If metal deposition between mating contacts occurs on the NC contact side, they can be pulled apart by the shearing force and tensile force generated when part B of the safety cam or plunger engages part A of the movable contact blade. When the safety cam or plunger is moved in the direction of the arrow, the Limit Switch releases.

1. When metal deposition occurs.

2. When contacts are being pulled apart.

3. When contacts are completely pulled apart.


1NC/1NO Contact (Slow-action)


Conforms to EN60947-5-1 Direct Opening
When metal deposition occurs, the contacts are separated from each other by the plunger being pushed in.

## 2NC Contact (Slow-action)



Conforms to EN60947-5-1
When metal deposition occurs, the contacts are separated from each other by the plunger being pushed in.
is marked on the product to indicate approval of direct opening.

## Engineering Data

Electrical Durability (Snap-action)



## Nomenclature



## Dimensions

Note: 1. All units are in millimeters unless otherwise indicated
2. Unless otherwise specified, a tolerance of $\pm 0.4 \mathrm{~mm}$ applies to all dimensions.
3. When placing your order, specify the conduit type by adding a code from the list below to the blank box of the following model numbers as shown below.
Standard Switches 3-conduit Switches
1: PG 13.5 5: PG 13.5
2: G 1/2
6: G 1/2
3: 1/2-14NPT
7: 1/2-14NPT
4: M20
8: M20
Switches
Roller Lever $\square$ safety limit switch,
D4B- $\square 11 \mathrm{~N}$


## Adjustable Roller Lever

D4B- $\square 16 \mathrm{~N}$


Adjustable Rod Lever
D4B- $\square 17 \mathrm{~N}$



## 3-conduit Switches

Roller Lever $\quad \begin{aligned} & \text { safety limit switch, } \\ & \text { D4B- } \square 11 \mathrm{~N}\end{aligned} \quad$ mechanical form lock


Adjustable Roller Lever
D4B- $\square 16 \mathrm{~N}$



Note: The lever can be set to any desired position by turning the operating position indicator.




Note: Reverse the indicator plate when mounting
Note: Reverse the indicator plate when mounting. Note: Reverse the indicator plate when mounting.
Note: 1. Unless otherwise specified, a tolerance of $\pm 0.4 \mathrm{~mm}$ applies to all dimensions.
2. Safety Limit Switch specifications are satisfied with D4B-anal Levers only.

If the $\mathrm{D} 4 \mathrm{~B}-\square \mathrm{N}$ is applied to a safety category circuit for prevention of injury, use the D4B- $\square \mathrm{N}$ model that has an NC contact equipped with a direct opening mechanism, and make sure that the D4B- $\square$ N operates in the direct opening mode. Furthermore, secure the D4B- $\square \mathrm{N}$ with screws or equivalent parts that are tightened in a single direction so that the D4B- $\square \mathrm{N}$ cannot be easily removed. Then provide a protection cover for the $\mathrm{D} 4 \mathrm{~B}-\square \mathrm{N}$ and post a warning label near the D4B- $\square$ N.
In order to protect the D4B- $\square \mathrm{N}$ from damage due to short-circuiting, connect a fuse breaking a current 1.5 to 2 times higher than the rated current in parallel with the D4B- $\square$ N.

If an application satisfying EN standards is to employ the D4BL, apply the 10-A gl or gG fuse approved by IEC269.
Do not apply the D4B- $\square \mathrm{N}$ to the door without applying a stopper to the door.
If the D4B- $\square \mathrm{N}$ is used with the actuator normally pressed, the D4B- $\square$ N may malfunction or may soon have reset failures. Be sure to check and replace the D4B- $\square \mathrm{N}$ regularly.

## Correct Use

## Operating Environment

The D4B- $\square \mathrm{N}$ is for indoor use. The D4B- $\square \mathrm{N}$ may malfunction if the D4B- $\square \mathrm{N}$ is used outdoors. Be sure to use a model with a lever-type actuator for outdoor use instead.
Do not use the D4B- $\square \mathrm{N}$ in the following locations:

- Locations subject to severe temperature changes
- Locations subject to high temperatures or condensation
- Locations subject to severe vibration
- Locations where the product may come in contact with metal dust, oil, or chemicals


## Tightening Torque



	Type	Torque
1	M3.5 terminal screw	0.59 to $0.78 \mathrm{~N} \cdot \mathrm{~m}$
2	Cover-mounting screw   (see note)	1.18 to $1.37 \mathrm{~N} \cdot \mathrm{~m}$
3	Head mounting screw	0.78 to $0.98 \mathrm{~N} \cdot \mathrm{~m}$
4	M5 body mounting screw	4.90 to $5.88 \mathrm{~N} \cdot \mathrm{~m}$
5	Connector	1.77 to $2.16 \mathrm{~N} \cdot \mathrm{~m}$
6	Cap screw   (for three-conduit models)	1.27 to $1.67 \mathrm{~N} \cdot \mathrm{~m}$

[^44]
## Mounting

Use four M5 screws with washers to mount the standard model. Be sure to apply the proper torque to tighten each screw. The D4B- $\square \mathrm{N}$ can be mounted more securely by using the four screws plus two $5^{-0.05 /-0.15-\mathrm{mm}}$ protruding parts, each of which has a maximum height of 4.8 mm as shown below.

## Mounting Dimensions (M5)

Standard Model 3-conduit Model



## Changes in Actuator Mounting Position

To change the angle of the lever, loosen the Allen-head bolts on the side of the lever.

The operating position indicator plate has protruding parts which engage with the lever, thus allowing changes to the lever position by $90^{\circ}$.
The back of the operating position indicator plate has no protruding parts. The lever can be set at any angle by attaching the operating position indicator plate to the Switch so that this side will face the lever. In this case, however, the D4B- $\square \mathrm{N}$ will not be approved by SUVA or BIA. Make sure that the lever engages with the operating position indicator plate securely so that the lever will not slip.

## Changes in Head Mounting Position

By removing the screws on the four corners of the head, the head can be reset in any of four directions. Make sure that no foreign materials will penetrate through the head.

## CW, CCW or Two-way Operation

The head of Side Rotary Switches can be converted in seconds to CW, CCW, or two-way operation. The conversion procedure follows.


## Procedure

1. Dismount the head by loosening the four screws that secure it.
2. Turn over the head to set the desired operation (CW, CCW, or both). The desired operation can be selected by setting the mode selector knob shown in the figure. This knob is factory set to the "CW + CCW" (two-way operation) position.
3. Set the CW hole on the head at the operation position mark (arrow) for clockwise operation or set the CCW hole right at the arrow for counterclockwise operation. In either case, be sure to set the hole position exactly at the arrow point.

## Wiring

Do not connect the bare lead wires directly to the terminals but be sure to connect each of them by using an insulation tube and M3.5 round crimp terminals and tighten each terminal screw within the specified torque range.
The proper lead wire is 20 to 14 AWG ( 0.5 to $2.5 \mathrm{~mm}^{2}$ ) in size.


Make sure that all crimp terminals come into contact with the casing or cover as shown below, otherwise the cover may not be mounted properly or the $\mathrm{D} 4 \mathrm{~B}-\square \mathrm{N}$ may malfunction.


Correct


Incorrect


## Connector

Make sure that each connector is tightened within the specified torque range. The casing may be damaged if the connector is tightened excessively.
If the $1 / 2-14 N P T$ is used, cover the cable and conduit end with sealing tape in order to ensure IP67.
The Pg13.5 connector must be Nippon Flex's ABS-08Pg13.5 or ABS-12 Pg13.5.
Use OMRON's SC-series connector which is suited to the cable in diameter.

Properly attach the provided conduit cap to the unused conduit opening and securely tighten the cap screw within the specified torque when wiring the $\mathrm{D} 4 \mathrm{~B}-\square \mathrm{N}$.

## Others

The load for the actuator (roller) of the Switch must be imposed on the actuator in the horizontal direction, otherwise the actuator or the rotating axis may be deformed or damaged.


When using a long lever model like the D4B- $\square \square 16 \mathrm{~N}$ or
D4B- $\square \square 17 \mathrm{~N}$, the Switch may telegraph. To avoid telegraphing, take the following precautions.

1. Set the lever to operate in one direction. For details, see page G257, CW, CCW or Two-way Operation.
2. Modify the rear end of the dog to an angle of $15^{\circ}$ to $30^{\circ}$ as shown below or to a secondary-degree curve.

3. Modify the circuit so as not to detect the wrong operating signals.

## Small Safety Limit Switch

## D4F

## A Smaller Limit Switch than Ever Previously Produced. Ideal for Applications to Small-scale Machinery and Equipment

- A noticeable reduction to $1 / 4$ the size of OMRON's conventional model.
- High-sensitivity safety limit switch.
- Built-in switches with two- or four-contact construction are available.
- Degree of protection: IP67 (EN60947-5-1)
- Patent and design pending.



## Features

A Dramatic Reduction in Size
The volume is reduced to one quarter of the volume of our company's conventional types of limit switches $(30(W) \times 18(L) \times 60 \mathrm{~mm}(\mathrm{H}))$. Optimal for the downsizing of machinery and equipment.


High-sensitivity and Spacesaving
The conventional types of limit switches with a direct opening mechanism required 18 degrees for a movement until operation because its direct opening point is long (Our company's conventional types of limit switches).
The D4F requires 6 degrees to respond.
On the table that allows machine tools etc. to move at an increasing speed, the moment the dog pushes the actuator, the D4F responds. With the development of smaller versions of machines, the D4F saves space and fits in a smaller space.


Four-contact Construction is Available
D4F models of two-contact construction ( $1 \mathrm{NC} / 1 \mathrm{NO}$ and 2 NC ) and those of four-contact construction ( $2 \mathrm{NC} / 2 \mathrm{NO}$ and 4 NC ) are available. The auxiliary contact can be used for monitoring input of control circuits and indicator lighting.


Positioning in Steps of 9 Degrees
For a roller lever type of switch, grooves are incised on the body and the cam of the actuator, to allow positioning in steps of 9 degrees.


## Standards and EC Directives

- Conforms to the following EC Directives:

Machinery Directive
Low Voltage Directive
EN60204-1
EN1088
EN50047
EN81
EN115
GS-ET-15
JIS C 8201-5-1

## Approved Standards

Agency	Standards	File No.
TÜV Product   service	EN60947-5-1   (Direct opening: approved)	(See note 1.)
UL (See note 2.)	UL508   CSA C22.2 No.14	E76675

Note: 1. Contact your Omron sales representative.
2. Approval has been obtained for CSA C22.2 No. 14 under UL.

## Ordering Information

Model Number Legend
D4F- $\frac{\square}{1} \frac{\square}{2}-\frac{\square}{3} \frac{\square}{4}$

1. Built-in Switch

1NC/1NO (slow-action)
2NC (slow-action)
2NC/2NO (slow-action)
4NC (slow-action)
2. Actuator

02: Roller plunger (Metallic roller)
20: Roller lever
(Metallic lever, resin roller)
3. Cable Length 1: 1 m
3: $\quad 3 \mathrm{~m}$ 5: $\quad 5 \mathrm{~m}$
4. Pull-outing direction of cable

R: Horizontal
D: Vertica

List of Models

Actuator	Cable length	Cable direction	Built-in switch			
			$\begin{gathered} \text { 1NC/1NO } \\ \text { (slow-action) } \end{gathered}$	$\begin{gathered} \text { 2NC } \\ \text { (slow-action) } \end{gathered}$	$\begin{aligned} & \text { 2NC/2NO } \\ & \text { (slow-action) } \end{aligned}$	4NC (slow-action)
Roller lever (Metallic lever, resin roller)	1 m	Horizontal	D4F-120-1R	D4F-220-1R	D4F-320-1R	D4F-420-1R
		Vertical	D4F-120-1D	D4F-220-1D	D4F-320-1D	D4F-420-1D
	3 m	Horizontal	D4F-120-3R	D4F-220-3R	D4F-320-3R	D4F-420-3R
		Vertical	D4F-120-3D	D4F-220-3D	D4F-320-3D	D4F-420-3D
	5 m	Horizontal	D4F-120-5R	D4F-220-5R	D4F-320-5R	D4F-420-5R
		Vertical	D4F-120-5D	D4F-220-5D	D4F-320-5D	D4F-420-5D
Roller plunger (Metallic roller)	1 m	Horizontal	D4F-102-1R	D4F-202-1R	D4F-302-1R	D4F-402-1R
		Vertical	D4F-102-1D	D4F-202-1D	D4F-302-1D	D4F-402-1D
	3 m	Horizontal	D4F-102-3R	D4F-202-3R	D4F-302-3R	D4F-402-3R
		Vertical	D4F-102-3D	D4F-202-3D	D4F-302-3D	D4F-402-3D
	5 m	Horizontal	D4F-102-5R	D4F-202-5R	D4F-302-5R	D4F-402-5R
		Vertical	D4F-102-5D	D4F-202-5D	D4F-302-5D	D4F-402-5D

Prefered items

## Specifications

## Approved Standard Ratings

TÜV (EN60947-5-1)

Item Utilization category	AC-15	DC-13
Rated operating current (le)	0.75 A	0.27 A
Rated operating voltage (Ue)	240 V	250 V

Note: Use a 10-A fuse type gl or gG that conforms to IEC269 as a short-circuit protection device.

UL/CSA (UL508, CSA C22.2 No. 14)

C300

Rated voltage	Carry current	Current		Volt-amperes	
		Make	Break	Make	Break
120 VAC	2.5 A	15 A	1.5 A	1,800 VA	180 VA
240 VAC		7.5 A	0.75 A		

Q300

Rated   voltage	Carry   current	Current		Volt-amperes	
		Make	Break	Make	Break
125 VDC	2.5 A	0.55 A	0.55 A	69 VA	69 VA
250 VDC		0.27 A	0.27 A		

## Characteristics

Degree of protection (See note 1.)		IP67 (EN60947-5-1)
Durability (See note 2.)		Mechanical: 10,000,000 times min.   Electrical: 1,000,000 times min. (4-mA resistive load at 24 VDC, 4 circuits)   150,000 times min. (1-A resistive load at 125 VAC, 2 circuits / 4-mA resistive load at 24 VDC, 2 circuits) (See note 3.)
Operating speed		$1 \mathrm{~mm} / \mathrm{s}$ to $0.5 \mathrm{~m} / \mathrm{s}$
Operating frequency		Mechanical: 120 operations/minute Electrical: 30 operations/minute
Insulation resistance		$100 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC ) between terminals of the same polarities, between terminals of different polarities, between current-carrying metal parts and grounds, and between each terminal and non-current carrying metal parts
Minimum applicable load (See note 4.)		4-mA resistive load at 24 VDC, 4 circuits (Level N reference value)
Contact resistance (See note 5.)		$300 \mathrm{~m} \Omega$ max. (initial value with $1-\mathrm{m}$ cable), $500 \mathrm{~m} \Omega$ max. (initial value with 3-m cable), $700 \mathrm{~m} \Omega$ max. (initial value with $5-\mathrm{m}$ cable)
Dielectric strength		Between terminals of same polarities: Uimp 2.5 kV (EN60947-5-1)   Between terminals of different polarities: Uimp 4 kV (EN60947-5-1)   Between current-carrying metal parts and grounds: Uimp 4 kV (EN60947-5-1)   Between each terminal and non-current carrying metal parts: Uimp 4 kV (EN60947-5-1)
Conditional short-circuit current		100 A (EN60947-5-1)
Pollution degree (operating environment)		3 (EN60947-5-1)
Conventional free air thermal current (Ith)		2.5 A (EN60947-5-1)
Protection against electric shock		Class I (with a ground wire)
Vibration resistance	Malfunction	10 to $55 \mathrm{~Hz}, 0.75-\mathrm{mm}$ single amplitude
Shock resistance	Destruction	$1,000 \mathrm{~m} / \mathrm{s}^{2} \mathrm{~min}$.
	Malfunction	$300 \mathrm{~m} / \mathrm{s}^{2} \mathrm{~min}$.
Ambient temperature		Operating: $30^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (with no icing)
Ambient humidity		Operating: 95\% max.
Cable		UL2464 No. 22 AWG, finishing O.D.: 8.3 mm
Weight		Approx. 190 g (D4F-102-1R, with 1-m cable) Approx. 220 g (D4F-120-1R, with 1-m cable)

Note: 1. The degree of protection shown above is based on the test method specified in EN60947-5-1. Be sure to confirm in advance the sealing performance under the actual operating environment and conditions.
2. Durability values are calculated at an operating temperature of $5^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$, and an operating humidity of $40 \%$ to $70 \%$. Contact your OMRON sales representative for more detailed information on other operating environments.
3. When the ambient temperature is $35^{\circ} \mathrm{C}$ or higher, do not apply 1 A at 125 VAC to more than two circuits.
4. The value will vary depending on factors such as the switching frequency, the ambient environment, and the reliability level. Be sure to confirm correct operation with the actual load before application.
5. The contact resistance was measured with 0.1 A at 5 to 8 VDC with a fall-of-potential method.

Operating Characteristics
Slow-action (1NC/1NO, 2NC, 2NC/2NO, and 4NC)

Operating Characteristics	$\begin{aligned} & \text { D4F- } \square \text { 20- } \square \text { R } \\ & \text { D4F- } \square \mathbf{2 0 -} \square \mathbf{D} \end{aligned}$	$\begin{aligned} & \text { D4F- } \square \text { 02- } \square \mathbf{R} \\ & \text { D4F- } \square \mathbf{0 2 -} \square \mathbf{D} \end{aligned}$
Operating force max.: OF (See note 1.)	5 N	12 N
Release force min.: RF (See note 2.)	0.5 N	1.5 N
```Pretravel: PT1 (11-12 and 21-22) : PT1 (31-32 and 41-42) : PT2 (See note 3.)```	$\begin{aligned} & 6 \pm 3^{\circ}(\mathrm{NC}) \\ & 9 \pm 3^{\circ}(\mathrm{NC}) \\ & \left(12^{\circ}\right)(\mathrm{NO}) \end{aligned}$	$\begin{array}{\|l\|} \hline 1 \mathrm{~mm} \text { max. (NC) } \\ 1.3 \mathrm{~mm} \text { max. (NC) } \\ (1.2 \mathrm{~mm})(\mathrm{NO}) \\ \hline \end{array}$
Overtravel min.: OT	40°	3.2 mm
Operating position: OP (11-12 and 21-22) : OP (31-32 and 41-42)	\qquad	$\begin{aligned} & 29.4 \pm 1 \mathrm{~mm} \\ & 29 \pm 1 \mathrm{~mm} \end{aligned}$
Total travel: TT (See note 3.)	(55 ${ }^{\circ}$)	(4.5 mm)
Min. direct opening travel: DOT (See note 4.)	18°	1.8 mm
Min. direct opening force: DOF	20 N	20 N

Note: 1. The OF value is the maximum load that opens an NC contact (11-12, 21-22, 31-32, 41-42).
2. The RF value is the minimum load that closes an NC contact (11-12, 21-22, 31-32, 41-42).
3. The PT2 and TT values are reference values.
4. The D4F is used in accordance with EN81 and EN115 at a minimum DOT of 30° and 2.8 mm .

Operation

Contact Form

Model		ntact		Diagram	Remarks
D4F-1 \square - $\square \square$	1NC/1NO (slow-action)		$\begin{aligned} & 11-12 \\ & 33-34 \end{aligned}$		Only NC contact 11-12 has an approved direct opening mechanism. The terminals 11-12 and 33-34 can be used as unlike poles.
D4F-2 \square - $\square \square$	2NC (slow-action)		$\begin{aligned} & 11-12 \\ & 21-22 \end{aligned}$	ke \qquad	NC contacts 11-12 and 21-22 have an approved direct opening mechanism. The terminals 11-12 and 21-22 can be used as unlike poles.
D4F-3 \square - $\square \square$	2NC/2NO (slow-action)		$\begin{aligned} & 11-12 \\ & 21-22 \\ & 33-34 \\ & 43-44 \end{aligned}$		NC contacts 11-12 and 21-22 have an approved direct opening mechanism. The terminals 11-12, 21-22, 33-34 and $43-44$ can be used as unlike poles.
D4F-4 \square - $\square \square$	4NC (slow-action)		$\begin{aligned} & 11-12 \\ & 21-22 \\ & 31-32 \\ & 41-42 \end{aligned}$	$\xrightarrow{\longrightarrow \mathrm{ke} \longrightarrow}$	NC contacts 11-12, 21-22, 31-32 and 41-42 have an approved direct opening mechanism. The terminals 11-12, 21-22, 31-32 and 41-42 can be used as unlike poles.

Direct Opening Mechanism

1NC/1NO Contact (slow-action)

Conforms to EN60947-5-1 Direct Opening Θ.
(Only the NC contacts have a direct opening tunction.)
When metal weld occurs, the NC contacts are separated from each other by pushing in the plunger.

Dimensions

Note: 1. All units are in millimeters unless otherwise indicated.
2. Each dimension has a tolerance of 0.4 mm unless otherwise specified.

Roller lever (Metallic lever, resin roller)

D4F- \square 20- \square R

Roller plunger (Metallic roller)
D4F- \square 02- \square R

Roller plunger (Metallic roller)
D4F- \square 02- \square D

NOTICE

Be sure to connect a ground line, otherwise an electric shock may occur.
If the D4F is to be used as a switch in an emergency stop circuit or in a safety circuit for preventing accidents resulting in injuries or deaths, use NC contacts with a forced release mechanism and set the D4F so that it will operate in direct opening mode.
For safety, install the Switch using one-way rotational screws or other similar means to prevent it from easily coming off. Protect the D4F with an appropriate cover and post a warning sign near the D4F in order to ensure the safety.
To prevent the D4F from damage due to circuit short-circuiting, connect a fuse with a breaking current 1.5 to 2 times larger than the rated current of the D4F in series to the D4F.
If the D4F is used under EN-approved conditions, use a gl or gG 10A fuse approved by IEC269.
Actuation of the Switch over a long time may deteriorate parts of the Switch and a return failure may result. Be sure to check the condition of the Switch regularly.
Do not supply electric power when wiring.
Do not use the Switch where explosive gas, flammable gas, or any other dangerous gas may be present.
Keep the electrical load below the rated value.
Never wire to a wrong terminal.
Be sure to evaluate the Switch under actual working conditions after installation.
Do not drop or disassemble the D4F.
Do not use in closely contacted mounting.
Do not use the Switch as a stopper.
Conduct periodic inspections.
Do not use it in an activating circuit. (Use it as a safety signal.)
Contacts of the D4F can be used both for ordinary load and microload; however, once the contact is opened or closed with an ordinary load, it cannot be used for a load smaller than that. The contact surface may be rough, which impairs the reliability of contacting.

Handling of cables

Cables cannot be flexed repeatedly.
The cable is fixed with sealing materials on the bottom of the switch. When excessive force may be imposed on the cable, fasten the cable with a fixing unit at a distance of 50 mm from the bottom of the switch as shown.
Do not pull or press the cable at an excessive force (50 N max.).
When bending the cable, secure the cable with more than $45-\mathrm{mm}$ bending radius so as not to cause damage to the insulator or sheath of the cable. Doing so may result in current leakage or burning.

When wiring, be sure to prevent penetration of a liquid such as water or oil through the cable end.

Operating Environment

Keep the D4F away from oil and water, as these may enter the casing. (Though the switch construction complies with IP67 and prevents immersion of water even when held in water for a specified time, its use is not guaranteed when it is immersed in a liquid.)
Make sure in advance that the environment is suitable, with the presence of oil, water, or chemicals, as these may cause the seal to deteriorate, resulting in faulty contact, faulty isolation, current leakage, or burning.
Do not use the D4F in the following locations:

- Locations subject to corrosive gas
- Locations with severe changes in temperature
- Locations with excessive humidity that may cause condensation
- Locations with excessive vibration
- Locations that may be covered with processing chips or dust
- Locations subject to high temperature or excessive humidity

Correct Use

Operating Environment

The D4F is for indoor use only.
Do not use the D4F outdoors. Otherwise, the D4F may malfunction.

Durability

The life of the D4F will vary with the switching conditions. Before applying the D4F, test the D4F under actual operating conditions and be sure to use the D4F in actual operation within switching times that will not lower the performance of the D4F.

Tightening Torque

Be sure to tighten each screw of the D4F properly, otherwise the D4F may soon malfunction.

No.	Type	Proper tightening torque
1	Lever mounting screw (M5)	2.4 to $2.8 \mathrm{~N} \cdot \mathrm{~m}$
2	Body mounting screw (M4)	1.18 to $1.37 \mathrm{~N} \cdot \mathrm{~m}$

Mounting

Use two M4 screws and washers to mount the D4F securely. The D4F can be mounted more securely with proper tightening torque.

Mounting Holes (Unit: mm)

Changing the lever angle

Unfasten the screw that holds the lever to set the position of the lever at any angle through 360° (in steps of 9°).
After unfastening the screws that hold the lever, mount the lever the other way (normal side or reverse side). Set an angle of the lever to complete adjustment within a range in which the lever does not touch the switch body.

Wiring

Identifying Wires

Identify wires according to the color (with or without white lines) of the insulation on the wire.

Wire Colors

No.	Color of insulation	No.	Color of insulation
1	Blue/white	6	Brown
2	Orange /white	7	Pink
3	Pink/white	8	Orange
4	Brown/white	9	Blue
5	Green/yellow		

Note: "Blue/white, orange/white, pink/white, or brown/white" means that the cover is blue, orange, pink, or brown with a white line.

Terminal Numbers

Identify terminal numbers based on the color (with or without white lines) of the insulation on the wire.
The safety and auxiliary contacts of D4F models of four-terminal contact construction and those of two-terminal contact construction are described below.
The safety contacts are direct-opening NC contacts (11-12 and 21-
22); they are used for safety circuits, and each of them is indicated with the appropriate mark Θ.
Auxiliary contacts are used to check (to monitor) the operating state of the switch, which are equivalent to NO contacts (33-34 and 43-44) or NC contacts (31-32 and 41-42).
The NC contacts 31-32 and 41-42 of auxiliary contacts (orange or pink) can be used as safety contacts.
<1NC/1NO>

<2NC>

<2NC/2NO>

<4NC>

Cut the black core insulator and all unused wires at the end of the external insulation sheath when wiring the cable.

Operating

To set the plunger stroke correctly, press-fit the plunger until the top of the pushing surface comes between two grooves on the plunger.

To set the roller lever stroke correctly, push the dog and cam until the the lance point comes within the range of the convex part that is the correct setting position.

Others

Actuating the switch from an angle other than 90 degrees to the switch face may deform or damage the actuator, or deform or damage the rotary spindle, so make sure that the dog is straight.

Do not remove the head. Otherwise, a failure may occur.
To avoid telegraphing, take the following precautions.

1. Set the switch to operate in one direction.
2. Modify the rear end of the dog to an angle of 15° to 30° as shown below or to a secondary-degree curve.

3. Modify the circuit so as not to detect the wrong operating signals.

SI Units Conversion Table

To fully comply with international standards, this catalogue is based on the International System of Units (SI).

Miniature Manual Reset Limit Switch

D4N-DR

New Series of manual-reset Limit Switch

- Lineup includes three contact models with 2NC/1NO and 3 NC contacts in addition to the $1 \mathrm{NC} / 1 \mathrm{NO}$, and 2 NC version. Version with MBB contacts meet applications for avdanced requirements.
- M12-connector models are available, saving on labor and simplifying maintenance.
- Standardized gold-clad contacts provide high contact reliability. Can be used with both standard loads and microloads.
- Free of lead, cadmium, and hexavalent chrome, reducing the burden on the environment.
- Conforms to EN115 and EN81-1.

Be sure to read the "Safety Precautions" on page G-277.

Note: Contact your sales representative for details on models with safety standard certification.

Model Number Structure

D4N- $\square \square \square R$

1. Conduit/Connector size

1: Pg13.5 (1-conduit)
2: G1/2 (1-conduit)
3: 1/2-14NPT (1-conduit)
4: M20 (1-conduit)
5: Pg13.5 (2-conduit)
6: G1/2 (2-conduit)
7: 1/2-14NPT (M20 2-conduit with 1/2-14NPT changing adaptor included)
8: M20 (2-conduit)
9: M12 connector (1-conduit)
2. Built-in Switch

A: 1NC/1NO (slow-action)
B: 2NC (slow-action)
C: 2NC/1NO (slow-action)
D: 3NC (slow-action)
20:Roller lever (resin lever, resin roller)
2G:Adjustable roller lever, form lock (metal lever, resin roller)
2H:Adjustable roller lever, form lock (metal lever. rubber roller)
31:Top plunger
32:Top roller plunger
62: One-way roller arm lever (horizontal)
72: One-way roller arm lever (vertical)

Ordering Information

List of Models

Actuator	Conduit size		Built-in switch mechanism			
			$\begin{aligned} & \text { 1NC/1NO } \\ & \text { (Slow-action) } \end{aligned}$	2NC (Slow-action)	$\begin{gathered} \text { 2NC/1NO } \\ \text { (Slow-action) } \end{gathered}$	3NC (Slow-action)
Roller lever (resin lever, resin roller)	1-conduit	Pg13.5	D4N-1A20R	D4N-1B20R	D4N-1C20R	D4N-1D20R
		G1/2	D4N-2A20R	D4N-2B20R	D4N-2C20R	D4N-2D20R
		1/2-14NPT	D4N-3A20R	D4N-3B20R	D4N-3C20R	D4N-3D20R
		M20	D4N-4A20R	D4N-4B20R	D4N-4C20R	D4N-4D20R
		M12 connector	D4N-9A20R	D4N-9B20R	---	---
	2-conduit	Pg13.5	D4N-5A20R	D4N-5B20R	D4N-5C20R	D4N-5D20R
		G1/2	D4N-6A20R	D4N-6B20R	D4N-6C20R	D4N-6D20R
		$\begin{array}{\|l\|} \hline 1 / 2-14 N P T \\ \text { (See note 2.) } \\ \hline \end{array}$	D4N-7A20R	D4N-7B20R	D4N-7C20R	D4N-7D20R
		M20	D4N-8A20R	D4N-8B20R	D4N-8C20R	D4N-8D20R
Adjustable roller lever, form lock (metal lever, resin roller)	1-conduit	Pg13.5	D4N-1A2GR	D4N-1B2GR	D4N-1C2GR	D4N-1D2GR
		G1/2	D4N-2A2GR	D4N-2B2GR	D4N-2C2GR	D4N-2D2GR
		1/2-14NPT	D4N-3A2GR	D4N-3B2GR	D4N-3C2GR	D4N-3D2GR
		M20	D4N-4A2GR	D4N-4B2GR	D4N-4C2GR	D4N-4D2GR
		M12 connector	D4N-9A2GR	D4N-9B2GR	---	---
	2-conduit	Pg13.5	D4N-5A2GR	D4N-5B2GR	D4N-5C2GR	D4N-5D2GR
		G1/2	D4N-6A2GR	D4N-6B2GR	D4N-6C2GR	D4N-6D2GR
		$\begin{array}{\|l\|} \hline 1 / 2-14 N P T \\ \text { (See note 2.) } \\ \hline \end{array}$	D4N-7A2GR	D4N-7B2GR	D4N-7C2GR	D4N-7D2GR
		M20	D4N-8A2GR	D4N-8B2GR	D4N-8C2GR	D4N-8D2GR
Adjustable roller lever, form lock (metal lever, rubber roller)	1-conduit	Pg13.5	D4N-1A2HR	D4N-1B2HR	D4N-1C2HR	D4N-1D2HR
		G1/2	D4N-2A2HR	D4N-2B2HR	D4N-2C2HR	D4N-2D2HR
		1/2-14NPT	D4N-3A2HR	D4N-3B2HR	D4N-3C2HR	D4N-3D2HR
		M20	D4N-4A2HR	D4N-4B2HR	D4N-4C2HR	D4N-4D2HR
		M12 connector	D4N-9A2HR	D4N-9B2HR	---	---
	2-conduit	Pg13.5	D4N-5A2HR	D4N-5B2HR	D4N-5C2HR	D4N-5D2HR
		G1/2	D4N-6A2HR	D4N-6B2HR	D4N-6C2HR	D4N-6D2HR
		$\begin{array}{\|l\|} \hline 1 / 2-14 N P T \\ \text { (See note 2.) } \\ \hline \end{array}$	D4N-7A2HR	D4N-7B2HR	D4N-7C2HR	D4N-7D2HR
		M20	D4N-8A2HR	D4N-8B2HR	D4N-8C2HR	D4N-8D2HR
Plunger	1-conduit	Pg13.5	D4N-1A31R	D4N-1B31R	D4N-1C31R	D4N-1D31R
		G1/2	D4N-2A31R	D4N-2B31R	D4N-2C31R	D4N-2D31R
		1/2-14NPT	D4N-3A31R	D4N-3B31R	D4N-3C31R	D4N-3D31R
		M20	D4N-4A31R	D4N-4B31R	D4N-4C31R	D4N-4D31R
		M12 connector	D4N-9A31R	D4N-9B31R	---	---
	2-conduit	Pg13.5	D4N-5A31R	D4N-5B31R	D4N-5C31R	D4N-5D31R
		G1/2	D4N-6A31R	D4N-6B31R	D4N-6C31R	D4N-6D31R
		$\begin{array}{\|l\|} \hline 1 / 2-14 N P T \\ \text { (See note 2.) } \\ \hline \end{array}$	D4N-7A31R	D4N-7B31R	D4N-7C31R	D4N-7D31R
		M20	D4N-8A31R	D4N-8B31R	D4N-8C31R	D4N-8D31R
Roller plunger	1-conduit	Pg13.5	D4N-1A32R	D4N-1B32R	D4N-1C32R	D4N-1D32R
		G1/2	D4N-2A32R	D4N-2B32R	D4N-2C32R	D4N-2D32R
		1/2-14NPT	D4N-3A32R	D4N-3B32R	D4N-3C32R	D4N-3D32R
		M20	D4N-4A32R	D4N-4B32R	D4N-4C32R	D4N-4D32R
		M12 connector	D4N-9A32R	D4N-9B32R	---	---
	2-conduit	Pg13.5	D4N-5A32R	D4N-5B32R	D4N-5C32R	D4N-5D32R
		G1/2	D4N-6A32R	D4N-6B32R	D4N-6C32R	D4N-6D32R
		$\begin{array}{\|l\|} \hline 1 / 2-14 N P T \\ \text { (See note 2.) } \\ \hline \end{array}$	D4N-7A32R	D4N-7B32R	D4N-7C32R	D4N-7D32R
		M20	D4N-8A32R	D4N-8B32R	D4N-8C32R	D4N-8D32R

Prefered types

Actuator	Conduit size		Built-in switch mechanism			
			1NC/1NO (Slow-action)	2NC (Slow-action)	2NC/1NO (Slow-action)	3NC (Slow-action)
One-way roller arm lever (horizontal)	1-conduit	Pg13.5	D4N-1A62R	D4N-1B62R	D4N-1C62R	D4N-1D62R
		G1/2	D4N-2A62R	D4N-2B62R	D4N-2C62R	D4N-2D62R
		1/2-14NPT	D4N-3A62R	D4N-3B62R	D4N-3C62R	D4N-3D62R
		M20	D4N-4A62R	D4N-4B62R	D4N-4C62R	D4N-4D62R
		M12 connector	D4N-9A62R	D4N-9B62R	---	---
	2-conduit	Pg13.5	D4N-5A62R	D4N-5B62R	D4N-5C62R	D4N-5D62R
		G1/2	D4N-6A62R	D4N-6B62R	D4N-6C62R	D4N-6D62R
		$\begin{array}{\|l} \hline 1 / 2-14 N P T \\ \text { (See note 2.) } \end{array}$	D4N-7A62R	D4N-7B62R	D4N-7C62R	D4N-7D62R
		M20	D4N-8A62R	D4N-8B62R	D4N-8C62R	D4N-8D62R
One-way roller arm lever (vertical)	1-conduit	Pg13.5	D4N-1A72R	D4N-1B72R	D4N-1C72R	D4N-1D72R
		G1/2	D4N-2A72R	D4N-2B72R	D4N-2C72R	D4N-2D72R
		1/2-14NPT	D4N-3A72R	D4N-3B72R	D4N-3C72R	D4N-3D72R
		M20	D4N-4A72R	D4N-4B72R	D4N-4C72R	D4N-4D72R
		M12 connector	D4N-9A72R	D4N-9B72R	---	---
	2-conduit	Pg13.5	D4N-5A72R	D4N-5B72R	D4N-5C72R	D4N-5D72R
		G1/2	D4N-6A72R	D4N-6B72R	D4N-6C72R	D4N-6D72R
		$\begin{aligned} & \hline 1 / 2-14 \mathrm{NPT} \\ & \text { (See note 2.) } \end{aligned}$	D4N-7A72R	D4N-7B72R	D4N-7C72R	D4N-7D72R
		M20	D4N-8A72R	D4N-8B72R	D4N-8C72R	D4N-8D72R

Note: 1. It is recommended that M20 be used for Switches to be exported to Europe and $1 / 2-14$ NPT be used for Switches to be exported to North American countries.
2. The $1 / 2-14 N P T$-conduit models include an M20-to-1/2-14NPT changing adaptor.

Specifications

Standards and EC Directives

- Conforms to the following EC Directives:

Machinery Directive
Low Voltage Directive
EN50047
EN1088
GS-ET-15
Approved Standards

Agency	Standard	File No.
TÜV Product Service	EN60947-5-1 (approved direct opening)	B03 1139656 061
UL (See note.)	UL508, CSA C22.2 No.14	E76675

Note: Approval for CSA C22.2 No. 14 is authorized by the UL mark.
CCC (China Compulsory Certification) Mark

Agency	Standard	File No.
CQC	GB14048.5	Under application

Approved Standard Ratings
TUV (EN60947-5-1)

ItemUtilization category	AC-15	DC-13
Rated operating current $\left(\mathbf{I}_{\mathrm{e}}\right)$	3 A	0.27 A
Rated operating voltage $\left(\mathrm{U}_{\mathrm{e}}\right)$	240 V	250 V

Note: Use a 10-A fuse type gI or gG that conforms to IEC269 as a short-circuit protection device. This fuse is not built into the Switch.

UL/CSA (UL508, CSA C22.2 No. 14)
A300

Rated voltage	Carry current	Current		Volt-amperes	
		Make	Break	Make	Break
120 VAC	10 A	60 A	6 A	$7,200 \mathrm{VA}$	720 VA
240 VAC		30 A	3 A		

Q300

Rated voltage	Carry current	Current		Volt-amperes	
		Make	Break	Make	Break
125 VDC	2.5 A	0.55 A	0.55 A	69 VA	69 VA
		0.27 A	0.27 A		

Characteristics		
Degree of protection (See note 3.)		IP67 (EN60947-5-1)
Durability (See note 4.)	Mechanical	1,000,000 operations min.
	Electrical	500,000 operations min. for a resistive load of 3 A at 250 VAC (See note 5.) 300,000 operations min. for a resistive load of 10 A at 250 VAC
Operating speed		$1 \mathrm{~mm} / \mathrm{s}$ to $0.5 \mathrm{~m} / \mathrm{s}$ (D4N-1A20R)
Operating frequency		30 operations/minute max.
Contact resistance		$25 \mathrm{~m} \Omega$ max.
Minimum applicable load (See note 6.)		Resistive load of 1 mA at 5 VDC (N -level reference value)
Rated insulation voltage (U_{i})		300 V
Protection against electric shock		Class II (double insulation)
Pollution degree (operating environment)		Level 3 (EN60947-5-1)
Impulse withstand voltage (EN60947-5-1)		Between terminals of the same polarity: 2.5 kV
		Between terminals of different polarities: 4 kV
		Between other terminals and uncharged metallic parts: 6 kV
Insulation resistance		$100 \mathrm{M} \Omega \mathrm{min}$.
Contact gap		Snap-action: $2 \times 0.5 \mathrm{~mm}$ min Slow-action: $2 \times 2 \mathrm{~mm}$ min
Vibration resistance	Malfunction	10 to $55 \mathrm{~Hz}, 0.75-\mathrm{mm}$ single amplitude
Shock resistance	Destruction	$1,000 \mathrm{~m} / \mathrm{s}^{2}$
	Malfunction	$300 \mathrm{~m} / \mathrm{s}^{2}$
Conditional short-circuit current		100 A (EN60947-5-1)
Rated open thermal current (l_{th})		10 A (EN60947-5-1)
Ambient temperature		Operating: $30^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ with no icing
Ambient humidity		Operating: 95\% max.
Weight		Approx. $92 \mathrm{~g} \mathrm{(D4N-1A20R)}$

Note: 1. The above values are initial values.
2. Once a contact has been used to switch a standard load, it cannot be used for a load of a smaller capacity. Doing so may result in roughening of the contact surface and contact reliability may be lost.
3. The degree of protection is tested using the method specified by the standard (EN60947-5-1). Confirm that sealing properties are sufficient for the operating conditions and environment beforehand. Although the switch box is protected from dust or water penetration, do not use the D4N- \square R in places where foreign material such as dust, dirt, oil, water, or chemicals may penetrate through the head. Otherwise, premature wear, Switch damage or malfunctioning may occur.
4. The durability is for an ambient temperature of $5^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$ and an ambient humidity of 40% to 70%. For more details, consult your OMRON representative.
5. If the ambient temperature is greater than $35^{\circ} \mathrm{C}$, do not pass the $3-\mathrm{A}, 250-\mathrm{VAC}$ load through more than 2 circuits.
6. This value will vary with the switching frequency, environment, and reliability level. Confirm that correct operation is possible with the actual load beforehand

Structure

 Switches with three contacts.

Contact Form

Model	Contact	Contact form		Operating pattern		Remarks
D4N- \square A $\square \mathrm{R}$	1NC/1NO		$\begin{aligned} & 11-12 \\ & 33-34 \end{aligned}$	$\xrightarrow{ } \quad \longrightarrow$	$\square \mathrm{ON}$	Only NC contacts 11-12 have an approved direct opening mechanism. The terminals 11-12 and 33-34 can be used as unlike poles.
D4N- $\square \mathrm{B} \square \mathrm{R}$	2NC	celes:	$\begin{aligned} & 11-12 \\ & 31-32 \end{aligned}$		$\square \mathrm{ON}$	Only NC contacts 11-12 and 31-32 have an approved direct opening mechanism. The terminals 11-12 and 31-32 can be used as unlike poles.
D4N- $\square \mathrm{C} \square \mathrm{R}$	2NC/1NO		$\begin{aligned} & 11-12 \\ & 21-22 \\ & 33-34 \end{aligned}$		$\square \mathrm{ON}$	Only NC contacts 11-12 and 21-22 have an approved direct opening mechanism. The terminals 11-12, 21-22, and 33-34 can be used as unlike poles.
D4N- $\square \mathrm{D} \square \mathrm{R}$	3NC	C12	$\begin{aligned} & 11-12 \\ & 21-22 \\ & 31-32 \end{aligned}$		$\square \mathrm{ON}$	Only NC contacts 11-12, 21-22, and 31-32 have an approved direct opening mechanism. The terminals 11-12, 21-22, and 31-32 can be used as unlike poles.

Direct Opening Mechanism

1NC/1NO Contact (Slow-action)

Only the NC contact side has a direct opening mechanism.
When metal deposition occurs, the contacts are separated from each other by the plunger being pushed in.
(Conforms to EN60947-5-1 Direct Opening Operation.)
2NC Contact (Slow-action)

Both NC contacts have a direct opening mechanism
When metal deposition occurs, the contacts are
separated from each other by the plunger being
pushed in.
(Conforms to EN60947-5-1 Direct Opening Operation.)

Switches

Note: All units are in millimeters unless otherwise indicated.
1-conduit Models
Roller Lever (Resin Lever, Resin Roller)
D4N-1 $\square 20 R$
D4N-3 $\square 20 R$
D4N-2 $\square 20 \mathrm{R}$

Adjustable Roller Lever, Form Lock (with Metal Lever, Rubber Roller)
D4N-1 \square 2HR \quad D4N-2 $\square 2 H R$ D4N-3 $\square 2 H R \quad$ D4N-4 $\square 2 H R$ D4N-9 $\square 2 H R$ (See note 4.)

Model	D4N- \square 20R	D4N- $\square \square 2 G R$ (See note 2.)	D4N- $\square \square$ 2HR
LF max.	6.4 N	5.6 N	5.4 N
LT max.	55°	55°	55°
PT 1 (See note 3.)	18 to 27°	18 to 27°	18 to 27°
(PT 2) (See note 4.)	$\left(44^{\circ}\right)$	$\left(44^{\circ}\right)$	$\left(44^{\circ}\right)$
(TT) (See note 5.)	80°	80°	80°
DOF min. (See note 6.)	20 N	20 N	20 N
DOT min. (See note 6.)	50°	50°	50°

Adjustable Roller Lever, Form Lock (with Metal Lever, Resin Roller)
D4N-1 $\square 2 G R \quad$ D4N-2 $\square 2 G R$

D4N-3 \square 2GR \quad D4N-4 $\square 2 G R$
D4N-9 $\square 2 G R$ (See note 4.)

1-conduit M12 Connectors
D4N-9 $\square \square \square$ R

Note: 1. Unless otherwise specified, a tolerance of $\pm 0.4 \mathrm{~mm}$ applies to all dimensions.
2. Variation occurs in the simultaneity of contact opening/closing operations of 2NC, 2NC/1NO, and 3NC contacts. Check contact operation.
3. There are a minimum of five turns of the screw thread for a Pg13.5 conduit opening and four turns minimum for a G $1 / 2$ conduit opening.
4. Refer to the following diagram for details on M12 connectors.

Note: 1. Variation occurs in the simultaneity of contact opening/closing operations of 2NC, 2NC/1NO, and 3NC contacts. Check contact operation.
2. The operating characteristics of these Switches were measured with the roller lever set at 32 mm .
3. These PT values are possible when the NC contacts are open (OFF).
4. These PT values are nominal values possible when the NO contacts are closed (ON). (1NC/1NO models only)
5. Nominal value.
6. Load and stroke values for the direct opening mechanism. For safe use, always make sure that the minimum values or greater are provided.

Plunger
D4N-1 \square 31R D4N-2 $\square 31 R$
D4N-3 $\square 31 R \quad$ D4N-4 \square 31R
D4N-9 $\square 31$ R (See note 4.)
Bue

One-way Roller Arm Lever
(Horizontal)
D4N-1 $\square 62 R \quad$ D4N-2 $\square 62 R$
D4N-3 $\square 62 R \quad$ D4N-4 $\square 62 R$
D4N-9 $\square 62 R$ (See note 4.)

One-way Roller Arm Lever
(Vertical)
$\begin{array}{lr}\text { D4N-1 } \square 72 R & \text { D4N-2 } \square 72 R \\ \text { D4N-3 } \square 72 R & \text { D4N-4 } \square 72 R \\ \text { D4N-9 } \square 7 R 2 \text { (See note 4.) }\end{array}$

Note: 1. Unless otherwise specified, a tolerance of $\pm 0.4 \mathrm{~mm}$ applies to all dimensions.
2. Variation occurs in the simultaneity of contact opening/closing operations of 2 NC and 3 NC contacts. Check contact operation.
3. There are a minimum of five turns of the screw thread for a Pg13.5 conduit opening and four turns minimum for a G $1 / 2$ conduit opening.
4. Refer to page 273 for details on M12 connectors.

Model	$\begin{gathered} \text { D4N- } \\ \square 31 R \end{gathered}$	$\begin{gathered} \text { D4N- } \\ \square \mathbf{3 2 R} \end{gathered}$	$\begin{aligned} & \text { D4N- } \\ & \square 62 R \end{aligned}$	$\begin{aligned} & \text { D4N- } \\ & \square 72 R \end{aligned}$
LF max.	10.8 N	10.8 N	7.5 N	7.9 N
LT max.	4.5 mm	4.5 mm	7 mm	7 mm
PT 1 (See note 2.)	2 mm	2 mm	4 mm	4 mm
$\begin{array}{\|l\|} \hline \text { (PT 2) } \\ \text { (See note 3.) } \\ \hline \end{array}$	(2.9 mm)	(2.9 mm)	(5.2 mm)	(4.3 mm)
OP	$34 \pm 0.5 \mathrm{~mm}$	$\begin{aligned} & \hline 44.4 \\ & \pm 0.8 \mathrm{~mm} \end{aligned}$	$53 \pm 0.8 \mathrm{~mm}$	$27 \pm 0.8 \mathrm{~mm}$
$\begin{aligned} & (\mathrm{TT}) \\ & \text { (See note 4.) } \end{aligned}$	(6 mm)	(6 mm)	(9 mm)	(9 mm)
$\begin{aligned} & \hline \text { DOF min. } \\ & \text { (See note 5.) } \end{aligned}$	20 N	20 N	20 N	20 N
DOT min. (See note 5.)	3.2 mm	3.2 mm	5.8 mm	4.8 mm

Note: 1. Variation occurs in the simultaneity of contact opening/closing operations of $2 \mathrm{NC}, 2 \mathrm{NC} / 1 \mathrm{NO}$, and 3NC contacts. Check contact operation.
2. These PT values are possible when the NC contacts are open (OFF).
3. These PT values are nominal values possible when the NO contacts are closed (ON). (1NC/1NO models only)
4. Nominal value.
5. Load and stroke values for the direct opening mechanism. For safe use, always make sure that the minimum values or greater are provided.

2-conduits Models

Adjustable Roller Lever, Form Lock
(with Metal Lever, Resin Roller)
D4N-5 \square 2GR \quad D4N-6 $\square 2 G R$

Adjustable Roller Lever, Form Lock (with Metal Lever, Rubber Roller)

D4N-5 2HR D4N-6 2HR

D4N-7 $\square 2 H R \quad$ D4N-8 $\square 2 H R$

Note: 1. Unless otherwise specified, a tolerance of $\pm 0.4 \mathrm{~mm}$ applies to all dimensions.
2. Variation occurs in the simultaneity of contact opening/closing operations of 2 NC and 3NC contacts. Check contact operation.
3. There are a minimum of five turns of the screw thread for a Pg13.5 conduit opening and four turns minimum for a G $1 / 2$ conduit opening.

Model	D4N- $\square \square$ 20R	D4N- \square 2GR	D4N- $\square \square$ 2HR
LF max.	6.4 N	5.6 N	5.4 N
LT max.	55°	55°	55°
PT 1 (See note 2.)	18° to 27°	18° to 27°	18° to 27°
(PT 2) (See note 3.)	$\left(44^{\circ}\right)$	$\left(44^{\circ}\right)$	$\left(44^{\circ}\right)$
(TT) (See note 4.)	80°	80°	80°
DOF min. (See note 5.)	20 N	20 N	20 N
DOT min. (See note 5.)	50°	50°	50°

Note: 1. Variation occurs in the simultaneity of contact opening/closing operations of 2NC, 2NC/1NO, and 3NC contacts. Check contact operation.
2. These PT values are possible when the NC contacts are open (OFF).
3. These PT values are nominal values possible when the NO contacts are closed (ON). (1NC/1NO models only)
4. Nominal value.
5. Load and stroke values for the direct opening mechanism. For safe use, always make sure that the minimum values or greater are provided.

One-way Roller Arm Lever
(Horizontal)
$\begin{array}{ll}\text { D4N-5 } \square 62 R & \text { D4N-6 } \square 62 R \\ \text { D4N-7 } \square 62 R & \text { D4N-8 } \square 62 R\end{array}$

Roller Plunger
D4N-5 $\square 32 \mathrm{R} \quad \mathrm{D} 4 \mathrm{~N}-6 \square 32 \mathrm{R}$
D4N-7 $\square 32 R \quad$ D4N-8 $\square 32 R$

One-way Roller Arm Lever
(Vertical)
D4N-5 $\square 72 R \quad$ D4N-6 $\square 72 R$
D4N-7 $\square 72 R \quad$ D4N-8 $\square 72 R$

Note: 1. Unless otherwise specified, a tolerance of $\pm 0.4 \mathrm{~mm}$ applies to all dimensions.
2. Variation occurs in the simultaneity of contact opening/closing operations of 2NC and 3NC contacts. Check contact operation.
3. There are a minimum of five turns of the screw thread for a Pg13.5 conduit opening and four turns minimum for a G $1 / 2$ conduit opening.

Model	D4N- $\square \square$ 31R	D4N- \square 32R	D4N- $\square \mathbf{6 2 R}$	D4N- $\square \square$ 72R
LF max.	10.8 N	10.8 N	7.5 N	7.9 N
LT max.	4.5 mm	4.5 mm	7 mm	7 mm
PT 1 max. (See note 2.)	2 mm	2 mm	4 mm	4 mm
(PT 2) (See note 3.)	$(2.9 \mathrm{~mm})$	$(2.9 \mathrm{~mm})$	$(5.2 \mathrm{~mm})$	$(4.3 \mathrm{~mm})$
OP	$34 \pm 0.5 \mathrm{~mm}$	$44.4 \pm 0.8 \mathrm{~mm}$	$53 \pm 0.8 \mathrm{~mm}$	$27 \pm 0.8 \mathrm{~mm}$
(TT) (See note 4.)	$(6 \mathrm{~mm})$	$(6 \mathrm{~mm})$	$(9 \mathrm{~mm})$	$(9 \mathrm{~mm})$
DOF min. (See note 5.)	20 N	20 N	20 N	20 N
DOT min. (See note 5.)	3.2 mm	3.2 mm	5.8 mm	4.8 mm

Note: 1. Variation occurs in the simultaneity of contact opening/closing operations of 2NC, 2NC/1NO, and 3NC contacts. Check contact operation.
2. These PT values are possible when the NC contacts are open (OFF).
3. These PT values are nominal values possible when the NO contacts are closed (ON). (1NC/1NO models only)
4. Nominal value.
5. Load and stroke values for the direct opening mechanism. For safe use, always make sure that the minimum values or greater are provided.

Levers

Refer to the following diagrams for the angles and positions of the dogs.
Adjustable Roller Lever, Form Lock (with Metal Lever, Resin Roller)

Note: Unless otherwise specified, a tolerance of $\pm 0.4 \mathrm{~mm}$ applies to all dimensions.

Safety Precautions

Refer to OMRON SAFETY COMPONENTS SERIES (Y106) for common precautions for Switches and Safety Limit Switches.

\triangle CAUTION

Do not use metal connectors or metal conduits with this Switch. Doing so may occasionally result in electric shock.

Precautions for Safe Use

- Do not drop the Switch. Doing so may result in the Switch not performing to its full capacity.
- Do not attempt to disassemble or modify the Switch. Doing so may cause the Switch to malfunction.
- Do not use the Switch where explosive gas, flammable gas, or any other hazardous gas may be present.
- Install the Switch in a location away from close body contact. Not doing so may result in malfunction.
- Do not use the Switch submerged in oil or water, or in locations continuously subject to splashes of oil or water. Doing so may result in oil or water entering the Switch interior. (The IP67 degree of protection specification for the Switch refers to water penetration while the Switch is submersed in water for a specified period of time.)
- Protect the head from foreign material. Subjecting the head to foreign material may result in premature wear or damage to the Switch. Although the switch body is protected from penetration by dust or water, the head is not protected from penetration by minute particles or water.
- Turn the power OFF before wiring. Doing so may result in electric shock.
- Install the cover after wiring. Not doing so may result in electric shock.
- Connect a fuse to the Switch in series to protect the Switch from short-circuit damage. Use a fuse with a breaking current 1.5 to 2 times larger than the rated current. To conform to EN ratings, use an IEC60269-compliant 10-A fuse type gl or gG.
- Do not switch circuits for two or more standard loads (250 VAC, 3 A) at the same time. Doing so may adversely affect insulation performance.
- The durability of the Switch is greatly affected by operating conditions. Evaluate the Switch under actual working conditions, before permanent installation and use within a number of switching operations that will not adversely affect the Switch's performance.
- Be sure to indicate in the machine manufacturer's instruction manual that the user must not attempt to repair or maintain the Switch and must contact the machine manufacturer for any repairs or maintenance.
- If the Switch is to be used in an emergency stop circuit or in a safety circuit for preventing accidents resulting in injuries or deaths, use a model that has an NC contact equipped with a direct opening mechanism and make sure that the Switch operates in the direct opening mode. Furthermore, secure the Switch with screws or equivalent parts that are tightened in a single direction so that the Switch cannot be easily removed. Then provide a protection cover for the Switch and post a warning label near the Switch
- Make sure that the actuator is pushed into the lock position. Not doing so may result in the actuator becoming unlocked, causing an accident.
- Always reset the Switch manually. Not doing so may result in damage to the reset function.
- When the Switch locks due to a fault in the system, be sure to reset the Switch manually before resupplying power after confirming the safety of the system.
- Check the Switches before use and inspect regularly, replacing them when necessary. If a Switch is kept pressed for an extended period of time, the components may deteriorate quickly, and the Switch may not release
- When using the Switch as a safety component, be sure to check the system design for both operational and circuit safety.

Precautions for Correct Use

Environment

- The Switch is intended for indoor use only.
- Do not use the Switch outdoors. Doing so may cause the Switch to malfunction.
- Do not use the Switch where hazardous gases (e.g., $\mathrm{H}_{2} \mathrm{~S}, \mathrm{SO}_{2}$, $\mathrm{NH}_{3}, \mathrm{HNO}_{3}, \mathrm{Cl}_{2}$) are present or in locations subject to high temperature and humidity. Doing so may result in damage to the Switch caused by contact failure or corrosion.
- Do not use the Switch under any of the following conditions.
- Locations subject to extreme temperature changes.
- Locations where high humidity or condensation may occur.
- Locations subject to excessive vibration.
- Locations where metal dust, processing waste, oil, or chemicals may penetrate through the protective door.
- Locations subject to detergents, thinner, or other solvents.

Mounting Method

Mounting Screw Tightening Torque

Tighten each of the screws to the specified torque. Loose screws may result in malfunction of the Switch within a short time.

1	Terminal screw	0.6 to $0.8 \mathrm{~N} \cdot \mathrm{~m}$
2	Cover clamping screw	0.5 to $0.7 \mathrm{~N} \cdot \mathrm{~m}$
3	Head clamping screw	0.5 to $0.6 \mathrm{~N} \cdot \mathrm{~m}$
4	Lever clamping screw	1.6 to $1.8 \mathrm{~N} \cdot \mathrm{~m}$
5	Body clamping screw	0.5 to $0.7 \mathrm{~N} \cdot \mathrm{~m}$
6	Conduit mounting connection,	1.8 to $2.2 \mathrm{~N} \cdot \mathrm{~m}$ (except $1 / 2-$ $14 \mathrm{NPT})$
	M12 adaptor	1.4 to $1.8 \mathrm{~N} \cdot \mathrm{~m} \mathrm{(1/2-14NPT)}$
7	Cap screw	1.3 to $1.7 \mathrm{~N} \cdot \mathrm{~m}$

Switch Mounting

- Mount the Switch using M4 screws and washers and tighten the screws to the specified torque.
- For safety, use screws that cannot be easily removed, or use an equivalent measure to ensure that the Switch is secure.
- Secure the Switch with two M4 bolts and washers. Provide studs with a diameter of $4^{0.05 /} 0.15$ and a height of 4.8 mm max. at two places, inserting into the holes at the bottom of the Switch as shown below so that the Switch is firmly fixed at four points.

Switch Mounting Holes
One-conduit Type

Two-conduit Type

Changing the Head Direction

By removing the four screws of the head, the mounting direction of the head can be changed. The head can be mounted in four directions. Be sure that no foreign material will enter the head during a change in direction.

Wiring

- When connecting to the terminals via insulating tube and M3.5 crimp terminals, arrange the crimp terminals as shown below so that they do not rise up onto the case or the cover. Applicable lead wire size: AWG20 to AWG18 (0.5 to $0.75 \mathrm{~mm}^{2}$). Use lead wires of an appropriate length, as shown below. Not doing so may result in excess length causing the cover to rise and not fit properly.

One-conduit Type (3 Poles)

Two-conduit Type (3 Poles)

- Do not push crimp terminals into gaps in the case interior. Doing so may cause damage or deformation of the case.
- Use crimp terminals not more than 0.5 mm in thickness. Otherwise, they will interfere with other components inside the case. The crimp terminals shown below are not more than 0.5 mm thick.

Manufacture	Type	Wire size
J.S.T.	FV0.5-3.7 (F type)	AWG20 $\left(0.5 \mathrm{~mm}^{2}\right)$
	V0.5-3.7 (straight type)	

J.S.T is a Japanese manufacturer.

Contact Arrangement

- The following diagrams show the contact arrangements used for screw terminal types and connector types.

Screw Terminal Type

D4N- $\square D \square \square$ (3NC)

D4N- $\square \mathrm{B} \square \square \mathrm{R}$ (2NC)

Connector Type

Pin No. (Terminal No.)

D4N- $\square C \square \square R(2 N C / 1 N O)$

$D 4 N-\square A \square \square R(1 N C / 1 N O)$

D4N-9B $\square \square \mathrm{R}$ (2NC)

D4N-9A $\square \square$ ($1 \mathrm{NC} / 1 \mathrm{NO}$)
(1) $11 \rightarrow 12(2) \oplus$

- Applicable socket: XS2F (OMRON).
- Refer to the G010 Connector Catalog for details on socket pin numbers and lead wire colors.

Socket Tightening (Connector Type)

- Turn the socket connector screws by hand and tighten until no space remains between the socket and the plug.
- Make sure that the socket connector is tightened securely. Otherwise, the rated degree of protection (IP67) may not be maintained and vibration may loosen the socket connector.

Conduit Opening

- Connect a recommended connector to the opening of the conduit and tighten the connector to the specified torque. The case may be damaged if an excessive tightening torque is applied.
- When using $1 / 2-14 N P T$, wind sealing tape around the joint between the connector and conduit opening so that the enclosure will conform to IP67.
- Use a cable with a suitable diameter for the connector.
- Attach and tighten a conduit cap to the unused conduit opening when wiring. Tighten the conduit cap to the specified torque. The conduit cap is provided with the Switch (2-conduit types)

Recommended Connectors

Use connectors with screws not exceeding 9 mm , otherwise the screws will protrude into the case interior, interfering with other components in the case. The connectors listed in the following table have connectors with thread sections not exceeding 9 mm . Use the recommended connectors to ensure conformance to IP67.

Size	Manufacturer	Model	Applicable cable diameter
G1/2	LAPP	ST-PF1/2 $5380-1002$	6.0 to 12.0 mm
	Ohm Denki	OA-W1609	7.0 to 9.0 mm
	OA-W1611	9.0 to 11.0 mm	
Pg13.5	LAPP	S-13.5 $5301-5030$	6.0 to 12.0 mm
	LAPP	ST-M20 $\times 1.5$ $5311-1020$	7.0 to 13.0 mm
1/2-14NPT	LAPP	ST-NPT1/2 $5301-6030$	6.0 to 12.0 mm
M12	LAPP	ST-M12 $\times 1.5$ $5301-1000$	3.5 to 7.0 mm

Use LAPP connectors together with seal packing (JPK-16, GP-13.5, GPM20, or GPM12), and tighten to the specified tightening torque. Seal packing is sold separately.
LAPP is a German manufacturer. Ohm Denki is a Japanese manufacturer.

Before using an M12 type, attaching the provided changing adaptor to the Switch and then connect the recommended connector.
Before using a 2 -conduit 1/2-14NPT type, attach the provided changing adaptor to the Switch and then connect the recommended connector.

Storage

Do not store the Switch in locations where hazardous gases (e.g., $\mathrm{H}_{2} \mathrm{~S}, \mathrm{SO}_{2}, \mathrm{NH}_{3}, \mathrm{HNO}_{3}, \mathrm{Cl}_{2}$) or dust is present, or in locations subject to high temperatures and humidity.

Others

- Do not allow the load current to exceed the rated value.
- Confirm that the seal rubber has no defects before use. If the seal rubber is displaced or raised, or has foreign particles adhered to it, the sealing capability of the seal rubber will be adversely affected.
- Use the correct cover mounting screws only, or the sealing capability of the seal rubber will deteriorate.
- Inspect the Switch regularly.
- With rubber roller lever models, the rubber roller may turn white over time, but this will not affect the quality of operation.
- Use the following recommended countermeasures to prevent telegraphing when using adjustable or long levers.

1. Make the rear edge of the dog smooth with an angle of 15° to 30° or make it in the shape of a quadratic curve.
2. Design the circuit so that no error signal will be generated.
3. Use or set a Switch that is operated in one direction only.

Production Termination

Following the release of the D4N-R, production of the D4D-R will be terminated
Date of Production Termination
Production of the D4D-R Series will be terminated in March 2006.
Product Replacement

1. Dimensions

The D4D-R and D4N-R use the same mounting method, and mounting hole. The multi-contact structure and the extra 4 mm in length, however, are different.
2. Terminal Numbers

For the 2-contact model, the terminals 21, 22, 23, and 24 on the D4D-R are 31, 32, 33, and 34 on the D4N-R
3. Recommended Terminals

If the recommended terminals are not used, the Switch may not be compatible. Make sure that the Switch is compatible with the terminals

Comparison of the D4D-R and Substitute Products

Model	D4N-R
Switch color	Very similar
Dimensions	Very similar
Wiring/connection	Significantly different
Mounting method	Completely compatible
Ratings/performance	Very similar
Operating characteristics	Very similar
Operating method	Completely compatible

Dimensions (Unit: mm)

List of Recommended Substitute Products

: The actuator on the D4D-R is a non-safety type. The D4N-R is recommended for safety applications (form lock type). Be sure to mount it correctly. Using M screws is recommended to comply with European standards. Therefore, the M20 conduit model is recommended for use in new designs.
Safety Limit Switch

D4D-R product to be discontinued	Recommended substitute product
D4D-1520R	D4N-1A20R
D4D-2520R	D4N-2A20R
D4D-3520R	D4N-3A20R
D4D-5520R	D4N-5A20R
D4D-6520R	D4N-6A20R
D4D-1531R	D4N-1A31R
D4D-2531R	D4N-2A31R
D4D-3531R	D4N-3A31R
D4D-5531R	D4N-5A31R
D4D-6531R	D4N-6A31R
D4D-1532R	D4N-1A32R
D4D-2532R	D4N-2A32R
D4D-3532R	D4N-3A32R
D4D-5532R	D4N-5A32R
D4D-6532R	D4N-6A32R
D4D-1562R	D4N-1A62R
D4D-2562R	D4N-2A62R
D4D-3562R	D4N-3A62R
D4D-5562R	D4N-5A62R
D4D-6562R	D4N-6A62R
D4D-1572R	D4N-1A72R
D4D-2572R	D4N-2A72R
D4D-3572R	D4N-3A72R
D4D-5572R	D4N-5A72R
D4D-6572R	D4N-6A72R
D4D-152HR	D4N-1A2HR
D4D-252HR	D4N-2A2HR
D4D-352HR	D4N-3A2HR
D4D-1521R	D4N-1A2GR
D4D-2521R	D4N-2A2GR
D4D-3521R	D4N-3A2GR
D4D-5521R	D4N-5A2GR
D4D-6521R	D4N-6A2GR
D4D-1527R	D4N-1A2HR
D4D-2527R	D4N-2A2HR
D4D-3527R	D4N-3A2HR
D4D-5527R	D4N-5A2HR
D4D-6527R	D4N-6A2HR

D4D-R product to be discontinued	Recommended substitute product
D4D-1A20R	D4N-1B20R
D4D-2A20R	D4N-2B20R
D4D-3A20R	D4N-3B20R
D4D-5A20R	D4N-5B20R
D4D-6A20R	D4N-6B20R
D4D-1A31R	D4N-1B31R
D4D-2A31R	D4N-2B31R
D4D-3A31R	D4N-3B31R
D4D-5A31R	D4N-5B31R
D4D-6A31R	D4N-6B31R
D4D-1A32R	D4N-1B32R
D4D-2A32R	D4N-2B32R
D4D-3A32R	D4N-3B32R
D4D-5A32R	D4N-5B32R
D4D-6A32R	D4N-6B32R
D4D-1A62R	D4N-1B62R
D4D-2A62R	D4N-2B62R
D4D-3A62R	D4N-3B62R
D4D-5A62R	D4N-5B62R
D4D-6A62R	D4N-6B62R
D4D-1A72R	D4N-1B72R
D4D-2A72R	D4N-2B72R
D4D-3A72R	D4N-3B72R
D4D-5A72R	D4N-5B72R
D4D-6A72R	D4N-6B72R
D4D-1A2HR	D4N-1B2HR
D4D-2A2HR	D4N-2B2HR
D4D-3A2HR	D4N-3B2HR
D4D-1A21R	D4N-1B2GR
D4D-2A21R	D4N-2B2GR
D4D-3A21R	D4N-3B2GR
D4D-5A21R	D4N-5B2GR
D4D-6A21R	D4N-6B2GR
D4D-1A27R	D4N-1B2HR
D4D-2A27R	D4N-2B2HR
D4D-3A27R	D4N-3B2HR
D4D-5A27R	D4N-5B2HR
D4D-6A27R	D4N-6B2HR

Read and Understand this Catalog
Please read and understand this catalog before purchasing the products. Please consult your OMRON representative if you have any questions or comments.

Warranty and Limitations of Liability

WARRANTY

OMRON's exclusive warranty is that the products are free from defects in materials and workmanship for a period of one year (or other period if specified) from date of sale by OMRON.
OMRON MAKES NO WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, REGARDING NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR PARTICULAR PURPOSE OF THE PRODUCTS. ANY BUYER OR USER ACKNOWLEDGES THAT THE BUYER OR USER ALONE HAS DETERMINED THAT THE PRODUCTS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR INTENDED USE. OMRON DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED.

LIMITATIONS OF LIABILITY

OMRON SHALL NOT BE RESPONSIBLE FOR SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES, LOSS OF PROFITS, OR COMMERCIAL LOSS IN ANY WAY CONNECTED WITH THE PRODUCTS, WHETHER SUCH CLAIM IS BASED ON CONTRACT, WARRANTY, NEGLIGENCE, OR STRICT LIABILITY.
In no event shall the responsibility of OMRON for any act exceed the individual price of the product on which liability is asserted. IN NO EVENT SHALL OMRON BE RESPONSIBLE FOR WARRANTY, REPAIR, OR OTHER CLAIMS REGARDING THE PRODUCTS UNLESS OMRON'S ANALYSIS CONFIRMS THAT THE PRODUCTS WERE PROPERLY HANDLED, STORED, INSTALLED, AND MAINTAINED AND NOT SUBJECT TO CONTAMINATION, ABUSE, MISUSE, OR INAPPROPRIATE MODIFICATION OR REPAIR.

Application Considerations

SUITABILITY FOR USE

OMRON shall not be responsible for conformity with any standards, codes, or regulations that apply to the combination of products in the customer's application or use of the products.
Take all necessary steps to determine the suitability of the product for the systems, machines, and equipment with which it will be used.
Know and observe all prohibitions of use applicable to this product.
NEVER USE THE PRODUCTS FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR PROPERTY WITHOUT ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO ADDRESS THE RISKS, AND THAT THE OMRON PRODUCTS ARE PROPERLY RATED AND INSTALLED FOR THE INTENDED USE WITHIN THE OVERALL EQUIPMENT OR SYSTEM.

Disclaimers

PERFORMANCE DATA

Performance data given in this catalog is provided as a guide for the user in determining suitability and does not constitute a warranty. It may represent the result of OMRON's test conditions, and the users must correlate it to actual application requirements. Actual performance is subject to the OMRON Warranty and Limitations of Liability.

CHANGE IN SPECIFICATIONS

Product specifications and accessories may be changed at any time based on improvements and other reasons. Consult with your OMRON representative at any time to confirm actual specifications of purchased product.

DIMENSIONS AND WEIGHTS

Dimensions and weights are nominal and are not to be used for manufacturing purposes, even when tolerances are shown.

```
ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.
To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .
```

Cat. No. C132-E2-01-X In the interest of product improvement, specifications are subject to change without notice.

Emergency Stop Switch

A165E

Mounting Aperture of 16 mm

- Modular construction, easy installation
- Direct opening mechanism with minimum contact separation of 3 mm in accordance with EN60947-5-1, Θ. (only for NC contacts)
- Conforms to EN418, EN60947-5-1.
- Includes a safety lock to prevent misuse.
- Features separate construction that allows the Switch to be separated for easier wiring and one-piece-like construction that allows easier handling.
- High reliability, IP65
- Short mounting depth, less than 28.5 mm below panel
- Quick and easy assembly, snap-in Switch.
- A165E is identifiable, clearly visible and will stop a dangerous process, without creating additional hazards.

Model Number Structure

Model Number Legend

A165E- $-\frac{\square}{12}-\frac{\square}{3}-\square$

1. Lighted/Non-lighted

None: Non-lighted
L: Lighted
2. Head Size

S : $\quad 30 \mathrm{~mm}$ dia.
M: $\quad 40 \mathrm{~mm}$ dia.
3. Illumination (Operation Voltage/Rated Voltage)

None: Non-lighted
24D: LED (24 VDC)

4. Contacts

01: SPST (NC)
02: DPST (NC)
03U: TPST (NC)
One-body, non-lighted models only

Ordering Information

List of Models

Illumination	Rated voltage	Pushbutton color	Pushbutton size	Terminal	Contact	Standard load (125 VAC at 5 A, 250 VAC at 3 A, 30 VDC at 3 A)
ED	24 VD	Red	30 dia.	Solder terminal	SPST-NC	A165E-LS-24D-01
	VD				DPST-NC	A165E-LS-24D-02
None	---				SPST-NC	A165E-S-01
					DPST-NC	A165E-S-02
					TPST-NC	A165E-S-03U
ED	24 VDC		40 dia.		SPST-NC	A165E-LM-24D-01
LED	24 VDC				DPST-NC	A165E-LM-24D-02
None	---				SPST-NC	A165E-M-01
					DPST-NC	A165E-M-02
					TPST-NC	A165E-M-03U

Note: The above models have a surface indication of "RESET." Models with "STOP" indication are also available. For further information, contact your OMRON representative.

Accessories (Order Separately)

Item	Appearance	Type	Model	Precautions
Yellow Plate	∞	Yellow, 45 dia.	A16Z-5070	Use this as an emergency stop nameplate.
Panel Plug		Rectangular	A16ZJ-3003	Used for covering the panel cutouts for future panel expansion.
		Square	A16ZA-3003	
		Round	A16ZT-3003	
Tightening Tool		---	A16Z-3004	Useful for repetitive mounting. Be careful not to tighten excessively.
Extractor		---	A16Z-5080	Convenient for extracting the Switch and Lamp.

Specifications

Approved Standards

Recognized Organization	Standards	File No.
UL, cUL (see note)	UL508	E41515
AZCO	EN60947-5-1	C9805501

Note: UL: UL508, cUL: CSA C22 No. 14

Approved Standard Ratings

UL, cUL

Rated voltage	Rated current	
	A165E series	A165E-U series
125 VAC	5 A (General use)	1 A (General use)
250 VAC	3 A (General use)	0.5 A (General use)
30 VDC	3 A (Resistive)	1 A (Resistive)

Ratings

Switch Ratings

Rated voltage	Resistive load	
	A165E series	A165E \square-U series
125 VAC	5 A	1 A
250 VAC	3 A	0.5 A
30 VDC	3 A	1 A
Minimum applicable load	150 mA at 5 VDC	1 mA at 5 VDC

Characteristics

Item		Emergency Stop Switch
Allowable operating frequency	Mechanical	20 operations/minute max.
	Electrical	10 operations/minute max.
Insulation resistance		$100 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC)
Dielectric strength		1,000 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min between terminals of same polarity $2,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min between terminals of different polarity and also between each terminal and ground $1,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min between lamp terminals (see note)
Vibration resistance	Malfunction	10 to $55 \mathrm{~Hz}, 1.5-\mathrm{mm}$ double amplitude (malfunction within 1 ms)
Shock resistance	Destruction	$500 \mathrm{~m} / \mathrm{s}^{2}$
	Malfunction	$300 \mathrm{~m} / \mathrm{s}^{2} \mathrm{max}$. (malfunction within 1 ms), $150 \mathrm{~m} / \mathrm{s}^{2} \mathrm{max}$. In case of $\mathrm{A} 165 \mathrm{E} \square \mathrm{U}$ series
Durability	Mechanical	100,000 operations min.
	Electrical	100,000 operations min.
Ambient temperature		Operating:- $10^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ (with no icing or condensation) Storage:- $25^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$ (with no icing or condensation)
Ambient humidity		Operating:35\% to 85\%
Electric shock protection class		Class II
PTI (tracking characteristic)		175
Degree of contamination		3
Weight		Approx. 16 g (in case of DPDT Switches)

Note: LED not mounted. Test them with the LED removed.

Operating Characteristics

Features	
Operating force (OF) max.	14.7 N
Releasing force (RF) min.	$0.1 \mathrm{~N} \cdot \mathrm{~m}$
Pretravel (PT)	$3.5 \pm 0.5 \mathrm{~mm} \mathrm{(3} \mathrm{ \pm 0.5} \mathrm{~mm} \mathrm{In} \mathrm{case} \mathrm{of} \mathrm{A165E} \mathrm{\square U} \mathrm{series)}$(PTics l

Protective Structure and Terminal Type

- Protective Structure

Oil-resistant IP65

- Terminal Type

Solder terminals
(tab terminals \#110)

Note: A165E Emergency Stop Switch must be ordered as a set. No LED is installed for the non-lighted model.

Push-lock, Turn-reset System Prevents Misuse

Safety Lock Prevents Misuse

Even if an object or person touches the pushbutton by mistake, the contact will not be released unless the pushbutton reaches the lock position.

Dimensions

Note: All units are in millimeters unless otherwise indicated.
A165E
Non-lighted models
30 mm diameter

paint to the panel, dimen such paint to the panel, dimensions
after the coating must satisfy the specified dimensions.
2. Recommended panel thickness: 0.5 to 3.2 mm .

A165E

Lighted models
30 mm diameter

Panel cutout dimensions $16^{+0.2}$ dia.

A165E \square
One-body models
30 mm diameter

Panel cutout dimensions

Note: 1. When applying a coating such as paint to the panel, dimensions after the coating must satisfy the specified dimensions.
2. Recommended panel thickness: 0.5 to 3.2 mm .

A165E

Non-lighted models 40 mm diameter

Note: 1. When applying a coating such as paint to the panel, dimensions after the coating must satisfy the specified dimensions.
2. Recommended panel thickness 0.5 to 3.2 mm

A165E
Lighted models 40 mm diameter

Note: 1. When applying a coating such as paint to the panel, dimensions after the coating must satisfy the specified dimensions
2. Recommended panel thickness: 0.5 to 3.2 mm .

A165E \square
Non-lighted, one-body models 40 mm diameter

Note: 1. When applying a coating such as paint to the panel, dimensions after the coating must satisfy the specified dimensions.
2. Recommended panel thickness 0.5 to 3.2 mm

Accessories

Yellow Plate (Vinyl Chloride)

A16Z-5070

Lock Ring

Rough surface

Terminal Arrangement

DPST Switches

TPST Switches

Note: The $L+$ and L - terminals are not available with the non-lighted models.

Relays with Forcibly Guided Contacts

G7SA

Slim Relays with

Forcibly Guided
Contacts Conforming to EN Standards

- EN50205 Class A, approved by VDE.
- Ideal for use in safety circuits in production machinery.
- Four-pole and six-pole Relays are available.
- The Relay's terminal arrangement simplifies PCB pattern design.
- Reinforced insulation between inputs and outputs.
Reinforced insulation between poles.
- UL, CSA approval.

Ordering Information

Relays with Forcibly Guided Contacts

Type	Sealing	Poles	Contacts	Rated voltage	Model
Standard	Flux-tight	4 poles	3PST-NO, SPST-NC	24 VDC**	G7SA-3A1B
			DPST-NO, DPST-NC		G7SA-2A2B
		6 poles	5PST-NO, SPST-NC		G7SA-5A1B
			4PST-NO, DPST-NC		G7SA-4A2B
			3PST-NO, 3PST-NC		G7SA-3A3B

${ }^{1} 12$ VDC, 21 VDC, 48 VDC are available on request.
Sockets

	Type	LED indicator	Poles	Rated voltage	Model
Track-mounting	Track mounting and screw mounting possible	No	4 poles	---	P7SA-10F
			6 poles		P7SA-14F
		Yes	4 poles	24 VDC	P7SA-10F-ND
			6 poles		P7SA-14F-ND
Back-mounting	PCB terminals	No	4 poles	---	P7SA-10P
			6 poles		P7SA-14P

Model Number Legend

G7SA- $\square \mathbf{A} \square \mathbf{B}$

1. NO Contact Poles

2: DPST-NO
3: 3PST-NO
4: 4PST-NO
5: 5PST-NO
2. NC Contact Poles

1: SPST-NC
2: DPST-NC
3: 3PST-NC

Ratings
Coil

Rated voltage	Rated current	Coil resistance	Must-operate voltage	Must-release voltage	Max. voltage	Power consumption
24 VDC	4 poles: 15 mA 6 poles: 20.8 mA	4 poles: $1,600 \Omega$ 6 poles: $1,152 \Omega$	75% max. (V)	10% min. (V)	110% (V)	4 poles: Approx. 360 mW 6 poles: Approx. 500 mW

Note: 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with tolerances of $\pm 15 \%$.
2. Performance characteristics are based on a coil temperature of $23^{\circ} \mathrm{C}$.
3. The value given for the maximum voltage is for voltages applied instantaneously to the Relay coil (at an ambient temperature of $23^{\circ} \mathrm{C}$) and not continuously.
Contacts

Load	Resistive load $(\cos \varphi=1)$
Rated load	6 A at 250 VAC, 6 A at 30 VDC
Rated carry current	6 A
Max. switching voltage	250 VAC, 125 VDC
Max. switching current	6 A
Max. switching capacity (reference value)	$1,500 \mathrm{VA}, 180 \mathrm{~W}$

Characteristics

Sockets

Model	Continuous current	Dielectric strength	Insulation resistance
P7SA-14 \square	6 A (see note 1)	2,500 VAC for 1 min . between poles	$100 \mathrm{M} \Omega$ min. (see note 2)

Note: 1. If the P7SA-1 $\square \mathrm{F}$ is used between 55 and $85^{\circ} \mathrm{C}$, reduce the continuous current (from 6 A) by 0.1 A for every degree.
2. Measurement conditions: Measurement of the same points as for the dielectric strength at 500 VDC.
3. When using the P7SA-1 \square F-ND at 24 VDC , use at an ambient operating temperature from -25 to $55^{\circ} \mathrm{C}$.

Relays with Forcibly Guided Contacts

Contact resistance		$100 \mathrm{~m} \Omega$ max. (The contact resistance was measured with 1 A at 5 VDC using the voltage-drop method.)
Operating time (see note 2)		20 ms max .
Response time (see note 2)		10 ms max. (The response time is the time it takes for the normally open contacts to open after the coil voltage is turned OFF.)
Release time (see note 2)		20 ms max .
Maximum operating frequency	Mechanical	36,000 operations/hr
	Rated load	1,800 operations/hr
Insulation resistance		$100 \mathrm{M} \Omega$ min. (at 500 VDC) (The insulation resistance was measured with a 500-VDC megger at the same places that the dielectric strength was measured.)
Dielectric strength (see notes 3, 4)		Between coil contacts/different poles: 4,000 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min (2,500 VAC between poles $3-4$ in 4 -pole Relays or poles $3-5,4-6$, and $5-6$ in 6 -pole Relays.) Between contacts of same polarity: $1,500 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min
Vibration resistance		10 to $55 \mathrm{~Hz}, 1.5-\mathrm{mm}$ double amplitude
Shock resistance	Destruction	$1,000 \mathrm{~m} / \mathrm{s}^{2}$
	Malfunction	$100 \mathrm{~m} / \mathrm{s}^{2}$
Durability	Mechanical	10,000,000 operations min. (at approx. 36,000 operations/hr)
	Electrical	100,000 operations min. (at the rated load and approx. 1,800 operations/hr)
Min. permissible load (see note 5) (reference value)		$5 \mathrm{VDC}, 1 \mathrm{~mA}$
Ambient temperature (see note 6)		Operating: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (with no icing or condensation) Storage: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (with no icing or condensation)
Ambient humidity		Operating:35\% to 85\% Storage:35\% to 85\%
Weight		4 poles: Approx. 22 g 6 poles: Approx. 25 g
Approved standards		EN61810-1 (IEC61810-1), EN50205, UL508, CSA22.2 No. 14

Note: 1. The values listed above are initial values.
2. These times were measured at the rated voltage and an ambient temperature of $23^{\circ} \mathrm{C}$. Contact bounce time is not included.
3. Pole 3 refers to terminals $31-32$ or $33-34$, pole 4 refers to terminals $43-44$, pole 5 refers to terminals $53-54$, and pole 6 refers to terminals 63-64.
4. When using a P7SA Socket, the dielectric strength between coil contacts/different poles is $2,500 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min .
5. Min. permissible load is for a switching frequency of 300 operations $/ \mathrm{min}$.
6. When operating at a temperature between $70^{\circ} \mathrm{C}$ and $85^{\circ} \mathrm{C}$, reduce the rated carry current (6 A at $70^{\circ} \mathrm{C}$ or less) by 0.1 A for each degree above $70^{\circ} \mathrm{C}$.

Dimensions

Note: All units are in millimeters unless otherwise indicated. The diagrams are drawn in perspective.
Relays with Forcibly Guided Contacts

G7SA-3A1B
G7SA-2A2B

G7SA-5A1B
G7SA-4A2B
G7SA-3A3B

Terminal Arrangement/ Internal Connection Diagram (Bottom View)

G7SA-3A1B

G7SA-2A2B

Terminal Arrangement/ Internal Connection Diagram (Bottom View)

G7SA-5A1B

Printed Circuit Board Design Diagram (Bottom View)
(± 0.1 tolerance)

Note: Terminals 23-24, 33-34, and 43-44 are normally open. Terminals 11-12 and $21-22$ are normally closed.

Printed Circuit Board Design Diagram (Bottom View)
(± 0.1 tolerance)

G7SA-4A2B

G7SA-3A3B

Note: Terminals 23-24, 33-34, 53-54, and 63-64 are normally open. Terminals 11-12, 21-22, and 31-32 are normally closed.

Sockets

Track-mounting Socket

P7SA-10F, P7SA-10F-ND

Note: The socket is shown with the finger cover removed.

Note: Only the -ND Sockets have LED indicators.
Track-mounting Socket

Terminal Installation/Internal Connection Diagram (Top View)

G7SA-2A2B Mounted

* This display circuit is available only for -ND" models.
Note: Terminals 23-24,
$33-34$, and 43-44
33-34, and
are normally
are normally open. Terminals
11-12 and 21-22 are normally closed.

Terminal Arrangement/Internal Connection Diagram (Top View)

P7SA-10P Back-mounting Socket (for PCB)

Terminal Arrangement/Internal Connection Diagram
(Bottom View)
Mounting Hole Placement (Bottom View)
(± 0.1 tolerance)
G7SA-3A1B

G7SA-2A2B Mounted

Note: Terminals 23-24, 33-34, and 43-44 are normally open. Terminals 11-12 and 21-22 are normally closed

P7SA-14P Back-mounting Socket (for PCB)

Terminal Arrangement/Internal Connection Diagram
(Bottom View)
G7SA-5A1B
Mounted

G7SA-4A2B

G7SA-3A3B
Mounted

Mounting Hole Placement (Bottom View)
(± 0.1 tolerance)

Note: Terminals 23-24, 33-34, 43-44, 53-54, and 63-64 are normally open. Terminals 11-12, 21-22, and 31-32 are normally closed.

Precautions

Do not touch the terminal area of the Relays or the socket terminal area (charged area) while power is ON. Electric shock will result.

Relays with Forcibly Guided Contacts

A Relay with Forcibly Guided Contacts is a Relay with which a safety category circuit can be configured.

Wiring

Use one of the following wires to connect to the P7SA-10F/10F-ND/ 14F/14F-ND.
Stranded wire: 0.75 to $1.5 \mathrm{~mm}^{2}$
Solid wire: 1.0 to $1.5 \mathrm{~mm}^{2}$
Tighten each screw of the P7SA-10F/10F-ND/14F/14F-ND to a torque of $0.98 \mathrm{~N} \cdot \mathrm{~m}$ securely.
Wire the terminals correctly with no mistakes in coil polarity, otherwise the G7SA will not operate.

Cleaning

The G7SA is not of enclosed construction. Therefore, do not wash the G7SA with water or detergent.

Forcibly Guided Contacts (from EN50205)

If an NO contact becomes welded, all NC contacts will maintain a minimum distance of 0.5 mm when the coil is not energized. Likewise if an NC contact becomes welded, all NO contacts will maintain a minimum distance of 0.5 mm when the coil is energized.

Correct Use

Relays with Forcibly Guided Contacts
While the Relay with Forcibly Guided Contacts has the previously described forcibly guided contact structure, it is basically the same as an ordinary relay in other respects. Rather than serving to prevent malfunctions, the forcibly guided contact structure enables another circuit to detect the condition following a contact weld or other malfunction. Accordingly, when a contact weld occurs in a Relay with Forcibly Guided Contacts, depending on the circuit configuration, the power may not be interrupted, leaving the Relay in a potentially dangerous condition (as shown in Fig. 1.)
To configure the power control circuit to interrupt the power when a contact weld or other malfunction occurs, and to prevent restarting until the problem has been eliminated, add another Relay with Forcibly Guided Contacts or similar Relay in combination to provide redundancy and a self-monitoring function to the circuit (as shown in Fig. 2).
The G9S/G9SA Safety Relay Unit, which combines Relays such as the Relay with Forcibly Guided Contacts in order to provide the above-described functions, is available for this purpose. By connecting a contactor with appropriate input and output to the Safety Relay Unit, the circuit can be equipped with redundancy and a self-monitoring function.

Enabling Switch

A4E

3-position Enabling Switch for Safer Robot Operation

- Clicking feel.
- Conforms to U.S. standards
(ANSI/RIA R15.06-1999) for 3-position switches.
- Can be mounted in two directions.

Model Number Structure

Model Number Legend

A4E- $\square \square \square \square \square \square$
 123456

1. Total output number

B: Two outputs
C: Four outputs
2. Enable outputs

2: Two contact outputs
3. Release monitor outputs

0: None
1: One contact output
4. Grip monitor outputs

0: None
1: One contact output
5. Mounting bracket

S: No mounting bracket
H : Horizontal mounting bracket
V: Vertical mounting bracket
6. Cover

S: No cover
A: Rubber cover

Ordering Information

List of Models

Model	Specification
A4E-B200SS	Two outputs, no mounting bracket, no rubber seal
A4E-B200HS	Two outputs, horizontal mounting, no rubber seal
A4E-B200VS	Two outputs, vertical mounting, no rubber seal
A4E-B200VA	Two outputs, vertical mounting, with rubber seal
A4E-C211SS	Four outputs, no mounting bracket, no rubber seal
A4E-C211HS	Four outputs, horizontal mounting, no rubber seal
A4E-C211VS	Four outputs, vertical mounting, no rubber seal
A4E-C211VA	Four outputs, vertical mounting, with rubber seal

Approved Standards
EN 60947-5-1
UL 508
CSA C22.2 No. 14

Specifications

Ratings
Rated insulation voltage 250 V Rated ON current 2.5 A Rated load $24 \mathrm{VDC}, 300 \mathrm{~mA}$ (inductive load) $125 \mathrm{VAC}, 1 \mathrm{~A}$ (resistive load) Minimum applicable load $24 \mathrm{VDC}, 4 \mathrm{~mA}$ Impulse withstand voltage 4.0 kV between terminals of different polarity, 2.5 kV between terminals of same polarity Ambient temperature $-10^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ (with no icing) Ambient humidity 35° to 85° (with no condensation) Storage temperature $-25^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$

Characteristics

Insulation resistance	$100 \mathrm{M} \mathrm{min}. \mathrm{(at} \mathrm{500} \mathrm{VDC)}$
Contact resistance	$100 \mathrm{~m} \mathrm{max}$. (initial value)
Vibration resistance	10 to 55 Hz, $0.75-\mathrm{mm}$ single amplitude min.
Shock resistance	$150 \mathrm{~m} / \mathrm{s}^{2}$
Mechanical durability	OFF-ON: $1,000,000$ operations min. OFF-ON-OFF (direct opening): 100,000 operations min.
Electrical durability	100,000 operations min.
Degree of protection	IP65 (rubber seal type only)

Structure

	4-contact type:2NO (enable output) 1NC (release output) 1NC (grip output) Contact form Direct opening for all contacts (See note)
	2-contact type:2NO (enable output) Direct opening for all contacts (See note)
Operating pattern	During operation: OFF-ON-OFF During reset: OFF-OFF momentary 3-posi- tion operation
Terminal shape	Solder terminals

Note: Direct opening only during grip.
Contact form

Note: SW3 and SW4 are for 4-contact types Grip output

Operating Characteristics

Operating stroke

Symbol	Name	A4E-B200 \square S	A4E-B200VA (See note.)	A4E-C211 \square S	A4E-C211VA (See note.)
PT1	Release output (ON)	---	---	1 mm max.	1.2 mm max.
PT2	Enable output (ON)	3.2 mm max.	3.4 mm max.	3.2 mm max.	$3.4 \mathrm{~mm} \mathrm{max}$.
TT1	Max. enable holding position	Approx. 4 mm	Approx. 4.2 mm	Approx. 4 mm	Approx. 4.2 mm
PT3	Enable direct opening position	5.4 mm max.	5.6 mm max.	5.4 mm max.	$5.6 \mathrm{~mm} \mathrm{max}$.
PT4	Grip output (ON)	---	---	$5.4 \mathrm{~mm} \mathrm{min}$.	$5.4 \mathrm{~mm} \mathrm{min}$.
TT2	Max. stroke	Approx. 6.5 mm	Approx. 6.7 mm	Approx. 6.5 mm	Approx. 6.7 mm

Note:Not including the rise of the rubber cover (0.5 mm max.).
Operating force (reference values)

Symbol	Name	A4E-B200 \square S	A4E-B200VA	A4E-C211 \square S	A4E-C211VA
OF1	Enable operating force	7 N max.	14 N max.	7 N max.	14 N max.
HF (See note)	Enable holding force	Approx. 5.5 N	Approx. 8 N	Approx. 5.5 N	Approx. 8 N
OF2	Grip operating force	35 N max.	40 N max.	35 N max.	40 N max.

[^45]
Dimensions

Note: All units are in millimeters unless otherwise indicated.

Horizontal mounting A4E-B200HS

4-contact type

No mounting bracket

A4E-C211SS

Horizontal mounting A4E-C211HS

WARNING

Do not wire the Switch or touch any terminal of the Switch while power is being supplied. Doing so may result in electric shock.

WARNING

Always use the Switch in a system that is operated directly by hand. Do not operate the Switch with a mechanical actuator. Insufficient Switch strength may result in damage to the Switch, electric shock, or fire.

CAUTION

Design a safe system for using the Switch, based on a risk assessment that takes into account all reasonably foreseeable malfunctions.

CAUTION

Determine the Switch mounting direction and structural design only after thorough risk assessment. For example, in a structure where the Switch protrudes from the pendant perimeter, the weight of the pendant itself could place the Switch into the enable condition and operate the machine. Likewise, in a buried structure where the Switch lies below the surface of the pendant, the Switch may not enter the grip condition when pressed and thus fail to stop the machine.

CAUTION

Configure the system so that the machine operates only when the Switch is in the enable position.

Correct Use

Mounting
Use M3 screws and flat washers or spring washers to mount the Switch securely. Use a tightening torque of 0.39 to 0.59 Nm .

No-mounting-bracket type

Horizontal mounting type

Vertical mounting type

Vertical mounting type with rubber seal

Wiring

- Use an appropriate wire size (0.5 to $0.75 \mathrm{~mm}^{2}$) for the applied voltage and carry current.
- Do not use a \#110 tab receptacle.
- Wire according to the terminal numbers. Mistaken wiring may damage the Switch and result in fire.
- Wire according to the terminal arrangement.
- Use good-quality 6:4 (tin:lead) solder.
- Use a resin flux cored solder.
- Do not use a liquid or chlorine type flux.
- Perform soldering within 3 s using a 30-W max. soldering iron (temperature at the tip of the soldering iron: $350^{\circ} \mathrm{C}$ max.). Insulate with an insulation tube.
- Do not move the terminal for at least one minute after soldering.
- Do not apply a force that would deform the terminal when wiring.

Operating Environment

Prior to using the Switch in places that are subject to contact by oil spray or chemicals, check the effect of those substances on the Switch.
Some types of oil spray and chemicals will degrade the sealing capability, which may result in faulty contact, defective insulation, ground fault, or burning damage.

Improper Operating Environment

- Do not use the Switch in places that are subject to sudden temperature change.
- Do not use the Switch in places that are subject to high temperatures and condensation.
- Do not use the Switch in places that are subject to strong vibration.
- Do not use the Switch in places that are subject to direct contact with machine filings or dust.

Storage

- Do not store the Switch in places with hydrogen sulfide or other corrosive gas or sea breeze.
- Do not store the Switch in places where the level of dust is high enough to be visible.
- Do not store the Switch in direct sunlight.
- Do not impose excessive force on the Switch during storage. Otherwise, the Switch may deform.

Handling

- Do not drop the Switch. Otherwise, the Switch may malfunction.
- Do not apply strong vibration or shock to the Switch. Otherwise, the Switch may malfunction or be damaged.
Do not contact the Switch with sharp objects. Otherwise, the Switch may be scratched. Scratches on the operating portion of the Switch may result in problems both in appearance and operation.

Common Precautions for safety switch

For the individual precautions for each Switch, refer to the precautions for the Switch.

Cautions

- Do not touch the charged switch terminals while the Limit Switch has carry current, otherwise an electric shock may be received.
- Do not assemble the Limit Switch or touch the interior of the Limit Switch while power is connected to the Limit Switch, otherwise an electric shock may be received.

Correct Use

- If the Limit Switch incorporates a ground terminal, be sure to ground it through an appropriate wire, otherwise an electric shock may be received.
- Be sure to connect a fuse with a breaking current 1.5 to 2 times the rated current to the Limit Switch in parallel in order to protect the Limit Switch from damage due to short-circuiting.
- Maintain an appropriate insulation distance between wires connected to the Limit Switch.
- If the Limit Switch has no ground terminal, ground the mounting panel to which the Limit Switch is mounted unless the Limit Switch is of double insulation construction falling under class II. Such models (e.g., the D4D-N, D4D-R or D4DS) ensure good insulation characteristics. Therefore, no ground terminals are incorporated.
- Do not use the Limit Switch in places with flammable or explosive gas without taking any countermeasures taken against explosion or fires. Otherwise switching arcs or heat radiation may cause a fire or explosion.
Be sure to protect the Limit Switch with appropriate explo-sion-proof barriers or use a Limit Switch of explosion-proof construction. The Explosion-proof Limit Switch is not available for use in all types of gas or locations. Refer to the Ex-plosion-proof Device General Catalog for details.
- The life of the Limit Switch greatly varies with switching conditions. Before using the Limit Switch, be sure to test the Limit Switch under actual conditions. Make sure that the number of switching operations is within the permissible range.
If a deteriorated Switch is used continuously, insulation failures, contact weld, contact failures, switch damage, or switch burnout may result.
- Some types of load have a great difference between normal current and inrush current. Make sure that the inrush current is within the permissible value. The greater the inrush current in the closed circuit is, the greater the contact abrasion or shift will be. Consequently, contact weld, contact separation failures, or insulation failures may result. Fur-
thermore, the Limit Switch may become broken or damaged.

Wiring

- If the wiring method is incorrect, the wires may get caught by some object or the lead wires may be pulled excessively. Make sure that the lead wires are connected without extraordinary force and that the wires are supported securely.

- Pay the utmost attention so that each terminal is wired correctly. If the terminal is wired incorrectly, the Limit Switch will not function. Furthermore, not only will the Limit Switch have a bad influence on the external circuit, the Limit Switch itself may become damaged or burnt.

Mounting

- Do not modify the actuator, otherwise the operating characteristics and performance of the actuator will change.
- Do not enlarge the mounting holes of the Limit Switch or modify the Limit Switch, otherwise insulation failures or housing damage may result. If the Limit Switch has a force separation mechanism, a modification of the Limit Switch may cause injury.
- Do not apply oil, grease, or other lubricants to the moving parts of the actuator, otherwise the actuator may not operate correctly. Furthermore, intrusion of oil, grease, or other lubricants inside the Limit Switch may cause failures in the Limit Switch.
- Mount the Limit Switch and secure it with the specified screws tightened to the specified torque along with flat washers and springs. The actuator of the Limit Switch mounted to a panel with excessive tightening torque may not operate correctly if the Limit Switch is a pushbutton model.
- Be sure to wire the Limit Switch so that the conduit opening is free of metal powder or any other impurities.
- If glue or bonding agent is applied, make sure that it does not adhere to the movable parts or intrude inside the Limit Switch, otherwise the Limit Switch may not work correctly or cause contact failure. Some types of glue or bonding agent may generate a gas that may have a bad influence on the Limit Switch. Pay the utmost attention when selecting the glue or locking agent.
- Do not drop or disassemble the Limit Switch, otherwise the Limit Switch will not be capable of full performance. Furthermore, the Limit Switch may become broken or burnt.
- If the contacts are not turned ON or OFF over a long time, the contacts may become oxidized. Consequently, the reliability of the contacts may decrease, which may result in accidents.
- Actuation of the Limit Switch over a long time may deteriorate parts of the Limit Switch and a releasing failure may result. Be sure to check the condition of the Limit Switch regularly.
- Some models allow changes in head directions. When changing the head of such a model, make sure that the head is free of any foreign substance. Tighten each screw of the head to the rated torque.
- Be sure to take measures so that no foreign material, oil, or water will penetrate into the Limit Switch through the conduit opening. Be sure to attach a connector suited to the cable thickness and tighten the connector securely to the rated torque.
- Apply Limit Switch models incorporating a force-separation function, such as the D4BS or D4BL, for safety doors or emergency stop circuits.
- Do not impose shock or vibration on the actuator while it is fully pressed. Otherwise, the actuator will partially abrade and an actuation failure may result.
Limit Switch Operation
- The Limit Switch in actual operation may cause accidents that cannot be foreseen from the design stage. Therefore, the Limit Switch must be practically tested before actual use.
- When testing the Limit Switch, be sure to apply the actual load condition together with the actual operating environment.
- All the performance ratings in this catalog are provided under the following conditions unless otherwise specified. Inductive load: A minimum power factor of 0.4 (AC) or a maximum time constant of 7 ms (DC)
Lamp load: An inrush current 10 times higher than the normal current
Motor load: An inrush current 8 times higher than the normal current
The rated values are obtained from tests conducted in accordance with JIS C4508.

1. Ambient temperature: $+5^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$
2. Ambient humidity: 40% to 70%.

Note: An inductive load causes a problem especially in DC circuitry. Therefore, it is essential to know the time constants (L/R) of the load.

Mechanical Characteristics
 Operating Force, Stroke, and Contact Characteristics

- The following graph indicates the relationship between operating force and stroke or stroke and contact force. In order to operate the Limit Switch with high reliability, it is necessary to use the Limit Switch within an appropriate contact force range. If the Limit Switch is used in the normally closed condition, the dog must be installed so that the actuator will return to the FP when the actuator is actuated by the object. If the Limit Switch is used in the normally open condition, the actuator must be pressed to 70% to 100% of the OT (i.e., 60% to 80% of the TT) and any slight fluctuation must be absorbed by the actuator.
- If the full stroke is set close to the OP or RP, contact instability may result. If the full stroke is set to the TTP, the actuator or switch may become damaged due to the inertia of the dog. In that case, adjust the stroke with the mounting panel or the dog. Refer to page G-314, Dog Design, page G-315, Stroke Settings vs. Dog Movement Distance, and page G-315, Dog Surface for details.
- The following graph shows an example of changes in contact force according to the stroke. The contact force near the OP or RP is unstable, and the Limit Switch cannot main-
tain high reliability. Furthermore, the Limit Switch cannot withstand strong vibration or shock.

Mechanical Conditions

- The actuator must be selected according to the operating method.
- Check the operating speed and switching frequency.

1. If the operating speed is extremely low, the switching of the movable contact will become unstable, thus resulting in incorrect contact or contact weld.
If the operating speed is extremely low or the pushbutton needs to be set between the FP and OP, consult your OMRON representative in advance.
2. If the operating speed is extremely high, the Limit Switch may break due to shock. If the switching frequency is high, the switching of the contacts cannot catch up with the switching frequency. Make sure that the switching frequency is within the rated switching frequency. If a higher switching frequency is required, use of a proximity sensor is recommended.

- Do not impose excessive force on the actuator, otherwise the actuator may become damaged or not operate correctly.
- Make sure that the stroke is set within the suitable range specified for the model, or otherwise the Limit Switch may break.
- Make sure that the operating direction of the actuator is parallel to the axis of the actuator if the actuator is a pushbutton type. If they are not in parallel, partial abrasion may result and the actuator may soon become damaged. Refer to page G-313, Operation for details.

Electrical Characteristics

Electrical Conditions

- The switching load capacity of the Limit Switch greatly varies between AC and DC. Always be sure to apply the rated load. The control capacity will drastically drop if it is a DC load. This is because a DC load has no current zero-cross point, unlike an AC load. Therefore, if an arc is generated,
it may continue comparatively for a long time. Furthermore, the current direction is always the same, which results in a contact relocation phenomena whereby the contacts easily stick to each other and do not separate when the surfaces of the contacts are uneven.
- If the load is inductive, counter-electromotive voltage will be generated. The higher the voltage is, the higher the generated energy will be, which will increase the abrasion of the contacts and contact relocation phenomena. Be sure to use the Limit Switch within the rated conditions.
- If the load is a minute voltage or current load, use a dedicated Limit Switch for minute loads. The reliability of silverplated contacts, which are used by standard Limit Switches, will be insufficient if the load is a minute voltage or current load.

Contact Protective Circuit

Apply a contact protective circuit to extend the contact life, prevent noise, and suppress the generation of carbide or nitric acid. Be sure to apply the contact protective circuit correctly, otherwise an adverse effect may occur.
The following provides typical examples of contact protective circuits. If the Limit Switch is used in an excessively humid location for switching a load that easily generates arcs, such as an inductive load, the arcs may generate NOx, which will change into HNO_{3} if it reacts with moisture. Consequently, the internal metal parts may corrode and the the Limit Switch may fail. Be sure to select the ideal contact preventive circuit from the following.

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{Circuit example}} \& \multicolumn{2}{|l|}{Applicable current} \& \multirow[t]{2}{*}{Feature} \& \multirow[t]{2}{*}{Element selection}

\hline \& \& AC \& DC \& \&

\hline CR circuit \& \& Yes \& Yes

Yes \& \begin{tabular}{l}
*When AC is switched, the load impedance must be lower than the CR impedance.

The operating time will be greater if the load is a relay or solenoid. Connecting the CR circuit in parallel to the load is effective when the power supply voltage is 24 or 48 V and in parallel to the contacts when the power supply voltage is 100 to 200 V .

 \&

C: 1 to $0.5 \propto \mathrm{~F} \times$ switching current (A)

R: 0.5 to $1 \Omega x$ switching voltage (V)

The values may change according to the characteristics of the load.

The capacitor suppresses the spark discharge of current when the contacts are open. The resistor limits the inrush current when the contacts are closed again. Consider the roles of the capacitor and resistor and determine ideal capacitance and resistance values through testing. Use a capacitor that has a low dielectric strength. When AC is switched, make sure that the capacitor has no polarity.
\end{tabular}

\hline Diode method \& \& No \& Yes \& Energy stored in the coil is changed into current by the diode connected in parallel to the load. Then the current flowing to the coil is consumed and Joule heat is generated by the resistance of the inductive load. The reset time delay with this method is longer than that in the CR method. \& The diode must withstand a peak inverse voltage 10 times higher than the circuit voltage and a forward current as high or higher than the load current.

\hline Diode and Zener diode method \& \& No \& Yes \& This method will be effective if the reset time delay caused by the diode method is too long. \& Use a Zener diode at a low Zener voltage.

\hline Varistor method \& \& Yes \& Yes \& | This method makes use of constantvoltage characteristic of the varistor so that no high-voltage is imposed on the contacts. This method causes a reset time delay. |
| :--- |
| Connecting a varistor in parallel to the load is effective when the supply voltage is 24 to 48 V and in parallel to the contacts when the supply voltage is 100 to 200 V . | \& -

\hline
\end{tabular}

Do not apply contact protective circuits as shown below.

This circuit effectively suppresses arcs when the contacts are OFF. The capacitor will be changed, however, when the contacts are OFF. Consequently, when the contacts are ON again, short-circuited current from the capacitance may cause contact weld.

This circuit effectively suppresses arcs when the contacts are OFF. When the contacts are ON again, however, charge current will flow to the capacitor, which may result in contact weld.
Switching a DC inductive load is usually more difficult than switching a resistive load. By using an appropriate contact protective circuit, however, switching a DC inductive load will be as easy as switching a resistive load.

- Do not contact a single Limit Switch to two power supplies that are different in polarity or type.
Power Connection Examples
(Connection of Different Polarities)

Incorrect Power Connection Example
(Connection of Different Power Supplies)
There is a risk of AC and DC mixing.

- Do not design a circuit where voltage is imposed between contacts, otherwise contact weld may result.

- Do not use a circuit that will short-circuit if an error occurs, otherwise the charged part may melt and break off.

- Application of Limit Switch to a Low-voltage, Low-current Electronic Circuit.

1. If bouncing or chattering of the contacts results and causes problems, take the following countermeasures.
(a) Insert an integral circuit.
(b) Suppress the generation of pulse from the contact bouncing or chattering of the contacts so that it is less than the noise margin of the load.
2. Conventional silver-plated contacts are not suited to this application. Use gold-plated contacts, which are ideal for handling minute voltage or current loads.
3. The contacts of the Limit Switch used for an emergency stop must be normally open.

- In order to protect the Limit Switch from damage due to circuit short-circuiting, be sure to connect a quick-response
fuse with a breaking current 1.5 to 2 times larger than the rated current to the Limit Switch in parallel. Some models (e.g., the D4B-N and D4BS) specify the types of fuses. In that case, be sure to use the specified fuses.

Operating Environment

- If the Limit Switch used in locations with oil or water spray or excessive dust is not a water-resistive model or of sealed construction, be sure to protect the Limit Switch with a protective cover so that the Limit Switch will not be directly exposed to them.

- The materials of Limit Switch may change in quality or deteriorate, if the Limit Switch is used outdoors or any other location where the Limit Switch is exposed to special machining oil. Consult your OMRON representative before selecting the model.
- Be sure to install the Limit Switch so that the Limit Switch is free from dust or metal powder. The actuator and the switch casing must be protected from the accumulation of dust or metal powder.

- Do not use the Limit Switch in locations where the Limit Switch is exposed to hot water at a temperature greater than $60^{\circ} \mathrm{C}$ or steam.
- Do not use the Limit Switch under temperatures or other environmental conditions not within the specified ranges. The rated permissible ambient temperature range varies with the model. Refer to the specifications in this catalog. If the Limit Switch is exposed to radical temperature changes, the thermal shock may deform the Limit Switch and the Limit Switch may malfunction.

- Be sure to protect the Limit Switch with a cover if the Limit Switch is in a location where the Limit Switch may be actu-
ated by mistake or where the Limit Switch is likely cause an accident.

- Make sure to install the Limit Switch in locations free of vibration, shock, or resonance. If vibration or shock is continuously imposed on the Limit Switch, contact failure, malfunction, or decrease in service life may be caused by abrasive powder generated from the internal parts. If excessive vibration or shock is imposed on the Limit Switch, the contacts may malfunction or become damaged.
- Do not use the Limit Switch with silver-plated contacts for long periods if the switching frequency of the Limit Switch is comparatively low or the load is minute. Otherwise, sulfuric film will be generated on the contacts and contact failures may result. Use the Limit Switch with gold-plated contacts or use a dedicated Limit Switch for minute loads instead.
- Do not use the Limit Switch in locations with corrosive gas, such as sulfuric gas $\left(\mathrm{H}_{2} \mathrm{~S}\right.$ or $\left.\mathrm{SO}_{2}\right)$, ammonium gas $\left(\mathrm{NH}_{3}\right)$, nitric gas $\left(\mathrm{HNO}_{3}\right)$, or chlorine gas $\left(\mathrm{Cl}_{2}\right)$, or high temperature and humidity. Otherwise, contact failure or corrosion damage may result.
- If the Limit Switch is used in locations with silicone gas, arc energy may create silicon dioxide (SiO 2) on the contacts and a contact failure may result. If there is silicone oil, silicone sealant, or wire covered with silicone close to the Limit Switch, attach a contact protective circuit to suppress the arcing of the Limit Switch or eliminate the source of silicone gas generation.

Regular Inspection and Replacement

- If the Limit Switch is normally closed with low switching frequency (e.g., once or less than once a day), a reset failure may result due to the deterioration of the parts of the Limit Switch. Regularly inspect the Limit Switch and make sure that the Limit Switch is in good working order.
- In addition to the mechanical life or electrical life of the Limit Switch described previously, the life of the Limit Switch may decrease due to the deterioration of each part, especially rubber, resin, and metal. Regularly inspect the Limit Switch and replace any part that has deteriorated in order to prevent accidents from occurring.
- Be sure to mount the Limit Switch securely in a clean location to ensure ease of inspection and replacement. The Limit Switch with operation indicator is available, which is
ideal if the location is dark or does not allow easy inspection or replacement.

Storage of Limit Switch

- When storing the Limit Switch, make sure that the location is free of corrosive gas, such as $\mathrm{H}_{2} \mathrm{~S}, \mathrm{SO}_{2}, \mathrm{NH}_{3}, \mathrm{HNO}_{3}$, or Cl_{2}, or dust and does not have a high temperature or humidity.
- Be sure to inspect the Limit Switch before use if it has been stored for three months or more.

Typical Problems, Probable Causes, and Remedies

Problem		Probable Cause	Remedy
Mechanical failure	1. The actuator does not operate. 2. The actuator does not return to the free position (FP). 3. The actuator has been deformed. 4. The actuator is worn. 5. The actuator has been damaged.	The shape of the cam is incorrect.	- Change the design of the cam and smooth the contacting surface of the cam. - Scrutinize the suitability of the actuator. Make sure that the actuator does not bounce.
		The contacting surface of the dog is rough.	
		The actuator in use is not suitable.	
		The operating direction of the actuator is not correct.	
		The operation speed is excessively high.	- Attach a decelerating device or change the mounting position of the Limit Switch.
		Excessive stroke.	- Change the stroke.
		The rubber or grease hardened due to low temperature.	- Use a cold-resistive switch.
		The accumulation of sludge, dust, or cuttings.	- Use a drip-proof model or one with high degree of protection. - Use a protection cover and change the solvent and materials.
		Dissolution, expansion, or swelling damage to the rubber parts of the driving mechanism.	
	There is a large deviation in operating position (with malfunctioning involved).	Damage to and wear and tear of the internal movable spring.	- Regularly inspect the Limit Switch. - Use a better quality switch. - Tighten the mounting screws securely. Use a mounting board.
		Wear and tear of the internal mechanism.	
		The loosening of the mounting screws.	
	The terminal part wobbles. (The mold part has been deformed.)	Overheating due to a long soldering time.	- Solder the Limit Switch quickly. - Change the lead wire according to the carry current and ratings.
		The Limit Switch has been connected to and pulled by thick lead wires with excessive force.	
		High temperature or thermal shock resulted.	- Use a temperature-resistive switch or change mounting positions.

Problem		Probable Cause	Remedy
Failures related to chemical or physical characteristics	Contact chattering	Vibration or shock is beyond the rated value.	- Attach an anti-vibration mechanism. - Attach a rubber circuit to the solenoid. - Increase the operating speed (with an accelerating mechanism).
		Shock has been generated from a device other than the Limit Switch.	
		Too-slow operating speed.	
	Oil or water penetration	The sealing part has not been tightened sufficiently.	- Use a drip-proof or waterproof switch. - Use the correct connector and cable. (Use a sealed connector for sealed switches.) - Use a switch with terminals sealed with resin.
		The wrong connector has been selected and does not conform to the cable.	
		The wrong switch has been selected.	
		The terminal part is not molded.	
		The Limit Switch has been burnt or carbonated due to the penetration of dust or oil.	
	Deterioration of the rubber part	The expansion and dissolution of the rubber caused by solvent or lubricating oil.	- Use an oil-resistant rubber or Teflon bellows. - Use a weather-resistant rubber or protective cover. - Use a switch with a protective cover or a metal bellows.
		Cracks due to direct sunlight or ozone.	
		Damage to the rubber caused by scattered or heated cuttings.	
	Corrosion (cracks)	The oxidation of metal parts resulted due to corrosive solvent or lubricating oil.	- Use an anti-corrosive switch. - Change the lubricating oil. - Change mounting positions. - Use a crack-resistant material.
		The Limit Switch has been operated in a corrosive environment, near the sea, or on board a ship.	
		The electrical deterioration of metal parts of the Limit Switch resulted due to the ionization of cooling water or lubricating oil.	
		The cracking of alloyed copper due to rapid changes in temperature.	
Failures related to electric characteristics	No actuation or no current breakage caused by contact weld.	Inductive interference in the DC circuit.	- Add an erasing circuit.
		Carbon generated on the surface of the contacts due to switching operations.	- Use a switch with a special alloy contact or use a sealed switch.
		A short-circuit or contact weld due to the deformation and relocation of the contacts.	- Reduce the switching frequency or use a switch with a large switching capacity.
		Contact weld due to an incorrectly connected power source.	- Change the circuit design.
		Foreign materials or oil penetrated into the contact area.	- Use a protective box.

Outdoor Use

- When using the Limit Switch outdoors, make sure that the Limit Switch is a sealed model. The Limit Switch with IP67 sealing construction does not necessarily mean that the mechanical parts are also of IP67 construction.
- The rubber material exposed to ozone may deteriorate. Check that the rubber parts are environment-resistive, such as chloroprene, silicone, or fluorine rubber.
- If the Limit Switch is used in places with sludge or dust powder sprays, make sure that the mechanical parts are sealed with a rubber cap.
- Due to capillary attraction, rainwater may enter the Limit Switch through the lead wires or sheath. Be sure to cover
the wire connections in a terminal box so that they are not directly exposed to rainwater.
- If the Limit Switch is used outdoors, the steel parts of the Limit Switch (such as the screws and plunger parts) may corrode. Consider the use of outdoor models or proximity sensors in such cases.
- The expression "Limit Switch is used outdoors" refers to an environment where the Limit Switch is exposed directly to rainwater or sunlight (e.g., multi-story parking lots) excluding locations with corrosive gas or salty breezes.
The Limit Switch used outdoors may not release due to icing and may not satisfy standards for indoor use.

Operation

- Carefully determine the position and shape of the cam so that the actuator will not abruptly snap back, thus causing shock. In order to operate the Limit Switch at a comparatively high speed, use an object or cam that keeps the Limit Switch turned ON for a sufficient time so that the relay or valve will be sufficiently energized.
- The shape of the object or cam has a large influence on the life and operating accuracy of the Limit Switch. The cam must be smooth in shape.

- Appropriate force must be imposed on the actuator by the cam or another object in both rotary operation and linear operation. If the object touches the lever as shown below, the operating position will not be stable.

- Unbalanced force must not be imposed on the actuator. Otherwise, wear and tear on the actuator may result.

- In the case of a roller-type actuator, the object must touch the actuator at a right angle. Otherwise, the actuator or shaft may deform or break.

- Make sure that the actuator does not exceed the OT (overtravel) range, otherwise the Limit Switch may malfunction. When mounting the Limit Switch, be sure to adjust the Limit Switch carefully while considering the whole movement of the actuator.

- The Limit Switch may soon malfunction if the OT is excessive. Therefore, adjustments and careful consideration of the position of the Limit Switch and the expected OT of the actuator are necessary when mounting the Limit Switch.

- When using a pin-plunger-type actuator, make sure that the stroke of the actuator and the movement of the object are located along a single straight line.

- Be sure to use the Limit Switch according to the characteristics of the actuator. If a roller arm lever actuator is used,
do not attempt to actuate the Limit Switch in the direction shown below.

- Do not modify the actuator to change the OP.
- In the case of a long actuator of an adjustable roller lever type, the following countermeasures against lever shaking are recommended.

1. Make the rear edge of the object smooth with an angle of 15° to 30° or make it in the shape of a quadratic curve.
2. Design the circuit so that no error signal will be generated.
3. Use or set a switch that is actuated in one direction only.

- In the case of a bevel plunger-type actuator, make sure that the width of the object is wider than that of the plunger.

Dog Design

Operating Speed, Dog Angle, and Relationship with Actuator Before designing a dog, carefully consider the operating speed and angle of the dog and their relationship with the shape of the actuator. The optimum operating speed of a standard dog at an angle of 30° to 45° is $0.5 \mathrm{~m} / \mathrm{s}$ maximum.

Roller Lever Models

1.Non-overtravel Dog

Dog speed: $0.5 \mathrm{~m} / \mathrm{s}$ max. (standard speed)

φ	$\mathrm{V}_{\text {max. }}$ (m/s)	y
30°	0.4	0.8 (TT)
45°	0.25	80% of total travel
60°	0.1	
60° to 90°	0.05 (low speed)	

Dog speed: $0.5 \mathrm{~m} / \mathrm{s} \times \mathrm{V} \times 2 \mathrm{~m} / \mathrm{s}$

θ	φ	$\mathrm{V}_{\max .}(\mathrm{m} / \mathrm{s})$	y
45°	45°	0.5	0.5 to 0.8 (TT)
50°	40°	0.6	0.5 to 0.8 (TT)
60° to 55°	30° to 35°	1.3	0.5 to 0.7 (TT)
75° to 65°	15° to 25°	2	0.5 to 0.7 (TT)

Note: The above y values indicate the ratio ranges based on TT (total travel). Therefore, the optimum pressing distance of the dog is between 50% and 80% (or 50% and 70%).

2.Overtravel Dog

Dog speed: $0.5 \mathrm{~m} / \mathrm{s}$ max.

φ	$\mathrm{V}_{\text {max. }}(\mathrm{m} / \mathrm{s})$	y
30°	0.4	$0.8(\mathrm{TT})$
45°	0.25	80% of total travel
60°	0.1	
60° to 90°	0.05 (low speed)	

Dog speed: $0.5 \mathrm{~m} / \mathrm{s} \mathrm{min}$.
If the speed of the overtravel dog is comparatively high, make the rear edge of the object smooth at an angle of 15° to 30° or make it in the shape of a quadratic curve. Then lever shaking will be reduced.

θ	φ	$\mathrm{V}_{\text {max. }}(\mathrm{m} / \mathrm{s})$	y
45°	45°	0.5	0.5 to 0.8 (TT)
50°	40°	0.6	0.5 to 0.8 (TT)
60° to 55°	30° to 35°	1.3	0.5 to 0.7 (TT)
75° to 65°	15° to 25°	2	0.5 to 0.7 (TT)

Note: The above y values indicate the ratio ranges based on TT (total travel). Therefore, the optimum pressing distance of the dog is between 50% and 80% (or 50% and 70%).

Plunger Models

If the dog overrides the actuator, the front and rear of the dog may be the same in shape, provided that the dog is not designed to be separated from the actuator abruptly.
Roller Plunger

φ	$V_{\operatorname{max.}}(\mathrm{m} / \mathrm{s})$	y
30°	0.25	0.6 to 0.8 (TT)
20°	0.5	0.5 to 0.7 (TT)

Ball Plunger

φ	$V_{\operatorname{max.}}(\mathrm{m} / \mathrm{s})$	y
30°	0.25	0.6 to 0.8 (TT)
20°	0.5	0.5 to 0.7 (TT)

Bevel Plunger

φ	$\mathrm{V}_{\max .}(\mathrm{m} / \mathrm{s})$	y
30°	0.25	0.6 to 0.8 (TT)
20°	0.5	0.5 to 0.7 (TT)

Note: The above y values indicate the ratio ranges based on TT (total travel). Therefore, the optimum pressing distance of the dog is between 60% and 80% (or 50% and 70%).

Fork Lever Lock Models

Note: Design the shape of the dog so that it does not come in contact with the other roller lever when the actuator is inverted.

Stroke Settings vs. Dog Movement Distance

- The following provides information on stroke settings based on the movement distance of the dog instead of the actuator angle.
The following is the optimum stroke of the Limit Switch

Optimum stroke: PT + (Rated OT x 0.7 to 1.0)
The angle converted from the above: $\theta_{1}+\theta_{2}$

- The movement distance of the dog based on the optimum stroke is expressed by the following formula.

Movement distance of dog

$$
\mathrm{X}=\mathrm{R} \sin \theta+\frac{\mathrm{R}(1-\cos \theta)}{\tan \varphi}(\mathrm{mm})
$$

- The distance between the reference line and the bottom of the dog based on the optimum stroke is expressed by the following formula.

Dog Surface

- The surface of dog touching the actuator should be 6.3 S in quality and hardened at approximately H450V.
- For smooth operation of the actuator, apply molybdenum disulfide grease to the actuator and the dog touching the actuator. This is ideal for Limit Switches of drip-proof construction and Multiple Limit Switch models.

Maintenance and Repairs

- The user must not maintain or repair the system. Consult the manufacturer of the system for maintenance or repairs.

Others

- The Limit Switch has contacts that must be free of silicone gas, otherwise a contact failure may result. Therefore, do not apply cable covered with silicone, silicone sealant, or silicone grease to the Limit Switch.
- The sealing of the standard Limit Switch uses nitrile butadien rubber (NBR), which is highly oil resistive. The NBR exposed to different types of oil or chemical may, however, deteriorate, swell, or shrink. Contact your OMRON representative for details.
- OMRON shall not guarantee the performance and characteristics of any actuator, plunger, or lever modified by the user.
- When using the Limit Switch with a long lever or long rod lever, make sure that the lever is in the downward direction.
- In order to ensure high contact reliability, the correct Limit Switch must be selected according to the load. For details, refer to the precautions for minute load models in this catalog.
- The leads must be wired as shown below.

Correct Method

Wrong Method

Distance is too short and proper dielectric

SI Units

To conform to the international standards, this datasheet adopts the SI international system for units (SI: Systeme International d'Unites). Refer to the following tables to convert values indicated in conventional units.

SI Unit Conversion

(Shaded units are non-SI units.)

Acceleration	$\mathbf{m} / \mathbf{s}^{\mathbf{2}}$	\mathbf{G}
	1	1.0197210^{-1}
	9.80665	1

Force	\mathbf{N}	kgf
	1	1.019721^{-1}
	9.80665	1

Torque	$\mathbf{N m}$	kgf•cm	kgf•m
	1	1.0197210	$1.01972 \mathbf{1 0}^{-1}$
	9.8066510^{2}	1	110^{-2}
	9.80665	110^{2}	1

Pressure	$\mathbf{P a}$	$\mathbf{k P a}$	$\mathbf{k g} / \mathbf{c m}^{\mathbf{2}}$	$\mathbf{m m H g}$ (Torr)	$\mathbf{m m H}_{\mathbf{2}} \mathbf{O}$
1	110^{-3}	1.019720^{-5}	7.5006210^{-3}	1.0197210^{-1}	
110^{3}	1	1.0197210^{-2}	7.50062	1.0197210^{2}	
	9.8066510^{4}	9.8066510	1	7.3555910^{2}	110^{4}
	1.3332210^{2}	1.3332210^{-1}	1.3595110^{-3}	1	1.3595110

Standards

National Standards

Note: For detailed information about applicable standards, refer to the relevant catalog

International Standards

IEC (International Electrotechnical Commission)

The IEC is a standardization commission founded in 1908 to promote unification and coordination of international standards relating to electricity. It is headquartered in Geneva, Switzerland.

IEC standards are provided to accomplish the aim of the above. The IEC strongly recommends all the member nations of the IEC to establish domestic standards that conform with those of the IEC.

At present, there are 50 member nations in the IEC. Based on reports from member nations on the latest science technologies in those nations, IEC standards are issued as technological standards relating to electricity. Established international safety standards provided by various countries and accepted worldwide are based on IEC standards.
In order to simplify approval procedures for electrical devices and promote smooth international trade, there is an international scheme called CB Scheme (Certification Body Scheme), which is authorized by IEC standards. Based on the CB Scheme, safety tests on electrical devices are conducted and certificates are issued if the devices are proved to meet IEC standards. Products issued with such certificates are acceptable in 30 countries in the world.

North America

UL Standards (Underwriters Laboratories INC.)

A nonprofit organization established in 1894 by the American association of fire insurance companies.

Underwriters Laboratories (abbreviated to UL hereafter) conducts approval testing on all kinds of electrical products. In many U.S. cities and states, UL approval is legally required on all electrical items sold

In order to obtain UL approval on an electrical product, all major internal components also require UL approval.
UL offers two classifications of approvals, the listing mark and the recognition mark.
A Listing Mark constitutes a entirely approval of a product.
Products display the Listing Mark shown below.

The Recognition Mark applies to the components used in a product, and therefore constitutes a more conditional approval of a product. Products display the Recognition Mark shown below.

7

Recognition Mark

The UL and CSA are unifying their standards with the adoption of a mutual approval system. Furthermore, they are adjusting their standards so that they will be in conformity with IEC standards.

- (14) $C T I$

Since October 1992, UL has been approved as a CO (council organization) and TO (test organization) by the SCC (Standard Council of Canada). This authorizes UL to conduct safety tests and certify products conforming to Canadian standards. The above marks are UL marks for products certifying that the products meet Canadian standards.
The designs of the listing marks and recognition marks have been revised as shown below. These marks have been effective since November 1998. The previous marks are valid until November 2007.

LISTING MARKS

	Marks for US	Marks for Canada	Marks for US and Canada
Previous mark			
New mark			

RECOGNITION MARKS

	Marks for US	Marks for Canada	Marks for US and Canada
Previous mark	?	?	?
New mark	?	?	

CSA Standards (Canadian Standards Association)
This association descended from a nonprofit, non-government standardization organization established in 1919. In addition to industrial standardization, the association now carries out safety testing on electrical products.
CSA has closer ties to government agencies than UL, so that electrical products not approved by CSA cannot be sold in Canada. Non-approved goods being sold illegally may have to be withdrawn.
CSA approval is known as "certification," and consequently, CSA-approved equipment is referred to as "certified equipment." Products display the mark shown below. For a conditional certification, products display component acceptance mark.
The CSA is adjusting its standards so that they will be in conformity with UL and IEC standards.

Certification Mark

China

GB (Guojia Biaozhun) Chinese National Standards
The GB are established Chinese national standards based on IEC standards.
Products such as home electronics appliances (e.g., televisions, washing machines, and microwave ovens), for which GB standards are obligatory, must be approved by CCIB (China Commodity Inspection Bureau) and CCEE (China Commission for Conformity Certification of Electrical Equipment). The marks shown below are respective marks of recognition.

Shipping Standards

LR (Lloyd's Register of Shipping)
These are the standards of the Lloyd's Register of Shipping, headquartered in London. All of the OMRON control components approved in LR are UMS ships, the unmanned engineroom ship classification in the Lloyd's Register.
Unlike the safety standards such as UL, the devices are checked to ensure that they can function sufficiently under the environmental conditions when they are used in ships. When a device is approved, Lloyd's Register doesn't apply the passing mark on the product, but includes it on the list of approved products that it publishes every year.
NK (Nippon Kaiji Kyokai)
Nippon Kaiji Kyokai (NK), which was established in 1899 under a different name for the purpose of ensuring the safety of vessels and the maintenance of maritime environmental conditions, has been using the present name since 1946.
Automation equipment and devices receive tests and inspections based on the provisions of the steel-ship regulations and can be formally approved if the tests are passed.
Testing at the production factory can be partially or entirely omitted when automation equipment and devices that have been formally approved are installed on ships.
As a general rule, manufacturers of approved products indicate that the products being shipped have been approved. (It is also acceptable to affix a label to products which require it.)

Japan

Electrical Appliance and Material Control Law of Japan
The EAMCL was substantially revised in July 1995 in conformity with IEC standards, such as IEC335. Consequently, the previously-used symbol for second-grade appliances was abolished while the symbol for first-grade appliances remained unchanged. Furthermore, the range of applicable products has been greatly revised.

	First-grade appli- ance	Second-grade ap- pliance
Previous symbol	282 products	216 products
	$\overline{\mathrm{T}}$	$(\mathbf{T}$

Europe

EN (European Norm) Standards
As part of EC unification, 18 European countries are going to integrate their national safety standards into EN standards. When EN standards come into effect, they shall apply as the unified standards in Europe in place of the current safety standards.
EN standards related to electricity are based on IEC standards and include requirements relating to countermeasures against electric shocks. EN codes consist of the prefix "EN"
followed by five figures beginning with the figure 6 (e.g., EN60204).
Industrial products exported to Europe must satisfy IEC standards if the products do not fall under EN standards.
Industrial products exported to European countries from Japan or North America or traded between European countries must satisfy EN standards. Furthermore, 12 types of industrial products, such as machines, low-voltage devices, and EMC equipment, must bear CE markings. CE markings on a product indicate that the product meets safety standards specified by all related EC directives. For example, an industrial machine must satisfy the EC Machinery Directive, Low-voltage Directive (LVD), and EMC requirements.

The following marks of recognition are used in European countries in accordance with EN standards.

VDE (Verband Deutscher Elektrotechniker e.V.) in Germany (applicable to electrical appliances only)	TÜV (applicable to electrical appliances, machines and automobiles
DE	
VDE Mark Monitoring Mark	TÜV Rheinland \quad TÜV Product Service
(D)	KEMAR
DEMKO (Danmarks Elektriske Materielkontrol)	KEMA (Keuring van Electrotechnische Materialen Nederland B.V.)
N	(8)
NEMKO (Norges Elektriske Materiellkontroll)	UTE (Union Technique De Electricite)
(FI)	
FIMKO (Finlands Material Kontroll)	IMQ (Instituto Italiano del Marchio di Qualita)
	(S)
BSI (British Standards Institution) Britain (applicable to industrial products)	SEMKO (Svenska Elektriska Materielkontroll Anstalten)
	$\left(\begin{array}{l} \mathbf{+} \\ \mathbf{S} \end{array}\right.$
BEAB (British Electrotechnical Approval Board) Britain (applicable to home electronics products)	SEV (Schweizer Elektrotechnischer Verein)
4.	
ASTA (ASTA Certification Services) Britain (applicable to general products)	

List of Approved Models

Safety Switches

Model	Rating	Standard No.	File No.
D4N	A300 (Carry current: 10 A) Q300 (Carry current: 2.5 A) (UL) (U)	UL508	E76675
D4F	C300 (Carry current: 2.5 A),		
D4B-N	A600 (Carry current: 10 A)		
D4BS	A600 (Carry current: 10 A)		
D4BL	A300 (Carry current: 10 A)		
D4N-R	A300 (Carry current: 10 A) Q300 (Carry current: 2.5 A) (UL)		
D4NS	$\begin{array}{ll} \text { A300 (Carry current: } 10 \mathrm{~A} \text {) } \\ \text { Q300 (Carry current: } 2.5 \mathrm{~A} \text {) (LL) (LL) } \end{array}$		
D4NL	A300 (Carry current: 10 A) (U) (U)		
D4GL	C300 (Carry current: 2.5 A), Q300 (Carry current: 2.5 A)		
D4NH	$\begin{array}{ll} \hline \text { A300 (Carry current: 10 A) } \\ \text { Q300 (Carry current: } 2.5 \mathrm{~A} \text {) (LL) } \end{array}$		
D4GS-N	C300 (Carry current: 2.5 A), Q300 (Carry current: 2.5 A)		

Note: 1. Approval on some models may have been given on representative models. For further information on standard approvals, contact your OMRON sales representative.
2. The standard number shown above is the number the applicable standard and the file number is the approval report number.

Pushbutton Switches

Model	Rating	Standard No.
A165E		UL508
		$5 \mathrm{~A}, 125 \mathrm{VAC}$ $3 \mathrm{~A}, 250 \mathrm{VAC}$
A165E $\square 03 \mathrm{VDC}$		

Safety Relay Units

Model	Number of poles	Operating coil	Contact rating	File No.
$\begin{aligned} & \text { G9S-2001 } \\ & \text { G9S-2002 } \end{aligned}$	DPST-NO	24 VDC	5 A, 240 VAC (Resistive)	E95399
G9S-301	$\begin{array}{\|l\|} \hline \text { 3PST-NO/ } \\ \text { SPST-NC } \end{array}$	$\begin{aligned} & 24 \text { VDC, } 24, \\ & 100,120,240 \\ & \text { VAC } \end{aligned}$		
G9S-501	$\begin{aligned} & \hline \text { 5PST-NO/ } \\ & \text { SPST-NC } \end{aligned}$			
$\begin{aligned} & \text { G9S-321-T■ } \\ & \text { (see note 1) } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { 3PST-NO/ } \\ \text { SPST-NC+ } \\ \text { DPST-NO } \\ \text { (OFF-delay) } \\ \hline \end{array}$			
G9SA-301	$\begin{aligned} & \text { 3PST-NO/ } \\ & \text { SPST-NC } \end{aligned}$	$\begin{aligned} & 24 \text { VDC, } \\ & 24 \text { VAC } \end{aligned}$	5 A, 250 VAC (Resistive)	E41515
G9SA-501	$\begin{aligned} & \text { 5PST-NO/ } \\ & \text { SPST-NC } \end{aligned}$			
$\begin{aligned} & \text { G9SA-321-T } \square \\ & \text { (see note 2) } \end{aligned}$	$\begin{aligned} & \text { 3PST-NO/ } \\ & \text { SPST-NC+ } \\ & \text { DPST-NO } \\ & \text { (OFF-delay) } \end{aligned}$			
G9SA-TH301	$\begin{array}{\|l\|} \hline \text { 3PST-NO/ } \\ \text { SPST-NC } \end{array}$			
G9SA-EX301				
$\begin{aligned} & \text { G9SA-EX031- } \\ & \text { T } \square \\ & \text { (see note 2) } \end{aligned}$	$\begin{aligned} & \text { 3PST-NO+ } \\ & \text { SPST-NC } \\ & \text { (OFF-delay) } \end{aligned}$			
G9SX-EX \square	4PST-NO	24 VDC	3 A, 250 VAC (Resistive)	see datasheet

Model	Number of poles	Operating coil	Contact rating	File No.
G9SB-200 $\square-$ \square	DPST-NO	24 VDC, 24 VAC	5 A, 250 VAC (Resistive)	E76675
G9SB-301 $\square-$ \square	3PST-NO/ SPST-NC			
G9SB-3010		24 VDC		
CQM1-SF200	DPST-NO	24 VDC	5 A, 250 VAC (Resistive)	
CS1W-SF200				

Note: 1. T $\square:$ T01, T015, T03, T04, T05, T06, T10, T30 2. T $\square: \mathrm{T} 075, \mathrm{~T} 15, \mathrm{~T} 30$

Safety Relays

Model	Number of poles	Operating coil	Contact rating	File No.
G7S-4A2B	$\begin{array}{\|l} \hline \text { 4PST-NO/ } \\ \text { DPST-NC } \end{array}$	24 VDC	6 A per pole, 20 A total, 277 VAC (Resistive)	E41515
G7S-3A3B	$\begin{aligned} & \text { 3PST-NO/ } \\ & \text { 3PST-NC } \end{aligned}$			
G7SA-3A1B	$\begin{array}{\|l} \hline \text { 3PST-NO/ } \\ \text { SPST-NC } \end{array}$		6 A, 250 VAC (Resistive) 6 A, 30 VDC (Resistive)	
G7SA-2A2B	$\begin{aligned} & \hline \text { DPST-NO/ } \\ & \text { DPST-NC } \end{aligned}$			
G7SA-5A1B	$\begin{aligned} & \text { 5PST-NO } \\ & \text { SPST-NC } \end{aligned}$			
G7SA-4A2B	$\begin{aligned} & \text { 4PST-NO } \\ & \text { DPST-NC } \end{aligned}$			
G7SA-3A3B	$\begin{aligned} & \text { 3PST-NO/ } \\ & \text { 3PST-NC } \end{aligned}$			

Safety Area Sensors (Listing Certified)

Model	File No,	Ratings/remarks					
F3SN-A F3SH-A	E199694	Input: 24 VDC Output: PNP open collector, 300 mA (24 VDC)					
Type 4 ESPE/AOPD			$	$	F3S-B	E199694	Input: 24 VDC Output: PNP open collector or NPN open collector, 200 mA (24 VDC) Type 2 ESPE/AOPD
:---	:---	:---					
F3SS	NRTL cer- tificationby CSA	--- F3SL E199694${ }^{\text {Eype 4 ESPE/AOPD }}$					

CSA Standards

Safety Switches

Model	Rating	Standard No.	File No.
D4BS	A600 (Carry current: 10 A)	CSA	LR45746
D4DS	A600 (Carry current: 10 A)	C22.2	
D4BL	A300 (Carry current: 10 A)	No. 14	
D4DL	A300 (Carry current: 10 A)		
D4DH	A600 (Carry current: 10 A)		

Note: 1. Approval on some models may have been given on representative models. For further information on standard approvals, contact you OMRON sales representative.
2. The standard number shown above is the number the applicable standard and the file number is the approval report number.

Safety Relay Units

Model	Number of poles	Operating coil	Contact rating	File No.
$\begin{aligned} & \text { G9S-2001 } \\ & \text { G9S-2002 } \end{aligned}$	DPST-NO	24 VDC	5 A, 240 VAC (Resistive)	LR35535
G9S-301	$\begin{aligned} & \text { 3PST-NO/ } \\ & \text { SPST-NC } \end{aligned}$	$\begin{aligned} & 24 \text { VDC, } \\ & 24,100, \\ & 120,240 \\ & \text { VAC } \end{aligned}$		
G9S-501	$\begin{aligned} & \hline \text { 5PST-NO/ } \\ & \text { SPST-NC } \end{aligned}$			
$\begin{aligned} & \text { G9S-321-TD } \\ & \text { (see note 1) } \end{aligned}$	3PST-NO/ SPST-NC+ DPST-NO (OFF-delay)			
G9SA-301	$\begin{aligned} & \text { 3PST-NO/ } \\ & \text { SPST-NC } \end{aligned}$	$\begin{aligned} & 24 \text { VDC, } \\ & 24 \text { VAC } \end{aligned}$	5 A, 250 VAC (Resistive)	
G9SA-501	$\begin{aligned} & \hline \text { 5PST-NO/ } \\ & \text { SPST-NC } \end{aligned}$			
$\begin{aligned} & \text { G9SA-321-T[} \\ & \text { (see note 2) } \end{aligned}$	3PST-NO/ SPST-NC+ DPST-NO (OFF-delay)			
G9SA-TH301	3PST-NO/ SPST-NC			
G9SA-EX301				
G9SA-EX031T \square (see note 2)	$\begin{array}{\|l\|} \hline \text { 3PST-NO+ } \\ \text { SPST-NC } \\ \text { (OFF-delay) } \\ \hline \end{array}$			
G9SB-200■- \square	DPST-NO	$\begin{aligned} & 24 \text { VDC, } \\ & 24 \text { VAC } \end{aligned}$	5 A, 250 VAC (Resistive)	$\begin{aligned} & 203880 \\ & (\text { LR35535 } \\ & \text {) } \end{aligned}$
G9SB-301 \square - \square	$\begin{aligned} & \hline \text { 3PST-NO/ } \\ & \text { SPST-NC } \end{aligned}$			
G9SB-3010		24 VDC		
CQM1-SF200	DPST-NO	24 VDC	5 A, 250 VAC (Resistive)	
CS1W-SF200				
G9SX-EX \square	4PST-NO	24 VDC	$3 \text { A, } 250 \text { VAC }$ (Resistive)	see datasheet

Note: 1. T $\square:$ T01, T015, T03, T04, T05, T06, T10, T30
2. T $\square:$ T075, T15, T30
3. Approval of G9SA models with AC power supplies is pending (as of June 2001).

Safety Area Sensors

Model	File No,	Ratings/remarks
$\begin{aligned} & \text { F3SN-A } \\ & \text { F3SH-A } \end{aligned}$	(© (LL) listing based on Canadian safety standards) Refer to UL standards.	Input: 24 VDC Output: PNP open collector, 300 mA (24 VDC) Type 4 ESPE/AOPD
F3S-B	(.(4) listing based on Canadian safety standards) Refer to UL standards.	Input: 24 VDC Output: PNP open collector or NPN open collector, 200 mA (24 VDC) Type 2 ESPE/AOPD
F3SS	LR90200 (CSA C22.2 No. 205)	---
F3SL	(© (L) listing based on Canadian safety standards) Refer to UL standards.	Type 4 ESPE/AOPD

Safety Relays

Model	Number of poles	Operating coil	Contact rating	File No.
G7SA-3A1B	$\begin{aligned} & \hline \text { 3PST-NO/ } \\ & \text { SPST-NC } \end{aligned}$	24 VDC	6 A, 250 VAC (Resistive) 6 A, 30 VDC (Resistive)	LR35535(CSAC22.2N0. 14)
G7SA-2A2B	$\begin{aligned} & \text { DPST-NO/ } \\ & \text { DPST-NC } \end{aligned}$			
G7SA-5A1B	$\begin{aligned} & \text { 5PST-NO } \\ & \text { SPST-NC } \end{aligned}$			
G7SA-4A2B	$\begin{aligned} & \text { 4PST-NO } \\ & \text { DPST-NC } \end{aligned}$			
G7SA-3A3B	$\begin{aligned} & \text { 3PST-NO/ } \\ & \text { 3PST-NC } \end{aligned}$			
G7S-4A2B	$\begin{aligned} & \hline \text { 4PST-NO/ } \\ & \text { DPST-NC } \end{aligned}$	24 VDC	6 A per pole, 20 A total, 277 VAC (Resistive)	
G7S-3A3B	$\begin{aligned} & \text { 3PST-NO/ } \\ & \text { 3PST-NC } \end{aligned}$			
$\begin{aligned} & \text { G7SA-4A2B- } \\ & \text { E } \end{aligned}$	$\begin{aligned} & \text { 4PST-NO } \\ & \text { DPST-NC } \end{aligned}$	24 VDC	NO contact: 10 A per pole, 20 A total, 277 VAC (Resistive) NC contact: 6 A per pole, 20 A total, 277 VAC (Resistive)	
$\begin{aligned} & \text { G7SA-3A3B- } \\ & \text { E } \end{aligned}$	$\begin{aligned} & \text { 3PST-NO/ } \\ & \text { 3PST-NC } \end{aligned}$			

Safety Limit Switches

Model	Rating	Standard No.	File No.
D4B-N	A600 (Carry current: 10 A)	CSA	LR45746
		C22.2	

VDE Standards

(887)

Safety Relays

Model	Number of poles	Operating coil	Contact rat- ing	Approval No.					
G7S-4A2B	4PST-NO/ DPST-NC	24 VDC	6 A 240 VDC (Resistive)	No. 6611 (IEC255) (VDE0435)					
(EN50205)					$	$	G7S-3A3B	3PST-NO/ 3PST-NC	
:---	:---	:---							

Note: Applicable standard numbers are given in parentheses.
TÜV Standards

Limit Switches
$\left.\begin{array}{|l|l|l|l|}\hline \text { Model } & \text { Rating } & \text { Standard No. } & \text { Approval No. } \\ \hline \text { D4N-R } & \begin{array}{l}\text { AC-15 3 A } \\ 240 ~ V ~ 50 / 60 ~ H z ~ \\ \text { DC-13 0.27 A } \\ \text { 250 V }\end{array} & \begin{array}{l}\text { EN60947-5-1 } \\ \text { EN81, EN115 } \\ \text { pending }\end{array} & \text { B031139656061 }\end{array}\right]$.

BIA Standards

Limit Switches

Model	Models rated	Standard No.	Approval No.
D4B-N	Positive opening models approved except adjustable levers, coils, springs, and plas- tic rods	GS-ET-15, EN60947-5-1	9202158 and 9309655
D4BS	All D4BS models	GS-ET-15, EN60947-5-1	9303323
D4BL	All D4BL models	GS-ET-19, EN60947-5-1	Mechanical: 9402293 Solenoid: 1998, 20462-01

Safety Relay Units

Model	Number of poles	Operat- ing coil	Contact rating	File No.
G9S-2001 G9S-2002	DPST-NO	24 VDC	5 A, 240 VAC (Re- sistive)	R974021 (EN60204-1) (EN954-1)
G9S-301	3PST-NO/ SPST-NC	24 VDC, 24,100, 120,240 VAC		
G9S-501	5PST-NO/ SPST-NC			
G9S-321- Tロ(see note)	3PST-NO/ SPST- NC+DPST- NO (OFF- delay)			

Note: T \square : T01, T015, T03, T04, T05, T06, T10, T30

SUVA Standards

Limit Switches

Model	Models rated	Approved No.
D4B-N	Positive opening mod- els approved except adjustable levers, coils, springs, and plastic rods	E6188.d and E6189.d
D4BS	All D4BS models	E6187.d
D4BL	All D4BL models	E6186/1.d

BG Standards

Safety Relay Units

Model	Number of poles	Operating coil	Contact rat- ing	File No.
G9SA-301	3PST-NO/ SPST-NC	24 VDC, 24 VAC	5A, 250 VAC (Resistive)	000115
G9SA-501	SPST-NO/ SPST-NC			000135
G9SA-321-T \square (see note 1)	3PST-NO/ SPST-NC+ DPST-NO (OFF-delay)		000137	
G9SA-TH301	3PST-NO/ SPST-NC			000135
G9SA-EX301	3PST-NO/ SPST-NC			000137
G9SA-EX031- T (see note 1)	SPST-NC+ 3PST-NO (OFF-delay)			

Note: 1. T \square : T075, T15, T30

List of Models Conforming to EN/IEC Standards

Safety Door Switches

Model	CE marking	Safety category	Basic requirements of Machinery Directive/Low-voltage Directive				Basic requirements of EMC Directive			
			Applicable standard No.	Application standard No.	Approving agency	File No./ Applicable period	EMI standard No.	EMS standard No.	Approving agency	File No./ Applicable period
D4BS	YES	up to 4	$\begin{aligned} & \hline \text { EN60947-5-1 } \\ & \text { IEC60947-5-1 } \end{aligned}$	---	TÜV, Rheinland	R9351022	Not applicable			
D4BL						R9451050				
D4GS-N						J2051125				
D4N			EN60947-5-1		TÜV, Product Service	$\begin{array}{\|l\|} \hline \text { B0311396560 } \\ 61 \end{array}$				
D4N-B										
D4NH										
D4NS						$\begin{aligned} & \text { B0306396505 } \\ & 2 \end{aligned}$				
D4GL						$\begin{array}{\|l} \hline \text { B0207396560 } \\ 39 \end{array}$				
D4NL						$\begin{array}{\|l} \hline \text { B0207396560 } \\ 40 \end{array}$				

Safety Sensor

Model	CE marking	Safety category	Machinery Directive			Basic requirements of EMC Directive		
			Applicable directive	Approving agency	File No.	Applicable directive	Approving agency	File No.
$\begin{aligned} & \text { F3SN-A } \\ & \text { F3SH-A } \end{aligned}$	YES(EMC Directive)	4	EN61496-1 ESPE Type 4 IEC61496-1 ESPE Type 4 IEC61496-2 AOPD Type 4	DEMKO	Certificate No. 129794-01	89/336/EEC	DEMKO	Certificate No. 129794-02
F3S-B		2	EN61496-1 ESPE Type 2 IEC61496-1 ESPE Type 2 IEC61496-2 AOPD Type 2	TÜV Han-nover/Sachsen Anhalt			TÜV Nord	$\begin{aligned} & \text { Certificate } \\ & \text { 08/205/B1- } \\ & \text { PM28890 } \end{aligned}$
F3SS		4	IEC61496-1 ESPE Type 4 IEC61496-2	TÜV Rheinland	BB9911039	IEC61496-1 compatibility according to TÜV Rheinland. Declaration of conformity to EMC Directive based on certification. Declaration of conformity certificate numbers: MSCS 128A (F3SS) MSCS 129A (F3SL)		
F3SL					BB9910071			
E3FS		2	98/37/EC EN61469-1 prEN91496-2 type2 g8/37/EC	TÜV Product Service	$\begin{array}{\|l} \hline \text { Z20108426690 } \\ 01 \end{array}$	89/336/EEC	TÜV Product Service	
$\begin{aligned} & \hline \text { F3SP-U1P } \\ & \text { F3SP-U3P } \\ & \text { F3SP-U5P } \end{aligned}$			$\begin{aligned} & \hline 98 / 37 / E C \\ & \text { IEC61496-1 } \end{aligned}$		$\begin{array}{\|l} \hline \text { Z10030718453 } \\ 015 \end{array}$			
$\begin{aligned} & \text { F3SP-U2P } \\ & \text { F3SP-U4P } \end{aligned}$		4	$\begin{aligned} & \text { 98/37/EC } \\ & \text { IEC61496-1 } \end{aligned}$					
F3SP-P1P			$\begin{aligned} & \text { 98/37/EC } \\ & \text { IEC61496-1 } \\ & \text { IEC61496-2 } \end{aligned}$					

Safety Relay Unit

Model	CE marking	Safety category	Basic requirements of Machinery Directive/Low-voltage Directive				Basic requirements of EMC Directive			
			Applicable standard No.	Application standard No.	Approving agency	File No./ Applicable period	EMI standard No.	EMS standard No.	Approving agency	File No./ Applicable period
G9SA	YES	$\begin{array}{\|l} \hline 4 \\ \text { (see note 1) } \end{array}$	$\begin{aligned} & \hline \text { EN60204-1 } \\ & \text { EN954-1 } \end{aligned}$	---	BG	(see note 4)	EN55011	EN50082-2	TÜV, Product Service	$\begin{array}{\|l\|} \hline \text { E8 } 0004 \\ 39656001 \end{array}$
G9S		$\begin{array}{\|l} \hline 4 \\ \text { (see note } 2 \text {) } \end{array}$			BIA	R974021				(see note 5)
$\begin{array}{\|l} \hline \text { G9SA } \\ \text { (24 VAC/ } \\ \text { VDC) } \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 4 \\ \text { (see note } 1 \text {) } \end{array}$			BG	(see note 6)		$\begin{aligned} & \text { EN61000-6- } \\ & 2 \end{aligned}$		$\begin{array}{\|l\|} \hline \text { E8 } 0203 \\ 39656035 \end{array}$
$\begin{aligned} & \text { G9SA (100 } \\ & \text { to } 240 \text { VAC) } \end{aligned}$									TÜV, Rheinland	Report No. 02062204 002 Registration No. AE2051327 02

Model	CE marking	Safety category	Basic requirements of Machinery Directive/Low-voltage Directive				Basic requirements of EMC Directive			
			Applicable standard No.	Application standard No.	Approving agency	File No./ Applicable period	EMI standard No.	EMS standard No.	Approving agency	File No./ Applicable period
G9SB-200 G9SB-301 \square G9SB-3010	YES	4 3 (see note 3)	$\begin{aligned} & \hline \text { EN60204-1 } \\ & \text { EN954-1 } \end{aligned}$	---	TÜV, Rheinland	$\begin{aligned} & \hline 968 / \text { EZ } \\ & 120.00 / 01 \end{aligned}$	EN55011	$\begin{aligned} & \text { EN61000-6- } \\ & 2 \end{aligned}$	TÜV, Rheinland	Report No. 02160619 002 Registration No. AV250003726
$\begin{aligned} & \hline \text { CQM1- } \\ & \text { SF200 } \end{aligned}$		4				$\begin{aligned} & \hline 968 / E Z \\ & 110.00 / 00 \end{aligned}$				Report No. P2062560E 01 Registration No. AE2051219 01
$\begin{aligned} & \text { CS1W- } \\ & \text { SF200 } \end{aligned}$										Report No. P2062873E 01 Registration No. AE2051220 01
G9SX						see datasheet	$\begin{aligned} & \text { EN61000- } \\ & 6 \end{aligned}$	$\begin{aligned} & \text { EN61000- } \\ & 6-2 \end{aligned}$		see datasheet J150-E2- Cat04-01

Note: 1. OFF-delay contact of G9SA-321/EX031 falls in Category 3.
2. OFF-delay output of G9S-321 and G9S-2001 falls in Category 3.
3. G9SB-3010 falls in Category 3 with double breaking.
4. G9SA-301: 00115, 501/EX301: 00135, 321/EX031: 00137, TH301: 01013
5. G9S-301/501/321: E8 9705 22868 026; G9S-2001/2002: E8 980332014005
6. G9SA-301: 00115, 501/EX301: 00135, 321/EX031: 00137, TH301: 01013 (24 VAC/VDC) G9SA-301: 02067, 501: 02063, 321: 02065, TH301: 01013 (100 to 240 VAC)

Safety Relays

Model	CE marking	Safety category	Basic requirements of Machinery Directive/Low-voltage Directive				Basic requirements of EMC Directive			
			Applicable standard No.	Application standard No.	Approving agency	File No./ Applicable period	EMI standard No.	EMS standard No.	Approving agency	File No./ Applicable period
G7SA	Not applicable	For Systems up to cat. 4	EN61810-1	EN50205	VDE	No. 125547	Not applicable			
G7S			$\begin{aligned} & \hline \text { IEC60255 } \\ & \text { (VDE0435) } \end{aligned}$	prEN50205		No. 6611				

Safety Limit Switches

Model		CE marking	Safety category	Basic requirements of Machinery Directive/Low-voltage Directive				Basic requirements of EMC Directive				
		Applicable standard No.		Application standard No.	Approving agency	File No./ Applicable period	EMI standard No.	EMS standard No.	Approving agency	File No./ Applicable period		
D4B- $\square \mathrm{N}$	Snap-action		YES	4	$\begin{aligned} & \hline \text { EN60947-5- } \\ & 1 \\ & \text { IEC60947-5- } \\ & 1 \end{aligned}$	---	TÜV, Rheinland	J9851083	Not applicable			
D4D- 7 N	Snap-action	EN81 (Elevators) EN115 (Escalators, conveyors)				JJ9950233						
D4B- $\square \mathrm{N}$	Slow-action					R9151643						
D4N- \square R						TÜV, Product Service	Pending					
D4F							$\begin{aligned} & \text { B02033965 } \\ & 6029 \\ & \hline \end{aligned}$					

Emergency Stop Switches

Model	CE marking	Safety category	Basic requirements of Machinery Directive/Low-voltage Directive				Basic requirements of EMC Directive			
			Applicable standard No.	Application standard No.	Approving agency	File No./ Applicable period	EMI standard No.	EMS standard No.	Approving agency	File No./ Applicable period
A165E Series (separate construction)	YES	4	$\begin{aligned} & \hline \text { EN60947-5- } \\ & 1 \end{aligned}$	---	TÜV, Product Service	$\begin{array}{\|l\|} \hline \text { B021039656 } \\ 044 \end{array}$	Not applicable			
A22E Series						$\begin{array}{\|l} \text { B021039656 } \\ 043 \end{array}$				
A165E- 03U (one-body construction)						$\begin{array}{\|l} \hline \text { B021039656 } \\ 045 \end{array}$				

Accessories

Accessories

Accessories for photoelectric, inductive and capacitive sensors

For cylindrical shapes

Mounting accessories, covers and slits

Shape	Product group	Type	Housing material	Features	Order reference	Applicable sensors
		polyarylate	- slit cover for preci- sion detection and positioning with through beam photo sensors -for M18	Y92E-ES18	E3F2-10	

Accessories for photoelectric sensors

For all shapes

| Shape | Type | Housing material | | Order referenceApplicable
 Sensors |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- |

For square shapes
Mounting and protection

Shape	Type	Housing material	Features	Mounting type	Order reference	Applicable Sensors

Shape	Type	Housing material	Features	Mounting type	Order reference	Applicable Sensors

Shape	Type	Fousing material	Features	Mounting type	Order reference	Applicable Sensors

Slit, filters and other accessories

Shape	Type	Features	Mounting type	Order reference	Applicable Sensors

Cable connectors and wiring accessories

Shape	Product group	Type	Housing material	Features	$\begin{gathered} \text { Key } \\ \text { specifications } \end{gathered}$	Order reference	Applicable Sensors
	©็	General purpose M12 connector Special environment M12 connector	- PVC cable - brass nut	available resistance levels: - standard cable - vibration proof robotic cable - fire retardant cable - screw nut	- 3 A rated current - AC or DC - 4 or 5 pin - IP67	XS2	- sensors with built in M12 4-pin connector (-M1) - sensors with M12 4-pin cable end connector (-M1J) - E3NT (5-pin cable connector)
			- PVC cable - ZnAl Cu, optionally V2A or V4A nut	- silicone-free - screw nut - optional LED (screw nut models) - halogene-free - silicone-free - oil resistant - screw nut	- 4 A rated current - AC or DC - 4 or 5 pin - IP67, IP68, IP69k	Y92E-M12	- sensors with built in M12 4-pin connector (-M1) - sensors with M12 4-pin cable end connector (-M1J) - E3NT (4-pin and 5-pin cable connector)
		Small size M8 4pin connector	- PVC cable - brass nut	- screw nuts or snap-in - reduced outer diameter for space saving - standard or vibration proof cable	- 1 A rated current - 125 V DC - 4 pin - IP67	XS3	- sensors with built in M8 4-pin connector (-M3) - sensors with M8 4-pin cable end connector (-M3J)
		General purpose M8 connector	- PVC or PVC/ PUR cable - brass nuts	- screw nuts or snap-in - optional LED (screw nut angled models)	- 4 A rated current - 60 V DC - 3 to 4 pin - IP67, IP68	Y92E-M08	- 4-pin or 3-pin connector (-M3 or -M5) - sensors with M8 4-pin or 3-pin cable end connector (-M3J or -M5J)

Shape	Product group	Type	Housing material	Features	Key specifications	Order reference	Applicable Sensors
		M12 I/O connector terminal boxes	- PBT case - brass connectors	- flat size - for M12 connectors - 4,6 or 8 contacts per box	$\begin{aligned} & -4 \mathrm{~A} / \text { port } \\ & -10 \text { or } \\ & 30 \mathrm{~V} \mathrm{DC} \\ & -4 \text { or } 5-\mathrm{pin} \\ & -\mathrm{IP} 67 \end{aligned}$	XW3B	for all sensors connected via M12 4-pin connections \& cables
		Waterproof cover for M12 I/O connector	brass	water proof cover for IP67 rating of X3WB		XS2Z-12	
		M8 I/O connector terminal boxes	- PA 6 case - brass connectors	$-\quad$ cable and con- nector box con- nection - for M8 connec- tors $-4,6,8,10$ or 12 contacts per box	$\begin{aligned} & -2 \mathrm{~A} / \text { port } \\ & -10 \text { to } \\ & 30 \mathrm{~V} \text { DC } \\ & -3 \text { or 4-pin } \\ & -\mathrm{IP} 67 \end{aligned}$	93447	for all sensors connected via M12 3-pin or 4-pin connections \& cables
		M12 T-joind and Y-joint plugs	- PVC cable - brass nut	- daisy chain model for 'AND' configurations (Tjoint) - direct wiring models for 'OR' configurations (Y-joint) - bifurcate models for signal splitting - aggregate models for reduced wiring	- 3 A rated current - DC - 4-pin - IP67	XS2R	- sensors with builtin M12 4-pin connector (-M1) - sensors with M12 4-pin cable end connector (-M1J)
		M8 Y-joint plugs	- PBT case - brass connectors	- direct wiring models for 'OR' configurations - aggregate models for reduced wiring	- 1 A rated current - 125 V DC - 4-pin - IP67	XS3R	- sensors with built in M8 4-pin connector (-M3) - sensors with M8 4pin cable end connector

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.

To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .

Contact Information

Europe

Austria

Sales office Vienna:

OMRON ELECTRONICS GmbH
Brunner Straße 81
1230 Wien
Phone: +43 1801900
Fax: +43 18044846
E-mail: omron.austri@@eu.omron.com www.omron.at

Distributors in Austria:

WETEKO Industrieelektronik
Lacknergasse 6/23
1170 Wien
phone.: +43-1495 1683
fax: +43-1 4951684
e-mail: manfred.kuehtreiber@weteko.at www.weteko.at

TIBEG Franz Putz
Höck 29-35
4690 Schwanenstdt
phone.: +43-7673 3975-0
fax: +43-7673 3975-11
e-mail: tibeg@utanet.at
www.tibeg.at
INDU - ELECTRIC
Inh. Paul Siess
Wiener Bundesstraße 21
5300 Hallwang bei Salzburg
phone.: +43-662 661369
fax: +43-662 664769
Mobil: +43 650-86 12 85-0
e-mail: induelectric@aon.at
Peter Klymiuk Elektroanlagen
Dandlerau 3
6391 Fieberbrunn
phone.: +43-5354 / 56921
fax: +43-5354 / 56921-20
e-mail: info@klymiuk.at
www.klymiuk.at
Stengg Gerhard Werksvertretungen
Reut-Nicolussi-Straße 10
6020 Innsbruck
phone.: +43-512 396050
fax: +43-512 3960 50-40
e-mail: top.stengg@aon.at.
www.stengg-gerhard.at
Egon Böhler Industriebedarf
Kesselstraße 56, Postfach 56 6961 Wolfurt
phone.: +43-55 7476060
fax: +43-557471121
e-mail: egon.boehler@egonboehler.at www.egonboehler.at

Also in charge of:

Croatia

Zomel d.o.o.
M. Matoseca 10

10000 Zagreb
Phone: +385 13756622
Fax: +385 13733120
Contact: Mr. M. Jambrecic
E-mail: zomel@zg.htnet.hr www.zomel.open.hr

Serbia and Montenegro

ICM Electronics
Vase Miskina crnog 4
21000 Novi Sad
Phone: +381 21518253
Fax: +3812151835
Contact: Mr. D. Micic
E-mail: dmicic@sezampro.yu
www.icm.co.yu
Mikro Kontrol
Dositejeva 7a
11000 Belgrade
Phone: +381 113283732
Fax: +381 113283840
Contact: Mr. M. Milanov
E-mail: mkontrol@eunet.yu
www.mikrokontrol.co.yu

Slovenia

Miel Electronics d.o.o
Efenkova 61 str. (tower B, 4th flr.)
3320 Velenje
Phone: +386 38985750
Fax: +386 38985760
Contact: Mr. A. Rotovnik
E-mail: info @miel.si www.miel.si

Bosnia and Herzegovina

AND Digital d.o.o.
Stupine B8
75000 Tuzla
Phone: +387 35255541
Fax: +38735255541
Contact: Mr. D. Nuhanovic
E-mail: anddigital@inet.ba
ZT-Tehnozastita
B. Cule bb

88000 Mostar
Phone: +387 36326558
Fax: +38736326340
Contact: Mr. M. Cokorilo
E-mail: zttehnoz@tel.netz.ba

Belgium

Sales office Groot-Bijgaarden:
Omron Electronics n.v./s.a.
Stationsstraat 24
B- 1702 Groot-Bijgaarden
phone: +32-24662480
fax: +32-2 4660687
info.be@eu.omron.com
www.omron.be

Distributors in Belgium and Luxemburg:

ATS DISTRIBUTION n.v.
Karel de Roosestraat 15A
B- 9820 MERELBEKE
phone: +32-9 2100411
fax: +32-92314867
info@atsgroep.be
www.atsgroep.be
ATS HEVERLEE
Interleuvenlaan 17
B- 3001 HEVERLEE
phone: +32 16400230
fax: +32 16400413 www.atsgroep.be

BOUTET
Bld des Gérardchamps 64 B- 4800 VERVIERS phone: +32 87325110 fax: +32 87325135 industrie @ boutet.be www.boutet.be

BREVA n.v.
Noorderlaan 31
B- 2030 ANTWERPEN 3
phone: +32-3540 0290
fax: +32-35420964
antwerpen@breva.be www.breva.be

BREVA n.v.
Industrielaan 29
B- 2250 OLEN
phone: +32-14 285540
fax: +32-14235762
olen@breva.be
www.breva.be
BREVA n.v.
Kouterstraat 4
B- 8560 WEVELGEM phone: +32-56 439410 fax: +32-56404329 wevelgem@breva.be www.breva.be
BREVA n.v.
Vogelsancklaan 260
B- 3520 ZONHOVEN phone: +32-1181 0981 fax: +32-11817316 breva@breva.be www.breva.be
Cardy n.v.
Bergensesteenweg 190
B- 1500 HALLE
phone: +32-2 3610800 fax: +32-23603131 info.halle@cl-group.be www.cl-group.be

Cardy n.v.
Assesteenweg 99
B- 1740 TERNAT phone: +32-25311290 fax: +32-2531 1280 info.ternat@cl-group.be www.cl-group.be

Cebeo BURCHT
Oude Gentweg 100
B- 2070 BURCHT
phone: +32-32505000
fax: +32-32529525
antwerpen@cebeo.be
www.cebeo.be
Cebeo BRUGGE
Lieven Bauwensstraat 10 B- 8200 BRUGGE
phone: +32-50 457878
fax: +32-50 323426
nwvlaanderen@cebeo.be www.cebeo.be

Cebeo JETTE
Avenue Carton de Wiart 74
B- 1090 BRUXELLES
phone: +32-2 4213900
fax: +32-2424 1882
brabant@cebeo.be www.cebeo.be

Cebeo HAREN
5, Rue du Bassin Collecteur
B- 1130 BRUXELLES-HAREN
phone: +32-2 2479595
fax: +32-2 2479550
brabant@cebeo.be
www.cebeo.be
Cebeo DEINZE
Georges Martensstraat 6
B- 9800 DEINZE
phone: +32-9 3815900
fax: +32-9 3815901
ovl@cebeo.be
www.cebeo.be
Cebeo DEURNE
Merksemsteenweg 87
B- 2100 DEURNE
phone: +32-3 3257200
fax: +32-3 3261124
antwerpen@cebeo.be www.cebeo.be

Cebeo DROGENBOS
W.A. Mozartlaan 10

B- 1620 DROGENBOS
phone: +32-2 3341210
fax: +32-23312010
brabant@cebeo.be
www.cebeo.be
Cebeo EUPEN
26, Rue de l'industrie
B- 4700 EUPEN
phone: +32-8756 0374
fax: +32-87560376
liege@cebeo.be
www.cebeo.be
Cebeo GENT
New Orleansstraat 10
B- 9000 GENT
phone: +32-9 2557676
fax: +32-92557626
ovl@cebeo.be
www.cebeo.be

Cebeo LIEGE
Rue de Wallonie
B- 4460 GRACE-HOLLOGNE
phone: +32-4 2397300
fax: +32-42397303
liege@cebeo.be
www.cebeo.be
Cebeo HASSELT
Het Dorlik 5
B- 3500 HASSELT
phone: +32-1126 0400
fax: +32-11236650
limburg@cebeo.be
www.cebeo.be
Cebeo KUURNE
Industrielaan 3
B- 8520 KUURNE
phone: +32-56 364800
fax: +32-56 364810
zwvl@cebeo.be
www.cebeo.be
Cebeo n.v.
Noordlaan 15
B- 8520 KUURNE
phone: +32-56 364700
fax: +32-56 364810
zwvl@cebeo.be
www.cebeo.be
Cebeo LEUVEN
Ambachtenlaan 56
B- 3001 LEUVEN phone: +32-16400848
fax: +32-16 400056
brabant@cebeo.be www.cebeo.be
Cebeo MECHELEN
Maanstraat 9 Unit 14 B- 2800 MECHELEN phone: +32-15 270653 fax: +32-15217411 antwerpen@cebeo.be www.cebeo.be
Cebeo CHARLEROI
Rue Cité Forte Taille 9 B- 6110 MONTIGNY-LE-TILLEUL phone: +32-71297373
fax: +32-71297374
hainaut@cebeo.be www.cebeo.be
Cebeo NAMUR
Rue du Fond du Maréchal 15
B- 5020 SUARLEE
phone: +32-8172 1740
fax: +32-8172 1750
hainaut@cebeo.be www.cebeo.be
Cebeo OOSTENDE
Plantijnstraat 4
B- 8400 OOSTENDE
phone: +32-59560560
fax: +32-59 700232
nwvl@cebeo.be
www.cebeo.be
Cebeo OUDENAARDE
Westerring 9
B- 9700 OUDENAARDE
phone: +32-55 232200
fax: +32-55 232209 ovl@cebeo.be
www.cebeo.be

Cebeo PERUWELZ
Rue de l'Europe 14
B- 7600 PERUWELZ
phone: +32-69779666
fax: +32-69 776542
hainaut@cebeo.be
www.cebeo.be
Cebeo TURNHOUT
Veedijk 31
B- 2300 TURNHOUT
phone: +32-14448484
fax: +32-14448480
antwerpen@cebeo.be
www.cebeo.be
Cebeo VEURNE
Koksijdestraat 18
B- 8630 VEURNE
phone: +32-58 315144
fax: +32-58 315290
nwvl@cebeo.be
www.cebeo.be
Cebeo WILRIJK
Kleine Doornstraat 299
B- 2610 WILRIJK
phone: +32-34508600
fax: +32-34580265
antwerpen@cebeo.be
www.cebeo.be
Cheyns n.v.
Zwingelaarsstraat 7
B- 8500 KORTRIJK
phone: +32-56 365711
fax: +32-56 365712
kortrijk@groupcheyns.be
www.cheyns.be
Cheyns Diksmuide
Polderstraat 14
B- 8600 DIKSMUIDE
phone: +32-51510600
fax: +32-51510835
diksmuide@groupcheyns.be
www.cheyns.be
Cheyns Oudenaarde
Paalstraat 3
B- 9700 OUDENAARDE
phone: +32-55 312707
fax: +32-55 312709
oudenaarde@groupcheyns.be
www.cheyns.be
Claessen n.v.
Atealaan 4M
B- 2200 HERENTALS
phone: +32-14859880
fax: +32-14859881
info@claessen.be
www.claessen.be
Claessen Aartselaar n.v.
Kontichsesteenweg 45
B- 2630 AARTSELAAR
phone: +32-38772727
fax: +32-38870154
aartselaar@claessen.be
www.claessen.be
Claessen - ELGB Genk NV
Witmeerstraat 1
B- 3600 GENK
phone: +32-89 353513
fax: +32-89 353517
genk@claessen.be
www.claessen.be

Claessen - ELGB Ham NV
Bergstraat 40
B- 3945 HAM
phone: +32-13662541
fax: +32-13664111
ham@claessen.be
www.claessen.be
Claessen - ELGB St Truiden NV
Schurhovenveld 4308
B- 3800 SINT-TRUIDEN
phone: +32-116889 02
fax: +32-11691762
sinttruiden@claessen.be
www.claessen.be
CL - Dorhex n.v.
Steenweg op Leuze 176
B- 9600 RONSE
phone: +32-55 237071
fax: +32-55 237070
info.ronse@cl-group.be
www.cl-group.be
CL - Dorhex s.a.
Rue de la Verrerie 1
B- 7330 SAINT-GHISLAIN
phone: +32-65767111
fax: +32-65767110
info.saintghislain@cl-group.be
www.cl-group.be
Control \& Protection nv
Neerlandweg 25
B- 2610 WILRIJK
phone: +32-3829 0335
fax: +32-38302056
info@conpro.be
www.conpro.be
Detilleux s.a.
Zoning Industriel 10
B- 4020 WANDRE
phone: +32-43459696
fax: +32-43626208
info@detilleux.be
www.detilleux.be
E.I.A. n.v.

Vluchtenburgstraat 3
B- 2630 AARTSELAAR
phone: +32-38708270
fax: +32-38871014
info@eia.be
www.eia.be
E.I.A. Noord n.v.

Haifastraat 13
B- 2030 ANTWERPEN
phone: +32-3541 4015
fax: +32-35417411
info@eia.be
www.eia.be
ELECTRO HAINAUT s.a.
Grand-Route de Jemappes 212
B- 7000 MONS
phone: +32 65402440
fax: +32 65354519
electro.hainaut@interweb.be
Electro Nivelles s.a.
Chemin de la Vieille Cour 50
B- 1400 NIVELLES
phone: +32-67894111
fax: +32-67894110
info.nivelles@cl-group.be
www.cl-group.be

ESCO TRANSMISSIONS n.v.
Culliganlaan 3
B- 1831 DIEGEM
phone: +32 27204880
fax: +32 27212827
info@escotrans.be
www.escotrans.be
Hendrelec n.v.
Norbert Gillelaan 16
B- 1070 BRUXELLES
phone: +32-25213628
fax: +32-25206856
info@hendrelec.be
www.hendrelec.be
La Grange n.v.
Pantserschipstraat 163
B- 9000 GENT
phone: +32-92541711
fax: +32-9253 6933
info@lagrangenv.com
www.lagrangenv.be
LA GRANGE BRUGGE
Maalsesteenweg 137
B - 8310 Brugge
phone: +32 50373641
fax: +32 50374448
infob@lagrangenv.com
www.lagrangenv.com
La Grange Mons n.v.
Rue du Grand Courant 4
B- 7033 CUESMES
phone: +32-65404010
fax: +32-65 349505
infom@lagrangenv.com
www.lagrangenv.be
La Grange Vilvoorde n.v.
Groenstraat 246
B- 1800 VILVOORDE
phone: +32-2 2530700
fax: +32-2 2530304
infov@lagrangenv.com
www.lagrangenv.be
Lampencentrale - Centrale des Lampes
n.v./s.a.

Rue Gallaitstraat 138-158
B- 1030 BRUXELLES
phone: +32-2 2400411
fax: +32-2 2400400
info.bru@cl-group.be
www.cl-group.be
Lampencentrale n.v.
Eriestraat 12
B- 8000 BRUGGE
phone: +32-50 454949
fax: +32-50 454940
info.brugge@cl-group.be www.cl-group.be

Lampencentrale n.v.
Schijnpoortweg 151
B- 2170 MERKSEM
phone: +32-33609041
fax: +32-336090 40
info.antwerpen@cl-group.be www.cl-group.be

Melerva Braine

Parc industriel de la vallée du Hain 3E
B- 1440 WAUTHIER-BRAINE
phone: +32-2 3871815
fax: +32-2 3871796
braine@groupcheyns.be
www.cheyns.be
Melerva Charleroi
Rue du Pays Bas 20
B- 6061 MONTIGNIES-SUR-SAMBRE
phone: +32-71307727
fax: +32-71307265
charleroi@groupcheyns.be
www.cheyns.be
Melerva Dinant
Rue Saint Jacques 325
B- 5500 DINANT
phone: +32-82 222745
fax: +32-82 225049
info.dinant@groupcheyns.be
www.cheyns.be
Melerva Tournai
Rue de Maire 26
B- 7503 FROYENNES
phone: +32-69 216058
fax: +32-69216059
tournai@groupcheyns.be
www.cheyns.be

Mexel s.a.

BP2406 - Rue de la Déportation 9
L- 1415 LUXEMBOURG
phone: +352400444-1
fax: +352 492982
mail@mexel.lu
www.mexel.lu
Mexel Esch S/Alzette
Rue Sidney Thomas 27
L- 4332 ESCH SUR ALZETTE
phone: +352 26550620
fax: +352 26550621
mail@mexel.lu
www.mexel.lu
Niederau Eupen s.a.
Route de Herbesthal 134
B- 4700 EUPEN
phone: +32-87595757
fax: +32-87595759
info@niederau.be
www.niederau.be
Piessens Electro Industrie n.v.
Begijnestraat 43-47
B- 9100 SINT-NIKLAAS
phone: +32-37778880
fax: +32-37776918
info@piessenselectro.com
www.piessenselectro.com
Proelec Herstal
P.I. des Hauts-sarts 3° avenue 17

B- 4040 HERSTAL
phone: +32-4 2407777
fax: +32-42407778
proelec@groupcheyns.be
www.cheyns.be
Proelec Waremme
Rue de Sélys 36
B- 4300 WAREMME
phone: +32-19 329595
fax: +32-19 328651
waremme@groupcheyns.be
www.cheyns.be
Rexel n.v.
Rue de la Technologiestraat 11

B- 1082 SINT-AGATHA BERCHEM
phone: +32-24824848
fax: +32-2 4824847
www.rexel.be
Rexel Aartselaar
Helststraat 150
B- 2630 AARTSELAAR
phone: +32-38707100
fax: +32-38707109
www.rexel.be
Rexel Alleur
Avenue de l'Expansion 9bis
B- 4432 ALLEUR
phone: +32-43640230
fax: +32-43640259
www.rexel.be
Rexel Arlon
Z.I. Weyler

B- 6700 ARLON
phone: +32-63 234441
fax: +32-63234482
www.rexel.be
Rexel Bastogne
Zoning Ind. de Bastogne
B- 6600 BASTOGNE
phone: +32-61211202
fax: +32-61215868
www.rexel.be
Rexel Brugge
Kleine Monnikenwerve 32
B- 8000 BRUGGE
phone: +32-50 311113
fax: +32-50 321738
www.rexel.be
Rexel Famenne
Rue du Parc Industriel 20
B- 6900 MARCHE-EN-FAMENNE
phone: +32-84311893
fax: +32-84315464
www.rexel.be
Rexel Hasselt
Trichterheideweg 2C
B- 3500 HASSELT
phone: +32-11859360
fax: +32-11859361
www.rexel.be
Rexel Ixelles
Rue Tenbosch 120
B- 1050 BRUXELLES
phone: +32-2 3473055
fax: +32-2 3473337
www.rexel.be
Rexel Jumet
Z.I. Allée Centrale

B- 6040 JUMET
phone: +32-71343131
fax: +32-71344403
www.rexel.be
Rexel Kessel-lo
Diestsesteenweg 714
B- 3010 KESSEL-LO
phone: +32-16262020
fax: +32-16262023
www.rexel.be

Rexel Libramont
Rue du Printemps 19
B- 6800 LIBRAMONT
phone: +32-61 225844
fax: +32-61 225844
www.rexel.be
Rexel Lier
Industriestraat 4
B- 2500 LIER
phone: +32-3 4892616
fax: +32-34892650
www.rexel.be
Rexel Marcinelle
Route de Phillippeville 161
B- 6001 MARCINELLE
phone: +32-71423131
fax: +32-71422570
www.rexel.be
Rexel Namur
Rue Delvaux 12
B- 5000 NAMUR
phone: +32-81 229041
fax: +32-81230481
www.rexel.be
Rexel Naninne
Parc Industriel - Rue des Phlox 28
B- 5100 NANINNE
phone: +32-81409910
fax: +32-8140 1173
www.rexel.be
Rexel Roeselare
Brugsesteenweg 383
B- 8800 ROESELARE
phone: +32-51 238895
fax: +32-51 243742
www.rexel.be
Rexel Schaerbeek
Grote Bosstraat 99
B- 1030 BRUXELLES
phone: +32-27430340
fax: +32-2 7345512
www.rexel.be
Rexel Brecht St-Job
IZ Kloosterveld 13 -Nijverheidstraat 8
B- 2960 SINT-JOB-IN-'T-GOOR
phone: +32 36635650
fax: 36635651
www.rexel.be
Rexel Sint-Martens-Latem
Kortrijksesteenweg 227
B- 9830 SINT-MARTENS-LATEM
phone: +32-92829000
fax: +32-92829220
www.rexel.be
Rexel Sint-Niklaas
Driegaaienstraat 121
B- 9100 SINT-NIKLAAS
phone: +32-37807620
fax: +32-37781805
www.rexel.be
Rexel Tournai
Chaussée de Tournai 63
B- 7520 RAMEGNIES-CHIN
phone: +32-69 220121
fax: +32-69212686
www.rexel.be

Rexel Turnhout

Brugstraat 45
B- 2300 TURNHOUT
phone: +32-14416531
fax: +32-14416209
www.rexel.be
Rexel Verviers
Rue Pont Léopold 1-3
B- 4800 VERVIERS
phone: +32-87307211
fax: +32-87310679
www.rexel.be
Rexel Waregem
Stijn Streuvelsstraat 77
B- 8790 WAREGEM
phone: +32-56 607781
fax: +32-56 609362
www.rexel.be
Rexel Wavre
Zoning Wavre Nord - Av. Vésale 13
B- 1300 WAVRE
phone: +32-10816171
fax: +32-10881501
www.rexel.be
Rexel Wijnegem
Vosveld 11E
B- 2110 WIJNEGEM
phone: +32-3360 3600
fax: +32-3326 3364
www.rexel.be
ROTERO bvba
Wayenborgstraat 10
B- 2800 MECHELEN
phone: +32-15 451840
fax: +32-1545 1841
info@rotero.be
www.rotero.com
Selfco n.v.
Hoogveld 92
B- 9200 DENDERMONDE
phone: +32-52 258000
fax: +32-52 222767
info.dendermonde@cl-group.be
www.cl-group.be
TELEHOME
Burg 24
B- 8820 TORHOUT
phone: +32-50 212172
fax: +32-50212172
telehome.torhout@compaqnet.be

UNILECTRIC sa

Route Provinciale 263
B- 1301 BIERGES
phone: +32 10421212
fax: +32 10417821
secretariat@unilectric.be
www.unilectric.be
UNILECTRIC BRUXELLES sa
Rue de Laeken 179
B- 1000 BRUXELLES
phone: +32 22275858
fax: +32 22185062
info@unilectric.be
www.unilectric.be
Van De Water bvba
Hannekenshoekstraat 1-3
B- 2200 HERENTALS
phone: +32-14285600
fax: +32-14210573
info@vandewater.be

VANDECAPPELLE n.v.
IP Kwatrecht - Neerhonderd 42 B- 9230 WETTEREN phone: +32 93696278
fax: +32 93681484 info@vandecappelle-electro.be www.vandecappelle-electro.be

Vanrenterghem n.v.
Jagershoek 1
B- 8570 VICHTE phone: +32-56 772323
fax: +32-56 772424
info.vichte@cl-group.be
www.cl-group.be
VDC Roeselare n.v.
Rumbeeksesteenweg 279
B- 8800 ROESELARE
phone: +32 51264656
fax: +32 51264630 vandecapelle@skynet.be www.atsgroep.be

Czech Republic

Sales office Prague:
OMRON Electronics spol. s r.o.
HALL OFFICE PARK building A
Jankovcova 53
17000 PRAGUE 7
phone: +420 234602602
fax: +420 234602607
office@omron.cz
www.omron.cz

Also in charge of Slovakia

ELSYS, s.r.o
Komenskeho 89
92101 Piestany tel: +421 337741967
fax: +421 337721748
Contact: Mr. J. Jancovic
elsys@elsys.sk
www.elsys.sk

Denmark

Sales office Køge

OMRON ELECTRONICS A/S
Lykkebækvej 2
4600 Køge
phone: +45-43440011
fax: +45-43 440211
www.omron.dk
omron_dk@eu.omron.com

Sales office Aarhus

OMRON ELECTRONICS A/S
Bredskiftevej 9
8210 Aarhus V
phone: + 45-43440011
fax: + 45-8624 3299
Distributors in Denmark:
Jens A. Jacobsen A/S
Hjulmagervej 12
9100 Aalborg
phone: +45 98125066
www.jaj.dk
Grene Industri-service - Center Herning Gudhjemvej 3
7400 Herning
phone: +45 97122255
www.greneindustri-service.dk

Grene Industri-service - Center Aarhus
Edwin Rahrs Vej 52
8220 Brabrand
phone: +45 70153500
www.greneindustri-service.dk
Grene Industri-service - Center Ringe
Bygmestervej 20
5750 Ringe
phone: +45 63621527
www.greneindustri-service.dk
Ølgod Elektro A/S
Vangsgade 8
6870 Ølgod
phone: +45 75244899
www.olgod-elektro-as.dk

CS Electric ApS

Storegade 88
6700 Esbjerg
phone: +45 75134509
www.cselectric.dk
FH Gruppen A/S
Bjerrevej 9
8700 Horsens
phone: +45 76254444
www.fh-gruppen.dk
FJH Automatic A/S
Industriskellet 12
3300 Frederiksværk
phone: +45 47770303
www.fjh.dk
PN elektro \& automatik A/S
Ostre Allé 30
4200 Slagelse
phone: +45 58533060
www.pn-elektro.dk
Solution Providers in Denmark:
Contech Automatic ApS
Aahusvej 38
4800 Nykøbing F
phone: +45 54884440
www.contech-automatic.dk
El-Compagniet A/S
Stationsvej 25
5771 Stenstrup
phone: +45 62261338
www.el-compagniet.dk
Grene Industri-service - Center Herning
Gudhjemvej 3
7400 Herning
phone: +45 97122255
www.greneindustri-service.dk
Grene Industri-service - Center Ringe
Bygmestervej 20
5750 Ringe
phone: +45 63621527
www.greneindustri-service.dk
Grene Industri-service - Center Aarhus
Edwin Rahrs Vej 52
8220 Brabrand
phone: +45 70153500
www.greneindustri-service.dk
IC-AUTOMATION AS
Alsikevej 33
8900 Randers
phone: +45 87109500
www.ic-automation.dk

Industri Tech A/S
Hammeren 5
6715 Esbjerg N
phone: +45 76562010
www.industri-tech.dk
kk-electronic a/s
Cypresvej 6
7400 Herning
phone. +459722 1033
www.kk-electronic.dk
Nordland Automatic A/S
Hadsundvej 80
9000 Aalborg
phone: +45 96312020
www.nordland.dk
PN elektro \& automatik A/S
Østre Allé 30
4200 Slagelse
phone: +45 58533060
www.pn-elektro.dk

Finland

Sales office Espoo:
OMRON ELECTRONICS OY
Metsänpojankuja 5
02130 ESPOO
phone: + 358 (0) 207464200
fax: + 358 (0) 207464210
www.omron.fi

Sales office Kuopio:

OMRON ELECTRONICS OY
P.O. Box 72

FIN-70101 KUOPIO
phone: +358 (0) 207464202
fax: +358 (0) 172822142

Sales office Oulu:

OMRON ELECTRONICS OY
Vihikari 10
FIN-90440 Kempele
phone: +358 (0) 207464208
fax: +358 (0)8554 4291
Sales office Tampere:
OMRON ELECTRONICS OY
Pispalanvaltatie 133
FIN-33270 Tampere
phone:+358 (0) 207464200 (yleis)
+358 (0) 207464205 (turvatuotteet)
fax: +358 (0) 33450007

Sales office Vaasa:

OMRON ELECTRONICS OY
P.O. Box 206

FIN-65101 Vaasa
phone: +358 (0) 207464207
fax: +358 (0)6 3174614
Distributors in Finland:
Auser Oy
Takojantie
FIN-48230 KOTKA
phone: +358-53 410400
fax: +358-53410490
Hormel Oy
Pajatie 8
FIN-40630 JYVÄSKYLÄ
phone: +358-143 388900
fax: +358-143 388945

Instele Oy
Kullervonkatu 2 C
FIN-70500 KUOPIO
phone: +358-172 662200
fax: +358-172 662244
Kokkolan Sähkötarvike Oy
P.O. Box 158

FIN-67101 KOKKOLA
phone: +35-868 324100
fax: +358-68 301590
Oy Krikoma Ab
Myrkyntie 42
FIN-64140 TIUKKA
phone: +358-62 263700
fax +358-62 263701
LSK Electrics Oy
P.O. Box 176

FIN-15101 LAHT
phone: +358-3817817
fax: +358-38 178302
LSK Heinola office
Villenkatu 36
FIN-18200 HEINOLA
phone: +358-37154466
fax: +358-37141639
LSK Hämeenlinna office:
Saaristenkatu 19
FIN-13100 HÄMEENLINNA
phone: +358-36 445700
fax: +358-36 445701
LSK Kotka office:
Vasaratie 2
FIN-48400 KOTKA
phone: +358-5 2297700
fax: +358-5 2297701
OuKoTa Oy
Haaransuontie 12
FIN-90240 OULU
phone: +358-85 574098
fax: +358-85574089
PJ Control Oy
Koivuvaarankuja 2 C
FIN-01640 VANTAA
phone: +358-95915330
fax: +358-95915 3333
Radiki Oy
P.O. Box 20

FIN-35701 VILPPULA
phone: +358-34728600
fax: +358-34 728630
Sata-Automaatio Oy
Sammontie 3
FIN-28400 ULVILA
phone: +358-25318200
fax: +358-25 318201
Sähköpalvelu
TOP Automation Oy
Käenkoskentie 9
FIN-80130 JOENSUU
phone: +358 136100580
fax: +358 136100581
Tekno-Tikka Oy
P.O. Box 22

Sarankulmank. 12
FIN-33901 TAMPERE
phone: +358-207464880 fax +358 - 207464881

Turun Sähkötukku Oy
Pitkämäenkatu 4
FIN-20250 TURKU
phone: +358-2337661
fax: +358-23 376780

Distributor in Estonia:

Standel AS

Kiisa 8
EE11313 Tallinn
Estonia
phone: +372-6558180
fax: +372-655 8179

Distributor in Belarus

System Analysis S.
Mogilevskaya str., 14,
BYR-220007 Minsk
tel: +375172054250
fax: +375 172054252
Contact: Mr. Michael Shumilov
service@sassolution.com
www.sassolution.com

Distributor in Kazakhstan

JSC DASU
76 D Utegen Batyr Street,
Almaty 480062,
tel: +73272760608
fax: +7 3272509554
Contact: Mr. Arman Seidazimov
atp@dazu.nursat.kz
www.dasu.kz

Distributor in Ukraine

Technoimpex
Volkova Street 36
180005 Cherkassy
tel: +380 472544191
fax: +380 472540500
Contact: Matvey Novak
office@technoimpex.com
www.omron.com.ua

France

Headquarter:

OMRON Electronics S.A.S.
14, rue de Lisbonne 93110 ROSNY SOUS BOIS
(DN ${ }^{\circ}$ Indigo $08825825679{ }_{0}^{0,156 \mathrm{Tc} / \mathrm{mN}}$
phone: + 33 -156 637000 fax: + 33 -14855 9086 www.omron.fr
Sales office Ile de France:
OMRON ELECTRONICS
14, rue de Lisbonne
93110 ROSNY SOUS BOIS

phone: + 33 -156 637000
fax: + 33 - 148559086 www.omron.fr
Sales office West:
OMRON ELECTRONICS
Bât. C - Rue G. MARCONI
44812 ST HERBLAIN phone: + 33 - 251805370
fax: + 33 - 251807039

Sales office South-East:
OMRON ELECTRONICS
L'Atrium, Parc St Exupéry
1, rue du Colonel CHAMBONNET 69500 BRON
phone: + 33 - 472149030
fax: + 33 -47841 0893
Sales office South-West:
OMRON ELECTRONICS
BP 221
High Tech Buro
Bât. C, rue Garance
31677 LABEGE cedex
phone: + 33 - 561398900
fax: + 33 - 561399909
Distributors in France:
ADELEC 31
Rue Amelin
93440 DUGNY
phone : +33-149926363
fax : +33-149 340830
A.D.T

ZI, 1, rue Gay Lussac, BP 1724
27017 EVREUX cedex
phone: + 33 - 232330000
fax: + 33 -232 336824
www.adt.fr
A.D.T. SUD-OUEST

481 Bd Alfred Daney
BP14
33028 BORDEAUX
phone : + 33556506030
fax : + 33556501182
www.adt.fr
APN AUTOMATION
2, avenue François Bottau 06100 NICE
phone: + 33-492071727
fax: + 33 -492070199 www.apn.automation.com

AULAGNON

47, boulevard Jules Janin 42026 ST ETIENNE
phone: + 33 - 477478888
fax: + $33-477323622$
AUTOMATISMES INDUSTRIE
BP 9 - rue Jean-Baptiste Charlet 02230 FRESNOY-LE-GRAND
phone: + 33 -323 660269
fax: + 33 - 323091529
BELLION TAMPLEU CAPPE Groupe DEXIS BP 206, rue Henri Becquerel ZI Kergaradec
29808 BREST cedex
phone: + 33 -298414400
fax: + 33-298414411

CAD

15, rue de l'Industrie 68260 KINGERSHEIM phone: + 33 - 389502236
fax: + 33 - 389538183
CAPE SOREDIS Groupe DEXIS
BP $49-6$, rue de la Garenne 44701 ORVAULT cedex
phone: + 33 - 240163535
fax: + 33 - 240633785

CGE DISTRIBUTION
Immeuble le Miroir - 15/17 bd du Général de Gaulle 92542 MONTROUGE cedex phone: + 33-140 925858
fax: + 33 - 140925948
www.cge-distribution.com
CHAVERIAT
ZI Sud - Route de Saint-Claude 39260 MOIRANS-EN-MONTAGNE
phone: + 33 - 384481160
fax: + 33 - 384428565

COPEL

11, rue du Tanin - BP 26 67831 LINGOLSHEIM
phone: + 33 - 388765432
fax: + $33-388769659$
D.3.E. ELECTRONIQUE

Parc d'Activité Savipol, BP 55
10302 STE SAVINE cedex
phone: + 33 - 325713150
fax: + $33-325743882$
www.d3e.fr
DEMAY LESIEUR groupe DEXIS
2, rue Nicephore Niepce
76304 SOTTEVILLE LES ROUEN
phone : + 33 - 0232953295
fax : + 33 -02 32953276
DISTRILAB HATRY
GROUPE DEXIS
Actipôle de Metz-Borny
Rue des Serruriers
57078 METZ cedex 3
phone:+ 33387218110
fax : + 33387218119
DXI
22/26, rue Saint-Jean-de-Dieu
69366 LYON cedex 7
phone : + 33472767880
fax:+33 472733801
ELECTRO MIDI DPI
36, Bd de Thibaud
B.P. 1818

31104 TOULOUSE
phone: +33 - 561317979
fax: +33-561 317980
EPAC INDUSTRIE Groupe DEXIS
Zl de la Voivre
88000 EPINAL
phone: + 33 - 329382920
fax: + $33-329382921$
FAURE AUTOMATISME
36, allée Marconi
26000 VALENCE
phone: + $33-475759900$
fax: + $33-475413000$
www.faure-automatisme.com
FGET INTERNATIONAL
ZI Mi-Plaine, BP 354
17, rue de Genève
69746 GENAS cedex
phone: + $33-472796415$
fax: + 33 -472 796410
www.fget.com
GOTELEC
61 , rue du ressort
63100 CLERMONT-FERRAND
phone: + $33-473162626$
fax: $+33-473259405$

MEDIA MESURES
Immeuble Les Bouleaux
Z.I. de Couperigne

13127 VITROLLES
phone: + 33-442468110
fax: + 33-442891107

MESNIER

rue Louis Marin, BP 40137
44201 NANTES cedex 02
phone: + $33-240350222$
fax: + $33-240082882$
MYDIS
15, boulevard Pochet Lagaye
63000 CLERMONT-FERRAND
phone: + 33-473280388
fax: + $33-473280065$
NOVITEC
ZAC Euromoselle
Rue du Grand Pré
57140 NORROY LE VENEUR
phone : +33387310700
fax : + 33387511518
NOYER SAFIA Groupe DEXIS
Z.A. du Bois Rigault Nord

Rue Calmette
62880 VENDIN LE VIEL
phone : +33-321 087100
fax : +33-321 438778
RADIO RELAIS
18, rue Crozatier
75012 PARIS
phone: + 33-14344 4450
fax: + 33 - 146286693
www.radiorelais.fr

RADIOSPARES 60

ZA la Vatine, rue Norman King, BP 453
60031 BEAUVAIS cedex
phone: + 33-344 101515
fax: + 33 - 344101600
www.radiospares.fr
REBOUL SA
25, rue Clément Marot
B.P. 72020

25050 BESANCON cedex 5
phone: + 33 - 381501485
fax: + 33 - 381532800
www.reboul.fr
REBOUL BOURGOGNE
Zone Actisud
9 , rue Louis Lumière
21160 MARSANNAY LA COTE
phone : +33-380 520610
fax : +33-380 528215

SAFIM Groupe DEXIS

Zone Alfred Daney,
2, rue Surcouf, BP 217
33700 BORDEAUX
phone: + 33-557 106262
fax: + 33 - 557106270
SAVOIE AUTOMATISMES
GROUPE DEXIS
8, rue Berthod
74960 MEYTHET
phone: + 33 - 450222320
fax: + 33-450 225925
www.savoie-automatisme.com

SEIREL
23, rue Scheurer Kestner
42000 ST ETIENNE
phone: + 33-477 793121
fax: + 33 - 477746644
SODEMAT
61, chemin de la fabrique
34800 CANET
phone: + 33-467967403
fax: + 33 - 467887160
SOUPLET AUTOMATISMES Groupe
DEXIS
Zl, rue le Verrier, BP 44
41353 VINEUL cedex
phone: + 33-254 428483
fax: + 33-254 421052
www.souplet-automatismes.fr
S.R.P. IDF/CENTRE ADELEC

2, rue Vincent Van Gogh 93360 NEUILLY-PLAISANCE phone : + 33 - 156491360 fax: + 33 - 156491379
S.R.P. IDF/CENTRE L.M.E.I.

9 , rue de la Mouchetière BP 4945141 ST JEAN DE LA RUELLE phone : + 33-238718585 fax : + $33-238718579$
S.R.P. N/E L.M.E.I. ZI Nord 5, rue Pierre Côt
71100 CHALON SUR SAONE
phone : + 33 - 385462389
fax : + 33 - 385463447
S.R.P. IDF/CENTRE POELGER CEIM 28, rue Jean Bonal 92250 LA GARENNE COLOMBES
phone : + 33 - 0146497500 fax: + 33 -01 46495252

TAMPLEU SPRIET Groupe DEXIS
BP 44, ZA - rue Henri Spriet
14125 MONDEVILLE cedex
phone: + 33 - 231353535
fax: + 33 - 231344020
VIMEU FOURNITURES ELECTRIQUES
1 bis, rue Diderot
80130 FRIVILLE ESCARBOTIN
phone : + 33322264444
fax : + 33322262668
Germany
Postal code to find the right sales offices near you:

01...	$-18 \ldots$	Berlin
19...	$-31 \ldots$	Hamburg
$32 \ldots$	$-34 \ldots$	Düsseldorf
$35 \ldots$		Stuttgart
$36 \ldots$		Düsseldorf
$37 \ldots$	$-38 \ldots$	Hamburg
$39 \ldots$		Berlin
$40 \ldots$	$-59 \ldots$	Düsseldorf
$60 \ldots$	$-61 \ldots$	Stuttgart
63000	$-63999 \ldots$	München
$64 \ldots$	$-65 \ldots$	Stuttgart
$66 \ldots$	$-68 \ldots$	Düsseldorf
$69 \ldots$	$-79 \ldots$	Stuttgart
$80 \ldots$	$-87 \ldots$	München
$88 \ldots$	$-89 \ldots$	Stuttgart
$90 \ldots$	$-97 \ldots$	München
$98 \ldots$	$-99 \ldots$	Berlin

Sales office Berlin:

OMRON ELECTRONICS GmbH
Wittestraße 31
13509 BERLIN
phone: $+49-304355$ 77-0
fax: + 49-30 43 55 77-77
Sales office Hamburg:
OMRON ELECTRONICS GmbH
Tempowerkring 6
21079 HAMBURG
phone: + 49-40 767 59-0
fax: + 49-4076759-599
Sales office Düsseldorf:
OMRON ELECTRONICS GmbH
Elisabeth-Selbert-Straße 17 40764 Langenfeld
phone: + 49-217 368000
fax: + 49-21736800400
info.de@eu.omron.com
www.omron.de
Sales office Stuttgart:
OMRON ELECTRONICS GmbH
Carl-Benz-Straße 4
71154 NUFRINGEN
phone: + 49 - 70328 11-310
fax: + 49-703 28 11-399

Sales office München:

OMRON ELECTRONICS GmbH
Weihenstephaner Straße 1
85716 Unterschleißheim
phone: + 49-893790796
fax: + 49-8937907999
Distributors in Germany:
A + H Vertriebsgesellschaft mbH
Borner Straße 31
42897 Remscheid
phone: +49-21919376-0
Fax: +49-21919376-76
vertrieb@auh-rs.de
www.auh-vertrieb.de
Boie GmbH
Ohmstraße 5
74076 Heilbronn
phone: +49-71 311550 41-0
fax: +49-71 $31155041-5$
info@boie.de
www.boie.de
Elbatron GmbH
Hamburger Straße 150
22926 Ahrensburg
phone: +49-41 0280770
fax: +49-4102 807777
info@elbatron.de
www.elbatron.de
E.O.C. M. Büchner GmbH \& Co. KG

Heegwaldring 2
63694 Limeshain
phone: +49-60 47 96-280
fax: +49-60 47322
eoc.buechner@t-online.de
www.m-buechner.de
Henskes Electronic Components GmbH
Bremer Straße 7
30880 Laatzen
phone: +49-51 02 93 81-0
fax: +49-51 02 93 81-99
henskes@henskes.com
www.henskes.de

HIB Gesellschaft für Industrieautomation mbH
Chausseehausstraße 8
01159 Dresden
phone: +49-351 4170210
fax: +49-3514116028
hib-dresden@t-online.de
www.hib-dresden.de
HILLMANN \& PLOOG
Ivo-Hauptmann-Ring 9
22159 Hamburg
phone: +49-40-645 88-0
fax: +49-40 645 88-440
info@iplo.de
www.hiplo.de
Horst Hooomann GmbH Im Gewerbegebiet 3 26842 Ostrhauderfehn phone: +49-495254670
fax: +49-49526330 hoopmannph @ 1 -olline.de

KBI Vertriebs GmbH
Kar-Benz-Straße 1
40764 Langenfeld
phone: +49-2173 901-255
fax: +49-21 73 901-258
kbi.vertriebs.gmbh@t-online.de
www.kbi-vertrieb.de
Kommin
Frankenstrasse 12
74549 Wolpertshausen
phone: +49-79 049212160
fax: +49-79049212166
info@kommin.net
www.kommin.net
PA Professional Automation GmbH
Prielwirtstraße 8
85305 Jetzendorf
phone: +49-81 37809003
fax: +49-81 37809004
vesely@pa-gmbh.net
www.pa-gmbh.net
POHL Electronic GmbH
Neuendorfstraße 18b
16761 Henningsdorf
phone: +49-3302559 29-0
fax: +49-33 02559 29-9
info@pohl-electronic.de
www.pohl-electronic.de
Prokot GmbH \& Co. KG
Osterwalder Str. 8
30827 Garbsen
phone: +49-51 3192698
fax: +49-51317628
info@prokot-gmbh.de
RFD Electronic GmbH
An der Kanzel 2
97253 Gaukönigshofen
phone: +49-93 37 971 23-0
fax: +49-93 37971 23-16 88
info@rfd.electronic.de
www.rfd-electronic.de
RMS Kleine GmbH
Salzstraße 18
82266 Inning
phone: +49-81 4393 11-0
fax: +49-81439311 33
rmskleine@t-online.de
www.rmskleine.de

Robers \& Co. GmbH
Am Parir 3
52379 Langerwehe
phone: +49-24 2394 44-0
fax: +49-2423944423
info@robers-co.de
www.robers-co.de
SKATec GmbH \& Co. KG
Alemannenstraße 53
77767 Appenweier
phone: +49-780599850
fax: +49-7805910255
info@skatec.com
www.skatec.com
TH electronic GmbH
Sondershäuser Landstraße 29
99974 Mühlhausen
phone: +49-3601443510
Fax: +49-36 01443514 info@th-electronic-mhl.de www.th-electronic-mhl.de
uwe electronic GmbH
Inselkammerstraße 10
82008 Unterhaching
phone: +49-89 44 1190-0
fax: +49-89 4411 90-29
info@uweelectronic.de
www.uweelectronic.de
System Integrators in Germany:

Automation

AEM August Elektrotechnik GmbH
Seerasen 4
36284 Hohenroda
phone: +49-667692160
fax: +49-667692 1611
info@aem-et.de
www.aem-et.de
Dieter Heick
Moorkampshöhe 46
25462 Rellingen
phone: +49-4101404267
fax: +49-410140 4269
info@dieterheick.de
www.dieterheick.de
KLINKEN Automation
Rohrheider Weg 4
52066 Aachen
phone: +49-24196109862
fax: +49-24196109868
info@klinken-automation.de
www.klinken-automation.de

Vision

Avicom GmbH
Döbelner Str. 4A
12627 Berlin
phone: +49-3099 299840
fax: +49-30 99299841
info@avicom-vision.de
www.avicom-vision.de
DMC Engineering f. BV und Mechatronik
Dr.-Schreyer-Str. 15
83233 Bernau
phone: +49-80518875
fax: +49-80518876
hgm_dmc@gmx.de

ETW GmbH

Frankenstr. 12
74549 Wolpertshausen
phone: +49-79 04921210
fax: +49-79 049212121
info@etw-gmbh.com
www.etw-gmbh.com
ICW Ing.-Büro Christian Wölz
Engelschalkstr. 32
86316 Friedberg
phone: +49-8216099526
fax: +49-821 6099531
info@icw-news.de
www.icw-news.de
Loetec GmbH
Dresdener Straße 28
06886 Lutherstadt
phone: +49-3491404261
fax: +49-3491404265
kontakt@loetec.de
www.loetec.de
Schönherr Elektronik
Augustusburger Str. 21A
09557 Flöha
phone: +49-372679050
fax: +49-3726790520
info@schoenherr-elektronik.com
www.schoenherr-elektronik.com
VDM-Tec
Fasanenweg 13
84166 Adlkofen
phone: +49-8707939679
fax: +49-8707939694
mail@vdm-tec.de
www.vdm-tec.de
Vistron GmbH
Robert-Bosch-Breite 10
37079 Göttingen
phone: +49-551 7895998
fax: +49-551 7899661
info@vistron.de
www.vistron.de

Mechatronics

ATS Antriebstechnik
Unterer Steinbecker Weg 5
32108 Bad Salzuflen
phone: +49-52 2260822
fax: +49-52 2212485
info@schuermann-mechatronik.de
Bretzel GmbH
Industriestraße 26
65760 Eschborn
phone: +49-6196403 19-0
fax: +49-619643047
info@bretzel-gmbh.de
www.bretzel-gmbh.de
Bütow Industrie-Elektronik GmbH
Wasserstraße 5 A
23966 Wissmar
phone: +49-384126520
fax: +49-3841265226
info@buetow.com
www.buetow.com

E+S Mechatronics Anlagen-Automation $\mathrm{GmbH}+\mathrm{Co}$.
Gutenbergstraße 7
61169 Friedberg
phone: +49-60 3115521
fax: +49-60 3192097
info@eus-mechatronics.de
www.eus-mechatronics.de
Fischer Elektromotoren GmbH
Schützenstrasse 19
74842 Billigheim-Allfeld
phone: +49-626592220
fax: +49-6265 92222
info@fischer-elektromotoren.de
www.fischer-elektromotoren.de
Ing.-Büro P. Hindrichs
Voltastraße 23
50129 Bergheim
phone: +49-22 71750412
fax: +49-22 7175043
p.hindrichs@hindrichs-gmbh.de
www.hindrichs-gmbh.de
InTec Reck Scheuble GmbH
Abrichstraße 15 A
79108 Freiburg
phone: +49-761 135813
fax: +49-761 16789
info@intec-freiburg.de
www.intec-freiburg.de
Männich Industrievertretungen GmbH
Ludwigstrasse 33
86551 Aichach
phone: +49-825182877
fax: +49-825182878
info@maennich.de
www.maennich.de
Multitron Elektronik GmbH + Co. KG
Linsenhalde 11
71364 Winnenden
phone: +49-719592330
fax: +49-719563708
info@mulitron.de
www.multitron.de
Power Electronics Deutschland GmbH
Conradtystraße 41
90441 Nürnberg
phone: +49-911994 3990
fax: +49-911994 3998
info@ped-gmbh.de
www.ped-gmbh.de
WELACO Elektrotechnik GmbH
Gernsheimer Str. 9
64560 Riedstadt-Wolfskehlen
phone: +49-6158748199
fax: +49-6158748218
info@welaco.de

Greece

Distributor in the Greece:

Kalamarakis \& Sapounas
Factory Automation Integrated Applications
Ionias \& Neromilou
13671 Chamomilos Acharnes - Athens Greece
phone: + 30-21 024060 00-6
fax +30 - 2102406007
kalamarakis.Sapounas@ksa.gr

Hungary

Sales office Budapest:
OMRON ELECTRONICS Kft.
Kiss Erno u. 3.
1046 Budapest
phone: + 36-13993050
fax: + 36-13993060
infohun@eu.omron.com www.omron.hu

Also in charge of Romania

MegaTech
Str. Buzesti 61, BI. A6, Ap39
RO-011013 Bucharest, 1
tel: +40 212223181
fax: +40 212234989
Contact: Mr. C. Nacea
sales@megatech.ro
www.megatech.ro

Italy

Italian Headquarters:

OMRON ELECTRONICS SpA
Viale Certosa 49
20149 Milano
phone: + 39-23 2681
fax: + 39-23268282 www.omron.it

Regional Sales Office:

OMRON ELECTRONICS SpA
Via Arnaboldi, 1
20149 Milano
phone: + 39-23 2681
fax: + 39-23 268211
www.omron.it
OMRON ELECTRONICS SpA
Via Arnaboldi, 1
20149 Milano
phone: + 39-02 3268800
fax: + 39-23 268801
OMRON ELECTRONICS SpA
Galleria Ronzani, 5/3
40033 Casalecchio di Reno BO
phone: + 39-516 136611
fax: + 39-516 130565
OMRON ELECTRONICS SpA
Via dello Stadio, 77
05100 Terni
phone: + 39-74454511
fax: + 39-744 401865
Distributors in Italy:
For Distributors local branches, please contact directly their main office

* Note: Favourites Distributors

Valle d'Aosta

ELETTROGRUPPO ZEROUNO Spa* VIA MOMBARONE, 1
10010 BUROLO D'IVREA TO
phone: + 39-125 676001
fax: + 39-125 676894
zerouno@egzerouno.com

Piemonte

ELETTROGRUPPO ZEROUNO Spa*
VIA REMMERT, 77
10073 CIRIE' TO
phone: + 39-11921 1720
fax: + 39-11920 8363
zerouno@egzerouno.com

ELETTROGRUPPO ZEROUNO Spa*
VIA MOMBARONE, 1
10010 BUROLO D'IVREA TO
phone: + 39-125 57720345
fax: + 39-12 557349
zerouno@egzerouno.com
ELETTROGRUPPO ZEROUNO Spa*
STRADA DRUENTO 254
10078 VENARIA TO
phone: + 39-114 246636
fax: + 39-114240155
zerouno@egzerouno.com
ELETTROGRUPPO ZEROUNO Spa*
REGIONE DOTA, 54
14053 CANELLI AT
phone: + 39-141824085
fax: + 39-14182 4832
zerouno@egzerouno.com
ELETTROGRUPPO ZEROUNO Spa*
VIA AOSTA 15-10092 BEINASCO TO
phone: + 39-113987555
fax: + 39-113 499764
zerouno@egzerouno.com
G.T.M. Srl*

VIA DELLA PACE 22
13894 GAGLIANICO-BIELLA BI
phone: + 39-15 541821
fax: + 39-15 543204
info@gtmbiella.it
www.gtmbiella.it
TECHNOLOGY BSA Srl*
REG. DOTA 16/A - 14053 CANELLI AT
phone: + 39-14182 2122
fax: + 39-141829921
info @techbsa.com
www.techbsa.com
BI ESSE Spa
VIA MARCONI 64
12040 GENOLA CN
phone:phone: + 39-172 693347
fax: + 39-172 693228
COMOLI FERRARI \& C. Spa
VIA MATTEI 4-28100 NOVARA NO
phone: + 39-321465791
fax: + 39-321465784
www.comoliferrari.it
E. D. ELETTROSI' DEMO Spa

VIA ACHILLE GRANDI 1
15033 CASALE MON.TO AL
phone: + 39-142 433111
fax: + 39-142 433120
DEMA Srl
VIA NOVARA 183
28021 BORGOMANERO NO
phone: + 39-322 833000
fax: + 39-32 281744
www.gruppodema.it
DUTTO GIAN LUIGI \& C. Sas
VIA MILAZZO 28-30
15057 TORTONA AL
phone: + 39-13186 1879
fax: + 39-131 820234
www.dutto-elettroforniture.com
E.D. ELETTROSI' Spa

VIA VALLE PO 92
12020 CUNEO CN
phone: + 39-171411944
fax: + 39-171411080
www.elettrosi.com
F.E.I.B. Srl

VIA A.SANSOVINO 149/A
10151 TORINO TO
phone: + 39-1173800 04
fax: + 39-117 398286
IDG Spa
C.SO ASTI 18

12051 ALBA CN
phone: + 39-1733 3646
fax: + 39-173 361005

Liguria

CISA Spa
CAS.POST. 292
16100 GENOVA GE
phone: + 39-108467611
fax: + 39-108 487603
www.cisaspa.it

Lombardia

BARCELLA ELETTROFORNITURE Spa* VIA S. MARTINO 1 24052 AZZANO S. PAOLO BG
phone: + 39-35 539011
fax: + $39-35533273$
info@barcella.it
www.barcella.it
CAI ELECTRIC Srl*
VIALE ITALIA 43 20020 LAINATE MI phone: + 39-29 374310
fax: + 39-293 570786
info@caielectric.it
www.caielectric.it
F.E.E.I. 2 Srl*

VIA GIRELLI 11/C
25125 BRESCIA BS
phone: + 39-303582650
fax: + 39-303 582677
info.cr@feei.it
www.feei.it
FAST Sas*
VIA MOROSINI 17 27029 VIGEVANO PV phone: + 39-381 345092 fax: + 39-381 345093 info@fast-automazione.it www.fast.it
FEEI Srl*
VIA BERGAMO 28/30
26100 CREMONA CR
phone: + 39-37231532
fax: + 39-372 456324
info.cr@feei.it
www.feei.it
FOGLIANI Spa*
VIA PER CASSANO 157
21052 BUSTO ARSIZIO VA
phone: + 39-331696911
fax: + 39-331686561 info@fogliani.it
www.fogliani.it
L'ELETTROTECNICA Snc*
VIA LONDRA 17
46047 PORTO MANTOV. MN
phone: + 39-376 392372
fax: + 39-376 398268 info@elettrotecnica.it www.elettrotecnica.it

SACCHI GIUSEPPE Spa*
VIA PRIVATA G. SACCHI 2
23891 BARZANO' LC
phone: + 39-39 24415
fax: + 39-39 958984
sacchi@sacchi.it
www.sacchi.it
A.I. AUTOMAZIONE INDUSTRIALE Srl

VIA MONTESANTO, 112
20092 CINISELLO BALSAMO MI
phone: + 39-266 013014
fax: + 39-266 014388
BIT Srl
VIA G. VITTORIO Z.I. 3/D-3/E
25100 BRESCIA BS
phone: + 39-302687511
fax: + 39-302 687611
C.E.A. Spa

VIA BUZZI 8
20017 RHO MI
phone: + 39-29 397091
fax: + 39-29390 1475
C.E.M.E. Spa

VIA CAPRERA 2
21052 BUSTO ARSIZIO VA
phone: + 39-331 324000
fax: + 39-331 639436

DIC.S.EL. Srl
VIA DELLA PACE
20098 SAN GIULIANO MIL. MI
phone: + 39-29 822281
fax: + 39-298 491788
www.dicsel.it
DOGMA Srl
VIA DEI VALTORTA 39
20127 MILANO MI
phone: + 39-226 142121
fax: + 39-22 870250
dogma@dogmaonline.it
www.dogmaonline.it
ELETTRO BRIANZA Srl
VIA ERCOLANO 19
20052 MONZA MI
phone: + 39-392 022851
fax: + 39-392 022862
REXEL ITALIA Spa
VIA VERGNANO 2
25125 BRESCIA BS
phone: + 39-30 351200
fax: + 39-303512100
F.E.E.I. 3 Srl

VIA LIBERO COMUNE 13/A
26013 CREMA CR
phone: + 39-37 387012
fax: + 39-37 387106
info.cr@feei.it
www.feei.it
G.D.T. ELETTROFORNITURE Spa

VIA ASCANIO SFORZA 69
20141 MILANO MI
phone: + 39-290 725283
fax: + 39-29 0720759
IMAT FELCO Spa
VIA SCALABRINI 100
22100 COMO CO
phone: + 39-31525801
fax: + 39-31525802

IMES Srl
VIA RIMEMBRANZE 41
21047 SARONNO VA
phone: + 39-29 602310
fax: + 39-296 700130
MATEL Srll
VIA CA' BASSA 40
21100 VARESE VA
phone: + 39-332 270011
fax: + 39-332 624064
www.matel.it
MAURI ELETTROFORNITURE Spa
VIALE LOMBARDIA, 66
20056 TREZZO D'ADDA MI
phone: + 39-290 9911
fax: + 39-290 961951
www.maurispa.com
MICRO SWITCHES Srl
VIA HERMADA 15
20162 MILANO MI
phone: + 39-26 470734
fax: + 39-26 470473
TECNOLOGIC Srl
VIA MILANO 109/B
25126 BRESCIA BS
phone: + 39-30 314785
fax: + 39-30 315135

ZETA 3 Srl

VIA MONCALVO 80
20146 MILANO MI
phone: + 39-240 092077
fax: + 39-24071460
www.paginegialle.it/zeta3

Trentino Alto Adige

CORA ELETTROAUTOMAZIONI Srl*
VIALE DEL LAVORO 3
38068 ROVERETO TN
phone: + 39-464 420456
fax: + 39-464 436673
cora@elcora.it
www.elcora.it
CEA Srl
VIA GIOTTO 1
39100 BOLZANO BZ
phone: + 39-471914900
fax: + 39-471915277
GIOVANNINI MATERIALI ELETTRICI SrI
LOC. CAMPOTRENTINO 50
38100 TRENTO TN
phone: + 39-4618200 00
fax: + 39-461823607
SELECTRA Spa
VIA PACINOTTI 11
39100 BOLZANO BZ
phone: + 39-47155 8800
fax: + 39-47155 8399

Veneto

CUSINATI Srl*
VIA TORRICELLI 39
37136 VERONA VR
phone: + 39-459212333
fax: + 39-459212300
cusinati@cusinati.com
www.cusinati.com

ELETTROVENETA Spa*
VIALE NAVIGAZIONE INT. 48
35129 PADOVA PD
phone: + $39-498280811$
fax: + 39-498 075902
info@elettroveneta.it
www.elettroveneta.it
MARCHIOL Spa*
VIALE DELLA REPUBBLICA 41
31050 VILLORBA TV
phone: + $39-4224271$
fax: + 39-422 421759
marchiol@marchiol.com
www.marchiol.com
MARCHIOL AUTOMAZIONI Srl*
VIA ANTONIO DAL LEGNAME 14
31100 TREVISO TV
phone: + 39-422 313611
fax: + 39-422 313631
marchiol@marchiol.com
www.marchiol.com
CIME ELECTRO SERVICE Spa
VIA L. MASSIGNAN 10
36100 VICENZA VI
phone: + 39-444220100
fax: + 39-444564397
ELETTRICA VICENTINA Spa
VIA ROVERETO 1
36030 MOTTA DI COSTABISSARA VI
phone: + 39-445 575616
fax: + 39-445 575427
ELETTROFORNITURE SrI
VIA SALISBURGO 4/C
37100 VERONA VR
phone: + $39-458620322$
fax: + 39-458 620116
ELETTROINGROSS Srl
RIVIERA MAESTRI DEL LAVORO 24
35100 PADOVA PD
phone: + 39-498 292111
fax: + 39-49870 1907
ELETTROPADOVA Srl
VIA C. BATTISTI 20
35010 LIMENA PD
phone: + 39-498840880
fax: + 39-498 840882
EMPORIO ELETTRICO SrI
VIA COMBATTENTI ALLEATI
D'EUROPA 8
45030 BORSEA RO
phone: + 39-425 396111
fax: + 39-425 360846
G.ELETTRICA Srl

VIA COLOMBARA 113
30175 P.TO MARGHERA VE
phone: + 39-4192 1066
fax: + 39-41932562
M.E.B. Spa

VIALE DE GASPERI 19
36061 BASSANO DEL GRAPPA VI
phone: + 39-424887111
fax: + 39-42 488722
www.mebspa.it
M.E.I.S. Srl

VIA LAGO DI COSTANZA 1
36015 SCHIO VI
phone: + 39-445575272
fax: + 39-445 575558

META COMMERCIALE MAT. ELETTRICI Srl
VIA E. FERMI 13
37100 VERONA VR
phone: + 39-458201520
fax: + 39-458 201525
PEDRON Spa
VIA BASSO ACQUAR 40/42
37135 VERONA VR
phone: + 39-458 051500
fax: + 39-458 051555
www.pedron.it
SIME Spa
VIA TORRICELLI, 9
37135 VERONA VR
phone: + 39-458270827
fax: + 39-458270870

V.I.M.E. Srl

VIA L. DA VINCI 13/A
30036 S. MARIA DI SALA VE
phone: + 39-41486922
fax: + 39-41486731

Friuli Venezia Giulia

ELETTROLUCE Sas
VIA STIRIA - PARTIGROSS
33100 UDINE UD
phone: + 39-432 522222
fax: + 39-43252 1882
EMPORIO ELETTRICO TOFFOLI Srl
VIALE TRENTO 45
33077 SACILE PN
phone: + 39-43 472574
fax: + 39-434780433
PORDELETTRICA Spa
VIA CHIAVORNICCO 86 ZONA IND.
ART
33084 CORDENONS PN
phone: + 39-434532253
fax: + 39-43 444148
VIGNUDA Spa
VIA VENEZIA 2
33038 S. DANIELE DEL FRIULI UD
phone: + 39-432946460
fax: + $39-432946490$

Emilia Romagna

B.C.R. Srl*

VIA PRAGA 7/17
41049 SASSUOLO MO
phone: + 39-536999611
fax: + 39-536 807144
info@bcr-srl.it web: www.bcr-srl.it
BELLENTANI FRATELLI Srl *
VIA OBERDAN 7
42100 REGGIO EMILIA RE
phone: + 39-522 381666
fax: + 39-522 791622
bellenta@tin.it
www.bellentani.it
ELFI Spa*
VIA RIO BECCA 2/B
47100 FORLI' FO
phone: + 39-543754201
fax: + 39-54375 6394 commerciale.fo@elfispa.it
www.elfispa.it

FABBI IMOLA Srl *
VIA ALLENDE 10
40026 IMOLA BO
phone: + 39-542 641999
fax: + 39-542 640820
info@fabbiimola.com
www.fabbiimola.com
FEP RIMONDI Spa *
VIA BADINI $7 / 4$
40050 QUARTO INFERIORE BO
phone: + 39-516060911
fax:+ 516060999
claudia.maini@fepremondi.it
FINPOLO Spa*
VIA G.BALLA 11-42040 CELLA RE
phone: + 39-52 294041
fax: + 39-522 944100
commerciale@finpolo.it
www.finpolo.it
FRANCHINI LAMBERTO Spa* VIA DEL COMMERCIO 72 41058 VIGNOLA MO
phone: + $39-59778711$
fax: + 39-59 762669
franchini@franchini.it
www.franchini.it
FUTURTEC Srl*
VIA DEL COMMERCIO 35
41058 VIGNOLA MO
phone: + $39-59778703$
fax: + 39-+39-59778729
info@futurtec.it
www.futurtec.it
INDUSTRIALE ELETTRICA Srl*
VIA PIRANDELLO 2
43100 PARMA PR
phone: + 39-521 293824
fax: + 39-521 291655
info@industrialelettrica.com
www.industrialelettrica.com
SELFOR Srl *
STRADA NUOVA NAVIGLIO 4/C 43100 PARMA PR
phone: + 39-5219 8242
fax:+ $39-521798227$
info@elgros.net
SELFOR PIACENZA Srl *
VIA TOSCANA 15
29100 PIACENZA PC
phone: + 39-523609622
fax: + 39-523 609625 selforpc@virgilio.it

ACERO Srl
VIA CALZI 30
48018 FAENZA RA
phone: + 39-546 620731
fax: + 39-546 621450
CO.M.EL Srl
VIA OBERDAN 2/D
41034 FINALE EMILIA MO
phone: + 39-535 760077
fax: + 39-535 760612
CO.MET. Spa
VIA MICHELINO 105
40127 BOLOGNA BO
phone: + 39-516079201
fax: + 39-516 330255

ELETTROFORNITURE FORNACIAR Snc
STRADA STATALE 467140 LOC. S.
ANTONINO
42010 CASALGRANDE RE
phone: + 39-536 823363
fax: + 39-536 824304
ELETTROSERVICE Srl
VIA J.F.KENNEDY 37
42100 REGGIO EMILIA RE
phone: + 39-522 304347
fax: + 39 - 522308753
CA.M.EL. S.R.L.
VIA S.ANNA 580/B
41100 MODENA
tel 059-311677
fax 059-312858
info@materialeelettricom.it
G.F.Z. Srl

VIALE XXVIII SETTEMBRE 59
41049 SASSUOLO MO
phone: + 39-536 807161
fax: + $39-536802638$
P.B.E. COMMERCIALE Srl

VIA ALDO MORO 35
41043 FORMIGINE MO
phone: + 39-59570460
fax: + 39-5955 6173
PAN ELETTRA Srl
VIA V.CAGNI 10
41037 MIRANDOLA MO
phone: + 39-5 3526360
fax: + 39-53524508
REXEL ITALIA Spa
VIA BUCCARI 4
48100 RAVENNA RA
phone: + 39-544 451081
fax: + 39-544456168
REXEL ITALIA Spa
VIA B.FRANKLIN 31 43100 PARMA PR
phone: + $39-0521606511$
fax: + 39-05 21606515
S.A.I. ELECTRIC Srl

VIA DINO FERRARI 46
41053 MARANELLO MO
phone: + 39-536 941415
fax: + 39-536 943581

Toscana

ELFI Srl*
VIA PESCIATINA 354
55010 LUNATA CAPANNORI LU
phone: + 39-583 429429
fax: + 39-583 429352
elfi @itechsite.com
www.itechsite.com
M.E.F. Srl*

VIA PANCIATICHI 68
50127 FIRENZE FI
phone: + 39-554 362110
fax: + 39-554 362173
mefsrl@mefsrl.it
www.mefsrl.it
A.POLVERINI E FIGLI Spa

VIA CALAMANDREI 65/67
52100 AREZZO AR
phone: + 39-575 370452
fax: + 39-575 350356
www.web.tin.it/polverinispa

ELECTRA COMMERCIALE Srl
VIA S. GIMIGNANO 85
53036 POGGIBONSI SI
phone: + 39-577984611
fax: + 39-577935958
info@electracommerciale.it
www.electracommerciale.it
ELETTROFORNITURE MARINI Spa
VIALE IPPOLITO NIEVO 29/33
57100 LIVORNO LI
phone: + 39-586 402150
fax: + 39-586 402068
IMEP Spa
VIA DEL LAZZERETTO 53/55
59100 PRATO PO
phone: + 39-57 453341
fax: + 39-574596824

L'ELETTRICA Srl

VIA CACIAGLI $1 / 3$
50053 EMPOLI FI
phone: + 39-57195 11
fax: + 39-57195 1206
PANDOLFI Spa
VIA ARETINA 161
50136 FIRENZE FI
phone: + 39-55 660934
fax: + 39-55 678302
TOTI LUCIANO SrI
VIA OBERDAN 13/47
59100 PRATO PO
phone: + 39-574 605419
fax: + 39-574 605414

Marche

ELETTROMATIC Srl*
VIA G.DIVITTORIO 28/A
60044 FABRIANO AN
phone: + 39-732 627487
fax: + 39-732 626727
elettromatic@fastnet.it
S.E.I. Sas*

VIA DIVISIONE ACQUI, 111
61100 PESARO PS
phone: + 39-721 289103
fax: + 39-7212899 37
seipesaro@inwind.it
TECNOFORNITURE Srl*
VIA PASUBIO 106 FRAZ. P.TO
D'ASCOLI
63039 S.BENEDETTO DEL TRONTO AP
phone: + 39-73576171
fax: + 39 - 735655266
tecnofor@insinet.it
www.tecnoforniture.it
FRATONI FORNITURE DI A.FRATONI
S.S. REGINA KM 3+100

62018 POTENZA PICENA MC
phone: + 39 - 733884131
fax: + 39-733677134
IME Srl
VIA BRODOLINI ZONA IND. ZIPA
60035 JESI AN
phone: + 39-731 205722
fax: + 39-7315 6050
TARLAZZI Spa
VIA F.LLI KENNEDY 7/9
62010 SFORZACOSTA MC
phone: + 39-733 203205
fax: + 39 - 733203304

Umbria

DIS.M.E.P. Srl*
VIA P. SORIANO 51/53
06100 S.ANDREA DELLE FRATTE PG
phone: + 39-755 289047
fax: + 39-755 270655
dismep@dismep.it
www.dismep.it
BARBACCIA MARIO Srl
VIA DEL MAGLIO 38
05100 TERNI TR
phone: + 39-744 300291
fax: + 39-744 300943

Lazio

FELMEC DI ANGELO TESTANI*
LOCALITA' PONTE DEL TREMIO 03012 ANAGNI FR
phone: + 39-775767995
fax: + 39-755769463
felmec@felmec.it
www.felmec.it
GIESSE ELETTRONICA Srl*
VIA DEI GREC
04100 LATINA LT
phone: + 39-773268060
fax: + 39-7732680 10
giessesrl@tin.it
www.giesseelet@componenti-elettronici.com
MAJORANO LAZIO Srl*
SS CASILINA Km 76,800
03013 FERENTINO FR
phone: + 39-775 241070
fax: + 39-775 241060 piero.villani@frosinone.majorano.it www.majorano.it
C.T.A Srl

VIA DELLA GENETICA 12
02010 VAZIA RIETI RI
phone: + 39-746221006
fax: + 39-746 495104
GARGANO \& MILIONI E C. Srl
VIA CHIUSA NOVA
03049 S.ELIA FIUMERAPIDO FR
phone: + 39-776 350265
fax: + 39-776425884
ONORATI ELETTROFORNITURE SrI VIA NASCOSA 107
04100 LATINA LT
phone: + 39-773601056
fax: + 39-77360 1039
R.E.R. RADIO ELETTRICA ROMANA SrI VIA IDROVORE DELLA MAGLIANA 75/A 00148 ROMA RM
phone: + 39-66533741
fax: + 39-66535128
reinfo@grupporer.com

Abruzzi

C.E.I.T. Srl*

VIA CUSTOZA 26C-ZONA INDUSTRIALE
66013 CHIETI SCALO CH
phone: + 39 -0871564947
fax: + 39-0871565034
ceitsrl@tin.it
www.ceit.it

ELETTRIMPIANTI SYSTEMS Srl
ZONA IND.LE VIA MAMMARELLA
66013 CHIETI SCALO CH
phone: + 39-87158771
fax: + 39-87161857

Molise

ACMEI SUD Spa*
VIA PISA 16
74100 TARANTO TA
phone: + 39-997797490
fax: + 39-997 797495
acmei@acmei.it
www.acmei.it
ACMEI SUD Spa*
VIA BARI KM 1,00
71100 FOGGIA FG
phone: + 39-881 331611
fax: + 39-881 331629
acmei@acmei.it
www.acmei.it
ACMEI SUD Spa*
VIA ACHILLE SALVUCCI 9/E
70056 MOLFETTA BA
phone: + 39-803 387860
fax: + 39-803 387861
acmei@acmei.it
www.acmei.it
ACMEI SUD Spa*
S.S. 16 KM 810,200

70019 TRIGGIANO BA
phone: + 39-805 495300
fax: + 39-805 495324
acmei@acmei.it
www.acmei.it
PUGLIELETTRICA Srl
VIA DELLE VIOLETTE C.DA LOCHIANO
Z.I.LE

70026 MODUGNO BA
phone: + 39-805 361911
fax: + 39-805 361945
SONEPAR PUGLIA Spa
ZONA P.I.P.LOTTO 9
73042 CASARANO LE
phone: + 39-833 332754
fax: + 39-833512915
SONEPAR PUGLIA Spa
STR ROV. ANDRIA/TRANI KM 1,500
70031 ANDRIA BA
phone: + 39-883592934
fax: + 39-88355 31
SONEPAR PUGLIA Spa
VIA BITRITTO KM. 7+800 Cda La
Marchesa 4
70026 MODUGNO BA
phone: + 39-805061099
fax: + 39-805061430
SONEPAR PUGLIA Spa
VIA ACCOLTI GIL, 22 Z.I.
70100 BARI BA
phone: + 39-805313030
fax: + 39-805 313022

Campania

MAJORANO Spa*
VIA ARGINE 508
80147 NAPOLI NA
phone: + 39-815914111
fax: + 39-815 914229
info@majorano.it
www.majorano.it

CO.M.EL. Srl
VIA S. LEONARDO 143
84131 SALERNO SA
phone: + 39-89 332573
fax: + 39-89710000
MEGAWATT Srl
VIA PADULA 63/69
80026 CASORIA NA
phone: + 39-81758 3042
fax: + 39-8175727 79
VINCENZO CANGIANO Spa
VIA NAZ. DELLE PUGLIE 178/B
80026 CASORIA NA
phone: + 39-81550 3111
fax: + 39-815 503195

Puglia

ACMEI SUD Spa*
VIA PISA 16
74100 TARANTO TA
phone: + 39-997797490
fax: + 39-997 797495
acmei@acmei.it
www.acmei.it
ACMEI SUD Spa*
VIA BARI KM 1,00
71100 FOGGIA FG
phone: + 39-881331611
fax: + 39-881 331629
acmei@acmei.it
www.acmei.it
ACMEI SUD Spa*
VIA ACHILLE SALVUCCI 9/E
70056 MOLFETTA BA
phone: + 39-803 387860
fax: + 39-803 387861
acmei@acmei.it
www.acmei.it
ACMEI SUD Spa*
S.S. 16 KM 810,200

70019 TRIGGIANO BA
phone: + $39-0805495300$
fax: + 39-0805495324
acmei@acmei.it
www.acmei.it
PUGLIELETTRICA Srl
VIA DELLE VIOLETTE C.DA LOCHIANO
Z.I.LE

70026 MODUGNO BA
phone: + 39-805 361911
fax: + 39-805 361945
SONEPAR PUGLIA Spa
ZONA P.I.P.LOTTO 9
73042 CASARANO LE
phone: + 39-833 332754
fax: + 39-833 512915
SONEPAR PUGLIA Spa
STR ROV. ANDRIA/TRANI KM 1,500
70031 ANDRIA BA
phone: + 39-883592934
fax: + 39-8835531
SONEPAR PUGLIA Spa
VIA BITRITTO KM. 7+800 Cda La Marchesa 4
70026 MODUGNO BA
phone: + 39-805061099
fax: + 39-805061430

SONEPAR PUGLIA Spa
VIA ACCOLTI GIL, 22 Z.I.
70100 BARI BA
phone: + 39-805313030
fax: + 39-805 313022

Calabria

ACMEI SUD Spa*
VIA BARI KM 1,00
71100 FOGGIA FG
phone: + 39-881 331611
fax: + 39-881 331629
acmei@acmei.it
www.acmei.it
ACMEI SUD Spa*
VIA ACHILLE SALVUCCI 9/E
70056 MOLFETTA BA
phone: + 39-803 387860
fax: + 39-803 387861
acmei@acmei.itwww.acmei.it
ACMEI SUD Spa*
S.S. 16 KM 810,200

70019 TRIGGIANO BA
phone: + 39-805 495300
fax: + 39-805495324
acmei@acmei.it
www.acmei.it
ACMEI SUD Spa
VIA PISA 16
74100 TARANTO TA
phone: + 39-997 797490
fax: + 39-997797495
acmei@acmei.it
www.acmei.it
PUGLIELETTRICA SrI
VIA DELLE VIOLETTE C.DA LOCHIANO
Z.I.LE

70026 MODUGNO BA
phone: + 39-805 361911
fax: + 39-805 361945
SONEPAR PUGLIA Spa
ZONA P.I.P.LOTTO 9
73042 CASARANO LE
phone: + 39 - 833332754
fax: + 39-83351 2915
SONEPAR PUGLIA Spa
STR ROV. ANDRIA/TRANI KM 1,500
70031 ANDRIA BA
phone: + 39-883592934
fax: + 39-8835531
SONEPAR PUGLIA Spa
VIA BITRITTO KM. 7+800 Cda La
Marchesa 4
70026 MODUGNO BA
phone: + 39-805061099
fax: + 39-80506 1430
SONEPAR PUGLIA Spa
VIA ACCOLTI GIL, 22 Z.I.
70100 BARI BA
phone: + 39-805313030
fax: + 39-805 313022

Sicilia

WELLER ITALIA SrI
VIA SILVIO PELLICO 5
95123 CATANIA CT
phone: + $39-95351855$
fax: + 39-95 356602
Sardegna
CAREDDU RAIMONDO
VIA MONASTIR, 110
09100 CAGLIARI CA
phone: + 39-70 288108
fax: + 39-70 271254
SONEPAR SARDEGNA Spa
VIALE MARCONI 165
09100 CAGLIARI CA
phone: + $39-70485151$
fax: + $39-70400059$

* Note: Favourites Distributors

Netherlands

Sales office Hoofddorp:
OMRON ELECTRONICS B.V.
Wegalaan 61
2132 JD Hoofddorp
P.O. Box 582

2130 AN Hoofddorp
phone: + 31-23 5681100
fax: + 31-23568 1188
omron-nl@eu.omron.com
www.omron.nl

Distributors in the Netherlands:

Groningen

Rexel Nederland
Verlengde Bremenweg 14
9723 JV GRONINGEN
phone: + 31-50 3184360
fax: + 31 - 503138378
www.rexel.nl
Hagemeyer Nederland BV
Koldingweg 9
9723 HL GRONINGEN
phone: +31-50 5445151
fax: + 31-50 5414696
www.hagemeyer.nl
Technische Unie
Jeverweg 13
9723 JE GRONINGEN
phone: + 31-50590 0100
fax: + 31-50 3127612
www.technischeunie.com
Ehrbecker Schiefelbusch B.V.
Gotenburgweg 38
9723 TM GRONINGEN
phone: +31-50 5444141
fax: + 31-50 5411143
www.ehrbecker-schiefelbusch.nl

Friesland

Hagemeyer Nederland BV
Venus 31
8448 CE HEERENVEEN
phone: $+31-513468000$
fax: + 31 - 513468001
www.hagemeyer.nl
Solar Elektro B.V.
Jupiterweg 20
8938 AE LEEUWARDEN
phone: + 31-58 2846969
fax: + 31 - 582886574
www.solarelektro.nl

Technische Unie
Zuiderkruisweg 1
8938 AP
phone: + 31-58 2847999
fax: + 31 - 582882392
www.technischeunie.com
Koopmans en Zwart Elektrotechniek B.V. Zuiderkruisweg 3
8938 AP LEEUWARDEN
phone: + 31-58 2887075
fax: + 31 - 582884960
www.koopmansenzwart.nl
Solar Elektro B.V.
Eurolaan 5
8466 SM NIJEHASKE
phone: + 31-5136560 20
fax: + 31-51365 3298
www.solarelektro.nl
Conelgro B.V.
Lorentzstraat 21
8606 JP SNEEK
phone: +31-515411311
fax: +31-515423695
www.conelgro.nl

Drenthe

Solar Elektro B.V.
Aziëweg 10
9407 TG ASSEN
phone: + 31-592 343841
fax: + 31 - 592341955
www.solarelektro.nl
Technische Unie
Tweede Bokslootweg10-12
7821 AS EMMEN
phone: + 31-591657657
fax: + 31-591 642942
www.technischeunie.com
Koopmans en Zwart Elektrotechniek B.V.
Hesselterlandweg 75
7942 HZ MEPPEL
phone: + 31-522 270121
fax: + 31-522 270122
www.koopmansenzwart.nl
Rexel Nederland
Industrieweg 11
7944 HT MEPPEL
phone: + 31-522 265000
fax: + 31-522 259744
www.rexel.nl

Overijssel

Technische Unie
Twentepoort Oost 44
7609 RG ALMELO
phone: + 31-546534141
fax: + 31-546534182
www.technischeunie.com
Hagemeyer Nederland BV
Twentepoort Oost 53
7609 RG ALMELO
phone: +31-546 862661
fax: +31-546872305
www.hagemeyer.nl
Technische Unie
Hanzeweg 34
7418 AT DEVENTER
phone: + 31-570661616
fax: + 31-570 625602
www.technischeunie.com

Solar Elektro B.V. Technische Unie
Twekkeler-Es $7 \quad$ Maxwellstraat 39
7547 ST ENSCHEDE 6716 BX EDE GLD
phone: + 31-53 4846666
fax: + 31-53 4846699
www.solarelektro.nl
Technische Unie
De Giem 35
7547 SW ENSCHEDE
phone: + 31-534804141
fax: + 31 - 534325588
www.technischeunie.com
Technische Unie
Loggerweg 5
8042 PG ZWOLLE
phone: + 31 - 384258425
fax: + 31-38 4221599
www.technischeunie.com

Gelderland

Ehrbecker Schiefelbusch B.V.
Blekersweg 15
7312 GK APELDOORN
phone: + 31 - 553578383
fax: + 31 - 553553530
www.ehrbecker-schiefelbusch.nl
Solar Elektro B.V.
Vissenstraat 32
7324 AL APELDOORN
phone: + 31-55 3680650
fax: + 31 - 553665762
www.solarelektro.nl
Technische Unie
Vlamoven 33
6826 TM ARNHEM
phone: + 31 - 263650465
fax: + 31-26 3650482
www.technischeunie.com
Ehrbecker Schiefelbusch B.V.
Leemansweg 26
6827 BX ARNHEM
phone: +31-26 3844610
fax: +31-364 1218
www.ehrbecker-schiefelbusch.nl
Rexel Nederland
Johannes Huddeweg 7
6827 CA ARNHEM
phone: + 31 - 263629204
fax: + 31 - 263636226
www.rexel.nl
Hagemeyer Nederland BV
Doetinchemseweg 63
7007 CB DOETINCHEM
phone: + 31 - 314365600
fax: + 31-314 378028
www.hagemeyer.nl
Van Egmond Elektrogroothandel B.V.
Logistiekweg 34
7007 CJ DOETINCHEM
phone: + 31 - 314375300
fax: + 31 - 314375333
www.vanegmond.nl
Solar Elektro B.V.
Effect 5
6921 RG DUIVEN
phone: + 31-26 3194200
fax: + 31-26 3652395
www.solarelektro.nl
phone: + 31-318664764
fax: + 31-318 664782
www.technischeunie.com
Rexel Nederland
Fahrenheitstraat 45-1
3846 CC HARDERWIJK
phone: + 31-341480246
fax: + 31-34146 0752
www.rexel.nl
Technische Unie
Mercuriusstraat 1
6541 BM NIJMEGEN
phone: + 31 - 243725566
fax: + 31-24 3789855
www.technischeunie.com
Hagemeyer Nederland BV
Dr. de Blecourtstraat 49
6541 DG NIJMEGEN
phone: + 31-24 3734767
fax: + 31-24 3734764
www.hagemeyer.nl

Utrecht

Solar Elektro B.V.
Vanadiumweg 25
3812 PX AMERSFOORT
phone: + 31-33 4631366
fax: +31-3346380 00
www.solarelektro.nl
Technische Unie
Cobolweg 5
3821 BJ AMERSFOORT
phone: + 31 - 334535251
fax: +31-33 4550732
www.technischeunie.com

Technische Unie

Liesbosch 88
3439 LC NIEUWEGEIN
phone: + 31-30 2669266
fax: +31-30 2669282
www.technischeunie.com
Rexel Nederland
Ravenswade 5
3439 LD NIEUWEGEIN
phone: + 31-30 2880280
fax: +31-30 2888240
www.rexel.nl
Solar Elektro B.V.
Ravenswade 90
3439 LD NIEUWEGEIN
phone: + 31-302888794
fax: +31-30 2884054
www.solarelektro.nl
Hagemeyer Nederland BV
Amsterdamsestraatweg 640
3555 HX UTRECHT
phone: + 31 - 302439344
fax: +31-30 2438068
www.hagemeyer.nl
Technische Unie
Hudsondreef 32
3565 AV UTRECHT
phone: + 31-30 2631631
fax: +31-30 2625454
www.technischeunie.com

Solar Elektro B.V
Kruisboog 15
3905 TE VEENENDAAL
phone: + 31-31858 1855
fax: +31-318 692414
www.solarelektro.nl

Noord-Holland

Technische Unie
Ivoorstraat 2
1812 RE ALKMAAR phone: + 31-72 5676767 fax: +31-725402363 www.technischeunie.com

Rexel Nederland
Edisonweg 1
1821 BN ALKMAAR
phone: + 31-72518 1300
fax: +31-725157600 www.rexel.nl
Technische Unie
Dynamostraat 5
1014 BN AMSTERDAM phone: + 31-205812121 fax: +31-20 6862791 www.technischeunie.com

Rexel Nederland
Gyroscoopweg 100 1042 AX AMSTERDAM phone: + 31-205060666 fax: +31-205060669 www.rexel.nl
Ehrbecker Schiefelbusch B.V. Gyroscoopweg 108 1042 AX AMSTERDAM phone: + 31-20 4118995 fax: +31-20 4119018 www.ehrbecker-schiefelbusch.nl

Technische Unie
H.J.E. Wenckebachweg 171 1096 AM AMSTERDAM phone: + 31-20560 8500 fax: +31-20 6922401 www.technischeunie.com
Solar Elektro B.V.
Lemelerbergweg 25
1101 AJ AMSTERDAM ZUIDOOST
phone: + 31-20 6936821
fax: +31-20 6681662
www.solarelektro.nl
Solar Elektro B.V.
Gooiland 55
1948 RD BEVERWIJK phone: + 31-251 284800 fax: +31-251 222006 www.solarelektro.nl
Hagemeyer Nederland BV
Verrijn Stuartweg 28
1112 AX DIEMEN phone: + 31-20 4610099 fax: +31-20 3987200 www.hagemeyer.nl

Rexel Nederland

Waarderweg 35 2031 BN HAARLEM phone: + 31-235319492 fax: +31-235328953 www.rexel.nl

Technische Unie
Conradweg 30
2031 CM HAARLEM
phone: + 31 - 235123123
fax: +31-23 5327396
www.technischeunie.com
Hagemeyer Nederland BV
Newtonstraat 24-26
1704 SB HEERHUGOWAARD
phone: + 31-725760233
fax: +31-725760234
www.hagemeyer.nl
Technische Unie
Nieuwe Havenweg 43
1216 BK HILVERSUM
phone: + 31 - 356557755
fax: +31-35 6557782
www.technischeunie.com
Rexel Nederland
Huizermaatweg 50
1276 LB HUIZEN
phone: + 31-35 5261412
fax: +31-355267040 www.rexel.nl

Technische Unie
Gerrit Kiststraat 23
1506 SZ ZAANDAM
phone: + $31-756590590$
fax: +31-75 6590582
www.technischeunie.com
Waagmeester Elektro B.V.
Kleine Tocht 6
1507 CB ZAANDAM
phone: + 31 - 756555100
fax: +31-75 6555155
www.waagmeester.nl

Zuid-Holland

Solar Elektro B.V.
Curieweg 4a
2408 BZ ALPHEN AAN DEN RIJN
phone: + 31-172 427686
fax: +31-172 233686
www.solarelektro.nl
Rexel Nederland
Zuideinde 10
2991 LK BARENDRECHT
phone: + 31-18061 1444
fax: +31-180 619889
www.rexel.nl
Solar Elektro B.V.
Verbreepark 19
2731 BR BENTHUIZEN
phone: + 31 - 793428880
fax: +31-79 3425806
www.solarelektro.nl
Hagemeyer Nederland BV
Lijlantse Baan 6
2908 LG CAPELLE AAN DEN IJSSEL
phone: + 31-10 4597555
fax: +31-104506686
www.hagemeyer.nl
Technische Unie
Rivium Oostlaan 51-59
2909 LL CAPELLE AAN DEN IJSSEL
phone: + 31-10 2667166
fax: +31-10 2667182
www.technischeunie.com

Technische Unie Jupiterkade 7 2516 BS DEN HAAG phone: + 31-70 3151616
fax: +31-70 3151682
www.technischeunie.com
Technische Unie
Zilverstraat 100
2544 EL DEN HAAG
phone: + 31-70 3594359
fax: +31-70 3667734
www.technischeunie.com
Technische Unie
Röntgenstraat 19
3316 GT DORDRECHT
phone: + 31-786546666
fax: +31-78 6183643
www.technischeunie.com
Technische Unie
Marconistraat 36
2809 PE GOUDA
phone: + 31 - 182541241
fax: +31-18254 1282
www.technischeunie.com
Technische Unie
Flevoweg 16
2318 BZ LEIDEN
phone: + 31 - 715681568
fax: +31-715226875
www.technischeunie.com
Hagemeyer Nederland BV
Vlotlaan 506
2681 TX MONSTER
phone: + 31-17428 3020
fax: +31-17428 3959
www.hagemeyer.nl
E.T.G. Van de Meerakker B.V.

Glasblazerstraat 1
2984 BL RIDDERKERK
phone: + 31-180410635
fax: +31-180410827
www.meerakker.nl
Technische Unie
Schuttevaerweg 76
3044 BB ROTTERDAM
phone: + 31-10 2080608
fax: +31-10 2080682
www.technischeunie.com
Solar Elektro B.V.
Bristolstraat 1
3047 AB ROTTERDAM
phone: + 31 -10 2984500
fax: +31-104150928
www.solarelektro.nl
Technische Unie
Driemanssteeweg 106
3084 CB ROTTERDAM
phone: + 31-10 2030303
fax: +31-102030382
www.technischeunie.com
Rexel Nederland
Treubstraat 5
2288 EG RIJSWIJK ZH
phone: + 31-70 3199199
fax: +31-70 3998464
www.rexel.nl

Hagemeyer Nederland BV
Cort van der Lindenstraat 15-17
2288 EV RIJSWIJK ZH
phone: + 31-70 3909091
fax: +31-70 3995056
www.hagemeyer.nl
Ehrbecker Schiefelbusch B.V.
Beyerinckstraat 10
3364 AX SLIEDRECHT
phone: + 31-184 432626
fax: +31-184 417254
www.ehrbecker-schiefelbusch.nl
Solar Elektro B.V.
Einsteinweg 7
3208 KK SPIJKENISSE
phone: + 31-181612111
fax: +31-181615044
www.solarelektro.nl
Ehrbecker Schiefelbusch B.V.
James Wattweg 20
3133 KK VLAARDINGEN
phone: + 31-10 2485757
fax: +31-1043485 13
www.ehrbecker-schiefelbusch.nl
Rexel Nederland
Industrieweg 14
2382 NV ZOETERWOUDE
phone: + 31 - 715814545
fax: +31-715896503
www.rexel.nl

Zeeland

Technische Unie
Arnesteinweg 65
4338 PD MIDDELBURG
phone: + 31-118 657257
fax: +31-118 657280
www.technischeunie.com
Ehrbecker Schiefelbusch B.V.
Industrieweg 13A
4538 AG TERNEUZEN
phone: + 31-115 611400
fax: +31-115 611410
www.ehrbecker-schiefelbusch.nl

Noord-Brabant

Ehrbecker Schiefelbusch B.V.
Takkebijsters 8
4817 BL BREDA
phone: + 31-578 2828
fax: +31-5872716
www.ehrbecker-schiefelbusch.nl
Technische Unie
Takkebijsters 19
4817 BL BREDA
phone: + 31-76572 2257
fax: +31-765711760
www.technischeunie.com
Hagemeyer Nederland BV
Minervum 7148
4817 ZN BREDA
phone: + 31-765712630
fax: +31-765715640
www.hagemeyer.nl
Rexel Nederland
Franse Akker 15
4824 AL BREDA
phone: + 31-765411560
fax: +31-76541 1928
www.rexel.n!

Hagemeyer Nederland BV
Hoppenkuil 3
5626 DD EINDHOVEN
phone: + 31-40 2623900
fax: +31-402624382
www.hagemeyer.nl
Technische Unie
Ambachtsweg 12
5627 BZ EINDHOVEN
phone: + 31-40 2640640
fax: +31-402640682
www.technischeunie.com
Ehrbecker Schiefelbusch B.V.
De Witbogt 22
5652 AG EINDHOVEN
phone: + 31-40 2592121
fax: +31-4025550 11
www.ehrbecker-schiefelbusch.nl
Technische Unie
Schootense Loop 8
5708 HX HELMOND
phone: + 31-492506506
fax: +31-49250 6582 www.technischeunie.com

Technische Unie
Het Sterrenbeeld 20
5215 ML 'S-HERTOGENBOSCH
phone: + 31-736873687
fax: +31-736873682
www.technischeunie.com
Ehrbecker Schiefelbusch B.V.
De Meerheuvel 9
5221 EA 'S-HERTOGENBOSCH
phone: + 31-736338181
fax: +31-736312572 www.ehrbecker-schiefelbusch.nl

Hagemeyer Nederland BV
De Bloemendaal 3
5221 EB 'S-HERTOGENBOSCH
phone: + 31-73 6339633
fax: +31-736339610
www.hagemeyer.nl
Solar Elektro B.V.
Hogerwerf 20
4704 RV ROOSENDAAL
phone: + 31-16554 2554
fax: +31-165560227
www.solarelektro.nl
Rexel Nederland
Ekkersrijt 4404
5692 DK SON
phone: + 31-499 474955
fax: +31-499 477810
www.rexel.nl
Solar Elektro B.V.
Ekkersrijt 4508
5692 DM SON
phone: + 31-499 470630
fax: +31-499460984
www.solarelektro.nl
Dijkman Elektrotechniek B.V.
Havendijk 28
5017 AM TILBURG
phone: + 31-135360144
fax: +31-135427532
www.dijkman.com

Ehrbecker Schiefelbusch B.V.
J.F. Vlekkeweg 10-01

5026 RJ TILBURG
phone: + 31 -13 5378282
fax: +31-135427603
www.ehrbecker-schiefelbusch.nl
Technische Unie
Dr. Anton Philipsweg 3
5026 RK TILBURG
phone: + 31-13 5946666
fax: +31-13594 6660
www.technischeunie.com
E.T.G. Van de Meerakker B.V.

Eisenhowerweg 11
5466 AB VEGHEL
phone: + 31 - 413342198
fax: +31-413 366990
www.meerakker.nl
E.T.G. Van de Meerakker B.V. Havenweg 24 5145 NJ WAALWIJK phone: +31-41654 4966 fax: +31-416562044 www.meerakker.nl

Limburg

Solar Elektro B.V.
Middenhoven 6 6042 NX ROERMOND phone: +31-475 345150
fax: +31-475 340406 www.solarelektro.nl
Hagemeyer Nederland BV
In de Cramer 14
6411 RS HEERLEN
phone: + 31-45 5717106
fax: +31-455740282
www.hagemeyer.nl
Rexel Nederland
Beersdalweg 95A
6412 PE HEERLEN
phone: + 31-455728000
fax: +31-45 5724100
www.rexel.nl
Technische Unie
Sleperweg 39
6222 NK MAASTRICHT
phone: + 31-43 3526565
fax: +31-43 3636750
www.technischeunie.com
Ehrbecker Schiefelbusch B.V.
Watermolen 15
6229 PM MAASTRICHT
phone: + 31 - 433568484
fax: +31-43 3616323
www.ehrbecker-schiefelbusch.nl
Ehrbecker Schiefelbusch B.V.
Buys Ballotstraat 9
5916 PC VENLO
phone: + 31-77 3212727
fax: +31-773547200
www.ehrbecker-schiefelbusch.nl
Rexel Nederland
Groot Bollerweg 6
5928 NS VENLO
phone: + 31-774658966
fax: +31-774658967
www.rexel.nl

Hagemeyer Nederland BV
Groot-Bollerweg 12a
5928 NS VENLO
phone: + 31-773828341
fax: +31-77 3829741
www.hagemeyer.nl
Technische Unie
Alerbeemdweg 25
5928 PV VENLO
phone: +31-77 3248248
fax: +31-77 3872766
www.technischeunie.com
E.T.G. Van de Meerakker B.V.

Copernicusstraat 9
6003 DE WEERT
phone: +31-495584444
fax: +31-495537647
www.meerakker.nl

Norway

Sales office Oslo:
OMRON ELECTRONICS NORWAY AS
Brynsallèen 4, 0667 Oslo
Postboks 109 Bryn, 0611 Oslo
phone: + 47-22 657500
fax: + 47-22 658300
www.omron.no

Sales office Ålesund:

Langelandsveien 17, 6010 Ålesund
Postboks 8030, Spjelkavik
6022 Ålesund

Sales office Stavanger:

Omron div. Stavanger
Fabrikkveien 14
4033 Stavanger

Poland

Sales office Warsaw:

OMRON ELECTRONICS Sp.z.o.o.
ul. Mariana Sengera "Cichego" 1
02-790 Warsaw
phone: + 48-22 6457860
fax: + 48-22 6457863
www.omron.com.pl

Sales office Krakow:

OMRON ELECTRONICS Sp.z.o.o.
Wybickiego 7
31-261 Cracow
phone/fax: +48-12 6345183

Portugal

Sales office Lisboa:

OMRON ELECTRONICS IBERIA, S.A.
Edifício OMRON
Rua de São Tomé Lote 131
2689-510 Prior-Velho
phone: + 351-219429400
fax: $\quad+351-219417899$
info.pt@eu.omron.com
www.omron.pt

Sales office Porto:

OMRON ELECTRONICS IBERIA, S.A.
Rua do Jardim, 170-2º
4405-823 VILA NOVA DE GAIA
phone: +351-22 7155900
fax: +351-227135152

Distributors in Portugal

CABOTROX, LDA.
Rua Portas do Sol, 4
6000-261 CASTELO BRANCO
phone: +351-272 340980
fax: +351-272 340989
cabotrox@megamail.pt
CARLOS SILVA \& DIAS, LDA.
R. Loteamento, 73 Largo Albergaria

4520-603 S. JOÃO DE VER
STA. MARIA DA FEIRA
phone: +351-256910290
fax: +351-256910299
csd.geral@mail.telepac.pt
COSTA, LEAL \& VICTOR, LDA
R. Prof. Augusto Lessa, 269

4202-801 PORTO
phone: +351-22 5508520
fax: +351-225024005
clv@clv.pt
DIFERENCIAL, LDA.
Est. da Murta - Ap. 46
3770-909 OLIVEIRA DO BAIRRO
phone: +351-234730360
fax: +351-234747701
diferencial @diferencial.pt
ELECTRAÇOR, LDA.
$A v^{a}$ Antero de Quental, 51-A
9500-160 PONTA DELGADA
phone: +351-296 205010
fax: +351-296 205019 electracor.dpt@electracor.pt

ELECTRO-AR, LDA.
Est. dos Ciprestes, 88-B, Ap. 398
2901-896 SETÚBAL
phone: +351-265 541200
fax: +351-265 541221
electroar@netvisao.pt
FLEXBOR, LDA.
E.N. 8, Urb. Casal Corado, Lte. 8, Ap. 190

2560-629 TORRES VEDRAS CODEX
phone: +351-261 334600
fax: +351-261 334609
geral@flexbor.com
FX AUTOMATION
Pcta. Agostinho da Silva, 2-A
2685-396 PRIOR VELHO
phone: +351219427810
fax: +351 219403246
info@fxautomation.com
GESTEL, LDA.
Av ${ }^{\text {a }}$ Tomás Ribeiro, 30 C - Ap. 35
2795-183 LINDA-A-VELHA
phone: +351-214190573
fax: +351-214193465 gestel@mail.telepac.pt
J. M. M. GONÇALVES, LDA.

Rua da Boavista, № 40 - Lordelo
4815-801 LORDELO - GMR
phone: +351-252840500
fax: +351-252840501
electricidade@jmm.pt
LAURENTINO OLIVEIRA \& Ća LDA.
Av ${ }^{\text {a }}$ Conde Margaride, 403
4810-535 GUIMARÃES
phone: +351-253515786
fax: +351-25351 3982
laurentino.oliveira@mail.telepac.pt
N. BELCHIOR, LDA.

Av. Vitor Gallo, 45 2431-902 MARINHA GRANDE phone: +351-244502753 fax: +351-244503842 nbelchior@mail.telepac.pt
NEUMAX LUSITANA, LDA. Urb. Ind. da Carambancha, 9 2580-461 CARREGADO phone: +351-263850700 fax: +351-263 850719 geral@neumax.pt
PIRES \& PINA, LDA.
Rua 21 de Agosto, 57 - Ap. 184 3501-997 VISEU
phone: +351-232 423497
fax: +351-232 421412 pirespina@netc.pt
TROFILÉCTRICA, LDA.
R. Infante D. Henrique, № 527 4785-185 TROFA phone: +351-252 416866 fax: +351-252 428289 trofilectrica@mail.telepac.pt

Russia

Representative Office Moscow:
OMRON ELECTRONICS Oy
Sredniy Tishinsky per.28, office 728
Moscow, 123557
phone: + 7-095745 2664
fax: + 7-095 7452680
www.omron.ru
Distributors in Russia:
NPF RAKURS, Ltd
build. 2, Khimichesky per. 1
198095 St. Petersburg
phone: +7 8122524883
fax: +7812 2523244
sales@rakurs.com
www.rakurs.com
PRIVODNAYA TECHNIKA
ul. 40 let Oktyabrya, 19, 454007 Chelyabinsk phone: +7-351775 1410
fax: +7-351775 1412
momentum@chel.surnet.ru
URALTECHMARKET, AO
Nachdiva Vasiljeva str. 1 bild 4, office 707
620028 Ekaterinburg
phone: +7-343 2697562
fax: +7-343 2697561
ava@omron.ur.ru
PROSOFT
108 Profsoyuznaya str.
117437 Moscow
phone: +7 0952340636
fax: +7 0952340640
prosoft@prosoft.ru
TRASCON TECHNOLOGY, JSC
Nagatinskaya str. 4a
115230 Moscow
phone: +7 0952343417
fax: +7 0952323392
trascon@trascon.ru

OMRUS CORPORATION
Miusskaya PI. 9, Block 1-12
125047 Moscow
phone: +7 0957202869
fax: +7095 3051139
SMoroz@omrus.com
NTC-ECO, 000
P.O. Box 17

121359 Moscow
phone: +7 0951050739
fax: +7 0952677531
info@omronru.ru
ANGSTREM AVTOMATIKA, 000
P.O. Box 83

129515 Moscow
phone +70951048061
fax +70952164149
aa_tau@yahoo.com
PROMENERGOAUTOMATIKA
P.O.Box 8

111116, Moscow
phone: +7 0952345916
fax: +7 0952323746
mail@proenergo.ru
ITC ELECTRONICS
35, Nizhnaja Krasnoselskaya
115582, Moscow
phone: +7 0953639575
fax: +7 0953912038
moscow@itc-electronics.com
COSPA
Energeticheskaya str. 8/2 office 100
111116 Moscow
phone: +7 0953627365
fax: +7 0953627869
cospa_msk@mtu-net.ru

Spain

Sales office Madrid:
OMRON ELECTRONICS IBERIA, S.A.
c/Arturo Soria 95
28027 Madrid
phone: + 34-913777900
fax: + 34-913777956
www.omron.es

Sales office CATALONIA:

OMRON ELECTRONICS IBERIA, S.A.
C/ D'Olesa, 14-16
08027 BARCELONA
phone: +34-932 140600
fax: +34-932 140601

Sales office CENTRE:

OMRON ELECTRONICS IBERIA, S.A.
C/ Hernández de Tejada, 9
28027 MADRID
phone: +34-913777913
fax: +34-913777901

Sales office LEVANT:

OMRON ELECTRONICS IBERIA, S.A.
C/ Guillem de Castro, 8
46001 VALENCIA
phone: +34-963530000
fax: +34-963 536401

Sales office NORTH:
OMRON ELECTRONICS IBERIA, S.A.
Parque Tecnológico de Alava
C/ Albert Einstein, 38
01510 Miñano Mayor (ALAVA)
phone: +34-945 296000
fax: +34-945 296001

Sales office SOUTH:

OMRON ELECTRONICS IBERIA, S.A.
C/ Carlos de Cepeda, 2
41005 SEVILLA
phone: +34-954933250
fax: +34-954 933251
Distributors in Spain:
DS AUTOMACIÓN
Arriurdina, 2. P.I. Jundiz
01015 ÁLAVA
phone: + 34-945 121160
fax +34 - 945121161
comercial@ds-automacion.com www.ds-automacion.com

MERCANTIL INTERCONTINENTAL,
S.L.U.

Avda. Cronista Mateos y Sotos, 32-34
02006 ALBACETE
phone: + 34-967216611
fax: + 34-967210807
INDA LEVANTE
José Sanchez Saez 19 bajo
03202 Elche - ALICANTE
phone: + 34-966615088
fax: + 34-966613380
indalevante@ indalevante.com
www.indalevante.com
LEVANTINA DE CUADROS
Sagitario, 13
03006 ALICANTE
phone: + 34-965 111375
fax: + 34-965 288687
lecusl@infonegocio.com
ELECTROMAIN ELEC. IND.
Mojana, Nave 5
P.I. El Real

04628 Antas - ALMERIA
phone: +34-950 393188
fax: +34-950 390264
electromain@electromain.com
www.electromain.com
SUTEINSA
Plaza Compostela, 4 - bajo
33208 Gijón - ASTURIAS
phone: + 34 -985 387408
fax: + 34 -985 391168
suteinsa@suteinsa.com
www.suteinsa.com
BOBIMEX
Vicente Aleixandre s/n 06800 Mérida - BADAJOZ
phone: + 34-924 314076
fax: + 34-924 302802
bobimex@infonegocio.com
www.bobimex.com
DIELECTRO BALEAR
Gremio Carpinteros, 43
Polígono Asima
07009 Palma de Mallorca - BALEARES
phone: + 34 -9714304 86
fax: + 34-971432020
dielectro@dielectrobalear.com
www.dielectrobalear.com

CAROL AUTOMATISMOS
CI. Cobalt, 16-20, nave B

08038 BARCELONA
phone: + 34 - 933317250
fax: + 34-934 226372
carolaut@carolaut.com
www.grupcarol.com
AAG-ALMACÉN AUTOMAT.
GRANOLLERS
Carretera de Ribes, 155-159
08520- les Franqueses Valles - BARCELONA
phone: + 34 -938 463066
fax: + 34 - 938403675
info@aag-net.com
www.aag-net.com
CAROL AUTOMATISMOS IGUALADA
P.I. Les Comes Cl. Italia, 11 Nv. 8

08700 Igualada -BARCELONA
phone: + 34 -938 017370
fax: + 34 - 938045412
cai@grupcarol.com
www.grupcarol.com
TECNICAL
Doctor Zamenhof, 27
08243 Manresa - BARCELONA
phone: + 34 -938737100
fax: + 34 -938 747607
manresa@tecnical.org
www.tecnical.org
CAROL AUTOMATISMOS MARTORELL
Can Albareda, 78 - El Congost
08760- Martorell - BARCELONA
phone: + 34 - 937735680
fax: + 34-937 735682
cam@grupcarol.com
www.grupcarol.com
DICELMA'C AUTOMATISMES
Alcalde J. Abril, 29-31
08302 Mataró - BARCELONA
phone: + 34 -937412751
fax: + 34-937572368
automatismes@dicelmac.com
www.dicelmac.com
REGULACIO, TECNICA I CONTROL
P. C. Magarola

Avd. C. Magarola 2-10 N13
08100 Mollet del Vallés - BARCELONA
phone: + $34-935702644$
fax: + 34-935 702515
rtc@grupcarol.com
www.grupcarol.com
CAROL INDUSTRIAL
Borrás, 31-35
08208 Sabadell - BARCELONA
phone: + 34 -937269700
fax: + 34-937255296
www.grupcarol.com
EGARA AUTOMATISMES
Prat de la Riba, 175
08226 Terrassa - BARCELONA
phone: + 34 - 937362800
fax: + 34-937842601
caroltegara@grupcarol.com
www.grupcarol.com

COEVA VIC

Pg. Prc. Act. Econ. Osona, Lleida, 3
08500 Vic - BARCELONA
phone: + $34-938862222$
fax: + 34 - 938866890
info@coevavic.com
www.coevavic.com

NEXPERT

P.I. Can Ferrer II

C/ Portugal 1
08770 St. Sadurni D'Anoia - BARCE-
LONA
phone: + 34 - 938912903
fax: + 34-938911711
nexpert@nexpert.es
www.nexpert.es
VIELCO ELECTRICITAT INDUSTRIAL
Ronda de Europa, 71
08800 Vilanova i la Geltrú - BARCELONA
phone: + 34 -938 143500
fax: + 34-938 143375
compra@vielco_electric.com
www.vielco_electric.com

ELECTRONICA OLPE

Merindad de Montija, Nave 1
Pol. Villalonquejar
09001 BURGOS
phone: + 34 - 947298718
fax: + 34 - 947298724
olpe@telefonica.net www.olpeingenieria.com

SGA

Av. del Tejar, 2 Local 8
11500 El Puerto de Santa María-Cádiz
phone: +34-956 873892
fax: +34-956542 162
sgacadiz@sga-de.com
SUMINISTROS ELECTRONICOS

HERRERA

Pintor Varela, 11
39300 Torrelavega - CANTABRIA
phone: + 34 - 942894650
fax: + 34 - 942883101
sumherrera@mundivia.es
SUELVI
CaminoViejo Castellón-Onda, s/n.
Apdo. de Correos 326
12540 Vila-Real - CASTELLON
phone: + 34 - 964500100
fax: + 34 - 964533256
suelvi@suelvi.es
www.suelvi.es
AC INGENIERÍA
P.I. Larache, Socuéllamos, 23-25

13005 CIUDAD REAL
phone: + 34-926210915
fax: + 34 -92621 1227
ac@acingenieria.com
www.acingenieria.com
DTISA
Conde de Vallellano, 8
14004 CORDOBA
phone: + 34-957 451063
fax: + 34 - 957452723
cordoba@dtisa.com
www.dtisa.com
M. LAGO

Gambrinus, 85 - B Pol. La Grela
15008 A CORUÑA
phone: + 34 - 981275500
fax: + 34-981 274878
mlago@mlago.com
www.mlago.com
TAGISA
P.I. Montfullá Cl. de Vilabreix, nau 10

17162 Bescano - GIRONA
phone: + 34 - 972411700
fax: + 34-972411664
tagisa@tagisa.com
www.tagisa.com
MANXA
Cr. de les Tries, 85
17800 Olot - GIRONA
phone: + 34-972 274528
fax: + 34-972 261904
automatismes@manxa.com
www.manxa.com
DTISA
Avda. Andalucía, 34 (Adoratrices)
18014 GRANADA
phone: + 34 -958 293551
fax: + 34-958 293817
granada@dtisa.com
www.dtisa.com
GARAPEN
Po. Anduaga 15-17
20709 Ezkio-ltsaso - GUIPUZCOA
phone: + 34-9437290 06
fax: + 34-943729147
garapen@adegi.es
www.garapen.com
RECOIN
Diego de Almagro, 14
21002 HUELVA
phone: + 34-959 251712
fax: + 34-959 257309
recoin@interbook.net
www.recoin.es
NAVASOLA
Pol. Monzu
C. de la Industria, 80

22006 HUESCA
phone: + 34 -974 222690
fax: + 34-974 243681
navasola@navasola.com www.navasola.com

SUMI-3
Calvario, 35
22400 Monzón - HUESCA
phone: +34 974417017
fax: +34 973211018
monzon@sumi-3.com
www.sumi-3.com
SIAPA JAEN
P.I. Valderrepiso S/N

23710 Bailén - JAEN
phone: +34-953678570
fax: +34-953671200
www.siapa.es

MAYPE
Pol. "El Segre"
Enginyer Pau Agustí, 303-B, nv. 5-6
25002 LLEIDA
phone: + 34 -973 313204
fax: + 34-973 311160
tecnico@maype.com
www.maype.com
ELECTRO TARR
Ronda dels Comtes de Barcelona, 5
25300 Tarrega - LLEIDA
phone: + 34-973210700
fax: + 34-973 211084
www.electrotar.com
ELECTROMATIC PALACIOS
Pol. Cantabria I
C/ Soto Galo, 19 Nave 23
26006 Logroño - LA RIOJA
phone: +34-941 265160
fax: +34-941 265161
info@electromatic.com.es
www.electromatic.com.es
T2S -Alcalá de Henares
Rumania 5, nave 8A (P.I. Inbisa)
28802 Alcalá de Henares - MADRID
phone: +34-918797960
fax: +34-918797961
t2s@t2s.es
www.t2s.es
T2S -Fuenlabrada
Av. de Cantueña, 4 nave 5
28946 Fuenlabrada - MADRID
phone: +34-916214430
fax: +34 916422223
t2s@t2s.es
www.t2s.es
DTISA
P. I. Guadalhorce,

Nave 60 Salazar Chapela, 16 29004 MALAGA
phone: + 34 - 952242492
fax: + 34-952 242551
malaga@dtisa.com
www.dtisa.com
ELECTROMAIN ELEC. IND.
Ctra. Madrid-Cartagena, Km 377
30500 Molina de Segura - MURCIA
phone: + 34 - 968389005
fax: + 34 - 968611100
electromain@electromain.com www.electromain.com
IRUÑA
TECNOLOGÍAS DE AUTOMATIZACIÓN
Cañada Real, 12
Polígono Berrioplano
31195 Berrioplano - NAVARRA
phone: + 34 -948 302321
fax: + 34 - 948303502
iruna.tecnologias@grupoiruna.com
www.grupoiruna.com
REITEC
Los Avellanos, 20
35018 LAS PALMAS DE GRAN CANARIA
phone: + 34-928436908
fax: + 34-928 436706
reitec@reitec.es
www.reitec.es
M. LAGO

Avda. Ricardo Mella, 115-B
36331 Vigo - PONTEVEDRA
phone: + 34-986230668
fax: + 34-986 206021
mlago@mlago.com
www.mlago.com
MONTAJES ELECTRICOS LUMAR
Camino de Tres Casas, s/n
40196 La Lastrilla - SEGOVIA
phone: + 34-921436521
fax: + 34-921442334
lumarsa@lumar.c.telefonica.net
www.lumarsa.net
SGA
Ctra. N-IV, Km 536, Edificio Eurosevilla

41020 SEVILLA

phone: + 34 -954 253318
fax: + 34-954 673742
sga@sga-de.com
TRIMATIK
P. Riu Clar. Parcela 5.1.5. Nv. 64

C/ Mercuri
43006 TARRAGONA
phone: + 34 -977550909
fax: + 34-97755 1460
trimatic@sefes.es
www.trimatik.es

SUR-APELSA

Subida Sobradillo 39 A. Edificio Cristian

38108 Taco - TENERIFE

phone: + 34-922614258
fax: + 34-922 612035
surapel@arrakis.es

SIAPA

Pol. Ind. Yuncos - Calle A - Nave 95
45210 Yuncos - TOLEDO
phone: + 34 -925 537944
fax: + 34 -925 537954
siapa1@teleline.es
DME - AUTOMATIZACION INDUSTRIAL
Enrique Taulet, 8 Bajo Dcha.
46014 VALENCIA
phone: + 34 -963 587226
fax: + 34-963 170355
dme@dme.es
www.dme.es
DME - AUTOMATIZACI"N INDUSTRIAL
Ferrocarril de Alcoy, 106 Bajo
46700 VALENCIA
phone: +34-962 861242
fax: +34-963170 355
dme.gandia@dme.es

AUTOMATISMOS LASER

Gonzalo Viñes, 4

46800 Xátiva - VALENCIA
phone: + 34-962 275132
fax: + 34-962 274563
laser@grupoperis.com
www.grupoperis.com

DISMEVA

Plomo, 8 nave 7 P. San Cristobal
47012 VALLADOLID
phone: + 34 -983 213131
fax: + 34-983213132
automatismos@dismeva.es
www.dismeva.es

BILAK

P.I. Ugaldeguren, 1 - Parc. 5-4-Local 6B 48160 Derio - VIZCAYA
phone: + 34 - 944545018
fax: + 34-944544149
bilak@mundivia.es
SUMI-3
Cogullada 20 P.T. Cogullada, n 18.
50014 ZARAGOZA
phone: + 34-976 415455
fax: + 34-97659 4521
sumi_3@sumi-3.com
www.sumi-3.com
SUINSA
Casa Rufo - Camp Bastida 6 bajos
Andorra PRINCIPAT D'ANDORRA
phone: + 34-7-376 866838
fax: + 34-7-376 866939

Colaboradores de Sistemas y

 ProyectosCORPORACIÓN SURIS, S.A.
TOTCONTROL, S.A.
C. Marroc, 210-212

08019 - BARCELONA
phone: +34 935569090
fax: +34 935569091
totcontrol@totcontrol.com
LÍNEAS ELECTRÓNICAS INGENIERÍA
Avda. España, 93 Ch. II Apart. Las Rozas 28230 Las Rozas - MADRID phone: +34 916381003 fax: +34 916385195 lei@lei.es
www.lei.es
SETELSA
P.I. Guarnizo, Nave la Canaluca 2-4

39611 Guarnizo - CANTABRIA
phone: +34 942544354
fax: +34 942544454
setelsa@mundivia.es
www.setelsa.net

ELECTROAMSA

Crta. Extremadura, Km 474
41900 Camas - SEVILLA
phone: +34 954394311
fax: +34 954390221
electroamsa@electroamsa.com

Servoaccionamientos

I+D EXTREMADURA
C. Santa Teresa de Jornet s / n

06800 Mérida - BADAJOZ
phone: +34 924314412
fax: +34 924300619 imasdext@infonegocio.com www.imasdextremadura.com

BERRIOLA S. COOP.
C. San Esteban s/n 20170 Usurbil - GUIPUZKOA phone: +34 943000680 fax: +34 943370094 comercial@berriola.com

ASA, S.L.
Pol. Ind. Yuncos - Calle A - Nave 95
45210 Yuncos - TOLEDO
phone: +34 925537970
fax: +34 925537034

NAUTROL, S.L
Calle 27 y 28, Nave 3, P.I. 4
46470 Catarroja - VALENCIA
phone: +34 961273384
fax: +34 961273384
inautrol@inautrol.es www.inautrol.es

Sensores Avanzados /
Visión Artificial
I+D EXTREMADURA
C. Santa Teresa de Jornet s / n

06800 Mèrida - BADAJOZ
phone: +34 924314412
fax: +34 924300619
imasdext@ infonegocio.com
www.imasdextremadura.com
NEXPERT INTEGRACION
P.I. Can Ferrer II C. Portugal, 1

08770 St. Sadurni D'Anoia - BARCE-
LONA
phone: +34 938912903
fax: +34 938911711
nexpert@ nexpert.es
www.nexpert.es
SOLEX CONSULTORES, S.L.
CL. Sisiones 2, Nave 58

28320 Pinto - MADRID
phone: +34 916922117
fax: +34 916914817
ivan@ solexvision.com
www.solexvision.com
INAUTROL, S.L.
Calle 27 y 28, Nave 3, P.I. 4
46470 Catarroja - VALENCIA
phone: +34 961273384
fax: +34 961273384
inautrol@ inautrol.es
www.inautrol.es
INTEROB, S. L.
C. Plata,14-Nave1C-P.I. San Cristobal 47012 - VALLADOLID
phone: +34 983392388
fax: +34 983218327
interob@interob.com
www.interob.com
P3S, S.L.
Cobalto, 16-20 nave B
08038 BARCELONA
phone: +34-932 896600
fax: +34-932 895064
info@p3s.es
www.p3s.es

Sweden

Sales office Kista:
OMRON ELECTRONICS AB
Norgegatan 1, P.O. Box 1275
SE-16429 Kista
phone: + 46-8632 3500
fax: + 46-8 6323540
www.omron.se

Salesoffice Göteborg:

Olof Asklunds gata 6
SE-42130 GÖTEBORG
phone: + 46-86323500
fax: + 46-31 7092853

Salesoffice Malmö:
Derbyvägen 6 B
SE-21235 MALMO
phone: + 46-8-632 3500
fax: + 46-40-49 5710
Salesoffice Norsjö:
Storgatan 6, P.O. Box 4 SE-93521 NORSJÖ
phone: + 46-8-632 3500
fax: + 46-918-102 94
Salesoffice Umeå:
Manusgränd 3
SE-90364 UMEA
phone: + $46-8-6323500$
fax: + 46-90-148939
Distributors in Sweden
for Industrial Components:
Ahlsell AB, Div El
Liljeholmsvägen 30
SE-11798 STOCKHOLM
phone: + 46-86857000
fax: + 46-86857093
www.ahlsell.se
Elektroskandia AB
N Malmvägen 141
SE-19183 SOLLENTUNA
phone: + 46-8923500
fax: + 46-892 3980
www.elektroskandia.se
Elfa AB
Elektronikgränd 14
SE-175 80 JÄRFÄLLA
phone: + 46-858094200
fax: + 46-8580 94300
www.elfa.se
Öberg Innovation AB
Kvällsvindsgatan 8
SE-65221 KARLSTAD
phone: + 46-54851300
fax: + 46-54 851301
www.oberginnovation.se
Selga AB
P.O. Box 103

SE-12523 ÄLVSJÖ
phone: + 46-87493800
fax: + 46-874952 27
www.selga.se
Västerås Maskinbyggar Center, VMB
Tallmätargatan 1 C
SE-72134 VÄSTERÅS
phone: + 46-21 120899
fax: + 46-21 127805
www.vmb.se

Distributors in Sweden

for Industrial Systems:
All-Ström Elektriska AB
Sporregatan 3
SE-21377 MALMÖ
phone: + 46-40 223575
fax: + 46-40219282
www.home.swipnet.se//all-strom
Automatiksystem i Jämtland AB
P.O. Box 3127

SE-83103 ÖSTERSUND
phone: + 46-63510365
fax: + 46-63106631
www.automatiksystem.se

J\&M Automation AB
Sorterargatan 35
SE-162 50 VALLINGBY
phone: +46-8386050
fax: +48-88940 37
NE Konstruktioner AB
Algotsvägen 2
SE-93500 NORSJO
phone: + 46-91825390
fax: + 46-91825394
Texo Application AB
P.O. Box 602

SE-34324 ÄLMHULT
phone: + 46-476 12250
fax: + 46-47610321
www.texoapplication.se
Automationsteknik Hässleholm AB
Box 155
SE-281 22 HÄSSLEHOLM
phone: +46 451388050
fax: +46 451388051
www.automationsteknik.com
Distributor in Lithuania
KEMEK Engineering UAB
P.O. Box 1362

LT-2056 VILNIUS
phone: +370-2 470301
fax: +370-2 793909
Distributor in Latvia
Miltronic SIA
Brivibas 155
LV-1012 RIGA
phone: +371-750 1900
fax: +371-750 1909

Switzerland

Sales office Steinhausen:
OMRON ELECTRONICS AG
Sennweidstrasse 44
6312 Steinhausen
phone: + 41-417481313
fax: + 41-41748 1345
www.omron.ch

Sales office Romanel:

Omron Electronics AG
ch. des Fayards 2
1032 Romanel-sur-Lausanne VD
phone: +41-21 6437575
fax: +41-216437570
www.omron.ch

Distributor:

Novitronic AG
Thurgauerstrasse 74
8050 Zürich
phone: +41-1 3069191
fax: +41-13069181
info@novitronic.ch
www.novitronic.ch
Relettra SA
Via Ginnasio
6982 Serocco d'Agno
phone: +41-916046206
fax: +41-916046208
info@relettra.ch
www.relettra.ch

Turkey

Sales office Istanbul:
OMRON ELECTRONICS LTD. ALTUNIZADE, KISIKLI CAD. NO: 2
A- BLOK K. 2
34662 Üsküdar - ISTANBUL
phone : +90 2164740040 Pbx
fax: +90 2164740047
www.omron.com.tr

Also in charge of:

Bulgaria

Gemamex Private Co.
Lozenec,4
BG-1421, Sofia
tel: +359 29631728
fax: +359 29630069
Contact: Mr. G. Genchev
gemamex@dir.bg
www.gemamex.com
Simel Ltd
Bul. Rouse 37A
BG-5800, Pleven
tel: +359 64802186
fax: +359 64800318
Contact: Mr. Y. Ivanchev
simel@infotel.bg

Macedonia

Nik Sistemi
Bul. J. Sandanski No. 12 La. 5 lo. 3
MAC-1000 Skopje
tel: +389 (0)22 461309
fax: +389 (0)2 400858
Contact: Mr. S. Nakev
nik@nik.com.mk
www.nik.com.mk

Distributors in Turkey:

Arda Mak. Ltd. Sti
Sanayi Cad. Dogan Sk. No: 1/C Ulus-ANKARA
phone: +90-312 312 66 04-30912 33
fax: +90-312 3101353
Branch office: 100.Yil Bulvari
42.Sok. No: 1

Ostim - ANKARA
phone: +90-312 38580 37-38
fax: +90-312 3858058
Ceran Otomasyon Ltd. Sti.
Perpa Tic. Merkezi Kat:2 No:035
Okmeydani - ISTANBUL
phone: +90-212 210818
ax: +90-212 2201803
Elektrosan San ve Tic. Ltd. Sti.
Istasyon Cad. No: 34/B KAYSERI
phone: +90-352 2310159
fax: +90-352 2317913
Erel Elektroteknik Muh. Mak. Taah.
Tic. San. ve Yat. A.S
Vezirciftligi Mah. Yeni Golcuk Road No:64
Kullar-IZMIT
phone: +90-262 3496445
ax: +90-262 3496454
Hasmak Elek.Otom. Malz. Ltd. Sti
Kizilay Caddesi No: 109
Seyhan / ADANA
phone: +90 3223528684
fax: +90 3223599717

Hatel Elektronik Ltd. Sti
1201 Sok. No: 13 / D Yenisehir - IZMIR
phone: +90-232 4492100
fax: +90-232 4490407
Mavi Elektronik
Incilli Pinar Mah. 1 no'lu sokak No:52
Yimpas arkasi Sehitkamil-GAZIANTEP
phone: +90-342 2153347
fax: +90-342 2153348
Muhendisler Elk. Ltd. Sti.
Okcumusa Cad. Menevse Is Hani
No: 54-90
Karakoy - ISTANBUL
phone: +90-212 2565750
fax: +90-212 2376726
Oneri Elk. San. ve Tic. Ltd.
Okcumusa Cad. No: 21
Karakoy - ISTANBUL
phone: +90-212 29251 72-73
fax: +90-212 2925175
Saltotomasyon Elk. Elek. San. ve Tic. Ltd. Sti.
Busan Ozel Org. San. Bol. Kosgeb Cad.
No : 32 Karatay - KONYA
phone: +90 3323453181
fax: +90 3323453184
OMRON MECHATRONICS CENTER
Etki Muhendislik Elek. Oto. Ltd. Sti.
Sakarya Mah Dinc Sok. No:41 Osmangazi / BURSA
phone: +90 2242733811
fax: +90 2242733812
Global Elek. Oto. Ltd. Sti.
Yenidogan Mah. Rami Kisla Cad. Heki-
moglu Plaza No:105/3
Bayrampasa-ISTANBUL
phone : +90-212-674 7300
fax: +90-212-674 7306
OMRON VISION CONTROL CENTER
E3TAM Endustriyel\&Bilimsel Test Tek.
Tasarimi Arge-Muh. A.S.
Barbaros Bulvari Guven Apt. No:177/6
80280 Esentepe-ISTANBUL
phone: +90-212 27522 80-81
fax: +90-212 2732319
OMRON LIFT CENTER
Mikel Elektronik Ltd.Sti.
Matbacilar Sitesi Yolu, Yüzyil Mah. No:60 K:2
34200 Bagcilar - ISTANBUL
phone: +90-212 6296158
fax: +90-212 6291135

United Kingdom and Ireland

Sales office:

OMRON ELECTRONICS LTD
Opal Drive, Fox Milne
Milton Keynes
MK15 ODG
phone: +44-8707520861
fax: +44-8707520862
www.omron.co.uk

CIS

Representative Office:
OMRON ELECTRONICS OY
Metsänpojankuja 5
02130 ESPOO
phone: + 358 (0) 207464200
fax: + 358 (0) 207464210
www.omron.fi

Middle East \& Africa

Representative Office:

OMRON ELECTRONICS B.V.
Independent Distributor Sales (IDS)
Wegalaan 61
2132 JD Hoofddorp
P.O. Box 582

2130 AN Hoofddorp
The Netherlands
phone: +31-23568 1100
fax: +31-23568 1397
www.europe.omron.com
email: ids@eu.omron.com

Bahrain

Ebrahim Al-Shakar \& Sons
P.O. Box 5344

Manama
tel: +973 225255
fax: +973 227789
Contact: Mr. F. Al-Shakar
fsls@batelco.com.bh

Cyprus

Hadjioannou Ltd 8C/D Aegeos Str. P.O.Box 29121 Pallouriotissa Nicosia 1621 tel: +357 22 348262/3 fax: +35722430107 Contact: Mr. M. Hadjioannou milton@spidernet.com.cy

Egypt

Union Co
20 Dr. Ibrahim Salama St.
12411 Giza , Cairo
tel: + 202 3042165/6
fax: + 2023046946
Contact: Mr. M. Waly
omron@union.com.eg

Iran

Paykar Bonyan Co.
NO, 114, Vozara Avenue
Tehran 15167
tel: + 98218781591 / 4
fax: + 98218770639
Contact: Mr. M. Mahmoudi
info@paykarbonyan.com
www.paykarbonyan.com

Iraq

BAGHDAD LAND Instruments \& Control
System Trading Co. Ltd
Baghdad-lraq
AI-Wihda District, AI-Wathiq Street,
Al-Saadi Building, 2Nd Floor , Office \#14
Tel. : +964-1-7184761
Mobile : +964-7901-511106/552159
Or Satellite
Tel.: +88-216-333-16714 (Satellite)
Fax.:+88-216-333-16713 (Satellite)
e-mail: bececontrols@hotmailcom
Contact: Mrs. Hyifa Hussein

Israel

Ateka Ltd
23, Hayetzira str.
P.O.Box 3120

Kiryat Aryeh, Petah Tikva 49512
tel: +972 39392333
fax: +972 39243273
Contact: Mr. O. Levkovich
OferL@ateka.co.il
www.ateka.co.il

Jordan

Alfidaa Engineering Est. Amman Alsakhrah Almusharafa st
P.O. Box 285

11512 Amman
tel: + 96264732969
fax: + 96264732968
Contact: Mr. Azzam Buzz
alfidaa@go.com.jo
www.fidaagroup.com

Kenya

Automatic Controls Ltd.
Off Dunga Road, industrial area
P.O. Box 27519

00506 Nairobi
tel: +254 20530879 / 537114/5
fax: +254 20533770 / 552004
Contact: Mr. Hitendra Patel
automatic@iconnect.co.ke

Kuwait

Ammar \& Partners Electrical Co.
P.O. Box 1871

13019 Safat
tel: +965 48301222
fax: + 9654841818
Contact: Mr. C.V. Sebastian
alammar@qualitynet.net

Lebanon

Metacs S.A.R.L.
227, Selim Butros street/ Tabaris
P.O. Box 166817

Beirut
tel: +961 1335929
fax: +961 1200159
Contact: Mr. E.W. Azar
metacs@metacs.com
www.metacs.com

Nigeria

Ibron Limited
6 Louis Solomon Close
Victoria Island, Lagos
tel: + 23415870615
fax: + 23415872476
Contact: Mr. Eme Mokuro
ibron@infoweb.abs.net

Qatar

Qatar Instrumentation \& Eng
P.O. Box 17424

Doha
tel: +974 4328331
fax: +974 4328311
Contact: Mr. Y. Evangelista
qinst@qatar.net.qa

Sultanate of Oman

Al Khadrawain electronics \&
Instrumentation
P.O. Box 34

Ruwi
tel: +968 7733872
fax: +968 7733906
Contact: Mr. S. Karunan
alkhadra@omantel.net.om
Syria
TechnoLead Co
No. 12 Emir Mustafa Shihabi St.
P.O. Box 33679

Mazraa, Damascus
Tel: +963 1144676440
fax: +963 1144676444
Contact: Mr. Husam Khanj
hkhanji@techno-lead.com
www.techno-lead.com

Saudi Arabia

AWS Distribution
P.O. Box 73409

Al Khobar - 31952
Tel: +966 38589000
Fax: +966 38588404
Contact: Mr. S. Khaleel
awsd03@yahoo.com

South Africa

Yelland Control
3 Sunrock Close, Sunnyrock
Germiston, 1401
P.O.Box 3939

1610 Edenvale
tel: +27 115792600
fax: +27 11 455-2776
Contact: Mr. I. McInnes
johannesburg@yelland.co.za

Sudan

Leader technology for Enginneering
Products
P.O. Box 44508

Alsagana street
11111 Khartoum
tel: +24 9183474682
fax: +24 9183474788
Contact: Mr. Fadul M. Khair
leadercompany@hotmail.com
www.leadersteeng.com
U. A. E.

Deira General Marketing
P.O.Box 11370

Dubai
tel: +971 43389111
fax: +971 43382625
Contact: Mr. T. Gonzales
dgmsales@emirates.net.ae

Yemen

Almozn For Contracting \&
Trade Agencies
Alzera'ah Street
Sana'a
Tel.: +967 1402528
Fax: +967 1469309
E-mail : m.a.hajar@yemen.net.ye Almozn2004@yahoo.com
Contact: Mr. Mohammed A. Hajar

Index

A	
A165E	G-283
A22E	. please refer to CD
A4E	G-299
Accessories for E32	A-245
C	
Camera \cdot Lens \cdot Lighting	C-65
D	
D40B	G-197
D4B- \square N	G-243
D4BL	G-185
D4BS	G-143
D4F	G-259
D4GL	G-171
D4GS-N.	. please refer to CD
D4N	G-219
D4N- \square R	G-267
D4NH	G-207
D4NL	G-153
D4NS	. G-131
E2	
E2A	D-9
E2A3	D-35
E2AU	D-151
E2AX	. please refer to CD
E2C-EDA	D-83
E2E	. D-45, D-119
E2EC	D-107
E2EL	. D-99
E2EQ	D-171
E2EZ	D-161
E2F	D-29
E2FQ	D-167
E2K-C	D-183
E2K-F	D-189
E2K-L	. please refer to CD
E2KQ-X	D-179
E2Q2	D-69
E2Q4	. D-77
E2S	D-61
E3	
E32	A-165
E32-D82F.	. please refer to CD
E32-EDS Series	. . A-237
E32-ET16WR-1/2. .	. please refer to CD
E32-ETS Series A-237
E32-L25T	. please refer to CD
E32-V.	. please refer to CD
E39-E10	. . A-70
E39-F■	. A-245
E39-F1V	. A-245
E39-F31	. A-41
E39-K2	A-246
E39-R \square	. A-245
E3C-LD11. please refer to CD

E3C-LD21	please refer to CD
E3C-LD31	please refer to CD
E3C-LDA	please refer to CD
E3F2	A-17
E3FS	G-63
E3G	. A-119
E3G-L1/L3	please refer to CD
E3JK	. A-149
Езм-V	. A-133
E3MC.	please refer to CD
E3NT	A-83
E3S-A.	please refer to CD
E3S-C	. A-101
E3S-CL	. A-111
E3S-CR62	A-157
E3S-CR67	. .A-157
E3S-LS3	. A-145
E3S-R	please refer to CD
E3T	A-67
E3X-CIF11	please refer to CD
E3X-CN \square	A-240
E3X-DA-N	please refer to CD
E3X-DA-S	please refer to CD
E3X-DRT21.	please refer to CD
E3X-MDA.	please refer to CD
E3X-NA.	please refer to CD
E3X-NL	please refer to CD
E3X-SRT21.	please refer to CD
E3Z	A-43
E6	
E69-1	
E69-2	E-5, E-7, E-9, E-13
E69-CDB	E-5, E-7, E-9, E-13
E69-C■M	E-5, E-7, E-9, E-13
E69-DF5	E-13
E69-FBA \square	E-5
E69-FCA \square	
E6A2-C	
E6B2-C	E-5
E6C2	E-7
E6C2-C	E-7
E6C3-A	E-11
E6C3-C	E-7
E6F-A	E-13
E6F-C	E-9
E6H-C	please refer to CD
E6L	please refer to CD
E8	
E8F2	please refer to CD
E8M.	please refer to CD
E8MS	please refer to CD
F	
F150-3	C-11
F160	C-25
F210	C-37
F250	C-45
F3C-AA .	please refer to CD

C-AL.	o CD
F3G-C	please refer to CD
F3S-B	G-31
F3SH-A	G-3
F3SL	G-59, G-77
F3SN-A	G-3
F3SP-U4	

U4P G-73
F3SS please refer to CD
F3S-TGR-SB \square C series G-49
F3UV please refer to CD
F3WD please refer to CD
F3ZN please refer to CD
F400 please refer to CD
F500 C-55

G
G7S please refer to CD
G7SA G-291
G9SA G-109
G9SB G-123
G9SX G-89

N
NE1A/DST1 G-77

T
TLD-115
TL-T please refer to CD
TL-W
D-53
V
V530-R150 please refer to CD V530-R160 please refer to CD Vision Composer. please refer to CD

X

XS2F- \square A-21, A-103, A-121, A-159, D-172
Y
Y92E-A34D-183

Z

Z300	B-31
Z500	B-45
Z510	B-53
Z550	B-57
ZFV Series	C-3
ZS-L Series	B-25
ZX-E Series	B-61
ZX-L Series	B-3
ZX-T Series	B-77

OMRON EUROPE B.V. Wegalaan 67-69, NL-2132 JD, Hoofddorp, The Netherlands. Tel: +31 (0) 235681300 Fax: +31 (0) 235681388 www.europe.omron.com

	Austria Tel: +43 (0) 1801900 www.omron.at	France Tel: +33 (0) 156637000 www.omron.fr	ne	Norway Tel: +47 (0) 22657500 www.omron.no		Sweden Tel: +46 (0) 86323500 www.omron.se
	Belgium Tel: +32 (0) 24662480 www.omron.be	Germany Tel: +49 (0) 217368000 www.omron.de		Poland Tel: +48 (0) 226457860 www.omron.com.pl	π	Switzerland Tel: +41 (0) 417481313 www.omron.ch
	Czech Republic Tel: +420 234602602 www.omron.cz	Hungary Tel: +36 (0) 13993050 www.omron.hu	\cdots	Portugal Tel: +351 219429400 www.omron.pt		Turkey Tel: +90 (0) 2164740040 www.omron.com.tr
	Denmark Tel: +45434400 11 www.omron.dk	Italy Tel: +39 0232681 www.omron.it		Russia Tel: +7 0957452664 www.omron.ru		United Kingdom Tel: +44 (0) 8707520861 www.omron.co.uk
1	Finland Tel: +358 (0) 207464200 www.omron.fi	Netherlands Tel: +31 (0) 235681100 www.omron.nl		Spain Tel: +34 913777900 www.omron.es		

For the Middle East, Africa and other countries in Eastern Europe, Tel: +31 (0) 235681100 www.europe.omron.com

Control Systems

- Programmable logic controllers • Human-machine interfaces • Remote I/O

Motion \& Drives

- Motion controllers • Servo systems • Inverters

Control Components

- Temperature controllers • Power supplies \& fans • Timers • Counters
- Programmable relays • Digital panel indicators • Electromechanical relays
- Monitoring products • Solid-state relays • Limit switches • Pushbutton switches
- Low voltage switch gear

Sensing \& Safety

- Standard photoelectric sensors • Inductive sensors • Capacitive \& pressure sensors
- Rotary encoders • Cable connectors • Advanced photoelectric sensors
- Displacement \& width-measuring sensors • Vision systems • Safety networks
- Safety sensors • Safety units/relay units • Safety door/guard lock switches
- Other safety switches

[^0]: * Standard cable length is 2 m . Models provided with a 5 m long cable are available. When ordering, specify the cable length by adding the length of the cable (e.g. E3F2-R2Z1 2M or E3F2-R2Z1 5M). For other cable length please contact your OMRON sales representative.

[^1]: Note: Terminal numbers for connector type.

[^2]: ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.
 To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .

[^3]: -

[^4]: * Values in parentheses indicate the minimum required distance between the sensor and reflector.

 Note: 1. When the reflector used is other than the supplied one, set the sensing distance to about 0.7 times of the typical example as a guideline
 2 . Refer to the "Reflector list".

[^5]: ALL DIMENSIONS SHOWN ARE IN MILLIMETERS

[^6]: * NEMA (National Electrical Manufacturers Association) Standards

[^7]: ALL DIMENSIONS SHOWN ARE IN MILLIMETERS

[^8]: * Values in parentheses indicate the minimum required distance between the sensor and reflector.

[^9]: 1. Make sure that the input tolerance of each pulse is within $\pm 0.1 \mathrm{~s}$.
[^10]: ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.
 To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .

[^11]: 1 Teflon is a registered trademark of DuPont Company and Mitsui DuPont Chemical Company for their fluriode resin

[^12]: 1 Teflon is a registered trademark of DuPont Company and Mitsui DuPont Chemical Company for their fluriode resin

[^13]: 1 Teflon is a registered trademark of DuPont Company and Mitsui DuPont Chemical Company for their fluriode resin

[^14]: *1. Sensing distance based on white paper.
 *2. Indicates values for standard mode.

[^15]: *1. Sensing distance based an white paper.
 *2. Indicates values for standard mode.
 *3. For continius operation use the product within a temperature range of -40° to $130^{\circ} \mathrm{C}$.
 *4. Indicates the heat-resistant temperature at the fiber tip.

[^16]: *1 Since the heat resistance changes depending on the fiber area, refer to the external dimensions.
 *2 For continuous operation, use the products within a temperature range of $-40^{\circ} \mathrm{C}$ to $130^{\circ} \mathrm{C}$

[^17]: ${ }^{\star}+200^{\circ} \mathrm{C}$ for short-time use

[^18]: ＊1＂T＂for through－beam type，＂D＂for reflective type．
 ＊2 B or＂F＂at the end of E32－TC200B．
 ＊3＂ 50 ＂for 50 mm full length．Full length 120 mm

[^19]: ＊1＂T＂for through－beam type，＂D＂for reflective type
 ＊2 B or＂F＂at the end of E32－TC200B．

[^20]: Positioning teaching
 Ideal for high-precision positioning applications.
 Two-point teaching
 Ideal for detection of minute level differences between two points.

 ## Automatic teaching

 Ideal for applications where teaching is performed without stopping the work.

[^21]: * Only for reflective types.

[^22]: 2. Class 1M laser products that failed condition 1 of table 10. Not required for Class 1 M laser products that failed condition 2 of table 10.
[^23]: *6. The value obtained at measurement with the space between the sensor and the workpiece fixed with an aluminum jig. The measurement range is 60 mm.

[^24]: High/Low outpu

[^25]: ALL DIMENSIONS SHOWN ARE IN MILLIMETERS
 To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .

[^26]: Matching can be performed for products with varying shapes by using more than one reference image.

[^27]: 1 Scheduled for release soon.

[^28]: 1 Scheduled for release soon.

[^29]: The F500-UM Applications Software is used both with the F210 and F250.

[^30]: Scheduled for release soon.

[^31]: *1. A different frequency type is available. (E2F-X $\square \square 5$; e.g.E2F-X5E15)

[^32]: ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.
 To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .

[^33]: *1. Models with different response frequency are available. These model numbers take the form TL-W5MD $\square 5$ (e.g., TL-W5MD15)

[^34]: * The response frequencies for DC switching are average values measured under the condition that the distance between each sensing object is twice as large as the

[^35]: ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.
 To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .

[^36]: ALL DIMENSIONS SHOWN ARE IN MILLIMETERS

[^37]: ALL DIMENSIONS SHOWN ARE IN MILLIMETERS

[^38]: Note: 1. The response speed is an average value. Measurement conditions are as follows: standard sensing object, a distance of twice the standard sensing object, and a set distance of half the sensing distance.
 2. When using an E2E with an M8 connector at an ambient temperature range between $70^{\circ} \mathrm{C}$ and $85^{\circ} \mathrm{C}$, supply 10 to 30 VDC to the E2E and make sure that the E2E has a control output of 100 mA maximum

[^39]: ALL DIMENSIONS SHOWN ARE IN MILLIMETERS
 To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .

[^40]: * Attached to the product.

[^41]: ALL DIMENSIONS SHOWN ARE IN MILLIMETERS

[^42]: Note: Unless otherwise specitıed, a tolerance ot $\pm 0.4 \mathrm{~mm}$ applies to all dımensions.

[^43]: Standards and EC Directives
 Conforms to the following EC Directives:
 Machinery Directive
 Low Voltage Directive
 EN1088

[^44]: Note: Apply a tightening torque of 0.78 to $0.88 \mathrm{~N} \cdot \mathrm{~m}$ to conduit models

[^45]: Note: HF indicates "holding force"

